JP6949227B2 - 遠心圧縮機及びターボチャージャ - Google Patents

遠心圧縮機及びターボチャージャ Download PDF

Info

Publication number
JP6949227B2
JP6949227B2 JP2020528644A JP2020528644A JP6949227B2 JP 6949227 B2 JP6949227 B2 JP 6949227B2 JP 2020528644 A JP2020528644 A JP 2020528644A JP 2020528644 A JP2020528644 A JP 2020528644A JP 6949227 B2 JP6949227 B2 JP 6949227B2
Authority
JP
Japan
Prior art keywords
branch port
flow path
port
impeller
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020528644A
Other languages
English (en)
Other versions
JPWO2020008615A1 (ja
Inventor
健一郎 岩切
健一郎 岩切
藤田 豊
豊 藤田
良洋 林
良洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Original Assignee
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Engine and Turbocharger Ltd filed Critical Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Publication of JPWO2020008615A1 publication Critical patent/JPWO2020008615A1/ja
Application granted granted Critical
Publication of JP6949227B2 publication Critical patent/JP6949227B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本開示は、遠心圧縮機及びターボチャージャに関する。
ターボチャージャ用の遠心圧縮機では、圧縮機の吐出圧が過度に上昇することを避けるために、遠心圧縮機の出口にバイパスバルブ(ブローオフバルブあるいはリサーキュレーションバルブとも呼ばれる)が設けられる場合がある。かかる構成では、圧縮機の吐出圧が過剰となった際にバイパスバルブが開となり、圧縮機の吐出空気がバイパス流路を介して圧縮機の入口側に還流される仕組みとなっている。
一方、このようなバイパス流路を設けることは圧力損失の増加にも繋がる。図24に示すように、主流とのせん断によってバイパス流路内には循環流が形成されるものの、主流からバイパス流路内への流れの流入が殆ど無い場合には殆ど圧力損失は生じない。一方、図25及び図26に示すように、バイパス流路内に主流からの流れが大量に流入するようなケースでは、バイパス流路内に流入した流れがスワールを形成し、それが再び主流へと流出する場合がある。このとき、流出したスワール流れと主流が干渉して図25に示すように大きな圧力損失を生じる。このような時、圧縮機効率の大幅な低下(時には5%以上)が生じることもある。
特開2012−241558号公報
このような圧力損失増加の問題に対し、特許文献1では、バイパスバルブの弁体の表面を圧縮機のスクロール流路の内壁に沿った形状に形成することを提案している。このような構造にすればバイパス流路への流れの流入による圧力損失の増大を抑制することができる。
しかしながら、バルブは汎用品が採用されることが多く、弁体の表面を配管の内壁に沿った特殊な形状にするには特注品を用いる必要があり、コストの増加を招いてしまう。
本発明の少なくとも一実施形態は、上述したような従来の課題に鑑みなされたものであって、その目的とするところは、バイパスバルブの弁体の形状の複雑化を抑制しつつ圧力損失の増大を抑制できる遠心圧縮機及びターボチャージャを提供することである。
(1)本発明の少なくとも一実施形態に係る制御装置は、
インペラと、
前記インペラに空気を案内するコンプレッサ入口管と、
前記インペラの外周側に設けられたスクロール流路と、
前記スクロール流路から分岐口を介して分岐し、前記インペラを迂回して前記コンプレッサ入口管に接続するバイパス流路と、
前記バイパス流路に設けられた弁ポートを開閉可能なバイパスバルブと、
を備え、
前記分岐口は、前記分岐口の中心を通る前記分岐口の法線N1に沿って視たときに、非円形形状を有する。
上記(1)に記載の構成によれば、分岐口の法線に沿って視たときに非円形形状を有する分岐口を用いることにより、円形形状を有する分岐口を用いる従来の構成と比較して、バイパス流路内に入り込んだ流れがスワールを形成することを阻害することができる。これにより、バイパス流路内からスワール流れがスクロール流路に流出することに伴う圧力損失の増大を抑制することができる。
