JP2004273254A - Conductive paste for low-temperature calcination, and its manufacturing method - Google Patents

Conductive paste for low-temperature calcination, and its manufacturing method Download PDF

Info

Publication number
JP2004273254A
JP2004273254A JP2003061893A JP2003061893A JP2004273254A JP 2004273254 A JP2004273254 A JP 2004273254A JP 2003061893 A JP2003061893 A JP 2003061893A JP 2003061893 A JP2003061893 A JP 2003061893A JP 2004273254 A JP2004273254 A JP 2004273254A
Authority
JP
Japan
Prior art keywords
powder
conductor
low
paste
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061893A
Other languages
Japanese (ja)
Other versions
JP4384428B2 (en
Inventor
Takeshi Kono
剛 河野
Shinji Senda
慎嗣 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2003061893A priority Critical patent/JP4384428B2/en
Publication of JP2004273254A publication Critical patent/JP2004273254A/en
Application granted granted Critical
Publication of JP4384428B2 publication Critical patent/JP4384428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fabricate a dense conductor superior in migration durability, dense, and low in electric resistance. <P>SOLUTION: This is the conductive paste for low-temperature calcination having noble metal powder as a main component. The noble metal powder is constituted of gold powder and silver powder, with a mixing rate 55 to 80 wt% of gold powder and 20 to 45 wt% of silver powder to their sum of 100 wt%. Because this conductive paste can form the fine conductive film superior in migration durability even if it is calcined at temperatures as low as around 550 to 600°C, it is suitable for a use in forming a conductor on a glass substrate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、ガラス基板等に膜状導体を形成する用途に用いられる低温焼成用導体ペースト及びその製造方法に関する。
【0002】
【従来の技術】プラズマディスプレイ用マトリックス電極パネルやCCDセンサ、イメージセンサ等を構築するのに用いられる各種ガラス配線基板その他の電子部品に所定パターンの膜状導体(配線、電極等)を形成する材料として導体ペーストが使用されている。この導体ペーストは、導体を形成する主成分たる金属粉末と必要に応じて添加される種々の添加剤(無機結合剤、ガラスフリット、フィラー等)とを所定の有機媒質(ビヒクル)に分散させることにより調製される導体形成材料である。金属粉末としては、例えば、金、白金、銀、パラジウム、銅、ニッケル、錫、鉛、インジウム等、又はこれらの任意の組み合わせが用いられている(例えば特許文献1〜4)。
かかる導体ペーストは、スクリーン印刷等の一般的な手法により基板に印刷・塗布される。次いで、当該塗布物(塗膜)を適当な温度で焼成する(焼き付ける)ことにより、当該基板上に所定パターンの導体膜が形成される。
【0003】
導体ペーストに要求される性能の一つにマイグレーション耐性がある。すなわち、導体ペーストから作製された配線パターンに、水分が付着した状態で通電が行われると、マイグレーション又はイオンマイグレーションと称する金属成分の移動(析出)が基板上の非金属部分(絶縁部分)に発生する場合がある。かかるマイグレーションは、電極間又は配線間の短絡の原因となるため好ましくない。そこで、従来、マイグレーションを防止するために種々の工夫が行われてきた。例えば特許文献4には、マイグレーション防止成分として、粒径が20μm以下のハンダ粒子を含有するAgペーストが開示されている。
【0004】
ところで、ガラス基板のような低融点セラミック基板に導体ペーストを用いて導体を形成する場合、上記焼成温度を例えば500〜600℃程度に低くする必要がある。このような低い焼成温度で導体を作製するのに用いられる導体ペーストについても、高いマイグレーション耐性が要求される。この要求に対し、上記特許文献4に記載の技術は適用できない。ハンダ粒子は鉛(Pb)及び錫(Sn)の合金から成るため、かかる低温焼成では当該ハンダ成分が過度に酸化して導電性不良を起こしたり、或いは焼成不良による強度不足が生じる虞があるからである。
【0005】
そこで、マイグレーション耐性に優れる低温焼成用導体ペーストとして、金属粉末として金(Au)を主体に構成されたもの(以下「Auペースト」と略称する。)が用いられている。しかしながら、Auペーストはマイグレーション耐性には優れるものの、原料の金が高価であるとともに、他の金属と比較して緻密性に劣り、電気的抵抗が比較的高い。この電気的抵抗を低くする手段として、粒径が1.0μm以下の金粒子と、軟化点が450℃以下のガラスフリットと、有機ビヒクルとを混練・分散することによって得られた低温焼成用Auペーストが開示されている(特許文献5)。しかしながら、このAuペーストにおいては、金粒子は粒径1.0μm以下である必要があるため、かなり高価なものであった。従って、できるだけ低コストであるとともに、緻密で電気的抵抗が低く、かつマイグレーション耐性の向上した膜状導体を形成し得る低温焼成用導体ペーストが望まれている。
【0006】
【特許文献1】特開2000−100248号公報
【特許文献2】特許第3038210号公報
【特許文献3】特開平6−223620号公報
【特許文献4】特開平7−14428号公報
【特許文献5】特開平10−340619号公報
【0007】
【発明が解決しようとする課題】本発明は、低温焼成用の導体ペーストに関する上記従来の課題を解決すべく創出されたものであり、その目的とするところは、マイグレーション耐性に優れ、かつ安価であるとともに緻密で電気的抵抗の低い低温焼成用の導体ペースト及びその製造方法を提供することである。
【0008】
【課題を解決するための手段、作用および効果】本発明者は、金属粉末としてAu粉末とAg粉末とを所定の割合で混合して用いることによって、マイグレーション耐性に優れるとともに緻密で電気的抵抗値の低い導体を形成し得ることを見出し、本発明の導体ペーストを創出した。
すなわち、本発明によって提供される導体ペーストは、貴金属粉末を主成分とする低温焼成用導体ペーストである。そして本発明の導体ペーストは、その貴金属粉末が金粉末と銀粉末とから構成され、その混合割合は、その合計100質量%に対して、金粉末が55〜80質量%、銀粉末が20〜45質量%であることを特徴とする。
【0009】
