JP2023135971A - Thick film resistor paste, thick film resistor, and electronic component - Google Patents

Thick film resistor paste, thick film resistor, and electronic component Download PDF

Info

Publication number
JP2023135971A
JP2023135971A JP2022041338A JP2022041338A JP2023135971A JP 2023135971 A JP2023135971 A JP 2023135971A JP 2022041338 A JP2022041338 A JP 2022041338A JP 2022041338 A JP2022041338 A JP 2022041338A JP 2023135971 A JP2023135971 A JP 2023135971A
Authority
JP
Japan
Prior art keywords
thick film
film resistor
mass
paste
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022041338A
Other languages
Japanese (ja)
Inventor
勲 林
Isao Hayashi
勝弘 川久保
Katsuhiro Kawakubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022041338A priority Critical patent/JP2023135971A/en
Publication of JP2023135971A publication Critical patent/JP2023135971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)

Abstract

To provide: a thick film resistor paste for resistors, which is excellent in surge resistance with a smaller resistance change rate for an electronic component that is reduced in size furthermore; a thick film resistor using the thick film resistor paste; and an electronic component including the thick film resistor.SOLUTION: Provided is a thick film resistor paste containing a conductive particle, glass powder, an organic vehicle, and an additive. The additive contains at least one of zinc oxide or silicon oxide, and the content of the zinc oxide and the content of the silicon oxide which are added as the additive each are 1 mass% or more and 19 mass% or less with respect to 100 mass% of the glass powder.SELECTED DRAWING: None

Description

本発明は、厚膜抵抗ペーストに関し、特に耐サージ性に優れた厚膜抵抗体を形成することのできる厚膜抵抗ペースト、その厚膜抵抗ペーストを用いた厚膜抵抗体、及びその厚膜抵抗体を備えた電子部品に関する。 The present invention relates to a thick film resistor paste, and in particular a thick film resistor paste that can form a thick film resistor with excellent surge resistance, a thick film resistor using the thick film resistor paste, and a thick film resistor using the thick film resistor paste. Regarding electronic components with bodies.

厚膜抵抗ペーストは、一般に、導電粉末と、ガラス粉末と、それらを印刷に適したペースト状にするための有機ビヒクルとで構成される。この厚膜抵抗ペーストを任意のパターンで印刷し、通常800~1000℃の高温でガラスを焼結させることで、例えば、厚膜チップ抵抗器等の電子部品を構成する厚膜抵抗体として使用されている。導電粉末としては、ガラス粉末との混合比率を調整することで緩やかに抵抗値を変化させることができるため、酸化ルテニウム粉末やルテニウム酸鉛粉末が広く用いられている。 Thick film resistive pastes generally consist of conductive powder, glass powder, and an organic vehicle to make them into a paste suitable for printing. By printing this thick film resistor paste in an arbitrary pattern and sintering the glass at a high temperature of usually 800 to 1000°C, it can be used as a thick film resistor that constitutes electronic components such as thick film chip resistors. ing. As the conductive powder, ruthenium oxide powder and lead ruthenate powder are widely used because the resistance value can be changed gradually by adjusting the mixing ratio with the glass powder.

例えば、特許文献1には、無機材粒子にムライトを、ガラス粒子にホウケイ酸鉛ガラスを、導電粒子に二酸化ルテニウムを用いた混合物に、バインダとしてエチルセルロース、溶剤としてトルエンおよびアルコールを用いたビヒクルを添加して得た抵抗体ペーストを用いて形成した厚膜抵抗体の技術が記載されている。 For example, in Patent Document 1, a vehicle using ethyl cellulose as a binder and toluene and alcohol as a solvent is added to a mixture using mullite as inorganic particles, lead borosilicate glass as glass particles, and ruthenium dioxide as conductive particles. A technique for forming a thick film resistor using a resistor paste obtained in this manner is described.

また、特許文献2には、無機粒子にジルコンを、ガラス粒子にホウケイ酸鉛ガラスを、導電粒子に二酸化ルテニウムを用いた混合物に、バインダとしてエチルセルロースを、溶剤としてテルピネオールとブチルカルビトールアセテートを用いたビヒクルを添加して得た抵抗体用ペースト、及びその抵抗ペースト用いて形成した厚膜抵抗体の技術が記載されている。 Furthermore, Patent Document 2 describes a mixture using zircon as inorganic particles, lead borosilicate glass as glass particles, and ruthenium dioxide as conductive particles, using ethyl cellulose as a binder, and terpineol and butyl carbitol acetate as solvents. Techniques for a resistor paste obtained by adding a vehicle and a thick film resistor formed using the resistor paste are described.

近年、厚膜チップ抵抗器等の電子部品の小型化が進み、厚膜抵抗体には電気的特性の向上が求められており、とりわけ、耐サージ性等の耐電圧性に優れた厚膜抵抗体が求められている。厚膜抵抗体に瞬間的な高電圧(サージ電圧)が印加された場合、通常、負の抵抗値変化を示すが、この抵抗値変化量は小さいほうが望ましい。このような負の抵抗値変化は、電圧印加時の発熱の影響と考えられている。従来の厚膜抵抗ペーストでは、焼結時にガラス粉末同士が結合するが、ガラス粉末の軟化は表層のみに留まる。このため、厚膜抵抗ペーストを焼結後の厚膜抵抗体において、ガラス粒子径に相当する誘電体層が存在する。導電粉末は、この誘電体層の周囲に分布し、厚膜抵抗体に導電性を持たせている。このような構造に、サージ電圧を印加すると、導電部に電流が流れ、その周辺が局所的に加熱され、抵抗値変化が生じると考えられる。 In recent years, electronic components such as thick-film chip resistors have become smaller, and thick-film resistors are required to have improved electrical characteristics.In particular, thick-film resistors with excellent voltage resistance such as surge resistance The body is in demand. When a momentary high voltage (surge voltage) is applied to a thick film resistor, it usually shows a negative change in resistance value, but it is desirable that the amount of change in resistance value be small. Such a negative resistance value change is thought to be caused by heat generation during voltage application. In conventional thick-film resistor pastes, the glass powders bond together during sintering, but the softening of the glass powders remains only in the surface layer. Therefore, in the thick film resistor after sintering the thick film resistor paste, there is a dielectric layer corresponding to the glass particle diameter. The conductive powder is distributed around this dielectric layer and makes the thick film resistor conductive. It is thought that when a surge voltage is applied to such a structure, a current flows through the conductive portion, locally heating the area around the conductive portion, and causing a change in resistance value.