また、特許文献1に記載された構成のようにバイパスバルブの弁体の表面を配管の内壁に沿った形状にしなくとも圧力損失の増大を抑制することができる。したがって、バイパスバルブの弁体の形状の複雑化を抑制してコストの増加を抑制しつつ、圧力損失の増大を抑制することができる。
また、特許文献1に記載された構成では、バイパスバルブの弁体をスクロール流路の内壁に沿って設けると、弁体の設置スペース及び弁体が動くスペースをバイパス流路におけるスクロール流路に近接する位置に設ける必要が生じ、圧縮機の入口へ繋げる必要があるバイパス流路のレイアウトに制約が生じやすい。
これに対し、上記(1)に係る構成によれば、バイパスバルブの弁体をスクロール流路の内壁に沿って設けなくとも圧力損失の増大を抑制できるため、弁体が動くスペースをバイパス流路におけるスクロール流路に近接する位置に設ける必要がなく、圧縮機の入口へ繋げるバイパス流路のレイアウトの自由度を高めることができる。
(2)幾つかの実施形態では、上記(1)に記載の制御装置において、
前記スクロール流路における前記分岐口の中心を含む流路断面をGとすると、前記流路断面Gに直交する流れ方向Fにおける前記分岐口の寸法Tは、前記流れ方向F及び前記法線N1の各々に直交する方向Hにおける前記分岐口の寸法Lよりも小さい。
上記(2)に記載の制御装置によれば、寸法Tを寸法Lよりも小さくすることにより、スクロール流路の流れが分岐口を通過するのに要する距離が短くなるため、バイパス流路内への流れの入り込みを少なくすることができる。また、バイパス流路内に入り込んだ流れがスワールを形成することを効果的に阻害することができる。
(3)幾つかの実施形態では、上記(1)又は(2)に記載の制御装置において、
前記分岐口の長さは前記弁ポートの口径よりも大きく、前記分岐口の幅は前記弁ポートの口径よりも小さい。
上記(3)に記載の制御装置によれば、バイパス流路内に入り込んだ流れがスワールを形成することを効果的に阻害しつつ、バイパスバルブを開にして流れをバイパスさせる際に適切なバイパス流量を確保することが容易となる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかに記載の制御装置において、
前記弁ポートの開口面積をS1、前記分岐口の開口面積をS2、とすると、
0.8S1≦S2≦1.2S1を満たす。
バイパス流路の設置に伴う圧力損失をできるだけ小さくする観点からは分岐口の開口面積が小さいことが好ましいが、分岐口の開口面積が小さ過ぎるとバイパスバルブを開にして流れをバイパスさせる際に十分なバイパス流量を確保できなくなる恐れがある。これに対し、上記(4)に記載のように0.8S1≦S2≦1.2S1を満たすように分岐口の開口面積S2を弁ポートの開口面積S1と同等にすることで、必要なバイパス流量を確保しつつ、バイパス流路内でのスワールの発生を抑制することができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかに記載の制御装置において、
前記インペラの径方向における前記分岐口の端部での前記分岐口の幅Teは、前記インペラの径方向における前記分岐口の中央部での前記分岐口の幅Tcよりも小さい。
上記(5)に記載の制御装置によれば、遠心圧縮機のディフューザからスクロール流路に流れ出たディフューザ出口流れは、スクロール流路の内壁面のうちインペラの径方向における外側の内壁面に沿って流れやすい。このため、分岐口におけるインペラの径方向の外側の端部にはディフューザ出口流れが流入しやすく、ディフューザ出口流れの分岐口への流入を抑制する観点からは端部の幅Teを小さくすることが望ましい。一方で、バイパス流路は最終的に弁ポートの円形形状と滑らかに繋げなければないため、分岐口の中央部の幅はある程度大きくする必要がある。そこで、上記のように外側の端部の幅Teを中央部の幅Tcよりも小さくすることによって、ディフューザ出口流れの分岐口への流入を抑制しつつ、バイパス流路を弁ポートに滑らかに繋げることができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかに記載の制御装置において、
前記分岐口の中心は、前記弁ポートの中心に対して、前記インペラの径方向における内側にシフトしている。
前述のように、分岐口におけるインペラの径方向の外側の端部にはディフューザ出口流れが流入しやすい。このため、上記(6)に記載のように分岐口の中心を弁ポートの中心に対してインペラの径方向における内側にシフトさせることにより、ディフューザ出口流れがスクロール流路の内壁面に沿って流れて分岐口からバイパス流路に流入しにくくなり、圧力損失の増加を抑制することができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかに記載の制御装置において、
前記分岐口の長さ方向は、前記スクロール流路の流路断面に直交する流れ方向と直交する。