本構成の導体ペーストによると、AgとAuとを上記した特定の混合割合で使用する結果、緻密で電気的抵抗が低い膜状導体を比較的低温での焼成により形成することができる。さらに、従来のAuペーストと同様に、マイグレーション耐性に優れる。また、金と比べて安価な銀を主原料の貴金属粉末に混合しているために、比較的安価にペーストを提供することができる。
【0010】
ここで教示される低温焼成用導体ペーストは、ガラス基板の融点以下となるような低い温度(例えば550〜600℃)での焼成が可能であり、そのような低い焼成温度であっても酸化による導体膜(焼成膜)の品質低下を防止することができる。このため、本発明によって、ガラス基板上にマイグレーション耐性に優れる緻密な導体膜を形成するためのガラス基板用導体ペーストが提供される。
【0011】
好ましい本発明の導体ペーストは、ペースト全体を100質量%として、50〜80質量%の上記貴金属粉末と、1〜10質量%のガラス粉末と、15〜45質量%の有機媒質とを含むことを特徴とする。
かかる配合比の低温焼成用導体ペースト(典型的にはガラス基板用導体ペースト)によると、上述したような低温域での焼成によって、ガラス基板上に緻密な導体膜を容易に形成することができる。
【0012】
従って、本発明によると、ここで教示された低温焼成用導体ペーストを用いて、低融点のセラミック基材(例えばガラス基板)上に導体膜(種々の配線パターン、電極等)を形成する方法が提供される。この方法は、本発明の導体ペーストを用意し、該ペーストを基板上に塗布する工程と、該塗布物を基板ごと焼成(典型的には最高焼成温度が600℃以下(例えば500〜600℃)である。)する工程とを含む。この方法によると、マイグレーション耐性に優れ、緻密で電気的抵抗の低い導体膜をガラス基板等の低融点セラミック基材上に形成することができる。
【0013】
また、本発明によると、上述した低温焼成用導体ペーストを製造する方法が提供される。すなわち、本発明によって提供される方法は、貴金属粉末を主成分とする低温焼成用導体ペーストの製造方法であって、貴金属粉末の合計100質量%に対して、金粉末を55〜80質量%、銀粉末を20〜45質量%の混合割合でこれら貴金属粉末を有機媒質中に分散させることを特徴とする。
この方法によると、特定の混合割合で金粉末と銀粉末とを有機媒質中に添加・分散させるといった容易な手法により、マイグレーション耐性が優れ、緻密で電気的抵抗が低い導体ペーストを従来のAuペーストよりも比較的低コストで製造することができる。
【0014】
【発明の実施の形態】以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、いずれも従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書及び図面によって開示されている事項と当該分野における技術常識とに基づいて実施することができる。
【0015】
本発明の低温焼成用導体ペーストは、主成分たる貴金属粉末が特定の割合のAg及びAuの混合粉末であることで特徴付けられるペーストであり、本発明の目的を達成し得る限りにおいて他の副成分の内容や組成に特に制限はない。
貴金属粉末は、AgとAuとから構成される混合粉末である。そして、その混合割合は、貴金属粉末の合計100質量%に対して、Au粉末が55〜80質量%、好ましくは58〜70質量%、一方、Ag粉末が20〜45質量%、好ましくは30〜42質量%である。Au粉末の混合割合が55質量%よりも少ないと、マイグレーション耐性が低下して実用的でない。一方、Ag粉末が20質量%よりも少ないと、緻密性が低下して電気的抵抗が高くなるのでやはり実用的ではない。また貴金属粉末中のAg粉末の混合割合が高いほど低コストとなり、経済的である。かかる観点からは、貴金属粉末の合計100質量%に対して、Au粉末が55〜60質量%、Ag粉末が40〜45質量%であることが好ましい。
なお、本発明において、上記混合割合は厳密に解釈すべきではなく、概略の混合割合であって、本発明の目的を達成し得る限りかかる範囲からの若干の逸脱を許容するものである。
【0016】
Ag粉末及びAu粉末は、特に限定するものではないが、緻密構造の焼成膜を形成するという観点からは平均粒径が2.0μm以下(好ましくは0.05〜1.5μm、例えば0.1〜1.0μm)のAg微粒子及びAu微粒子が好ましい。また、そのような比較的微小な平均粒径を有し且つ粒径10μm以上(特に好ましくは粒径5μm以上)の粒子を実質的に含まないような粒度分布の比較的狭いAg微粒子及びAu微粒子が特に好ましい。これら微粒子は球形状のものであってもよくフレーク形状のものであってもよい。なお、上記粒径は回折式粒度分布測定法に従って得られる値である。Au粉末の平均粒径に対してAg粉末の平均粒径が1/5〜1/10程度小さいこと、例えば平均粒径0.8〜1.2μmのAu粉末と平均粒径0.08〜0.12μmのAg粉末とを混合することが焼成膜の緻密化という観点から好ましい。
【0017】
Ag粉末、Au粉末自体は、従来公知の製造方法によって製造されたものでよく、特別な製造手段を要求するものではない。例えば、周知の還元析出法、気相反応法、ガス還元法等によって製造されたAg微粒子、Au微粒子を使用することができる。また、所望する平均粒径や純度を備えた市販品を用いることができる。
また、主成分たる貴金属粉末の含有率は、特に限定するものではないが、ペースト全体の50〜80質量%、好ましくは55〜70質量%(例えば58〜63質量%)であることが好ましい。
【0018】
次に、本発明の低温焼成用導体ペーストに含ませ得る副成分として好適なものについて説明する。
本発明の低温焼成用導体ペーストの副成分として、上記貴金属粉末を分散させておく有機媒質(ビヒクル)が挙げられる。本発明の実施にあたっては、かかる有機ビヒクルは貴金属粉末を分散させておくものであればよく、従来の導体ペーストに用いられているものを特に制限なく使用することができる。例えば、エチルセルロース等のセルロース系高分子、エチレングリコール及びジエチレングリコール誘導体、トルエン、キシレン、ミネラルスピリット、ブチルカルビトール、ターピネオール等の高沸点有機溶媒又はこれらの2種以上の組み合わせが挙げられる。有機ビヒクルの含有率は、ペースト全体のほぼ15〜45質量%となる量が適当であり、20〜40質量%が好ましく、30〜35質量%程度が特に好ましい。
【0019】
低温焼成用導体ペーストには、該ペーストから作製される導体膜の電気的抵抗率(導電性)やマイグレーション耐性等を著しく損なわない限りにおいて種々の無機添加剤を含ませることができる。この種の好適な副成分として、例えばガラス粉末が挙げられる。特にガラス基板に導体膜を形成する用途の導体ペーストでは、若干量のガラス粉末の添加が好適である。ガラス粉末は、ガラス基板上に付着したペースト成分を安定的に焼き付ける(固着させる)こと(即ち接着強度の向上)に寄与する無機成分(無機結合材)となり得る。特に酸化物ガラスが好ましい。上記焼成温度との関係から、軟化点が概ね590℃以下、特に550℃以下のものが好ましい。そのようなガラス粉末の好適例として、亜鉛系ガラス、ホウケイ酸系ガラスが挙げられる。典型的には、ZnO−SiO系ガラス、ZnO−B−SiO系ガラス、Bi−SiO系ガラス及びBi−B−SiO系ガラスから成る群から選択される一種又は二種以上のガラス粉末を使用するのが適当である。また、使用するガラス粉末としては、その比表面積が概ね0.5〜50m/gであるものが好ましく、平均粒径が2μm以下(特に1μm程度又はそれ以下)のものが良好な導電性を損なわないという観点から特に好適である。
【0020】
無機添加剤としてガラス粉末を加える場合には、ガラス粉末の含有率がペースト全体のほぼ1〜10質量%となる量が適当であり、5〜10質量%(例えば5.5〜8.0質量%)となる量が特に好ましい。この程度の添加量は、導体ペーストの良好な導電率を実質的に損なうことなく、得られる焼成物(導体膜)のガラス基板に対する接着強度の向上を実現することができる。
なお、各成分の含有率・配合比等に係る上記数値範囲は厳密に解釈すべきでなく、本発明の目的を達成し得る限りかかる範囲からの若干の逸脱を許容するものである。
【0021】
また、本発明の低温焼成用導体ペーストには、当該ペースト本来の電気的抵抗率(導電性)やマイグレーション耐性等を著しく損なわない限りにおいて種々の有機添加剤を副成分として含ませることができる。例えば、かかる有機添加剤としては、各種の有機バインダー、ガラス基板との密着性向上を目的としたシリコン系、チタネート系及びアルミニウム系等の各種カップリング剤等が挙げられる。
