JP6936978B2 - 照明装置、照明装置の製造方法、照明方法 - Google Patents

照明装置、照明装置の製造方法、照明方法 Download PDF

Info

Publication number
JP6936978B2
JP6936978B2 JP2020149978A JP2020149978A JP6936978B2 JP 6936978 B2 JP6936978 B2 JP 6936978B2 JP 2020149978 A JP2020149978 A JP 2020149978A JP 2020149978 A JP2020149978 A JP 2020149978A JP 6936978 B2 JP6936978 B2 JP 6936978B2
Authority
JP
Japan
Prior art keywords
laser light
light source
optical element
diffractive optical
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020149978A
Other languages
English (en)
Other versions
JP2021007099A (ja
Inventor
俊平 西尾
俊平 西尾
牧夫 倉重
牧夫 倉重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017000671A external-priority patent/JP6761600B2/ja
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2020149978A priority Critical patent/JP6936978B2/ja
Publication of JP2021007099A publication Critical patent/JP2021007099A/ja
Application granted granted Critical
Publication of JP6936978B2 publication Critical patent/JP6936978B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lasers (AREA)

Description

本開示の実施形態は、照明装置に関する。
例えば、特許文献1に開示されているように、光源とホログラム素子とを含んだ照明装置が知られている。特許文献1に開示された照明装置では、ホログラム素子が光源からの光を回折することで、所望のパターンで路面を照明することができる。特許文献1に開示された照明装置では、単一の光源で生成されたレーザー光を単一のホログラム素子で回折している。
特開2015−132707号公報
ところで、レーザー光を照射する光源を用いた場合、被照明領域を明るく照明することができる。しかしながら、照明装置からの照明光を直視した場合、人間の目に悪影響を与える虞がある。そして、安全性を考慮すると、ホログラム素子を大面積化して、ホログラム素子への光源光の入射領域(スポット領域)を大きく確保することが好ましい。ただし、ホログラム素子を大面積化すると、照明装置が全体として大型化してしまうといった不具合が生じる。照明装置の大型化の問題は、複数の波長域の光を用いた加法混色によって特定の色で照明を行う照明装置において、より深刻となる。
本開示の実施形態は、以上の点を考慮してなされたものであって、安全性に配慮しながら照明装置を小型化することを目的とする。
本開示の一実施の形態による照明装置は、
異なる放射束のレーザー光を射出する複数のレーザー光源と、
前記複数のレーザー光源の各々に対応して設けられた回折光学素子と、を備え、
最小の放射束となるレーザー光を射出するレーザー光源に対応した回折光学素子の面積が、最大の放射束となるレーザー光を射出するレーザー光源に対応した回折光学素子の面積よりも、小さくなっている。
本開示の一実施の形態による照明装置において、前記複数のレーザー光源の各々から射出した光は、各レーザー光源に対応する回折光学素子で回折された後、少なくとも部分的に重なる領域を照明するようにしてもよい。
本開示の一実施の形態による照明装置において、前記複数のレーザー光源の各々から射出した光は、各レーザー光源に対応する回折光学素子で回折された後、同一の被照明領域を照明するようにしてもよい。
本開示の一実施の形態による照明装置において、前記複数のレーザー光源の各々から射出した光は、各レーザー光源に対応する回折光学素子で回折された後、同一の被照明領域の全域のみを照明するようにしてもよい。
本開示の一実施の形態による照明装置において、前記最小の放射束をWmin[W]とし、前記最大の放射束をWmax[W]とすると、前記最小の放射束となるレーザー光を射出するレーザー光源に対応した回折光学素子の面積Amin[mm]、及び、前記最大の放射束となるレーザー光を射出するレーザー光源に対応する回折光学素子の面積Amax[mm]は、次の関係を満たすようにしてもよい。
max×(Wmin/Wmax) ≦ Amin