上記(7)に記載の制御装置によれば、スクロール流路の流れが分岐口を通過するのに要する距離が短くなるため、バイパス流路内への流れの入り込みを少なくすることができる。また、バイパス流路内に入り込んだ流れがスワールを形成することを効果的に阻害することができる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかに記載の制御装置において、
前記スクロール流路における前記分岐口の中心を含む流路断面Gにおいて、該流路断面Gの中心位置に対する前記分岐口の中心位置を示すベクトルをPとし、
前記流路断面Gに直交する流れ方向を示すベクトルをQ、前記ベクトルPと前記ベクトルQの外積をR(=P×Q)、前記分岐口の長さ方向と平行なベクトルをVとすると、
前記ベクトルVと前記ベクトルRの内積V・Rと前記ベクトルVと前記ベクトルQの内積V・Qのうち一方は正の値を有し他方は負の値を有する。
上記(8)に記載の制御装置によれば、分岐口は、内積V・Eと内積V・Qの両方が正の値を有する場合及び内積V・Eと内積V・Qの両方が負の値を有する場合と比較して、分岐口の位置におけるスクロール流路の旋回流れの流れ方向と分岐口の長さ方向とのなす角度を大きくすることができるため、分岐口とスクロール流路の旋回流れの分岐口への流入を効果的に抑制することができる。
(9)本発明の少なくとも一実施形態に係るターボチャージャは、
上記(1)乃至(8)の何れか1項に記載の遠心圧縮機と、前記遠心圧縮機のインペラと回転軸を共有するタービンと、を備える。
上記(9)に記載の制御装置によれば、上記(1)乃至(8)の何れか1項に記載の遠心圧縮機を備えることにより、バイパスバルブの弁体の形状の複雑化を抑制してコストの増加を抑制しつつ、圧力損失の増大を抑制することができる。
本発明の少なくとも一つの実施形態によれば、バイパスバルブの弁体の形状の複雑化を抑制しつつ圧力損失の増大を抑制できる遠心圧縮機及びターボチャージャが提供される。
一実施形態に係るターボチャージャ2の概略構成を示す部分断面図である。 図1に示した遠心圧縮機4の部分拡大図である。 一実施形態に係る分岐口20の形状を模式的に示す斜視図である。 図3Aにおける分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 スクロール流路14の流れ方向Fを説明するための図である。 従来形態に係る分岐口20cの形状を模式的に示す斜視図である。 図4Aにおける分岐口20cの中心O1を通る分岐口20cの法線N1に沿って視た分岐口20cの形状と弁ポート22の形状とを示す図である。 図3A及び図3Bに示した分岐口20の形状を説明するための図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 ディフューザ出口流れDを説明するための図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。 分岐口20の中心O1を弁ポート22の中心O2に対してインペラの径方向Iにおける内側にシフトさせることで奏する効果について説明するための図である。 幾つかの実施形態で説明に用いるベクトルの定義を説明するための図である。 一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。 一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。 一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。 一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。 一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。 一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。 一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。 スクロール流路からバイパス流路への流れの流入に伴うバイパス流路内の循環流を示す図である。 バイパス流路から流出したスワール流れと主流が干渉して圧力損失を生じる様子を説明するための図である。 バイパス流路から流出したスワール流れと主流が干渉して圧力損失を生じる様子を説明するための図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、一実施形態に係るターボチャージャ2の概略構成を示す部分断面図である。図2は、図1に示した遠心圧縮機4の部分拡大図である。
図1に示すように、ターボチャージャ2は、遠心圧縮機4と、遠心圧縮機4のインペラ6と回転軸8を共有するタービンロータ10を含むタービン12と、を備える。