有機バインダーとしては、例えば、アクリル樹脂、エポキシ樹脂、フェノール樹脂、アルキド樹脂、セルロース系高分子、ポリビニルアルコール等をベースとするものが挙げられる。本発明の低温焼成用導体ペーストに良好な粘性及び導体膜(即ちガラス基板等の低融点セラミック基材に対する付着膜)形成能を付与し得るものが好適である。また、本発明の低温焼成用導体ペーストに光硬化性(感光性)を付与したい場合には、種々の光重合性化合物及び光重合開始剤を適宜添加してもよい。
【0022】
上述したものの他に本発明の低温焼成用導体ペーストには、必要に応じて界面活性剤、消泡剤、可塑剤、増粘剤、酸化防止剤、分散剤、重合禁止剤等を適宜添加することができる。これら添加剤は、従来の導体ペーストの調製に用いられ得るものであればよく、詳細な説明は省略する。
【0023】
ここで教示される低温焼成用導体ペーストは、マイグレーション耐性に優れるとともに、低焼成温度であっても緻密な導体膜を形成し得る。このため、適用される焼成温度(最高焼成温度)が550〜600℃(例えば590〜600℃)である各種電子部品、特にガラス基板等の低融点セラミック基板を基材とする電子部品等に所定パターンの導体(配線、電極等)を形成する材料として好適に用いることができる。
【0024】
次に、本発明に係る低温焼成用導体ペーストの製造方法について説明する。本発明の低温焼成用導体ペーストは従来の導体ペーストと同様、典型的には貴金属粉末と有機媒質(ビヒクル)とを混和することによって容易に調製することができる。ここで、貴金属粉末は、その合計100質量%に対して、金粉末を60〜80質量%、好ましくは60〜70質量%、銀粉末を20〜40質量%、好ましくは30〜40質量%の混合割合で有機媒質中に分散させる。このとき、必要に応じて上述したような添加剤を添加・混合するとよい。例えば、三本ロールミルその他の混練機を用いて、特定の混合割合の貴金属粉末及び各種添加剤を有機ビヒクルとともに所定の配合比で直接混合し、相互に練り合わせる。
【0025】
好ましくは、主成分たる貴金属粉末の含有率がペースト全体の50〜80質量%(好ましくは55〜70質量%)となるように各材料を混練する。ここで無機添加剤として上記ガラス粉末を使用する場合には、ペースト全体のほぼ1〜10質量%(好ましくは5〜10質量%)となる量のガラス粉末を添加して他の成分とともに混練するとよい。なお、ペースト調製に用いられる有機ビヒクルの添加量は、ペースト全体のほぼ15〜45質量%(好ましくは20〜40質量%)となる量が適当である。なお、各成分の配合比に係る数値範囲は厳密に解釈すべきでなく、本発明の目的を達成し得る限りかかる範囲からの若干の逸脱を許容するものである。
【0026】
次に、本発明の低温焼成用導体ペーストを用いた導体形成に係る好適例について説明する。本発明の低温焼成用導体ペーストは、ガラス製の基材(基板)上に配線、電極等の導体膜を形成するのに従来用いられてきた導体ペーストと同様に取り扱うことができ、従来公知の方法を特に制限なく採用することができる。典型的には、スクリーン印刷法やディスペンサー塗布法等によって、所望する形状・厚みとなるようにして低温焼成用導体ペーストをガラス基材(基板)に付与(塗布)する。次いで、好ましくは乾燥後、加熱器中で適当な加熱条件、典型的には概ね550〜600℃(例えば590〜600℃)で所定時間加熱することによって、ペースト成分を焼成(焼き付け)・硬化させる。この一連の処理を行うことによって、目的の導体(配線、電極等)が形成された電子部品(例えばプラズマディスプレイ用マトリックス電極パネルやCCDセンサ、イメージセンサ等の構築用ガラス配線基板)が得られる。而して、当該電子部品を組み立て材料として用いつつ従来公知の構築方法を適用することによってさらに高度な電子部品(例えばプラズマディスプレイ用マトリックス電極パネルやCCDセンサ、イメージセンサ等)を得ることができる。なお、かかる構築方法自体は、特に本発明を特徴付けるものではないため、詳細な説明は省略する。
【0027】
【実施例】以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
【0028】
<実施例1:低温焼成用導体ペーストの調製(1)>
本実施例では、金粉末として平均粒径1.0μmのAu粉末を用いた。一方、銀粉末として平均粒径0.1μmのAg粉末を用いた。
これらAu粉末及びAg粉末の混合割合を重量比率でAu/Ag=55/45(合計100部)となるように秤量した。次いで、これらAu粉末およびAg粉末をその合量100部に対して、30部のビヒクル(エチルセルロース:ターピネオール=1:9の混合溶液)中に加えて、三本ロールミルを用いて混練した。これにより、本実施例1に係る低温焼成用導体ペーストを調製した。
【0029】
<実施例2〜5:低温焼成用導体ペーストの調製(2)>
実施例1と同じAu粉末及びAg粉末を用いて、その混合割合を重量比率でAu/Ag=56/43(実施例2)、Au/Ag=58/42(実施例3)、Au/Ag=62/38(実施例4)、Au/Ag=77/23(実施例5)となるように秤量した。次いで、実施例1と同様の処理を行い、実施例2〜5に係る低温焼成用導体ペーストを調製した。すなわち、実施例2〜5に係る導体ペーストと実施例1に係る導体ペーストとは、組成上、Au粉末とAg粉末との混合割合のみが異なる。
【0030】
<比較例1〜8:導体ペーストの調製(1)>
比較例1では、実施例1と同じAu粉末及びAg粉末を用いて、その混合割合を重量比率でAu/Ag=100/0(即ちAu単独品;比較例1)、Au/Ag=92/8(比較例2)、Au/Ag=85/15(比較例3)、Au/Ag=53/47(比較例4)、Au/Ag=52/48(比較例5)、Au/Ag=50/50(比較例6)、Au/Ag=48/52(比較例7)及びAu/Ag=46/54(比較例8)となるように秤量した。次いで、各々の比較例1〜8に対して実施例1と同様の処理を行い、比較例1〜8に係る導体ペーストを各々調製した。すなわち、比較例1〜8に係る導体ペーストと実施例1に係る低温焼成用導体ペーストとは、組成上、Au粉末とAg粉末との混合割合のみが異なる。
【0031】
<導体膜の形成>
次に、実施例1〜5の低温焼成用導体ペースト及び比較例1〜8の導体ペーストをそれぞれ用いて、ガラス基材(ここでは厚みが約1.8mmのソーダライムガラス製基板)の表面に一対の導体膜(電極)を形成した。
すなわち、一般的なスクリーン印刷法に基づいて上記ガラス基板の表面に、幅1mm、長さ10mmの導体膜(電極)を一対形成した。続いて、遠赤外線乾燥機を用いて100℃で15分間の乾燥処理を施した。この乾燥処理により、上記塗膜から溶剤が揮発していき、ガラス基板上に未焼成の導体膜が形成された。
【0032】
次に、この導体膜をガラス基板ごと焼成した。すなわち、電気炉中において590℃で1時間の焼成処理を行った。この焼成処理によって、4μmの膜厚の導体がガラス基板上に形成された。以下、単に導体というときは当該焼成後の導体膜を指す。
焼成後の当該一対の導体膜の間には約125μmの間隙があり、かかる焼成直後の一対の導体膜間はいずれも絶縁状態が維持されていた(実施例1〜5、比較例1〜8)。
得られた各導体の特性評価として、マイグレーション耐性及び緻密性(導電性の指標とする。)を以下のように試験・測定した。
【0033】
<マイグレーション耐性の評価>
実施例1〜4に係る低温焼成用導体ペースト並びに比較例4〜8に係る導体ペーストを使用して得られた導体のそれぞれについて以下のようにして耐マイグレーション性能を評価した。
すなわち、上記125μm間隔の導体(電極)間に純水を適量滴下し、室温条件下で5Vの電圧を印加した。その後、一対の導体(電極)間に絶縁が継続されている時間、換言すれば、Agのデントライト結晶が析出・成長して当該導体(電極)間が短絡するまでの時間(但し最長で電圧印加後1200秒)を測定した。表1に本評価試験の結果を示す。なお、本試験において、絶縁継続時間800秒以上をマイグレーション耐性が優れるもの(表中の○)と評価した。絶縁継続時間1200秒以上をマイグレーション耐性が特に優れるもの(表中の◎)と評価した。他方、絶縁継続時間800秒未満をマイグレーション耐性が不十分なもの(表中の△)と評価した。絶縁継続時間400秒未満をマイグレーション耐性なし(表中の×)と評価した。
【0034】
【表1】

Figure 2004273254
【0035】