本開示の一実施の形態による照明装置において、任意に選択された一つのレーザー光源に対応する回折光学素子の面積は、当該一つのレーザー光源が射出するレーザー光よりも大きい放射束となるレーザー光を射出する他の一つのレーザー光源に対応した回折光学素子の面積以下であるようにしてもよい。
本開示の一実施の形態による照明装置が、前記複数のレーザー光源から射出したレーザー光を拡大して前記回折光学素子に誘導する整形光学系を、さらに備えるようにしてもよい。
本開示の実施の形態によれば、安全性に配慮しながら照明装置を小型化することができる。
図1は本開示による一実施の形態を説明するための図であって、照明装置を示す斜視図である。 図2は、図1の照明装置を示す正面図である。 図3は、図1の照明装置を示す側面図である。
以下、図面を参照して本開示の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
また、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や、長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
図1は、照明装置10の全体構成を模式的に示す斜視図である。照明装置10は、被照明領域Zを照明する装置である。図示された例において、被照明領域Zは、長手方向dlを有した細長い領域となっている。この被照明領域Zは、例えば、長手方向dlにおける長さの短手方向dwにおける長さに対する比が10以上、さらには、この比が100以上となる被照明領域Z、典型的にはライン状の被照明領域Zとすることができる。このような照明装置は、例えば、自動車や船等の乗り物に適用され得る。乗り物では、進行方向の前方に広がる領域を照明する必要がある。とりわけ、高速で走行する自動者の前照灯、いわゆるヘッドランプは、当該自動車の前方近傍から前方遠方までの路面を明るく照らすことが好ましい。
図1に示すように、照明装置10は、光を投射する光源装置15と、光源装置15からの光を回折して被照明領域Zに向ける回折光学素子40と、を有している。光源装置15は、レーザー光源20と、レーザー光源20から射出した光を整形する整形光学系30と、を有している。
図1に示すように、光源装置15は、複数のレーザー光源20を有している。レーザー光源から投射されるレーザー光は、直進性に優れ、被照明領域Zを高精度に照明するための光として好適である。複数のレーザー光源20は、独立して設けられていてもよいし、共通の基板上に複数のレーザー光源20を並べて配置した光源モジュールであってもよい。複数のレーザー光源20は、一例として、赤色の発光波長域の光を発振する第1レーザー光源20aと、緑色の発光波長域の光を発振する第2レーザー光源20bと、青色の発光波長域の光を発振する第3レーザー光源20cと、を有している。この例によれば、複数のレーザー光源20で発光された三つのレーザー光を重ね合わせることで、所望の色の照明光で被照明領域Zを照明することが可能となる。複数のレーザー光源20から射出するレーザー光の放射束[単位:W]を調節しておくことで、照明光の色を調節することが可能となる。
ただし、以上の例に限られず、光源装置15は、発光波長域が互いに相違する二つのレーザー光源20又は四つ以上のレーザー光源20を有するようにしてもよい。また、発光強度を高めるために、発光波長域ごとに、複数個ずつのレーザー光源20が設けられていてもよい。
次に、整形光学系30について説明する。整形光学系30は、レーザー光源20から射出したレーザー光を整形する。言い換えると、整形光学系30は、レーザー光の光軸に直交する断面での形状や、レーザー光の光束の立体的な形状を整形する。図示された例において、整形光学系30は、レーザー光源20から射出したレーザー光を拡幅した平行光束に整形する。図1に示すように、整形光学系30は、レーザー光の光路に沿った順で、レンズ31及びコリメートレンズ32を有している。レンズ31は、レーザー光源20から射出したレーザー光を発散光束に整形する。コリメートレンズ32は、レンズ31で生成された発散光束を、平行光束に整形し直す。
図示された例において、光源装置15は、第1〜第3レーザー光源20a〜20cにそれぞれ対応して、第1整形光学系30a、第2整形光学系30b及び第3整形光学系30cを有している。第1整形光学系30aは、第1レンズ31a及び第1コリメートレンズ32aを有し、第2整形光学系30bは、第2レンズ31b及び第2コリメートレンズ32bを有し、第3整形光学系30cは、第3レンズ31c及び第3コリメートレンズ32cを有している。
次に、回折光学素子40について説明する。回折光学素子40は、光源装置15から射出した光に対して回折作用を及ぼす素子である。図示された回折光学素子40は、光源装置15からの光を回折して、被照明領域Zに向ける。したがって、被照明領域Zは、回折光学素子40での回折光によって、照明されることになる。
図示された例において、照明装置10は、複数の回折光学素子40を有している。より具体的には、照明装置10は、第1回折光学素子40a、第2回折光学素子40b及び第3回折光学素子40cを有している。各回折光学素子40a,40b,40cは、レーザー光を発振するレーザー光源20a,20b,20cのそれぞれに対応して設けられている。この例によれば、レーザー光源20a,20b,20cが異なる波長域のレーザー光を発振する場合にも、各回折光学素子40a,40b,40cは、対応するレーザー光で生成された異なる波長域のレーザー光を高効率で回折することが可能となる。