厚膜抵抗体の耐サージ性を向上させる方法としては、厚膜抵抗ペーストに含有するルテニウム酸鉛を増量することが挙げられる。厚膜抵抗ペーストに含有するルテニウム酸鉛を増量することで、厚膜抵抗ペーストを焼結後の厚膜抵抗体において、導電経路の太い、強固な導電部が形成され、サージ電圧印加時の発熱が抑えられ、抵抗値変化を緩和できると考えられる。
しかしながら、導電粉末としてのルテニウム酸鉛の増量は抵抗値変化を生じてしまう。
このため、例えば特許文献3に開示されているチタン化合物等の添加剤を含有させることで耐電圧特性を含めた電気的特性などを改善する技術が知られている。
One way to improve the surge resistance of a thick film resistor is to increase the amount of lead ruthenate contained in the thick film resistor paste. By increasing the amount of lead ruthenate contained in the thick film resistor paste, a strong conductive part with a thick conductive path is formed in the thick film resistor after sintering the thick film resistor paste, which reduces heat generation when a surge voltage is applied. It is thought that this can suppress the change in resistance value and alleviate the change in resistance value.
However, increasing the amount of lead ruthenate as a conductive powder causes a change in resistance value.
For this reason, there is a known technique for improving electrical properties including withstand voltage properties by incorporating an additive such as a titanium compound as disclosed in Patent Document 3, for example.

厚膜抵抗体の耐サージ性を向上させるための他の方法として、例えば特許文献4には、板状酸化ルテニウム粉末を用いることによりサージ電流が負荷されても抵抗値変化が小さい厚膜抵抗組成物の技術が開示されている。 As another method for improving the surge resistance of a thick film resistor, for example, Patent Document 4 describes a thick film resistor composition that uses plate-shaped ruthenium oxide powder so that the resistance value changes little even when a surge current is applied. The technology of the object is disclosed.

特開平4-320003号公報Japanese Patent Application Publication No. 4-320003 特開平6-163202号公報Japanese Unexamined Patent Publication No. 6-163202 特開1986-206201号公報Japanese Patent Application Publication No. 1986-206201 特開2013-053030号公報JP2013-053030A

しかしながら、近年のより小型化の進む電子部品用の厚膜抵抗体には、従来用いられている添加剤では特性改善が不十分であり、より高い耐サージ性が求められている。また、小型化が進み、厚膜抵抗体にも薄膜化が求められているが、板状の材料では塗布時の流動性に劣ってしまう。
本発明は、このような問題を鑑みてなされたものであり、より小型化の進む電子部品に対し、抵抗変化率がより小さい耐サージ性の優れた抵抗体用の厚膜抵抗ペースト、その厚膜抵抗ペーストを用いた厚膜抵抗体、及びその厚膜抵抗体を備えた電子部品を提供することを目的とする。
However, in recent years, thick film resistors for electronic components, which have been increasingly miniaturized, are not sufficiently improved in characteristics by conventionally used additives, and higher surge resistance is required. Further, as miniaturization progresses, thick film resistors are also required to be made thinner, but plate-shaped materials have poor fluidity during coating.
The present invention has been made in view of these problems, and provides a thick film resistor paste for use in resistors with a smaller resistance change rate and excellent surge resistance for electronic components that are becoming more and more miniaturized. The present invention aims to provide a thick film resistor using a film resistor paste, and an electronic component equipped with the thick film resistor.

本発明者は、種々の研究を行った結果、酸化亜鉛、もしくは酸化ケイ素を、ガラス粉末の構成元素とは別に、単独で添加した厚膜抵抗ペーストにより形成された厚膜抵抗体が、従来の厚膜抵抗ペーストにより形成された厚膜抵抗体に比べて耐サージ性に優れていることを見出し、本発明を導出するに至った。 As a result of various studies, the present inventor has found that a thick film resistor formed from a thick film resistor paste to which zinc oxide or silicon oxide is added separately from the constituent elements of glass powder is different from the conventional one. It was discovered that this resistor has superior surge resistance compared to a thick film resistor formed from a thick film resistor paste, and the present invention was developed based on this finding.

すなわち、本発明による厚膜抵抗ペーストは、導電性粒子、ガラス粉末、有機ビヒクル、添加物を含有する厚膜抵抗ペーストであって、前記添加剤が酸化亜鉛もしくは酸化ケイ素のいずれか一種類以上を含有し、前記添加剤として添加される前記酸化亜鉛の含有量及び酸化ケイ素の含有量が、ガラス粉末100質量%に対して、それぞれ1質量%以上19質量%以下の割合であることを特徴とする。 That is, the thick film resistance paste according to the present invention is a thick film resistance paste containing conductive particles, glass powder, an organic vehicle, and an additive, wherein the additive contains one or more of zinc oxide or silicon oxide. The zinc oxide content and the silicon oxide content added as the additive are each at a ratio of 1% by mass or more and 19% by mass or less based on 100% by mass of the glass powder. do.

また、本発明の厚膜抵抗ペーストにおいては、前記酸化亜鉛及び酸化ケイ素の平均粒子径がそれぞれ100nm以下であることが好ましい。また、前記導電性粒子が、酸化ルテニウムとルテニウム酸鉛のいずれか一種類以上からなることが好ましい。 Further, in the thick film resistor paste of the present invention, it is preferable that the average particle diameters of the zinc oxide and silicon oxide are each 100 nm or less. Further, it is preferable that the conductive particles are made of one or more of ruthenium oxide and lead ruthenate.