遠心圧縮機4は、インペラ6と、インペラ6に空気を案内するコンプレッサ入口管40と、インペラ6の外周側に設けられたスクロール流路14と、スクロール流路14の出口管38から分岐口20を介して分岐し、インペラ6を迂回してコンプレッサ入口管40に接続するバイパス流路16と、バイパス流路16に設けられた弁ポート22を開閉可能なバイパスバルブ18と、を備える。バイパスバルブ18は、アクチュエータ19によって開閉動作を制御され、遠心圧縮機4の吐出圧が過度に上昇した場合に開となり、スクロール流路14内を流れる圧縮空気の一部をコンプレッサ入口管40に還流させる。なお、弁ポート22とは、バイパスバルブ18の弁体24と当接する弁座面25の開口を意味する。
図3Aは、一実施形態に係る分岐口20の形状を模式的に示す斜視図である。図3Bは、図3Aにおける分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。図3Cは、スクロール流路14の流れ方向Fを説明するための図である。図4Aは、従来形態に係る分岐口20cの形状を模式的に示す斜視図である。図4Bは、図4Aにおける分岐口20cの中心O1を通る分岐口20cの法線N1に沿って視た分岐口20cの形状と弁ポート22の形状とを示す図である。なお、図示する例示的な実施形態では、分岐口20の中心O1を通る分岐口20の法線N1と、弁ポート22の中心O2を通る分岐口20の法線N2は一致するが、他の実施形態では法線N1と法線N2は一致しなくともよい。また、分岐口20の中心O1とは分岐口20の図心すなわち重心を意味し、弁ポート22の中心O2とは弁ポート22(バイパスバルブ18の弁体24と当接する弁座面25の開口)の図心すなわち重心を意味する。
幾つかの実施形態では、例えば図3Bに示すように、分岐口20は、分岐口20の中心O1を通る分岐口20の法線N1に沿って視たときに、円形形状とは異なる非円形形状を有する。
このように、分岐口20の法線N1に沿って視たときに非円形形状を有する分岐口20を用いることにより、円形形状を有する分岐口20cを用いる従来の構成(図4A及び図4B参照)と比較して、バイパス流路16内に入り込んだ流れがスワールを形成することを阻害することができる。これにより、図23等を用いて上述した課題、すなわちバイパス流路16内からスワール流れがスクロール流路14に流出することに伴う圧力損失の増大を抑制することができる。
また、特許文献1に記載された構成では、バイパスバルブの弁体をスクロール流路の内壁に沿って設けると、弁体の設置スペース及び弁体が動くスペースをバイパス流路におけるスクロール流路に近接する位置に設ける必要が生じ、圧縮機の入口へ繋げるバイパス流路のレイアウトに制約が生じやすい。
これに対し、上記実施形態に係る構成によれば、バイパスバルブ18の弁体24をスクロール流路14の内壁に沿って設けなくとも圧力損失の増大を抑制できるため、弁体24の設置スペース及び弁体24が動くスペースをバイパス流路16におけるスクロール流路14に近接する位置に設ける必要がなく、圧縮機4の入口へ繋げるバイパス流路16のレイアウトの自由度を高めることができる。
図5は、図3A及び図3Bに示した分岐口20の形状を説明するための図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。図5は、分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。図6は、分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。図7は、分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。図8は、分岐口20の他の形状例を示す図であり、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た分岐口20の形状と弁ポート22の形状とを示す図である。
幾つかの実施形態では、例えば図5〜図8に示すように、スクロール流路14の流れ方向Fにおける分岐口20の寸法Tは、流れ方向F及び法線N1の各々に直交する方向Hにおける分岐口20の寸法Lよりも小さい横長形状である。なお、ここでのスクロール流路14の流れ方向Fとは、図3Cに示すようにスクロール流路14における分岐口20の中心O1を含む流路断面をGとしたときに、流路断面Gに直交する流れ方向Fを意味する。分岐口20の形状は、例えば図5〜図7に示すように、法線N1方向視においてオーバル形状であってもよいし、図8に示すように矩形形状であってもよい。図5及び図6に例示する分岐口20の形状は、法線N1方向視においてスリット形状である。図5に例示する分岐口20の形状は、法線N1方向視において角丸長方形(二つの等しい長さの平行線と二つの半円形からなる形状)である。図6に例示する分岐口20の形状は、法線N1方向視において楕円形状である。図7に例示する分岐口20の形状は、法線N1方向視において丸みを帯びた菱形形状である。
このように寸法Tを寸法Lよりも小さくすることにより、スクロール流路14の流れが分岐口20を通過するのに要する距離が短くなるため、バイパス流路16内への流れの入り込みを少なくすることができる。また、バイパス流路16内に入り込んだ流れがスワールを形成することを効果的に阻害することができる。