複数のレーザー光源20a,20b,20cの各々から射出した光は、各レーザー光源に対応する回折光学素子40a,40b,40cで回折された後、少なくとも部分的に重なる領域を照明する。とりわけ図示された例において、複数のレーザー光源20a,20b,20cの各々から射出した光は、各レーザー光源に対応する回折光学素子40a,40b,40cで回折された後、同一の被照明領域Zを照明する。さらに厳密には、各回折光学素子40a,40b,40cで回折された回折光は、同一の被照明領域Zの全域のみを照明する。各回折光学素子40a,40b,40cからの回折光が、それぞれ、被照明領域Z内のみをその全域に亘って照明することで、被照明領域Z内における明るさのムラや色のムラを効果的目立たなくすることができる。
図1及び図2に示された例において、複数の回折光学素子40は、被照明領域Zの長手方向dlに垂直な第1方向daに配列されている。また、複数の回折光学素子40が配列された第1方向daは、被照明領域Zが位置する平坦面としての面plへの法線方向ndと平行になっている。とりわけ図示された例において、複数の回折光学素子40が配列された第1方向daは、水平方向に垂直な鉛直方向となっている。すなわち、図示された具体例では、地面や水面よりも鉛直方向上方に配置された複数の回折光学素子40からの回折光で、地面や水面等の水平面pl上を照明し、この水平面pl上に被照明領域Zが形成される。そして、複数の回折光学素子40は、鉛直方向にずらして配置されている。
ここで、被照明領域Zは、回折光学素子40によって照明されるニアフィールドの被照明領域と考えることができる。この被照明領域Zは、実際の被照射面積(照明範囲)だけでなく、後述するように、一定の座標軸を設定した上で角度空間における拡散角度範囲によっても表現することができる。
一例として、各回折光学素子40は、干渉縞パターンを記録されたホログラム記録媒体として構成される。干渉縞パターンを種々に調整することで、各回折光学素子40で回折される光の進行方向、言い換えると、各回折光学素子40で拡散される光の進行方向を、制御することができる。
各回折光学素子40は、例えば実物の散乱板からの散乱光を物体光として用いて作製することができる。より具体的には、回折光学素子40の母体であるホログラム感光材料に、互いに干渉性を有するコヒーレント光からなる参照光と物体光とを照射すると、これらの光の干渉による干渉縞がホログラム感光材料に形成されて、回折光学素子40が作製される。参照光としては、コヒーレント光であるレーザー光が用いられ、物体光としては、例えば安価に入手可能な等方散乱板からの散乱光が用いられる。
回折光学素子40を作製する際に用いた参照光の光路を逆向きに進むよう回折光学素子40に向けてレーザー光を照射することで、回折光学素子40を作製する際に用いた物体光の元となる散乱板の配置位置に、散乱板の再生像が生成される。回折光学素子40を作製する際に用いた物体光の元となる散乱板が均一的な面散乱をしていれば、回折光学素子40により得られる散乱板の再生像も、均一な面照明となり、この散乱板の再生像が生成される領域を被照明領域Zとすることができる。
また、各回折光学素子40に形成される複雑な干渉縞のパターンは、現実の物体光と参照光を用いて形成する代わりに、予定した再生照明光の波長や入射方向、並びに、再生されるべき像の形状や位置等に基づき計算機を用いて設計することが可能である。このようにして得られた回折光学素子40は、計算機合成ホログラム(CGH:Computer Generated Hologram)とも呼ばれる。例えば、照明装置10が地面上や水面上の一定の大きさを有した被照明領域Zを照明することに用いられる場合、物体光を生成することが困難であり、計算機合成ホログラムを回折光学素子40として用いることが好適である。
また、各回折光学素子40上の各点における拡散角度特性が同じであるフーリエ変換ホログラムを計算機合成により形成してもよい。さらに、回折光学素子40の下流側にレンズなどの光学部材を設けて、回折光が被照明領域Zの全域に入射するように調整してもよい。
回折光学素子40の具体的な形態としては、フォトポリマーを用いた体積型ホログラム記録媒体でもよいし、銀塩材料を含む感光媒体を利用して記録するタイプの体積型ホログラム記録媒体でもよいし、レリーフ型(エンボス型)のホログラム記録媒体でもよい。また、回折光学素子40は、透過型であってもよいし、反射型であってもよい。
次に、以上に説明した構成からなる照明装置10の作用について説明する。
各レーザー光源20から射出したレーザー光は、まず、対応する整形光学系30に入射する。整形光学系30では、レーザー光源20から射出したレーザー光を拡大する。すなわち、光軸に直交する断面において光が占める領域が広がるよう、整形光学系30はレーザー光を整形する。図示された例において、整形光学系30は、各レーザー光源20a,20b,20cに対応して別途に設けられた第1整形光学系30a、第2整形光学系30b及び第3整形光学系30cを含んでいる。各整形光学系30は、レンズ31及びコリメートレンズ32を有している。図1に示すように、整形光学系30のレンズ31は、レーザー光源20から射出したレーザー光を発散させて発散光束に変換する。そして、整形光学系30のコリメートレンズ32は、発散光束を平行光束へとコリメートする。