また、本発明による厚膜抵抗体は、上記本発明のいずれかの厚膜抵抗ペーストの焼成体からなることを特徴とする。 Further, the thick film resistor according to the present invention is characterized in that it is made of a fired body of the thick film resistor paste according to any one of the above-described present inventions.

また、本発明による電子部品は、上記本発明の厚膜抵抗体を備えてなることを特徴とする。 Further, an electronic component according to the present invention is characterized by comprising the thick film resistor according to the present invention.

本発明によれば、従来よりも耐サージ性に優れた厚膜抵抗ペースト、その厚膜抵抗ペーストを用いた厚膜抵抗体、及びその厚膜抵抗体を備えた電子部品を提供することができる。 According to the present invention, it is possible to provide a thick film resistor paste with superior surge resistance than conventional ones, a thick film resistor using the thick film resistor paste, and an electronic component equipped with the thick film resistor. .

以下、本発明の実施形態について説明するが、本発明は、下記の実施形態に制限されるものではなく、本発明の範囲内で、下記の実施形態に種々の変形および置換を加えることができる。
本実施形態の厚膜抵抗ペーストは、導電性粒子、ガラス粉末、有機ビヒクル、添加剤を含有してなる。以下、各成分について詳細に説明する。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and various modifications and substitutions can be made to the following embodiments within the scope of the present invention. .
The thick film resistance paste of this embodiment contains conductive particles, glass powder, an organic vehicle, and additives. Each component will be explained in detail below.

(導電性粒子)
本発明の厚膜抵抗ペーストにおける導電性粒子は、特に限定は無く、一般的に厚膜抵抗ペーストに用いられる導電性粒子を用いることが出来る。その中でも、酸化ルテニウムもしくはルテニウム酸鉛の一種以上を用いるのが好ましい。
ルテニウム酸鉛を用いる場合、その粒子径は、特に限定されないが、比表面積が5m/g以上となる粒子径にするのが望ましい。比表面積が5m/g未満となる粒子径では、ルテニウム酸鉛の粒子径が大きすぎて、厚膜抵抗体内の導電域の均一性を低下させ、耐サージ性を悪化させる虞がある。
酸化ルテニウムを用いる場合、その粒子径は、特に限定されないが、比表面積20m/g以上となる粒子径にするのが望ましい。比表面積20m/g未満では、酸化ルテニウムの粒子径が大きすぎて、厚膜抵抗体内の均一性を低下させ、耐サージ性を悪化させる虞がある。
(conductive particles)
The conductive particles in the thick film resistance paste of the present invention are not particularly limited, and conductive particles commonly used in thick film resistance pastes can be used. Among these, it is preferable to use one or more of ruthenium oxide and lead ruthenate.
When using lead ruthenate, the particle size is not particularly limited, but it is desirable that the particle size has a specific surface area of 5 m 2 /g or more. If the particle size is such that the specific surface area is less than 5 m 2 /g, the particle size of the lead ruthenate is too large, which may reduce the uniformity of the conductive area within the thick film resistor and deteriorate the surge resistance.
When using ruthenium oxide, the particle size is not particularly limited, but it is desirable that the particle size has a specific surface area of 20 m 2 /g or more. If the specific surface area is less than 20 m 2 /g, the particle size of the ruthenium oxide is too large, which may reduce uniformity within the thick film resistor and deteriorate surge resistance.

(ガラス成分)
本発明の厚膜抵抗ペースト中のガラス成分は、特に限定されず、従来から厚膜抵抗ペーストに用いられているガラス成分を用いることが出来る。例えば、酸化ケイ素(SiO)、酸化鉛(PbO)および酸化ホウ素(B)を含有する、一般的にホウケイ酸鉛ガラスと呼ばれているガラスを用いることが出来る。ガラスを構成する成分として、その他、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カドミウム(CdO)、酸化錫(SnO)、酸化亜鉛(ZnO)、酸化ビスマス(Bi)等を含有させてもよい。また、酸化アルミニウム(Al)を含有させてもよい。
(Glass component)
The glass component in the thick film resistor paste of the present invention is not particularly limited, and glass components conventionally used in thick film resistor pastes can be used. For example, a glass containing silicon oxide (SiO 2 ), lead oxide (PbO) and boron oxide (B 2 O 3 ), commonly referred to as lead borosilicate glass, can be used. Other components that make up the glass include magnesium oxide (MgO), calcium oxide (CaO), barium oxide (BaO), strontium oxide (SrO), cadmium oxide (CdO), tin oxide (SnO), and zinc oxide (ZnO). , bismuth oxide (Bi 2 O 3 ), etc. may be contained. Further, aluminum oxide (Al 2 O 3 ) may be contained.

(酸化ケイ素:SiO
SiOは、ガラス成分の骨格として多く用いられている成分である。SiOは、ガラス成分100質量%中に、3質量%以上60質量%以下含有するのが好ましい。60質量%よりも多いと、形成するガラスの軟化点が高くなりすぎてしまう。また、3質量%よりも少ないと、化学的に安定したガラスが得られない。
(Silicon oxide: SiO 2 )
SiO 2 is a component often used as a skeleton of glass components. It is preferable that SiO 2 is contained in an amount of 3% by mass or more and 60% by mass or less in 100% by mass of the glass component. If the amount is more than 60% by mass, the softening point of the glass to be formed will become too high. Moreover, if it is less than 3% by mass, chemically stable glass cannot be obtained.

(酸化鉛:PbO)
PbOは、軟化点を低下させる働きと、酸化ルテニウムとの濡れを促進し、分散性を高める働きの他、ルテニウム酸鉛を化学的に安定とし、分解を抑制する働きを持つ成分である。PbOは、ガラス成分100質量%中に、30質量%以上90質量%以下含有するのが好ましい。30質量%未満だと、形成するガラスの軟化点が高くなりすぎてしまう。また、90質量%よりも多いと、化学的に安定したガラス状態を得ることが難しくなる。
(Lead oxide: PbO)
PbO is a component that has the function of lowering the softening point, promoting wetting with ruthenium oxide, and increasing dispersibility, as well as chemically stabilizing lead ruthenate and suppressing decomposition. It is preferable that PbO is contained in an amount of 30% by mass or more and 90% by mass or less in 100% by mass of the glass component. If it is less than 30% by mass, the softening point of the glass to be formed will become too high. Moreover, when the amount is more than 90% by mass, it becomes difficult to obtain a chemically stable glass state.