幾つかの実施形態では、例えば図5〜図8に示すように、分岐口20の長さ(図示する例示的形態では方向Hにおける寸法L)は弁ポート22の口径Rよりも大きく、分岐口20の幅(図示する例示的形態では方向Fにおける寸法T)は口径Rよりも小さい。
これにより、バイパス流路16内に入り込んだ流れがスワールを形成することを効果的に阻害しつつ、バイパスバルブ18を開にして流れをバイパスさせる際に適切なバイパス流量を確保することが容易となる。
幾つかの実施形態では、例えば図3Aに示すように、弁ポート22の開口面積をS1、分岐口20の開口面積をS2、とすると、0.8S1≦S2≦1.2S1を満たす。
バイパス流路16の設置に伴う圧力損失をできるだけ小さくする観点からは分岐口20の開口面積が小さいことが好ましいが、分岐口20の開口面積が小さ過ぎるとバイパスバルブ18を開にして流れをバイパスさせる際に十分なバイパス流量を確保できなくなる恐れがある。これに対し、上記のように0.8S1≦S2≦1.2S1を満たすように分岐口20の開口面積S2を弁ポート22の開口面積S1と同等にすることで、必要なバイパス流量を確保しつつ、バイパス流路16内でのスワールの発生を抑制することができる。
幾つかの実施形態では、例えば図5〜図7に示すように、分岐口20におけるインペラ6の径方向Iの外側の端部26の幅Teは、分岐口20の中央部28の幅Tcよりも小さい。
図9に示すように、遠心圧縮機4のディフューザ30からスクロール流路14に流れ出たディフューザ出口流れDは、スクロール流路14の内壁面のうちインペラ6の径方向Iにおける外側の内壁面32に沿って流れやすい。このため、分岐口20におけるインペラ6の径方向Iの外側の端部26にはディフューザ出口流れDが流入しやすく、ディフューザ出口流れDの分岐口20への流入を抑制する観点からは端部26の幅Teを小さくすることが望ましい。一方で、バイパス流路16は最終的に弁ポート22の円形形状と滑らかに繋げなければないため、分岐口20の中央部28の幅Tcはある程度大きくする必要がある。そこで、上記のように外側の端部26の幅Teを中央部28の幅Tcよりも小さくすることによって、ディフューザ出口流れDの分岐口20への流入を抑制しつつ、バイパス流路16を弁ポート22に滑らかに繋げることができる。
幾つかの実施形態では、例えば図8に示すように、分岐口20の幅Tは、分岐口20の長さ方向における一端側から他端側に亘って一定である。すなわち、図8に示す形態では、分岐口20の形状は、法線N1方向視において矩形形状である。
かかる構成によれば、バイパス流路16の設置に伴う圧力損失の増大を簡素な構成の分岐口20によって抑制することができる。
幾つかの実施形態では、例えば図5〜図8に示すように、分岐口20の長さ方向は、分岐口20の中心位置O1におけるスクロール流路14の流れ方向Fと直交する。
かかる構成によれば、スクロール流路14の流れが分岐口20を通過するのに要する距離が短くなるため、バイパス流路16内への流れの入り込みを少なくすることができる。また、バイパス流路16内に入り込んだ流れがスワールを形成することを効果的に阻害することができる。
図5〜図8に示した形態では、法線N1方向視において分岐口20の中心O1と弁ポート22の中心O2とが一致する構成を例示したが、法線N1方向視において分岐口20の中心O1と弁ポート22の中心O2とは一致していなくともよい。
幾つかの実施形態では、例えば図10〜図14に示すように、分岐口20の中心O1は、弁ポート22の中心O2に対して、インペラの径方向Iにおける内側に位置している。かかる構成では、分岐口20の中心O1は、弁ポート22の中心O2に対して、スクロール流路14の流路断面内での周方向流れ(ディフューザ出口流れD)における下流側にシフトしている。また、かかる構成では、図10〜図14に示すように、法線N1方向視において、インペラ6の径方向における分岐口20の外側端34と弁ポート22の中心O2との距離L1が、インペラ6の径方向における分岐口20の内側端36と弁ポート22の中心O2との距離L2よりも小さくなっている。
図10に示す分岐口20の形状は、図5に示した分岐口20と同様の角丸長方形である。図11に示す分岐口20の形状は、図6に示した分岐口20と同様の楕円形状である。図12に示す分岐口20の形状は図7に示した分岐口20と同様の丸みを帯びた菱形形状である。図13に示す分岐口20の形状は図8に示した分岐口20と同様の矩形形状である。図14に示す分岐口20の形状は、丸みを帯びた非対称な菱形形状であり、インペラの径方向Iにおける内側の2辺の長さが外側の2辺の長さよりもよりも長くなっている。
図9を用いて説明したように、分岐口20におけるインペラ6の径方向Iの外側の端部26にはディフューザ出口流れDが流入しやすい。このため、分岐口20の中心O1を弁ポート22の中心O2に対してインペラの径方向Iにおける内側にシフトさせることにより、図15に示すように、ディフューザ出口流れDがスクロール流路14の内壁面32に沿って流れて分岐口20からバイパス流路16に流入しにくくなり、圧力損失の増加を抑制することができる。