整形光学系30で整形されたレーザー光は、次に、回折光学素子40へと向かう。回折光学素子40は、各レーザー光源20a,20b,20cに対応して別途に設けられた第1回折光学素子40a、第2回折光学素子40b及び第3回折光学素子40cを含んでいる。各回折光学素子40は、対応するレーザー光源20から射出するレーザー光の中心波長に対応した干渉縞を記録しており、一定の方向から入射するレーザー光を所望の方向に高効率で回折することができる。図示された例において、各回折光学素子40は、地面や水面等の水平面pl上に位置する同一の被照明領域Zの全域に拡散させる。
この結果、被照明領域Zは、第1レーザー光源20aから射出したレーザー光、第2レーザー光源20bから射出したレーザー光、及び、第3レーザー光源20cから射出したレーザー光の重ね合わせにより、単独のレーザー光源から射出するレーザー光だけでは再現することのできない色にて被照明領域Zを照明することができる。ここで、照明色は、第1レーザー光源20aから射出するレーザー光の放射束、第2レーザー光源20bから射出するレーザー光の放射束、及び、第3レーザー光源20cから射出するレーザー光の放射束を適宜調整しておくことで、言い換えると、各レーザー光源の出力を調整することで射出するレーザー光の放射束を調節しておくことで、所望の色とすることができる。
ところで、ここで説明した照明装置10は、レーザー光源20から射出したレーザー光の光路を回折光学素子40で調節して、被照明領域Zを照明している。回折光学素子40を用いることによる利点の一つは、光源装置15からの光、例えばレーザー光の光エネルギー密度を拡散により低下させることが可能となることである。また、その他の利点の一つは、回折光学素子40が指向性の面光源として利用可能になることである。すなわち、被照明領域Z内からレーザー光を人間の目で直視した場合、点光源ではなく、回折光学素子40の大きさを持った面光源となる。したがって、回折光学素子40を介すことにより同一の放射束のレーザー光をより広い発光面から射出する光源による照明に変換され、点光源(ランプ光源)での照明と比較して、同じ照度分布を達成するための光源面上の各位置での輝度、つまりパワー密度を低下させることができる。これらにより、回折光学素子40を用いることによって、光源としてレーザー光源20を用いた場合における、レーザー光の安全性向上に寄与することができる。
回折光学素子40の面積が大きくすると、光源装置15からのレーザー光の入射領域、すなわちスポット領域を、広く取ることができる。回折光学素子40へ入射したレーザー光は、回折光学素子40で回折されて、回折光学素子40上の入射領域の全域から被照明領域Zに向けて出射する。したがって、回折光学素子40の入射面および出射面の面積を大きくすることで、回折光学素子40上の各位置でのパワー密度を低下させることができる。
ただしその一方で、回折光学素子40を大面積化すると、照明装置10が大型化してしまう。この照明装置の大型化の問題は、複数の波長域の光を用いた加法混色によって特定の色で照明を行う上述の照明装置10において、より深刻となる。
本実施の形態では、トレードオフの関係にあるといえるパワー密度の低下と照明装置10の小型化とを両立させるための工夫を行っている。すなわち、本実施の形態では、レーザー光源20が射出するレーザー光の放射束の大きさに応じて、当該レーザー光源20に対応する回折光学素子40の面積を変更し、パワー密度の低下と照明装置10の小型化との両立を図っている。具体的な構成について、以下に説明する。
なお、ここでいう「レーザー光の放射束」とは、レーザー光源が射出し得る最大の放射束を意味するのではない。言い換えると、ここでいう「レーザー光の放射束」とは、レーザー光源の能力を意味するものではない。ここでいう「レーザー光の放射束」とは、照明用途に応じて出力を調整されたレーザー光源から実際に射出したレーザー光の放射束を意味している。
まず、照明装置10に含まれる複数のレーザー光源20がそれぞれ射出するレーザー光のうちの、最小の放射束となるレーザー光を射出するレーザー光源に対応した回折光学素子の面積が、最大の放射束となるレーザー光を射出するレーザー光源に対応した回折光学素子の面積よりも、小さくなっている。図示された例では、第1レーザー光源20aから射出した赤色の波長域のレーザー光の放射束が、最も大きくなっており、第3レーザー光源20cから射出した青色の波長域のレーザー光の放射束が、最も小さくなっている。したがって、最小の放射束となるレーザー光を発振する第3レーザー光源20cに対応した第3回折光学素子40cの入射面及び出射面の面積が、最大の放射束となるレーザー光を発振する第1レーザー光源20aに対応した第1回折光学素子40aの入射面及び出射面の面積よりも、小さくなっている。