(酸化ホウ素:B
は、SiOとともにガラス成分の骨格として多く用いられている成分であり、形成するガラスの軟化点を低下させる効果がある。Bは、ガラス成分100質量%中に、5質量%以上50質量%以下含有するのが好ましい。5質量%未満では、形成するガラスの靱性が低下し、クラックが入りやすくなり、レーザートリミング性が悪化する。また、50質量%よりも多いと、ガラス成分の分相を起こしやすく、耐水性も低下する。
(Boron oxide: B 2 O 3 )
B 2 O 3 is a component that is often used as a skeleton of glass components together with SiO 2 and has the effect of lowering the softening point of the glass to be formed. B 2 O 3 is preferably contained in an amount of 5% by mass or more and 50% by mass or less in 100% by mass of the glass component. If it is less than 5% by mass, the toughness of the glass to be formed will decrease, cracks will easily occur, and laser trimmability will deteriorate. Moreover, when it is more than 50% by mass, phase separation of the glass component tends to occur, and water resistance also decreases.

(主要ガラス成分の合計含有量)
SiO、PbO、およびBは、ガラス成分100質量%中に、合計で50質量%以上含有するのが好ましい。50質量%未満では、ガラスを安定して形成することが困難であり、厚膜抵抗体の電気特性において、耐サージ性を満足させることが困難になる。
(Total content of main glass components)
It is preferable that SiO 2 , PbO, and B 2 O 3 be contained in a total amount of 50% by mass or more in 100% by mass of the glass component. If it is less than 50% by mass, it will be difficult to form glass stably, and it will be difficult to satisfy the electrical properties of the thick film resistor with surge resistance.

(その他のガラス成分)
上記主要ガラス成分の他、各種特性を向上させるために、他の酸化物をガラス成分として更に含有させることができる。具体的には、Al、MgO、CaO、BaO、SrO、CdO、SnO、ZnO、Bi等を含有させることができる。これらのガラス成分は、ガラス成分100質量%中に、それぞれ20質量%以下含有するのが好ましい。
(Other glass components)
In addition to the above-mentioned main glass components, other oxides can be further contained as glass components in order to improve various properties. Specifically, Al2O3 , MgO, CaO, BaO, SrO, CdO, SnO , ZnO, Bi2O3 , etc. can be contained. It is preferable that each of these glass components is contained in an amount of 20% by mass or less in 100% by mass of the glass component.

(有機ビヒクル)
本発明の厚膜抵抗ペーストに使用する有機ビヒクルは特に制限がなく、一般的な抵抗ペーストに用いられている、ターピネオール等の溶剤にエチルセルロース、ロジン等の樹脂を溶解したもの等を使用することができる。有機ビヒクルは、印刷方法等に応じて配合量を適宜調整すればよいが、一般的には抵抗ペーストの総量100質量%中に、20質量%以上50質量%以下含有するのが好ましい。
(organic vehicle)
The organic vehicle used in the thick film resistance paste of the present invention is not particularly limited, and the organic vehicle used in general resistance pastes, such as those obtained by dissolving resins such as ethyl cellulose and rosin in a solvent such as terpineol, can be used. can. The amount of the organic vehicle to be blended may be adjusted as appropriate depending on the printing method, etc., but it is generally preferable to contain the organic vehicle in an amount of 20% by mass or more and 50% by mass or less in 100% by mass of the total amount of the resistance paste.

(添加剤)
本発明の厚膜抵抗ペーストにおける添加剤は、酸化亜鉛もしくは酸化ケイ素のいずれか一種類以上を必須成分として含有する。酸化亜鉛、及び酸化ケイ素はガラス成分を構成する材料の一部でもあるが、本発明者は、ガラスを形成する成分とは別に、酸化亜鉛もしくは酸化ケイ素のいずれか一種類以上を単独の酸化物の添加剤として厚膜抵抗ペーストに所定量含有させることにより、その厚膜抵抗ペーストにより形成された厚膜抵抗体の抵抗低下率をより効率的に抑制し、耐サージ性が向上するのを見出した。
添加剤として添加される酸化亜鉛の含有量及び酸化ケイ素の含有量は、ガラス粉末100質量%に対して、それぞれ1質量%以上19質量%以下の割合である。ガラス粉末100質量%に対する割合が1質量%未満であると抵抗低下率の抑制が十分得られず、また、19質量%を超えると抵抗低下率を抑制できないばかりか、抵抗の上昇がより顕著になってしまう。
酸化亜鉛及び酸化ケイ素の粒子径は特に限定されず、使用する電子部品の形状サイズに合わせて選定すれば良い。しかし、同じ含有量の場合、粒子径が小さくなるほど抵抗低下率の抑制効果が増加することと、電子部品の小型化に伴い、形成する抵抗体の膜厚も薄膜化が要求されていることなどから、平均粒径を100nm以下とするのが好ましい。なお、酸化亜鉛及び酸化ケイ素の平均粒子径はBET法に依って得た値である。
(Additive)
The additive in the thick film resistance paste of the present invention contains at least one of zinc oxide and silicon oxide as an essential component. Zinc oxide and silicon oxide are also part of the materials constituting the glass component, but the present inventor has proposed that one or more of zinc oxide or silicon oxide be used as a single oxide, separately from the components forming the glass. We have discovered that by including a predetermined amount of additive in a thick film resistor paste, the rate of decrease in resistance of the thick film resistor formed with the thick film resistor paste can be more effectively suppressed, and the surge resistance can be improved. Ta.
The content of zinc oxide and the content of silicon oxide added as additives are each at a ratio of 1% by mass or more and 19% by mass or less, based on 100% by mass of the glass powder. If the ratio to 100% by mass of the glass powder is less than 1% by mass, the resistance decrease rate cannot be sufficiently suppressed, and if it exceeds 19% by mass, not only the resistance decrease rate cannot be suppressed, but also the resistance increases more markedly. turn into.
The particle diameters of zinc oxide and silicon oxide are not particularly limited, and may be selected depending on the shape and size of the electronic component to be used. However, for the same content, the smaller the particle size, the greater the effect of suppressing the rate of resistance decline, and as electronic components become smaller, the thickness of the resistor to be formed is also required to be thinner. Therefore, it is preferable that the average particle size is 100 nm or less. Note that the average particle diameters of zinc oxide and silicon oxide are values obtained by the BET method.