次に、他の幾つかの実施形態について説明する。スクロール流路14を流れる実際の流れは、スクロール流路14の流路断面に直交する成分と、スクロール流路14の流路断面内での旋回成分とが合わさった螺旋状の軌跡を描く旋回流れとなっている。以下で説明する実施形態では、スクロール流路14の旋回流れが分岐口20からバイパス流路16へ流入することを効果的に抑制するために分岐口20に傾斜角を設ける。
図16は、以下の各実施形態の説明に用いるベクトルの定義を説明するための図である。まず、図16に示すように、スクロール流路14における分岐口20の中心O1を含む流路断面Gにおいて、該流路断面Gの中心O3の位置に対する分岐口20の中心O1の位置を示すベクトルをPとし、流路断面Gに直交する流れ方向(スクロール流路14の流れ方向F)を示すベクトルをQ、ベクトルPとベクトルQの外積をE(=P×Q)とする。すると、分岐口20の中心O1の位置におけるスクロール流路14の旋回流れを示すベクトルJは、J=aQ+bEと表すことができる。以下ではこれらのベクトルの定義に基づき、幾つかの実施形態について説明する。
図17は、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。図18は、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。図19は、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。図20は、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。図21は、一実施形態に係る分岐口20の中心O1を通る分岐口20の法線N1に沿って視た、分岐口20の形状と弁ポート22の形状とを示す図である。
幾つかの実施形態では、例えば図17〜図21に示すように、弁ポート22の中心O2を原点とし、ベクトルQの示す方向をx軸方向、ベクトルEの示す方向をy軸方向とした場合に、分岐口20は、第4象限A4から第2象限A2に向かって延在する。すなわち、分岐口20の長さ方向と平行なベクトルをVとすると、ベクトルVとベクトルEの内積V・EとベクトルVとベクトルQの内積V・Qのうち一方は正の値を有し他方は負の値を有する。図17〜図21に示す形態では、分岐口20の長さ方向とベクトルEの示す方向とのなす角度θ1は、0°<θ1<90°であり、好ましくは30°<θ1<60°であり、例えばθ1=45°としてもよい。
かかる構成によれば、分岐口20は、第3象限A3から第1象限A1に向かって延在する場合(内積V・Eと内積V・Qの両方が正の値を有する場合又は内積V・Eと内積V・Qの両方が負の値を有する場合)と比較して、分岐口20の位置におけるスクロール流路14の旋回流れの流れ方向(ベクトルJの示す方向)と分岐口20の長さ方向とのなす角度θ2を直角に近づけることができるため、分岐口20とスクロール流路14の旋回流れの分岐口20への流入を効果的に抑制することができる。
このように分岐口20に傾斜角を設ける形態においても、分岐口20の形状は、例えば図17〜図20に示すように法線N1方向視においてオーバル形状であってもよいし、図21に示すように法線N1方向視において矩形形状であってもよい。図17及び図18に例示する分岐口20の形状は、法線N1方向視においてスリット形状である。図17に例示する分岐口20の形状は、法線N1方向視において角丸長方形である。図18に例示する分岐口20の形状は、法線N1方向視において楕円形状である。図19に例示する分岐口20の形状は、法線N1方向視において丸みを帯びた菱形形状である。図20に例示する分岐口20の形状は、法線N1方向視において丸みを帯びた非対称の菱形形状である。
なお、図17〜図21に示す形態では、分岐口20の中心O1を弁ポート22の中心O2に対してインペラの径方向Iにおける内側にシフトさせる形態を例示したが、分岐口20に傾斜角を設ける場合においても、法線N1方向視において分岐口20の中心O1が弁ポート22の中心O2が一致していてもよい。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、分岐口20の形状は、上述した形状に限らず、分岐口20の中心O1を通る分岐口20の法線N1に沿って視たときに、図22に示すように直線形状を屈曲させた屈曲形状(くの字形状)であってもよいし、図23に示すように直線形状を湾曲させた湾曲形状(弓形状)であってもよい。
2 ターボチャージャ
4 遠心圧縮機
6 インペラ
8 回転軸
10 タービンロータ
12 タービン
14 スクロール流路
16 バイパス流路
18 バイパスバルブ
19 アクチュエータ
20 分岐口
22 弁ポート
24 弁体
25 弁座面
26 端部
28 中央部
30 ディフューザ
32 内壁面
34 外側端
36 内側端