上述したように、回折光学素子40の出射面上における出射領域が広ければ、その分、パワー密度を低下させることができる。したがって、レーザー光源20の放射束の大きさを考慮した上で、回折光学素子40の出射面、並びに、出射面と通常同一領域となる入射面の大きさを決定することで、照明装置10に安全性を付与することができる。その一方で、第3レーザー光源20cから射出したレーザー光の放射束が、第1レーザー光源20aから射出したレーザー光の放射束よりも小さい場合、回折光学素子上の位置でのパワー密度を低下させるといった観点からは、第3レーザー光源20cに対応する第3回折光学素子40cの面積を、第1レーザー光源20aに対応する第1回折光学素子40aの面積と同程度まで大きくする必要ない。第3回折光学素子40cの入射面及び出射面の面積を小型化することで、言い換えると第3回折光学素子40cの平面形状を小面積化することで、不必要な大型化を回避して照明装置10を小型化することができる。
さらに、最小となる第3レーザー光源20cから射出したレーザー光の放射束をWmin[W]とし、最大となる第1レーザー光源20aから射出したレーザー光の放射束をWmax[W]とすると、最小の放射束を有したレーザー光を射出する第3レーザー光源20cに対応した第3回折光学素子40cの面積Amin[mm]、及び、最大の放射束を有したレーザー光を射出する第1レーザー光源20aに対応した第1回折光学素子40aの面積Amax[mm]が、次の関係を満たすようになっている。
max×(Wmin/Wmax) ≦ Amin
つまり、第1回折光学素子40aの全域が有効に活用されているとの前提、すなわち第1回折光学素子40aの入射面の全域にレーザー光が広げられて均一な強度で入射しているとの前提に立つと、第1回折光学素子40a上の各位置でのパワー密度の大きさは、(Wmax/Amax)を指標として表される。したがって、この指標(Wmax/Amax)の値が十分となるよう、第1回折光学素子40aの面積Amaxは、決定されるべきである。上述したように、第3回折光学素子40cは第1回折光学素子40aよりも小面積化されているが、第3回折光学素子40c上の各位置でのパワー密度を第1回折光学素子40a上の各位置でのパワー密度以下に設定することが好ましい。最小の放射束となるレーザー光が入射する第3回折光学素子40c上の各位置でのパワー密度の大きさは、(Wmin/Amin)を指標として表される。第3回折光学素子40cの面積Aminが、上述した条件を満たして「Amax×(Wmin/Wmax)」以上になっている場合には、第3回折光学素子40c上の各位置でのパワー密度を第1回折光学素子40a上の各位置でのパワー密度以下とすることができる。すなわち、上述した条件が満たされる場合には、比較的大面積化する最大の放射束を有した第1レーザー光源20aに対応する第1回折光学素子40aの面積を必要最低限な大きさとしながら、同時に、比較的小型化される最小の放射束を有した第3レーザー光源20cに対応する第3回折光学素子40cでのパワー密度を十分に低下させることが、可能となる。
さらに、本実施の形態では、任意に選択された一つのレーザー光源20に対応する回折光学素子40の面積は、当該一つのレーザー光源20よりも大きい放射束を有した他の一つのレーザー光源20に対応する回折光学素子40の面積以下となっている。すなわち、レーザー光源20の放射束が小さくなるにつれて、対応する回折光学素子40の面積が小さくなっていく。言い換えると、レーザー光源20の放射束が大きくなるにつれて、対応する回折光学素子40の面積が大きくなっていく。
図示された例において、第2レーザー光源20bから射出するレーザー光の放射束は、第1レーザー光源20aから射出するレーザー光の放射束よりも小さく、第3レーザー光源20cから射出するレーザー光の放射束よりも大きくなっている。すなわち、レーザー光の放射束は、第1レーザー光源20a、第2レーザー光源20b、第3レーザー光源20cの順番で小さくなっていく。図2及び図3に示されているように、図示された例では、第1回折光学素子40a、第2回折光学素子40b、第3回折光学素子40cの順番で、面積が小さくなっている。このような照明装置10によれば、各回折光学素子40上の各位置でのパワー密度を十分に低下させながら、同時に、回折光学素子40の面積を効果的に小型化させることができる。
さらに、理想的には、第1レーザー光源20aから射出するレーザー光の放射束W、第2レーザー光源20bから射出するレーザー光の放射束W、第3レーザー光源20cから射出するレーザー光の放射束W、第1回折光学素子40aの面積A、第2回折光学素子40bの面積A及び第3回折光学素子40cの面積Aが、次の関係を満たすことが好ましい。
:W:W=A:A:A一具体例として、図示された照明装置10では、第1レーザー光源20aから射出するレーザー光の放射束W、第2レーザー光源20bから射出するレーザー光の放射束W及び第3レーザー光源20cから射出するレーザー光の放射束Wは、7:4:2の関係となっている。そして、第1回折光学素子40a、第2回折光学素子40b及び第3回折光学素子40cの面積比は、7:4:2となっている。図2に示すように、第1回折光学素子40a、第2回折光学素子40b及び第3回折光学素子40cは、被照明領域Zの幅方向dwと平行な第2方向dbにおいて、互い同一の長さを有している。一方、図3に示すように、第1回折光学素子40a、第2回折光学素子40b及び第3回折光学素子40cは、第1方向daに沿った長さについて、7:4:2となっておいる。このような照明装置10によれば、回折光学素子40の間で、パワー密度を揃えることができる。したがって、このパワー密度を十分な値としておくことで、照明装置10に含まれる複数の回折光学素子40の面積を小型化することができる。