(その他の添加剤)
本発明の厚膜抵抗ペーストには、厚膜抵抗体の抵抗値、TCR、耐電圧性の向上やその他特性を調整、改善する目的で従来から用いられている、導電物を含まないホウケイ酸鉛ガラス、および、一般的に使用される添加剤をさらに含有させてもよい。また、分散性を向上させるために添加剤として分散剤を含有させてもよい。主な添加剤としては酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化チタン(TiO)、酸化銅(CuO)、酸化マンガン(MnO)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)等が挙げられる。これらその他の添加剤は、目的とする改善特性に応じて含有量を調整できるが、無機物の総量100質量%中に10質量%以下含有するのが好ましい。
(Other additives)
The thick film resistor paste of the present invention contains lead borosilicate, which does not contain a conductive material, and which has been conventionally used for the purpose of adjusting and improving the resistance value, TCR, withstand voltage properties, and other characteristics of thick film resistors. Glass and commonly used additives may also be included. Further, a dispersant may be included as an additive in order to improve dispersibility. The main additives are niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), copper oxide (CuO), manganese oxide (MnO 2 ), and zirconium oxide (ZrO 2 ). , aluminum oxide (Al 2 O 3 ), and the like. The content of these other additives can be adjusted depending on the desired improved properties, but it is preferably contained at 10% by mass or less in 100% by mass of the total amount of inorganic substances.

(厚膜抵抗ペーストの製造方法)
導電性粒子、ガラス粉末、有機ビヒクル、添加剤を様々な配合割合で混合して複数の抵抗ペースト試料を調製し、それらを各々焼成することで厚膜抵抗体を形成し、その電気的特性について評価した。
(Method for producing thick film resistor paste)
Multiple resistor paste samples were prepared by mixing conductive particles, glass powder, organic vehicle, and additives in various proportions, and thick film resistors were formed by firing each sample, and their electrical properties were investigated. evaluated.

(厚膜抵抗体の製造方法)
得られた厚膜抵抗ペーストをセラミック基板上に印刷し、有機溶剤を乾燥処理により除去した後、例えば800℃から900℃の温度で焼成することにより、厚膜抵抗体を得ることができる。
(Method for manufacturing thick film resistor)
A thick film resistor can be obtained by printing the obtained thick film resistor paste on a ceramic substrate, removing the organic solvent by drying, and then firing it at a temperature of, for example, 800° C. to 900° C.

以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be explained based on more detailed examples, but the present invention is not limited to these examples.

[試験1]
(比較例1)
比較対象の試料として、従来の抵抗ペーストに相当する比較例1の抵抗ペーストを作製した。導電性粒子として、酸化ルテニウムとルテニウム酸鉛を使用した。ガラス粉末は、ホウケイ酸鉛ガラスを使用した。また、その他の添加剤として、酸化ニオブ、酸化銅を使用し、有機ビヒクルとして、エチルセルロースとターピネオールを主成分とするものを使用した。
導電性粒子、ガラス粉末、その他の添加剤、及び有機ビヒクルを、表1に示す配合割合で秤量し、三本ロールミルで混練し、比較例1の抵抗ペーストを作製した。
[Test 1]
(Comparative example 1)
As a sample for comparison, a resistance paste of Comparative Example 1, which corresponds to a conventional resistance paste, was prepared. Ruthenium oxide and lead ruthenate were used as conductive particles. As the glass powder, lead borosilicate glass was used. Further, as other additives, niobium oxide and copper oxide were used, and as an organic vehicle, one mainly composed of ethyl cellulose and terpineol was used.
Conductive particles, glass powder, other additives, and organic vehicle were weighed in the proportions shown in Table 1 and kneaded in a three-roll mill to produce a resistance paste of Comparative Example 1.

(実施例1~5、比較例2)
比較例1の抵抗ペーストの作製に用いた材料の他に、更に添加剤として粒子径20nmの酸化亜鉛を、また、その他の添加剤として、酸化ニオブの他に酸化銅を準備した。
これらの材料を、表1に示す配合割合で比較例1と同様に混練して、実施例1~5および比較例2の抵抗ペーストを作製した。
(Examples 1 to 5, Comparative Example 2)
In addition to the materials used to prepare the resistance paste of Comparative Example 1, zinc oxide with a particle size of 20 nm was further prepared as an additive, and copper oxide in addition to niobium oxide was prepared as other additives.
These materials were kneaded in the same manner as in Comparative Example 1 at the blending ratios shown in Table 1 to produce resistance pastes of Examples 1 to 5 and Comparative Example 2.

(実施例6~10、比較例3)
比較例1の抵抗ペーストの作製に用いた材料の他に、更に添加剤として粒子径28nmの酸化ケイ素を、また、その他の添加剤として、酸化ニオブの他に酸化銅を準備した。
これらの材料を、表1に示す配合割合で比較例1と同様に混練して、実施例6~10および比較例3の抵抗ペーストを作製した。
(Examples 6 to 10, Comparative Example 3)
In addition to the materials used for producing the resistance paste of Comparative Example 1, silicon oxide with a particle size of 28 nm was further prepared as an additive, and copper oxide in addition to niobium oxide was prepared as other additives.
These materials were kneaded in the same manner as in Comparative Example 1 at the blending ratios shown in Table 1 to produce resistance pastes of Examples 6 to 10 and Comparative Example 3.