Claims (8)

  1. インペラと、
    前記インペラに空気を案内するコンプレッサ入口管と、
    前記インペラの外周側に設けられたスクロール流路と、
    前記スクロール流路から分岐口を介して分岐し、前記インペラを迂回して前記コンプレッサ入口管に接続するバイパス流路と、
    前記バイパス流路に設けられた弁ポートを開閉可能なバイパスバルブと、
    を備え、
    前記分岐口は、前記分岐口の中心を通る前記分岐口の法線N1に沿って視たときに、非円形形状を有し、
    前記スクロール流路における前記分岐口の中心を含む流路断面をGとすると、前記流路断面Gに直交する流れ方向Fにおける前記分岐口の寸法Tは、前記流れ方向F及び前記法線N1の各々に直交する方向Hにおける前記分岐口の寸法Lよりも小さい、
    遠心圧縮機。
  2. インペラと、
    前記インペラに空気を案内するコンプレッサ入口管と、
    前記インペラの外周側に設けられたスクロール流路と、
    前記スクロール流路から分岐口を介して分岐し、前記インペラを迂回して前記コンプレッサ入口管に接続するバイパス流路と、
    前記バイパス流路に設けられた弁ポートを開閉可能なバイパスバルブと、
    を備え、
    前記分岐口は、前記分岐口の中心を通る前記分岐口の法線N1に沿って視たときに、非円形形状を有し、
    前記分岐口の長さは前記弁ポートの口径よりも大きく、前記分岐口の幅は前記弁ポートの口径よりも小さい
    遠心圧縮機。
  3. インペラと、
    前記インペラに空気を案内するコンプレッサ入口管と、
    前記インペラの外周側に設けられたスクロール流路と、
    前記スクロール流路から分岐口を介して分岐し、前記インペラを迂回して前記コンプレッサ入口管に接続するバイパス流路と、
    前記バイパス流路に設けられた弁ポートを開閉可能なバイパスバルブと、
    を備え、
    前記分岐口は、前記分岐口の中心を通る前記分岐口の法線N1に沿って視たときに、非円形形状を有し、
    前記分岐口の中心は、前記弁ポートの中心に対して、前記インペラの径方向における内側にシフトしている遠心圧縮機。
  4. インペラと、
    前記インペラに空気を案内するコンプレッサ入口管と、
    前記インペラの外周側に設けられたスクロール流路と、
    前記スクロール流路から分岐口を介して分岐し、前記インペラを迂回して前記コンプレッサ入口管に接続するバイパス流路と、
    前記バイパス流路に設けられた弁ポートを開閉可能なバイパスバルブと、
    を備え、
    前記分岐口は、前記分岐口の中心を通る前記分岐口の法線N1に沿って視たときに、非円形形状を有し、
    前記分岐口の寸法が最も大きくなる方向を前記分岐口の長さ方向とすると、
    前記分岐口の長さ方向は、前記スクロール流路の流路断面に直交する流れ方向と直交する
    遠心圧縮機。
  5. インペラと、
    前記インペラに空気を案内するコンプレッサ入口管と、
    前記インペラの外周側に設けられたスクロール流路と、
    前記スクロール流路から分岐口を介して分岐し、前記インペラを迂回して前記コンプレッサ入口管に接続するバイパス流路と、
    前記バイパス流路に設けられた弁ポートを開閉可能なバイパスバルブと、
    を備え、
    前記分岐口は、前記分岐口の中心を通る前記分岐口の法線N1に沿って視たときに、非円形形状を有し、
    前記スクロール流路における前記分岐口の中心を含む流路断面Gにおいて、該流路断面Gの中心位置に対する前記分岐口の中心位置を示すベクトルをPとし、
    前記分岐口の寸法が最も大きくなる方向を前記分岐口の長さ方向とし、
    前記流路断面Gに直交する流れ方向を示すベクトルをQ、前記ベクトルPと前記ベクトルQの外積をR(=P×Q)、前記分岐口の長さ方向と平行なベクトルをVとすると、
    前記ベクトルVと前記ベクトルRの内積V・Rと前記ベクトルVと前記ベクトルQの内積V・Qのうち一方は正の値を有し他方は負の値を有する
    遠心圧縮機。
  6. 前記弁ポートの開口面積をS1、前記分岐口の開口面積をS2、とすると、
    0.8S1≦S2≦1.2S1を満たす、請求項1乃至の何れか1項に記載の遠心圧縮機。
  7. 前記インペラの径方向における前記分岐口の端部での前記分岐口の幅Teは、前記インペラの径方向における前記分岐口の中央部での前記分岐口の幅Tcよりも小さい、請求項1乃至の何れか1項に記載の遠心圧縮機。
  8. 請求項1乃至の何れか1項に記載の遠心圧縮機と、前記遠心圧縮機のインペラと回転軸を共有するタービンと、を備えるターボチャージャ。
JP2020528644A 2018-07-06 2018-07-06 遠心圧縮機及びターボチャージャ Active JP6949227B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025658 WO2020008615A1 (ja) 2018-07-06 2018-07-06 遠心圧縮機及びターボチャージャ