以上に説明してきた上述の一実施の形態において、照明装置10は、異なる放射束のレーザー光を射出する複数のレーザー光源20と、複数のレーザー光源の各々に対応して設けられた回折光学素子40と、を有している。そして、最小の放射束となるレーザー光を射出するレーザー光源20に対応した回折光学素子40の面積が、最大の放射束となるレーザー光を射出するレーザー光源20に対応した回折光学素子40の面積よりも、小さくなっている。すなわち、この照明装置10では、レーザー光源20が射出するレーザー光の放射束の大きさに応じて、対応する回折光学素子40の面積を変更している。したがって、各回折光学素子40の各位置でのパワー密度を有効に低下させることができ、また、放射束の低いレーザー光を射出するレーザー光源20に対応した回折光学素子40の面積が不必要に大きくなることを効果的に回避することが可能となる。結果として、安全性を確保しながら照明装置10を効果的に小型化することが可能となる。とりわけ図示された例のように、加法混色により特定の色で被照明領域Zを照明する場合には、生成されるレーザー光の波長域に対応して各レーザー光源20が射出するレーザー光の放射束を適宜調整することになる。本実施の形態による照明装置10は、このように複数の波長域のレーザー光源20を含む場合に、とりわけ有用となる。
また上述の一実施の形態において、最小の放射束をWmin[W]とし、最大の放射束をWmax[W]とすると、最小の放射束となるレーザー光を射出するレーザー光源20に対応した回折光学素子40の面積Amin[mm]、及び、最大の放射束となるレーザー光を射出するレーザー光源20に対応した回折光学素子40の面積Amax[mm]が、次の関係を満たすようになっている。
max×(Wmin/Wmax) ≦ Aminこの照明装置10によれば、最小の放射束となるレーザー光を射出するレーザー光源20に対応した小面積化した回折光学素子40の各位置でのパワー密度を、最大の放射束となるレーザー光を射出するレーザー光源20に対応した大面積の回折光学素子40の各位置でのパワー密度以下まで低下させることができる。すなわち、小面積化した回折光学素子40の各位置でのパワー密度を十分に低下させることができ、これにより、安全性を確保しながら照明装置10をより効果的に小型化することが可能となる。
さらに上述の一実施の形態において、任意に選択された一つのレーザー光源20に対応する回折光学素子40の面積は、当該一つのレーザー光源20が射出するレーザー光よりも大きい放射束となるレーザー光を射出する他の一つのレーザー光源20に対応した回折光学素子40の面積以下となっている。この照明装置10によれば、レーザー光源20が射出するレーザー光の放射束の大きさに応じて、各レーザー光源20に対応する回折光学素子40の大きさが順次変化する。したがって、各回折光学素子40の間で、パワー密度を或る程度均一化することができる。結果として、回折光学素子40の面積を最大限小型化することも可能となる。
さらに上述の一実施の形態において、照明装置10は、複数のレーザー光源20から射出したレーザー光を拡大して回折光学素子40に誘導する整形光学系30を、さらに有している。この照明装置10によれば、レーザー光源20から射出した光は、拡大された後に回折光学素子40に入射することになる。したがって、回折光学素子40の各位置でのパワー密度を有効に低下させることができ、安全性を向上させることができる。
なお、上述した一実施の形態に対して様々な変更を加えることが可能である。以下、図面を参照しながら、変形の一例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いるとともに、重複する説明を省略する。
例えば、上述した一実施の形態において、複数のレーザー光源20の各々に対して、それぞれ別個の整形光学系30が用意されている例を示したが、これに限られない。整形光学系30、或いは、整形光学系30に含まれるレンズ31やコリメートレンズ32との要素のいずれか一以上を、複数のレーザー光源20間で共用してもよい。
また、上述した一実施の形態において、照明装置10が、細長い領域を照明する例を示したが、これに限られない。照明装置10が、所定の輪郭を有した領域を照明し、したがって、所定の輪郭を表示する装置として機能するようにしてもよい。所定の輪郭として、例えば矢印等を例示することができる。
dl 長手方向
dw 幅方向
da 第1方向
db 第2方向
Z 被照明領域
10 照明装置
15 光源装置
20 レーザー光源
20a 第1レーザー光源
20b 第2レーザー光源
20c 第3レーザー光源
30 整形光学系
30a 第1整形光学系
30b 第2整形光学系
30c 第3整形光学系
31 レンズ
31a 第1レンズ
31b 第2レンズ
31c 第3レンズ
32 コリメートレンズ
32a 第1コリメートレンズ
32b 第2コリメートレンズ
32c 第3コリメートレンズ
40 回折光学素子
40a 第1回折光学素子
40b 第2回折光学素子
40c 第3回折光学素子