(実施例11~13)
比較例1の抵抗ペーストの作製に用いた材料の他に、更に添加剤として粒子径20nmの酸化亜鉛と粒子径28nmの酸化ケイ素の両方を、また、その他の添加剤として、酸化ニオブの他に酸化銅を準備した。
これらの材料を、表1に示す配合割合で比較例1と同様に混練して、実施例11~13の抵抗ペーストを作製した。
(Examples 11 to 13)
In addition to the materials used to prepare the resistance paste of Comparative Example 1, both zinc oxide with a particle size of 20 nm and silicon oxide with a particle size of 28 nm were added as additives, and in addition to niobium oxide, other additives were added. Copper oxide was prepared.
These materials were kneaded in the same manner as in Comparative Example 1 at the blending ratios shown in Table 1 to produce resistance pastes of Examples 11 to 13.

(比較例4)
実施例3および実施例8の比較用試料として、本発明に必須の添加剤である酸化亜鉛の代わりに、その他の添加剤として使用可能な粒子径15nmの酸化アルミニウムを準備した。
これらの材料を、表1に示す配合割合で実施例3と同様に混練して、比較例4の抵抗ペーストを作製した。
(Comparative example 4)
As a comparative sample for Examples 3 and 8, aluminum oxide with a particle size of 15 nm, which can be used as another additive, was prepared in place of zinc oxide, which is an essential additive for the present invention.
These materials were kneaded in the mixing ratio shown in Table 1 in the same manner as in Example 3 to produce a resistance paste of Comparative Example 4.

<評価試験>
(評価用試料の作製)
実施例1~13、比較例1~4の抵抗ペーストをそれぞれ用いて、あらかじめAg/Pdペーストを用いて電極(1.0mm間隔の5対の電極間)を形成しておいたアルミナ基板上に、厚膜抵抗ペーストを幅1.0mmで印刷し、ピーク温度150℃×5分のベルト炉で乾燥処理した。その後、ピーク温度850℃×9分のベルト炉で焼成し評価用試料の厚膜抵抗体(5個)を作製した。同様の評価用試料をアルミナ基板単位で5枚作製し、評価用試料としての厚膜抵抗体(25個)を得た。
<Evaluation test>
(Preparation of evaluation sample)
Using the resistance pastes of Examples 1 to 13 and Comparative Examples 1 to 4, each was placed on an alumina substrate on which electrodes (between 5 pairs of electrodes with an interval of 1.0 mm) were previously formed using Ag/Pd paste. A thick film resistor paste was printed with a width of 1.0 mm and dried in a belt oven at a peak temperature of 150° C. for 5 minutes. Thereafter, it was fired in a belt furnace at a peak temperature of 850° C. for 9 minutes to produce thick film resistors (5 pieces) as evaluation samples. Five similar evaluation samples were prepared in units of alumina substrates to obtain 25 thick film resistors as evaluation samples.

(膜厚測定)
膜厚は、触針式の表面粗さ計を用いて、評価用試料の中からアルミナ基板単位で任意の1枚を選択し、5個の厚膜抵抗体の膜厚をそれぞれ測定して、その5点の平均値を実測膜厚とした。
(film thickness measurement)
The film thickness was determined by selecting an arbitrary alumina substrate from the evaluation sample using a stylus-type surface roughness meter, and measuring the film thickness of each of the five thick film resistors. The average value of the five points was taken as the measured film thickness.

(換算面積抵抗値)
5枚のアルミナ基板上に形成された、それぞれ5個の評価用試料(合計25個)の25℃の抵抗値を回路計(2001MULTIMETER、KEITHLEY社製)を用いて計測し、その平均値を実測抵抗値とした。次式(1)を用いて、膜厚を7μmとしたときの換算面積抵抗値を算出した。算出した換算面積抵抗値を表1に示す。

換算面積抵抗値(kΩ)=実測抵抗値(kΩ)×(実測膜厚(μm)/7(μm)・・・(1)
(converted areal resistance value)
The resistance values at 25°C of 5 evaluation samples (25 in total) formed on 5 alumina substrates were measured using a circuit meter (2001 MULTIMETER, manufactured by KEITHLEY), and the average value was actually measured. It was taken as the resistance value. Using the following formula (1), the converted sheet resistance value was calculated when the film thickness was 7 μm. Table 1 shows the calculated converted sheet resistance values.

Converted areal resistance value (kΩ) = Actual resistance value (kΩ) x (Actual measurement film thickness (μm)/7 (μm)...(1)

(耐サージ性の評価:抵抗値変化率)
評価用試料としての厚膜抵抗体に対し、半導体デバイス静電気試験器(ESS-6008、ノイズ研究所製)を用いて、200pFの電気容量、内部抵抗0Ωの条件にて電圧を印加する静電気放電試験を実施した。5kVの印加電圧を1秒間隔で5回、評価試料の厚膜抵抗体に印加し、電圧印加前の抵抗値Rsと電圧印加後の抵抗値Reを測定し、その抵抗値変化率を、次式(2)を用いて算出した。算出した5点の抵抗変化率の平均値を表1に示す。

抵抗値変化率(%)=(Re-Rs)/Rs×100・・・(2)
(Surge resistance evaluation: resistance value change rate)
An electrostatic discharge test in which a voltage is applied to a thick film resistor as an evaluation sample using a semiconductor device electrostatic tester (ESS-6008, manufactured by Noise Institute) under conditions of a capacitance of 200 pF and an internal resistance of 0 Ω. was carried out. An applied voltage of 5 kV was applied to the thick film resistor of the evaluation sample five times at 1 second intervals, the resistance value Rs before voltage application and the resistance value Re after voltage application were measured, and the rate of change in resistance value was calculated as follows. Calculated using equation (2). Table 1 shows the calculated average value of the resistance change rate at the five points.

Resistance value change rate (%) = (Re-Rs)/Rs×100...(2)

Figure 2023135971000001
(*1):添加剤として添加される酸化亜鉛の含有量、酸化ケイ素の含有量及び酸化アルミニウムの含有量(ガラス粉末100質量%に対する割合(質量%))。但し、実施例11~13においては、添加剤として添加される酸化亜鉛の含有量、酸化ケイ素の含有量(ガラス粉末100質量%に対する割合(質量%) は夫々同じ値であるため一方のデータのみ掲載)。
Figure 2023135971000001
(*1): Content of zinc oxide, content of silicon oxide, and content of aluminum oxide added as additives (ratio (% by mass) relative to 100% by mass of glass powder). However, in Examples 11 to 13, the content of zinc oxide added as an additive and the content of silicon oxide (ratio (mass%) relative to 100 mass% of glass powder) are the same, so only one data is used. publish).