表1に示す結果から明らかなように、Au/Agの重量比が本発明の範囲外である比較例4〜10の導体ペーストから作製された導体は、マイグレーション耐性に劣っていた。これに対して、Au/Ag比が本発明の範囲内である実施例1〜4の導体ペーストから作製された導体は、マイグレーション耐性に優れていた。
【0036】
<緻密性の評価>
実施例4及び5に係る低温焼成用導体ペースト、並びに比較例1〜3に係る導体ペーストを使用して得られた導体のそれぞれについて電子顕微鏡(SEM:4000倍)にて観察し、その緻密さを比較・評価した。
図1〜5に、それぞれ、実施例4、5、比較例1、2、3の導体の微視的表面構造(電子顕微鏡写真)を示す。観察結果を表2にまとめた。表2において、緻密性が良好であるものを○、不良であるものを×で示した。
【0037】
【表2】
Figure 2004273254
【0038】
図1〜5及び表2に示す結果から明らかなように、比較例1〜3に係る導体ペーストから形成された各導体膜はいずれも空隙(細孔)が多数認められ、緻密性に劣っていることが確かめられた。この結果は、これら比較例に係る導体ペーストから作製された導体の電気的抵抗値が比較的高いことを示している。一方、実施例4及び5に係る導体ペーストから形成された各導体膜は、空隙が殆ど認められず、良好な緻密性を有していることが確かめられた。この結果は、これら実施例に係る導体ペーストから作製された導体は電気的抵抗値が比較的低く、導電性に優れる導体であることを示している。
【0039】
以上の実施例において、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項記載の組み合わせに限定されるものではない。また、本明細書に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】本発明の一実施例に係る導体ペーストを使用して得られた導体膜の微視的表面構造を示す電子顕微鏡写真(SEM:×4000)である。
【図2】本発明の一実施例に係る導体ペーストを使用して得られた導体膜の微視的表面構造を示す電子顕微鏡写真(SEM:×4000)である。
【図3】一比較例に係る導体ペーストを使用して得られた導体膜の微視的表面構造を示す電子顕微鏡写真(SEM:×4000)である。
【図4】一比較例に係る導体ペーストを使用して得られた導体膜の微視的表面構造を示す電子顕微鏡写真(SEM:×4000)である。
【図5】一比較例に係る導体ペーストを使用して得られた導体膜の微視的表面構造を示す電子顕微鏡写真(SEM:×4000)である。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor paste for low-temperature firing used for forming a film conductor on a glass substrate or the like and a method for producing the same.
[0002]
2. Description of the Related Art Materials for forming film conductors (wiring, electrodes, etc.) of a predetermined pattern on various glass wiring boards and other electronic components used for constructing matrix electrode panels for plasma displays, CCD sensors, image sensors, and the like. Is used as a conductive paste. This conductor paste disperses a metal powder as a main component forming a conductor and various additives (inorganic binder, glass frit, filler, etc.) added as required in a predetermined organic medium (vehicle). Is a conductor-forming material prepared by As the metal powder, for example, gold, platinum, silver, palladium, copper, nickel, tin, lead, indium, or any combination thereof is used (for example, Patent Documents 1 to 4).
Such a conductive paste is printed and applied to a substrate by a general method such as screen printing. Next, by baking (baking) the applied material (coated film) at an appropriate temperature, a conductor film having a predetermined pattern is formed on the substrate.
[0003]
One of the properties required for the conductor paste is migration resistance. That is, when current is applied to a wiring pattern made of a conductive paste in a state where moisture is attached, movement (precipitation) of a metal component called migration or ion migration occurs in a nonmetallic portion (insulating portion) on the substrate. May be. Such migration is not preferable because it causes a short circuit between the electrodes or the wiring. Therefore, conventionally, various measures have been taken to prevent migration. For example, Patent Document 4 discloses an Ag paste containing solder particles having a particle diameter of 20 μm or less as a migration preventing component.
[0004]
By the way, when a conductor is formed on a low melting point ceramic substrate such as a glass substrate using a conductor paste, it is necessary to lower the firing temperature to, for example, about 500 to 600 ° C. A conductor paste used for producing a conductor at such a low firing temperature also requires high migration resistance. The technology described in Patent Document 4 cannot be applied to this request. Since the solder particles are made of an alloy of lead (Pb) and tin (Sn), such low-temperature sintering may cause excessive oxidation of the solder component to cause poor conductivity, or insufficient strength due to poor sintering. It is.