Claims (13)

  1. 第1のレーザー光源、及び、第1のレーザー光源から射出されるレーザー光の放射束よりも大きい放射束のレーザー光を射出する第2のレーザー光源を準備する工程と、
    前記第1のレーザー光源からのレーザー光を回折する第1の回折光学素子、及び、記第2のレーザー光源からのレーザー光を回折する第2の回折光学素子を準備する工程と、
    前記第1の回折光学素子で回折された前記レーザー光および前記第2の回折光学素子で回折された前記レーザー光が少なくとも部分的に重なる領域を照明するよう、前記第1のレーザー光源、前記第2のレーザー光源、前記第1の回折光学素子および前記第2の回折光学素子を配置する工程と、を備え、
    前記第1の回折光学素子の面積は、前記第2の回折光学素子の面積よりも小さい、照明装置の製造方法。
  2. 前記第1のレーザー光源及び前記第2のレーザー光源を準備する工程において、
    前記第1のレーザー光源として、青色の発光波長域のレーザー光を射出するレーザー光源を準備し、
    前記第2のレーザー光源として、赤色の発光波長域のレーザー光を射出するレーザー光源を準備する、請求項1に記載の照明装置の製造方法。
  3. 前記第1のレーザー光源及び前記第2のレーザー光源を準備する工程において、前記第1のレーザー光源及び前記第2のレーザー光源とは異なる波長のレーザー光を射出する第3のレーザー光源を更に準備する、請求項2記載の照明装置の製造方法。
  4. 前記第1のレーザー光源、前記第2のレーザー光源、前記第1の回折光学素子および前記第2の回折光学素子を配置する工程において、前記領域から前記第1の回折光学素子までの距離は、前記領域から前記第2の回折光学素子までの距離よりも大きくなるように設定する、請求項1乃至3のいずれか1項記載の照明装置の製造方法。
  5. 前記第1のレーザー光源及び前記第2のレーザー光源が共通の基板上に並べて配置されている、請求項1乃至4のいずれか1項記載の照明装置の製造方法。
  6. 第1のレーザー光源からのレーザー光を第1の回折光学素子で回折し、第2のレーザー光源からのレーザー光を第2の回折光学素子で回折する工程を備え、
    第1のレーザー光源からのレーザー光の放射束は、第2のレーザー光源からのレーザー光の放射束よりも小さく、
    前記第1の回折光学素子の面積は、前記第2の回折光学素子の面積よりも小さく、
    前記第1の回折光学素子で回折された前記レーザー光および前記第2の回折光学素子で回折された前記レーザー光が少なくとも部分的に重なる領域を照明する、照明方法。
  7. 前記第1のレーザー光源は、青色の発光波長域のレーザー光を射出し、
    前記第2のレーザー光源は、赤色の発光波長域のレーザー光を射出する、請求項6に記載の照明方法。
  8. 前記第1のレーザー光源及び前記第2のレーザー光源とは異なる波長のレーザー光を射出する第3のレーザー光源からのレーザー光を第3の回折光学素子で回折し、
    前記第1の回折光学素子で回折された前記レーザー光、前記第2の回折光学素子で回折された前記レーザー光及び前記第3の回折光学素子で回折された前記レーザー光が少なくとも部分的に重なる領域を照明する、請求項7に記載の照明方法。
  9. 前記領域から前記第1の回折光学素子までの距離は、前記領域から前記第2の回折光学素子までの距離よりも大きくなるように設定する、請求項6乃至8のいずれか1項記載の照明方法。
  10. 前記第1のレーザー光源および前記第2のレーザー光源が共通の基板上に並べて配置されている、請求項6乃至9のいずれか1項記載の照明方法。
  11. 被照明領域を照明する照明装置であって、
    第1のレーザー光源及び第2のレーザー光源と、
    前記第1のレーザー光源からのレーザー光を回折する第1の回折光学素子と、
    前記第2のレーザー光源からのレーザー光を回折する第2の回折光学素子と、
    前記第1のレーザー光源は、前記第2のレーザー光源から射出されるレーザー光の放射束よりも小さい放射束のレーザー光を射出し、
    前記第1の回折光学素子の面積は、前記第2の回折光学素子の面積よりも小さく、
    前記被照明領域から前記第1の回折光学素子までの距離は、前記被照明領域から前記第2の回折光学素子までの距離よりも大きい、照明装置。
  12. 路面を照明する照明装置であって、
    第1のレーザー光源及び第2のレーザー光源と、
    前記第1のレーザー光源からのレーザー光を回折する第1の回折光学素子と、
    前記第2のレーザー光源からのレーザー光を回折する第2の回折光学素子と、
    前記第1のレーザー光源は、前記第2のレーザー光源から射出されるレーザー光の放射束よりも小さい放射束のレーザー光を射出し、
    前記第1の回折光学素子の面積は、前記第2の回折光学素子の面積よりも小さく、
    前記路面から前記第1の回折光学素子までの距離は、前記路面から前記第2の回折光学素子までの距離よりも大きい、照明装置。
  13. 前記第1のレーザー光源及び前記第2のレーザー光源は、異なる波長域のレーザー光を射出する、請求項11又は12に記載の照明装置。
JP2020149978A 2017-01-05 2020-09-07 照明装置、照明装置の製造方法、照明方法 Active JP6936978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020149978A JP6936978B2 (ja) 2017-01-05 2020-09-07 照明装置、照明装置の製造方法、照明方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017000671A JP6761600B2 (ja) 2017-01-05 2017-01-05 照明装置
JP2020149978A JP6936978B2 (ja) 2017-01-05 2020-09-07 照明装置、照明装置の製造方法、照明方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017000671A Division JP6761600B2 (ja) 2017-01-05 2017-01-05 照明装置