表1に示す通り、ガラスを形成する成分とは別に、添加剤として酸化亜鉛を用いて作製した実施例1~5の厚膜抵抗ペーストにより形成された厚膜抵抗体は、添加剤として酸化亜鉛を用いずに作製した従来の厚膜抵抗ペーストに相当する比較例1の厚膜抵抗ペーストにより形成された厚膜抵抗体より、静電気放電試験前後の抵抗値変化率が低く、耐サージ性に優れていることが認められた。また、酸化亜鉛の添加量が本発明の範囲より多い比較例2の厚膜ペーストにより形成された厚膜抵抗体は、従来の厚膜抵抗体と同程度の抵抗変化率となってしまい、耐サージ性の向上効果が得られないことが認められた。
また、ガラスを形成する成分とは別に、添加剤として酸化ケイ素を用いて作製した実施例6~10の厚膜抵抗ペーストにより形成された厚膜抵抗体の抵抗変化率においても、実施例1~5の厚膜抵抗ペーストにより形成された厚膜抵抗体と同様に耐サージ性に優れた効果があることが認められた。また、酸化ケイ素の添加量が本発明の範囲より多い比較例3の厚膜ペーストにより形成された厚膜抵抗体は、従来の厚膜抵抗体と同程度の抵抗変化率となってしまい、耐サージ性の向上効果が得られないことが認められた。
更に、ガラスを形成する成分とは別に、添加剤として酸化亜鉛と酸化ケイ素を同時に用いて作製した実施例11~13の厚膜抵抗ペーストにより形成された厚膜抵抗体の抵抗変化率の結果が示すように、それぞれの添加剤をガラス粉末100質量%に対して18.8質量%の割合で添加した、合計37.6質量%の割合で含有している実施例13の厚膜抵抗ペーストにより形成された厚膜抵抗体の抵抗変化率が良好な効果を発揮していることから、本発明の添加剤として添加される酸化亜鉛の含有量及び酸化ケイ素の含有量は、ガラス粉末100質量%に対して、それぞれ1質量%以上19質量%以下の割合を満たすことで、個別に耐サージ性の向上効果を発揮していることが認められた。
また、従来から用いられているその他添加剤の一種である酸化アルミニウムを本発明の添加剤と同様にして添加した比較例4の厚膜抵抗ペーストにより形成された厚膜抵抗体は、比較例1よりは若干抵抗変化率が低くなったものの、本発明の酸化亜鉛や酸化ケイ素を添加した実施例3および実施例8の厚膜抵抗ペーストにより形成された厚膜抵抗体に比べて、耐サージ性の向上効果が十分には得られていないことが認められた。
As shown in Table 1, the thick film resistors formed by the thick film resistor pastes of Examples 1 to 5, which were prepared using zinc oxide as an additive in addition to the components forming the glass, were made using zinc oxide as an additive. Compared to the thick film resistor formed using the thick film resistor paste of Comparative Example 1, which is equivalent to the conventional thick film resistor paste produced without using It was recognized that In addition, the thick film resistor formed from the thick film paste of Comparative Example 2, in which the amount of zinc oxide added is larger than the range of the present invention, has a resistance change rate comparable to that of the conventional thick film resistor, and has a low resistance. It was found that no effect of improving surge properties could be obtained.
In addition, the resistance change rates of the thick film resistors formed by the thick film resistor pastes of Examples 6 to 10, which were made using silicon oxide as an additive in addition to the glass-forming components, also differed from those of Examples 1 to 10. Similar to the thick film resistor formed using the thick film resistor paste No. 5, it was found that the resistor had excellent surge resistance. In addition, the thick film resistor formed from the thick film paste of Comparative Example 3, in which the amount of silicon oxide added is larger than the range of the present invention, has a resistance change rate comparable to that of a conventional thick film resistor, and has a low resistance. It was found that no effect of improving surge properties could be obtained.
Furthermore, the results of the resistance change rate of thick film resistors formed with the thick film resistor pastes of Examples 11 to 13, which were prepared using zinc oxide and silicon oxide simultaneously as additives in addition to the glass-forming components, are shown below. As shown, the thick film resistor paste of Example 13 containing each additive at a rate of 18.8% by mass relative to 100% by mass of glass powder, for a total of 37.6% by mass. Since the resistance change rate of the formed thick film resistor exhibits a good effect, the content of zinc oxide and the content of silicon oxide added as additives of the present invention are 100% by mass of glass powder. It was found that by satisfying the ratio of 1% by mass or more and 19% by mass or less, respectively, the effect of improving surge resistance was exhibited.
In addition, the thick film resistor formed by the thick film resistor paste of Comparative Example 4 in which aluminum oxide, which is a kind of other conventionally used additive, was added in the same manner as the additive of the present invention was Although the resistance change rate was slightly lower than that of the thick film resistor of the present invention, the surge resistance was higher than that of the thick film resistor formed by the thick film resistor paste of Example 3 and Example 8, which added zinc oxide and silicon oxide. It was recognized that the improvement effect was not sufficiently achieved.

[試験2]
(実施例14)
添加剤の粒子径の影響を確認するため、実施例3と略同様の組成で、ガラスを形成する成分とは別の添加剤である酸化亜鉛の平均粒子径のみ20nmから35nmへと変更して作製した実施例14の厚膜抵抗ペーストを用いて厚膜抵抗体を形成した。形成した厚膜抵抗体に対して、試験1と同様に換算面積抵抗値、及び抵抗変化率を求め耐サージ性の確認を行った。得られた評価結果を比較例1及び実施例3の結果と共に表2に示す。
[Test 2]
(Example 14)
In order to confirm the influence of the particle size of the additive, the composition was almost the same as in Example 3, but only the average particle size of zinc oxide, which is an additive different from the glass forming components, was changed from 20 nm to 35 nm. A thick film resistor was formed using the produced thick film resistor paste of Example 14. For the formed thick film resistor, the equivalent area resistance value and resistance change rate were determined in the same manner as in Test 1, and the surge resistance was confirmed. The obtained evaluation results are shown in Table 2 together with the results of Comparative Example 1 and Example 3.