[0005]
Therefore, as a conductor paste for low-temperature firing having excellent migration resistance, a metal powder mainly composed of gold (Au) (hereinafter abbreviated as “Au paste”) is used. However, although the Au paste has excellent migration resistance, gold as a raw material is expensive, and is inferior in density to other metals, and has relatively high electric resistance. As means for lowering the electrical resistance, Au for low-temperature firing obtained by kneading and dispersing gold particles having a particle size of 1.0 μm or less, a glass frit having a softening point of 450 ° C. or less, and an organic vehicle is used. A paste is disclosed (Patent Document 5). However, in this Au paste, the gold particles need to have a particle size of 1.0 μm or less, so that they are quite expensive. Therefore, there is a demand for a conductor paste for low-temperature sintering that can form a film conductor that is as low in cost as possible, dense, has low electric resistance, and has improved migration resistance.
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-100248 [Patent Document 2] Japanese Patent No. 3038210 [Patent Document 3] Japanese Patent Application Laid-Open No. 6-223620 [Patent Document 4] Japanese Patent Application Laid-Open No. 7-14428 [Patent Document 5] Japanese Patent Application Laid-Open No. H10-340619
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems relating to the conductor paste for low-temperature firing, and it is an object of the present invention to provide a conductive paste which is excellent in migration resistance and inexpensive. An object of the present invention is to provide a conductor paste for low-temperature sintering that is dense and has low electric resistance and a method for producing the same.
[0008]
Means for Solving the Problems, Functions and Effects The present inventor has proposed that by mixing Au powder and Ag powder in a predetermined ratio as a metal powder, they are excellent in migration resistance and dense and have an electric resistance value. The present inventors have found that a conductor having a low conductivity can be formed, and have created the conductor paste of the present invention.
That is, the conductor paste provided by the present invention is a conductor paste for low-temperature firing containing a noble metal powder as a main component. In the conductor paste of the present invention, the noble metal powder is composed of gold powder and silver powder, and the mixing ratio thereof is 55 to 80% by mass of gold powder and 20 to 80% by mass of silver powder with respect to the total of 100% by mass. It is characterized by being 45% by mass.
[0009]
According to the conductor paste of this configuration, as a result of using Ag and Au in the above-mentioned specific mixing ratio, a dense, low-resistance film conductor can be formed by firing at a relatively low temperature. Further, similarly to the conventional Au paste, it has excellent migration resistance. In addition, since silver, which is less expensive than gold, is mixed with the precious metal powder as the main raw material, the paste can be provided relatively inexpensively.
[0010]
The conductor paste for low-temperature firing taught herein can be fired at a low temperature (for example, 550 to 600 ° C.) lower than the melting point of the glass substrate, and even at such a low firing temperature, it can be oxidized. It is possible to prevent the quality of the conductor film (fired film) from deteriorating. Therefore, the present invention provides a glass substrate conductor paste for forming a dense conductor film having excellent migration resistance on a glass substrate.
[0011]
A preferable conductor paste of the present invention includes 50 to 80% by mass of the noble metal powder, 1 to 10% by mass of glass powder, and 15 to 45% by mass of an organic medium, with the whole paste being 100% by mass. Features.
According to the conductor paste for low-temperature firing (typically, the conductor paste for glass substrate) having such a mixing ratio, a dense conductor film can be easily formed on a glass substrate by firing in the low-temperature region as described above. .
[0012]
Therefore, according to the present invention, there is provided a method for forming a conductor film (various wiring patterns, electrodes, etc.) on a low melting point ceramic base material (for example, a glass substrate) using the conductor paste for low temperature firing taught herein. Provided. In this method, a conductor paste of the present invention is prepared, and the paste is applied on a substrate, and the applied material is fired together with the substrate (typically, the highest firing temperature is 600 ° C. or less (eg, 500 to 600 ° C.)). ). According to this method, it is possible to form a conductive film having excellent migration resistance, a dense and low electric resistance on a low melting point ceramic base material such as a glass substrate.
[0013]
Further, according to the present invention, there is provided a method for producing the conductor paste for low-temperature firing described above. That is, the method provided by the present invention is a method for producing a conductor paste for low-temperature firing containing a noble metal powder as a main component, wherein the gold powder is 55 to 80% by mass with respect to a total of 100% by mass of the noble metal powder. It is characterized in that these noble metal powders are dispersed in an organic medium at a mixing ratio of 20 to 45% by mass of silver powder.
According to this method, a conductor paste having excellent migration resistance, a dense and low electric resistance is converted to a conventional Au paste by an easy method of adding and dispersing gold powder and silver powder in an organic medium at a specific mixing ratio. It can be manufactured at a relatively low cost.
[0014]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. It should be noted that matters other than matters specifically referred to in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the conventional technology. The present invention can be carried out based on the matters disclosed in the present specification and the drawings and common technical knowledge in the relevant field.
[0015]
The conductor paste for low-temperature sintering of the present invention is a paste characterized by a precious metal powder as a main component being a mixed powder of Ag and Au in a specific ratio, and other pastes as long as the object of the present invention can be achieved. There are no particular restrictions on the content or composition of the components.
The noble metal powder is a mixed powder composed of Ag and Au. The mixing ratio is such that the Au powder is 55 to 80% by mass, preferably 58 to 70% by mass, and the Ag powder is 20 to 45% by mass, preferably 30 to 30% by mass with respect to the total 100% by mass of the noble metal powder. 42% by mass. If the mixing ratio of the Au powder is less than 55% by mass, the migration resistance is lowered, which is not practical. On the other hand, if the amount of the Ag powder is less than 20% by mass, the compactness is reduced and the electric resistance is increased, so that it is not practical. The higher the mixing ratio of the Ag powder in the noble metal powder, the lower the cost and the more economical. From this viewpoint, it is preferable that the Au powder is 55 to 60% by mass and the Ag powder is 40 to 45% by mass with respect to the total 100% by mass of the noble metal powder.
In the present invention, the above mixing ratio should not be interpreted strictly, but is a rough mixing ratio, and allows a slight deviation from such a range as long as the object of the present invention can be achieved.
[0016]
The Ag powder and the Au powder are not particularly limited, but have an average particle size of 2.0 μm or less (preferably 0.05 to 1.5 μm, for example, 0.1 μm) from the viewpoint of forming a fired film having a dense structure. Ag fine particles and Au fine particles of about 1.0 μm) are preferred. Ag fine particles and Au fine particles having a relatively narrow average particle diameter and relatively narrow particle size distribution substantially free of particles having a particle diameter of 10 μm or more (particularly preferably 5 μm or more). Is particularly preferred. These fine particles may have a spherical shape or a flake shape. The particle size is a value obtained according to a diffraction type particle size distribution measuring method. The average particle size of the Ag powder is about 1/5 to 1/10 smaller than the average particle size of the Au powder. For example, an Au powder having an average particle size of 0.8 to 1.2 µm and an average particle size of 0.08 to 0 It is preferable to mix Ag powder of 0.12 μm from the viewpoint of densification of the fired film.