Publications (2)

Publication Number Publication Date
JPWO2020008615A1 JPWO2020008615A1 (ja) 2021-04-30
JP6949227B2 true JP6949227B2 (ja) 2021-10-13

Family

ID=69060469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020528644A Active JP6949227B2 (ja) 2018-07-06 2018-07-06 遠心圧縮機及びターボチャージャ

Country Status (5)

Country Link
US (1) US11378089B2 (ja)
EP (1) EP3736419B1 (ja)
JP (1) JP6949227B2 (ja)
CN (1) CN111836953B (ja)
WO (1) WO2020008615A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020111504A1 (de) 2020-04-28 2021-10-28 Bayerische Motoren Werke Aktiengesellschaft Verdichtervorrichtung
DE112021007130T5 (de) 2021-08-02 2024-01-18 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Zentrifugalkompressor und turbolader

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167813A (en) 1980-05-28 1981-12-23 Nissan Motor Co Ltd Surge preventing apparatus for turbocharger
US4517803A (en) * 1983-04-22 1985-05-21 The Garrett Corporation Turbocharger compressor valve
JPS6072927U (ja) 1983-10-25 1985-05-22 日産ディーゼル工業株式会社 内燃機関の吸気装置
US5137003A (en) * 1989-05-19 1992-08-11 Mitsubishi Denki K.K. Supercharged pressure control valve apparatus
JP3916176B2 (ja) 1997-01-14 2007-05-16 臼井国際産業株式会社 コモンレール
JP2008261507A (ja) 2008-08-04 2008-10-30 Toshiba Corp 分岐配管
DE102008047506A1 (de) 2008-09-17 2010-04-15 Daimler Ag Radialverdichter, insbesondere für einen Abgasturbolader einer Brennkraftmaschine
JP5582802B2 (ja) 2010-01-27 2014-09-03 三菱重工業株式会社 流体流通構造
WO2011139561A2 (en) 2010-04-27 2011-11-10 Borgwarner Inc. Compressor of an exhaust-gas turbocharger
DE112011102931B4 (de) * 2010-09-02 2022-06-15 Borgwarner Inc. Kompressorrückführung in ringförmiges Volumen
JP2012241558A (ja) * 2011-05-17 2012-12-10 Ihi Corp バイパスバルブ及び過給機
JP2015165096A (ja) 2014-02-28 2015-09-17 ダイハツ工業株式会社 排気ターボ過給機
DE102015215246B4 (de) 2015-08-11 2022-05-12 Bayerische Motoren Werke Aktiengesellschaft Verdichter eines Turboladers mit einem Schubumluftventil sowie Turbolader und Kraftfahrzeug mit einem solchen Verdichter
US10344665B2 (en) 2016-01-22 2019-07-09 Garrett Transportation I Inc. Compressor recirculation system having compressor inlet recirculation duct configured to reduce noise from Rossiter excitation and cavity acoustic resonance
JP2017155664A (ja) * 2016-03-02 2017-09-07 株式会社豊田自動織機 遠心圧縮機
KR101875652B1 (ko) * 2016-10-27 2018-08-02 현대자동차 주식회사 바이패스 밸브
JP2018091275A (ja) * 2016-12-06 2018-06-14 トヨタ自動車株式会社 過給機

Also Published As

Publication number Publication date
CN111836953A (zh) 2020-10-27
EP3736419A4 (en) 2021-01-06
EP3736419A1 (en) 2020-11-11
US20210108647A1 (en) 2021-04-15
WO2020008615A1 (ja) 2020-01-09
CN111836953B (zh) 2022-11-04
JPWO2020008615A1 (ja) 2021-04-30
US11378089B2 (en) 2022-07-05
EP3736419B1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
US10837297B2 (en) Centrifugal compressor and turbocharger
JP2012140900A (ja) 遠心圧縮機のスクロール構造
JP6347457B2 (ja) スクロールケーシング及び遠心圧縮機
JP6949227B2 (ja) 遠心圧縮機及びターボチャージャ
JP7157155B2 (ja) 遠心圧縮機及びターボチャージャ
JP2012140918A (ja) バーレル型多段ポンプ
JP6203294B2 (ja) 遠心ファン及び空気調和装置
US11209015B2 (en) Centrifugal compressor
JP2008208753A (ja) 遠心圧縮機
JPWO2017072899A1 (ja) スクロールケーシング及び遠心圧縮機
JPWO2019087385A1 (ja) 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
WO2023012882A1 (ja) 遠心圧縮機及びターボチャージャ
JP7013316B2 (ja) 遠心圧縮機
JP2021011828A (ja) 多段遠心圧縮機
JP7232352B2 (ja) コンプレッサおよび該コンプレッサを備えるターボチャージャ
CN110582648B (zh) 离心压缩机以及具有该离心压缩机的涡轮增压器
JP6980028B2 (ja) ディフューザ及びターボチャージャー
JP2018080619A (ja) 遠心圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210921

R150 Certificate of patent or registration of utility model

Ref document number: 6949227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150