Figure 2023135971000002
(*2):添加剤として添加される酸化亜鉛の含有量(ガラス粉末100質量%に対する割合(質量%))。
Figure 2023135971000002
(*2): Content of zinc oxide added as an additive (ratio (mass %) to 100 mass % of glass powder).

表2に示す通り、実施例3と粒子径の異なる実施例14は、比較例1よりも抵抗変化率が低く、実施例3と同程度に耐サージ性に優れることが認められた。
添加剤の粒子径は、粘度特性に影響を及ぼすため、使用条件に応じて、適宜選定することが可能ではあるが、電子部品の小型化が進み、抵抗体もより薄くする要求があることも含め、添加剤の粒子径は100nm以下にするのが好ましい。
As shown in Table 2, Example 14, which had a different particle size from Example 3, had a lower resistance change rate than Comparative Example 1, and was found to have excellent surge resistance to the same extent as Example 3.
The particle size of the additive affects the viscosity characteristics, so it can be selected appropriately depending on the conditions of use, but as electronic components become smaller, there is also a demand for thinner resistors. It is preferable that the particle size of the additive is 100 nm or less.

以上の試験結果から、本発明の厚膜抵抗ペーストを用いて形成された厚膜抵抗体は、耐サージ性に優れ、近年の小型化の進む電子部品に好適に用いることができることが認められる。 From the above test results, it is recognized that the thick film resistor formed using the thick film resistor paste of the present invention has excellent surge resistance and can be suitably used in electronic components that are becoming smaller in size in recent years.

Claims (5)

導電性粒子、ガラス粉末、有機ビヒクル、添加剤を含有する厚膜抵抗ペーストであって、
前記添加剤が酸化亜鉛もしくは酸化ケイ素のいずれか一種類以上を含有し、
前記添加剤として添加される前記酸化亜鉛の含有量及び前記酸化ケイ素の含有量が、ガラス粉末100質量%に対して、それぞれ1質量%以上19質量%以下の割合である、
ことを特徴とする厚膜抵抗ペースト。
A thick film resistive paste containing conductive particles, glass powder, an organic vehicle, and additives, the paste comprising:
The additive contains one or more of zinc oxide or silicon oxide,
The content of the zinc oxide and the content of the silicon oxide added as the additive are each at a ratio of 1% by mass or more and 19% by mass or less with respect to 100% by mass of the glass powder.
A thick film resistor paste characterized by:
前記酸化亜鉛及び前記酸化ケイ素の平均粒子径がそれぞれ100nm以下であることを特徴とする請求項1に記載の厚膜抵抗ペースト。 2. The thick film resistance paste according to claim 1, wherein the zinc oxide and the silicon oxide each have an average particle size of 100 nm or less. 前記導電性粒子が、酸化ルテニウムとルテニウム酸鉛のいずれか一種類以上からなることを特徴とする請求項1又は2に記載の厚膜抵抗ペースト。 3. The thick film resistance paste according to claim 1, wherein the conductive particles are made of one or more of ruthenium oxide and lead ruthenate. 請求項1~3のいずれかに記載の厚膜抵抗ペーストの焼成体からなる厚膜抵抗体。 A thick film resistor comprising a fired body of the thick film resistor paste according to any one of claims 1 to 3. 請求項4に記載の厚膜抵抗体を備えた電子部品。 An electronic component comprising the thick film resistor according to claim 4.
JP2022041338A 2022-03-16 2022-03-16 Thick film resistor paste, thick film resistor, and electronic component Pending JP2023135971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022041338A JP2023135971A (en) 2022-03-16 2022-03-16 Thick film resistor paste, thick film resistor, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022041338A JP2023135971A (en) 2022-03-16 2022-03-16 Thick film resistor paste, thick film resistor, and electronic component

Publications (1)

Publication Number Publication Date
JP2023135971A true JP2023135971A (en) 2023-09-29

Family

ID=88144976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022041338A Pending JP2023135971A (en) 2022-03-16 2022-03-16 Thick film resistor paste, thick film resistor, and electronic component

Country Status (1)

Country Link
JP (1) JP2023135971A (en)

Similar Documents

Publication Publication Date Title
KR102384488B1 (en) Resistor paste and resistor produced by firing the same
KR102420736B1 (en) Composition for resistor, resistor paste containing same, and thick film resistor using same
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
KR20060050916A (en) Glass composition for thick film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
JP2005209744A (en) Thick film resistor paste, thick film resistor, electronic component
JP4221417B2 (en) Thick film resistor paste, thick film resistor and electronic component
JP2023135971A (en) Thick film resistor paste, thick film resistor, and electronic component
JP2018049900A (en) Resistance paste and resistor produced by firing the same
JP2005244115A (en) Resistor paste, resistor and electronic part
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221172A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2018049901A (en) Resistance paste and resistor produced by firing the same
JP2006261250A (en) Resistor paste, resistor and electronic component
JP2006225237A (en) Glass composition for thick film resistor and thick film resistor paste using the same
JP2021011415A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2006165347A (en) Resistor paste, resistor and electronic component
JP2006273706A (en) Glass composition for thick-film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
JP2006073716A (en) Glass composition for thick film resistor and thick film resistor paste using the same, thick film resistor and electronic part
JP2006236621A (en) Thick film resistor paste and manufacturing method of the same
JP2005209748A (en) Resistor and its production process, and electronic component
JP2006261243A (en) Resistor paste, resistor and electronic component
JP2006202925A (en) Thick film resistor, its manufacturing method, and electronic part
JP2005244113A (en) Thick-film structure, paste therefor, and method for manufacturing the thick-film structure
JP2006261251A (en) Resistor paste, resistor and electronic component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230202