[0017]
The Ag powder and the Au powder themselves may be manufactured by a conventionally known manufacturing method, and do not require any special manufacturing means. For example, Ag fine particles and Au fine particles produced by a well-known reduction precipitation method, a gas phase reaction method, a gas reduction method, or the like can be used. A commercially available product having a desired average particle size and purity can be used.
The content of the noble metal powder as the main component is not particularly limited, but is preferably 50 to 80% by mass, and more preferably 55 to 70% by mass (for example, 58 to 63% by mass) of the whole paste.
[0018]
Next, suitable components that can be included in the conductor paste for low-temperature firing of the present invention will be described.
As a secondary component of the conductor paste for low-temperature firing of the present invention, an organic medium (vehicle) in which the noble metal powder is dispersed is exemplified. In practicing the present invention, such an organic vehicle may be any one in which noble metal powder is dispersed, and those used in conventional conductor pastes can be used without any particular limitation. For example, cellulose-based polymers such as ethyl cellulose, ethylene glycol and diethylene glycol derivatives, high-boiling organic solvents such as toluene, xylene, mineral spirit, butyl carbitol, and terpineol, or a combination of two or more thereof are exemplified. The content of the organic vehicle is suitably about 15 to 45% by mass of the whole paste, preferably 20 to 40% by mass, and particularly preferably about 30 to 35% by mass.
[0019]
Various inorganic additives can be contained in the conductor paste for low-temperature firing as long as the electrical resistivity (conductivity), migration resistance, and the like of the conductor film produced from the paste are not significantly impaired. Suitable subcomponents of this kind include, for example, glass powder. Particularly, in a conductive paste for forming a conductive film on a glass substrate, it is preferable to add a small amount of glass powder. The glass powder can be an inorganic component (inorganic binder) that contributes to stable baking (fixing) of the paste component attached to the glass substrate (that is, improvement of the adhesive strength). Particularly, oxide glass is preferable. From the relationship with the firing temperature, those having a softening point of about 590 ° C. or lower, particularly 550 ° C. or lower are preferable. Preferable examples of such a glass powder include zinc-based glass and borosilicate-based glass. Typically, consisting ZnO-SiO 2 based glass, ZnO-B 2 O 3 -SiO 2 based glass, Bi 2 O 3 -SiO 2 based glass and Bi 2 O 3 -B 2 O 3 -SiO 2 based glass It is appropriate to use one or more glass powders selected from the group. As the glass powder to be used, those having a specific surface area of about 0.5 to 50 m 2 / g are preferable, and those having an average particle diameter of 2 μm or less (in particular, about 1 μm or less) have good conductivity. It is particularly preferable from the viewpoint of not impairing.
[0020]
When glass powder is added as an inorganic additive, the amount is preferably such that the content of glass powder is approximately 1 to 10% by mass of the entire paste, and 5 to 10% by mass (for example, 5.5 to 8.0% by mass). %) Is particularly preferred. This amount of addition can improve the adhesive strength of the obtained fired product (conductor film) to the glass substrate without substantially impairing the good conductivity of the conductor paste.
It should be noted that the above numerical ranges relating to the content ratios and the mixing ratios of the respective components should not be interpreted strictly, and allow a slight deviation from such ranges as long as the object of the present invention can be achieved.
[0021]
In addition, the conductor paste for low-temperature firing of the present invention may contain various organic additives as subcomponents as long as the original electrical resistivity (conductivity), migration resistance and the like of the paste are not significantly impaired. For example, examples of such organic additives include various organic binders, and various coupling agents such as silicon-based, titanate-based, and aluminum-based coupling agents for improving adhesion to a glass substrate.
Examples of the organic binder include those based on acrylic resin, epoxy resin, phenol resin, alkyd resin, cellulosic polymer, polyvinyl alcohol, and the like. It is preferable that the conductive paste for low-temperature firing of the present invention can impart good viscosity and ability to form a conductive film (that is, a film adhered to a low melting point ceramic base material such as a glass substrate). When it is desired to impart photocurability (photosensitivity) to the conductor paste for low-temperature firing of the present invention, various photopolymerizable compounds and photopolymerization initiators may be appropriately added.
[0022]
In addition to the above, the low-temperature firing conductor paste of the present invention may optionally contain a surfactant, an antifoaming agent, a plasticizer, a thickener, an antioxidant, a dispersant, a polymerization inhibitor, and the like, as necessary. be able to. These additives may be any additives that can be used for preparing a conventional conductive paste, and a detailed description thereof will be omitted.
[0023]
The conductor paste for low-temperature firing taught herein has excellent migration resistance and can form a dense conductor film even at a low firing temperature. For this reason, a predetermined firing temperature (maximum firing temperature) of 550 to 600 ° C. (for example, 590 to 600 ° C.) is applied to various electronic components, particularly electronic components having a low melting point ceramic substrate such as a glass substrate as a base material. It can be suitably used as a material for forming a conductor (wiring, electrode, etc.) of the pattern.
[0024]
Next, a method for producing the conductor paste for low-temperature firing according to the present invention will be described. The conductor paste for low-temperature sintering of the present invention can be easily prepared typically by mixing a noble metal powder and an organic medium (vehicle), similarly to a conventional conductor paste. Here, the noble metal powder is 60 to 80% by mass, preferably 60 to 70% by mass, and 20 to 40% by mass, preferably 30 to 40% by mass of the silver powder, based on the total 100% by mass. Disperse in an organic medium at a mixing ratio. At this time, the above-mentioned additives may be added and mixed as needed. For example, using a three-roll mill or other kneading machine, a specific mixing ratio of the noble metal powder and various additives are directly mixed together with the organic vehicle at a predetermined mixing ratio and kneaded with each other.
[0025]
Preferably, the respective materials are kneaded so that the content of the noble metal powder as the main component is 50 to 80% by mass (preferably 55 to 70% by mass) of the entire paste. When the above glass powder is used as the inorganic additive, an amount of glass powder of about 1 to 10% by mass (preferably 5 to 10% by mass) of the whole paste is added and kneaded together with other components. Good. The amount of the organic vehicle used for preparing the paste is suitably about 15 to 45% by mass (preferably 20 to 40% by mass) of the entire paste. The numerical ranges related to the mixing ratios of the components should not be interpreted strictly, and allow a slight deviation from the ranges as long as the object of the present invention can be achieved.