Publications (2)

Publication Number Publication Date
JP2021007099A JP2021007099A (ja) 2021-01-21
JP6936978B2 true JP6936978B2 (ja) 2021-09-22

Family

ID=74165330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149978A Active JP6936978B2 (ja) 2017-01-05 2020-09-07 照明装置、照明装置の製造方法、照明方法

Country Status (1)

Country Link
JP (1) JP6936978B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268878A (ja) * 2007-03-27 2008-11-06 Seiko Epson Corp ホログラム素子、照明装置、プロジェクタ、及びホログラム素子の製造方法
JP6354116B2 (ja) * 2014-07-18 2018-07-11 スタンレー電気株式会社 車両用灯具
EP3217076B1 (en) * 2014-11-07 2019-10-23 Dai Nippon Printing Co., Ltd. Lighting device
CN107709872B (zh) * 2015-06-22 2021-06-22 大日本印刷株式会社 照明装置

Also Published As

Publication number Publication date
JP2021007099A (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
US11359785B2 (en) Illumination device
CN110177711B (zh) 照明装置
JP6803009B2 (ja) 照明装置
JP7022394B2 (ja) 照明装置
WO2017145972A1 (ja) 照明装置
JP6569958B2 (ja) 照明装置
JP6936978B2 (ja) 照明装置、照明装置の製造方法、照明方法
JP6850424B2 (ja) 光源装置及び照明装置
JP7131153B2 (ja) 照明装置および照明装置ユニット
JP6928897B2 (ja) 照明装置
JP7249510B2 (ja) 照明装置
JP6146680B2 (ja) 照明装置
JP7011787B2 (ja) 照明装置
JP6722411B2 (ja) 照明装置
JP2018186003A (ja) 照明装置
JP6611001B2 (ja) 照明装置
JP6657786B2 (ja) 照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210812

R150 Certificate of patent or registration of utility model

Ref document number: 6936978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150