[0026]
Next, a preferred example of forming a conductor using the conductor paste for low-temperature firing of the present invention will be described. The conductor paste for low-temperature firing of the present invention can be handled in the same manner as a conductor paste conventionally used for forming a conductor film such as wiring and electrodes on a glass substrate (substrate). The method can be adopted without any particular limitation. Typically, a conductor paste for low-temperature firing is applied (applied) to a glass substrate (substrate) in a desired shape and thickness by a screen printing method, a dispenser application method, or the like. Then, preferably after drying, the paste component is heated (baked) and cured by heating in a heater under appropriate heating conditions, typically about 550 to 600 ° C. (eg, 590 to 600 ° C.) for a predetermined time. . By performing this series of processing, an electronic component (eg, a glass wiring substrate for construction such as a matrix electrode panel for a plasma display, a CCD sensor, or an image sensor) on which a target conductor (a wiring, an electrode, or the like) is formed is obtained. Thus, by applying a conventionally known construction method while using the electronic component as an assembling material, a more advanced electronic component (for example, a matrix electrode panel for a plasma display, a CCD sensor, an image sensor, etc.) can be obtained. Note that such a construction method itself does not particularly characterize the present invention, and a detailed description thereof will be omitted.
[0027]
EXAMPLES Some examples of the present invention will be described below, but it is not intended to limit the present invention to those shown in the examples.
[0028]
<Example 1: Preparation of conductor paste for low-temperature firing (1)>
In this example, Au powder having an average particle size of 1.0 μm was used as the gold powder. On the other hand, Ag powder having an average particle size of 0.1 μm was used as silver powder.
The mixing ratio of the Au powder and the Ag powder was weighed such that Au / Ag = 55/45 (100 parts in total) by weight. Next, the Au powder and the Ag powder were added to 30 parts of a vehicle (a mixed solution of ethyl cellulose and terpineol = 1: 9) with respect to the total amount of 100 parts, and kneaded using a three-roll mill. Thus, the conductor paste for low-temperature firing according to Example 1 was prepared.
[0029]
<Examples 2 to 5: Preparation of conductor paste for low-temperature firing (2)>
Au / Ag = 56/43 (Example 2), Au / Ag = 58/42 (Example 3), Au / Ag using the same Au powder and Ag powder as in Example 1 in terms of weight ratio. = 62/38 (Example 4) and Au / Ag = 77/23 (Example 5). Next, the same treatment as in Example 1 was performed to prepare the conductor paste for low-temperature firing according to Examples 2 to 5. That is, the conductor pastes according to Examples 2 to 5 and the conductor paste according to Example 1 differ only in the mixing ratio of Au powder and Ag powder in composition.
[0030]
<Comparative Examples 1 to 8: Preparation of conductor paste (1)>
In Comparative Example 1, the same Au powder and Ag powder as in Example 1 were used, and the mixing ratio was Au / Ag = 100/0 (that is, Au alone; Comparative Example 1), and Au / Ag = 92 / 8 (Comparative Example 2), Au / Ag = 85/15 (Comparative Example 3), Au / Ag = 53/47 (Comparative Example 4), Au / Ag = 52/48 (Comparative Example 5), Au / Ag = The weight was weighed so that 50/50 (Comparative Example 6), Au / Ag = 48/52 (Comparative Example 7), and Au / Ag = 46/54 (Comparative Example 8). Next, the same processing as in Example 1 was performed on each of Comparative Examples 1 to 8, to prepare conductor pastes according to Comparative Examples 1 to 8, respectively. That is, the conductor pastes according to Comparative Examples 1 to 8 and the conductor paste for low-temperature firing according to Example 1 differ only in the mixing ratio of Au powder and Ag powder in composition.
[0031]
<Formation of conductive film>
Next, the conductor pastes for low-temperature firing of Examples 1 to 5 and the conductor pastes of Comparative Examples 1 to 8 were respectively applied to the surface of a glass substrate (a soda-lime glass substrate having a thickness of about 1.8 mm in this case). A pair of conductor films (electrodes) were formed.
That is, a pair of conductor films (electrodes) having a width of 1 mm and a length of 10 mm were formed on the surface of the glass substrate based on a general screen printing method. Subsequently, a drying treatment was performed at 100 ° C. for 15 minutes using a far-infrared dryer. By this drying treatment, the solvent volatilized from the coating film, and an unsintered conductor film was formed on the glass substrate.
[0032]
Next, this conductor film was fired together with the glass substrate. That is, firing treatment was performed at 590 ° C. for 1 hour in an electric furnace. By this baking treatment, a conductor having a thickness of 4 μm was formed on the glass substrate. Hereinafter, when simply referred to as a conductor, the conductor film after firing is referred to.
There was a gap of about 125 μm between the pair of conductive films after firing, and the insulating state was maintained between the pair of conductive films immediately after firing (Examples 1 to 5, Comparative Examples 1 to 8). ).
As evaluation of characteristics of each of the obtained conductors, migration resistance and denseness (used as an index of conductivity) were tested and measured as follows.
[0033]
<Evaluation of migration resistance>
Each of the conductor pastes obtained by using the conductor pastes for low-temperature firing according to Examples 1 to 4 and the conductor pastes according to Comparative Examples 4 to 8 was evaluated for migration resistance performance as follows.
That is, an appropriate amount of pure water was dropped between the conductors (electrodes) at 125 μm intervals, and a voltage of 5 V was applied at room temperature. Thereafter, the time during which the insulation is continued between the pair of conductors (electrodes), in other words, the time until the dendritic crystal of Ag precipitates and grows and short-circuits between the conductors (electrodes) (however, the voltage is the longest) (1200 seconds after application). Table 1 shows the results of the evaluation test. In this test, an insulation duration of 800 seconds or more was evaluated as having excellent migration resistance (マ イ グ レ ー シ ョ ン in the table). The insulation continuation time of 1200 seconds or more was evaluated as having particularly excellent migration resistance ((in the table). On the other hand, an insulation duration of less than 800 seconds was evaluated as having insufficient migration resistance (△ in the table). An insulation duration of less than 400 seconds was evaluated as having no migration resistance (x in the table).
[0034]
[Table 1]
Figure 2004273254
[0035]
As is clear from the results shown in Table 1, the conductors made from the conductor pastes of Comparative Examples 4 to 10 in which the weight ratio of Au / Ag was out of the range of the present invention were inferior in migration resistance. On the other hand, the conductors prepared from the conductor pastes of Examples 1 to 4 in which the Au / Ag ratio was within the range of the present invention were excellent in migration resistance.
[0036]
<Evaluation of denseness>
Each of the conductor pastes obtained by using the conductor pastes for low-temperature firing according to Examples 4 and 5 and the conductor pastes according to Comparative Examples 1 to 3 was observed with an electron microscope (SEM: × 4000), and its denseness was observed. Were compared and evaluated.
1 to 5 show microscopic surface structures (electron micrographs) of the conductors of Examples 4 and 5 and Comparative Examples 1, 2, and 3, respectively. Table 2 summarizes the observation results. In Table 2, a sample having good denseness is indicated by “○”, and a sample having poor denseness is indicated by “×”.
[0037]
[Table 2]
Figure 2004273254
[0038]
As is clear from the results shown in FIGS. 1 to 5 and Table 2, each of the conductor films formed from the conductor pastes according to Comparative Examples 1 to 3 had many voids (pores) and was inferior in denseness. It was confirmed that there was. This result indicates that the conductors made from the conductor pastes according to these comparative examples have relatively high electric resistance values. On the other hand, it was confirmed that each conductor film formed from the conductor paste according to Examples 4 and 5 had almost no voids and had good denseness. This result indicates that the conductors made from the conductor pastes according to these examples have relatively low electrical resistance and are excellent in conductivity.
[0039]
In the above embodiments, specific examples of the present invention have been described in detail. However, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and alterations of the specific examples illustrated above.
Further, the technical elements described in the present specification exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Further, the technology exemplified in the present specification achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.
[Brief description of the drawings]
FIG. 1 is an electron micrograph (SEM: × 4000) showing a microscopic surface structure of a conductive film obtained using a conductive paste according to one example of the present invention.
FIG. 2 is an electron micrograph (SEM: × 4000) showing a microscopic surface structure of a conductive film obtained using a conductive paste according to one example of the present invention.
FIG. 3 is an electron micrograph (SEM: × 4000) showing a microscopic surface structure of a conductive film obtained using a conductive paste according to a comparative example.
FIG. 4 is an electron micrograph (SEM: × 4000) showing a microscopic surface structure of a conductive film obtained using a conductive paste according to a comparative example.
FIG. 5 is an electron micrograph (SEM: × 4000) showing a microscopic surface structure of a conductive film obtained using a conductive paste according to a comparative example.

Claims (3)

貴金属粉末を主成分とする低温焼成用導体ペーストであって、
その貴金属粉末は、金粉末と銀粉末とから構成され、その混合割合は、その合計100質量%に対して、金粉末が55〜80質量%、銀粉末が20〜45質量%であることを特徴とする、低温焼成用導体ペースト。
A conductor paste for low-temperature firing mainly containing a noble metal powder,
The noble metal powder is composed of gold powder and silver powder, and the mixing ratio is such that the gold powder is 55 to 80 mass% and the silver powder is 20 to 45 mass% with respect to the total 100 mass%. Characteristic, low-temperature firing conductor paste.
ペースト全体を100質量%として、50〜80質量%の貴金属粉末と、1〜10質量%のガラス粉末と、15〜45質量%の有機媒質とを含むことを特徴とする、請求項1に記載の導体ペースト。2. The paste according to claim 1, comprising 50 to 80% by mass of a noble metal powder, 1 to 10% by mass of a glass powder, and 15 to 45% by mass of an organic medium, based on 100% by mass of the entire paste. Conductor paste. 貴金属粉末を主成分とする低温焼成用導体ペーストの製造方法であって、
その貴金属粉末の合計100質量%に対して、金粉末を55〜80質量%、銀粉末を20〜45質量%の混合割合でこれら貴金属粉末を有機媒質中に分散させることを特徴とする、低温焼成用導体ペーストの製造方法。
A method for producing a conductor paste for low-temperature firing containing a noble metal powder as a main component,
Dispersing these noble metal powders in an organic medium at a mixing ratio of 55 to 80% by weight of gold powder and 20 to 45% by weight of silver powder with respect to a total of 100% by weight of the noble metal powder, A method for producing a conductive paste for firing.
JP2003061893A 2003-03-07 2003-03-07 Conductive paste for low-temperature firing and manufacturing method thereof Expired - Fee Related JP4384428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061893A JP4384428B2 (en) 2003-03-07 2003-03-07 Conductive paste for low-temperature firing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061893A JP4384428B2 (en) 2003-03-07 2003-03-07 Conductive paste for low-temperature firing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004273254A true JP2004273254A (en) 2004-09-30
JP4384428B2 JP4384428B2 (en) 2009-12-16

Family

ID=33123978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061893A Expired - Fee Related JP4384428B2 (en) 2003-03-07 2003-03-07 Conductive paste for low-temperature firing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4384428B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659648A1 (en) 2004-11-22 2006-05-24 Nissan Motor Co., Ltd. Electrochemical cell structure
WO2015159655A1 (en) * 2014-04-16 2015-10-22 東レ株式会社 Photosensitive resin composition, method for manufacturing conductive pattern, substrate, element, and touchscreen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659648A1 (en) 2004-11-22 2006-05-24 Nissan Motor Co., Ltd. Electrochemical cell structure
US7659030B2 (en) 2004-11-22 2010-02-09 Nissan Motor •Co., Ltd. Cell structure having improved heat dissipation and lower vibrations
WO2015159655A1 (en) * 2014-04-16 2015-10-22 東レ株式会社 Photosensitive resin composition, method for manufacturing conductive pattern, substrate, element, and touchscreen
CN106462058A (en) * 2014-04-16 2017-02-22 东丽株式会社 Photosensitive resin composition, method for manufacturing conductive pattern, substrate, element, and touch screen
JPWO2015159655A1 (en) * 2014-04-16 2017-04-13 東レ株式会社 Photosensitive resin composition, method for producing conductive pattern, substrate, element and touch panel
US10001704B2 (en) 2014-04-16 2018-06-19 Toray Industries, Inc. Photosensitive resin composition, method of manufacturing conductive pattern, substrate, element, and touch panel

Also Published As

Publication number Publication date
JP4384428B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4212035B2 (en) Conductive paste mainly composed of silver powder and method for producing the same
JP3734731B2 (en) Ceramic electronic component and method for manufacturing the same
JP4600282B2 (en) Conductive paste
US20040245507A1 (en) Conductor composition and method for production thereof
JP3564089B2 (en) Conductive paste and method for producing the same
JP2002245874A (en) Conductive paste and its manufacturing method
JP3637286B2 (en) Conductive paste for calcined zirconia substrate
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP2018137131A (en) Conductive paste, aluminum nitride circuit board and method for producing the same
JP2018055819A (en) Thick film conductive paste and manufacturing method of ceramic multilayer laminate electronic component
JP4384428B2 (en) Conductive paste for low-temperature firing and manufacturing method thereof
JP2010010405A (en) Resistor paste, thick film resistor and method of manufacturing thick film substrate
JP5215914B2 (en) Resistor film manufacturing method, resistor film, and resistor
JP2003347102A (en) Resistance element paste, resistor, and manufacturing method thereof
JPH0945130A (en) Conductor paste composite
JP2011198470A (en) Conductive paste for film electrode, conductive film for electrode, and film electrode
JP3901135B2 (en) Conductor paste
JP2019102238A (en) Conductive paste, and multilayer substrate formed using the same
JP3318299B2 (en) Pb-free low-temperature firing type conductive paint
JP3697402B2 (en) Conductive paste, method for preparing the same, and method for determining the firing temperature
KR100856681B1 (en) Conductive paste for electrode in plasma disdlay panel
JP2004119561A (en) Resistive paste and resistor
JP2001273816A (en) Conductive paste
TW202207244A (en) Thick film resistor paste, thick film resistor, and electronic component
JPH06223617A (en) Conductive paste composition

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050711

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees