JP6936049B2 - 電解液及び電解コンデンサ - Google Patents

電解液及び電解コンデンサ Download PDF

Info

Publication number
JP6936049B2
JP6936049B2 JP2017101814A JP2017101814A JP6936049B2 JP 6936049 B2 JP6936049 B2 JP 6936049B2 JP 2017101814 A JP2017101814 A JP 2017101814A JP 2017101814 A JP2017101814 A JP 2017101814A JP 6936049 B2 JP6936049 B2 JP 6936049B2
Authority
JP
Japan
Prior art keywords
solute
electrolytic solution
solvent
acid
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017101814A
Other languages
English (en)
Other versions
JP2018198248A (ja
Inventor
慎吾 波多
慎吾 波多
潤一 清澤
潤一 清澤
和人 西澤
和人 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2017101814A priority Critical patent/JP6936049B2/ja
Publication of JP2018198248A publication Critical patent/JP2018198248A/ja
Application granted granted Critical
Publication of JP6936049B2 publication Critical patent/JP6936049B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電解コンデンサに用いられる電解液及びこの電解液を用いた電解コンデンサに関する。
近年、電解質に導電性高分子及び電解液を用いたハイブリッド型の電解コンデンサ(以下「ハイブリッドコンデンサ」という)が利用されている。例えば、特許文献1には、電解液に揮発性を有し粘度の低い低粘性溶媒と高温特性に優れた難揮発性溶媒とを併用することで、コンデンサ素子への電解液の含浸性と高温環境下における良好な特性を備えたハイブリッドコンデンサが記載されている。
特開2014−195116号公報
自動車、特にエンジンルームに搭載されるハイブリッドコンデンサでは、高温環境下で使用される上に、長期に亘る信頼性が要求される。そこで、高温度域での溶媒の揮発を抑制するため、電解液における難揮発性溶媒の配合比率を高くすることが考えられる。しかし、難揮発性溶媒の配合比率を高くすると、低粘性溶媒の配合比率が低くなることで、電解液の比抵抗及び粘度が上昇し、低温度域での静電容量の低下及び漏れ電流の増加を招くおそれがあった。
これらを改善するため、一般的には電解液の溶質濃度(電解質濃度)を高くするが、本発明者らの研究から、溶質濃度を高くすると、高温環境下でESRが高くなることがわかった。
上記は、溶媒に低粘性溶媒と難揮発性溶媒とを併用した例であるが、他の溶媒を用いた場合でも、同様な結果となることが明らかになった。すなわち、ハイブリッドコンデンサの一部の特性が十分でないときは、溶質濃度を高くすることがある。これにより十分でなかった特性が良好になるが、溶質濃度を高くしたことで、高温環境下においてESRが高くなることがわかった。
そこで、本発明の目的は、溶質濃度を高くした場合でも、高温環境下でESRを低くすることができる電解液及び電解コンデンサを提供することである。
既存の電解液の溶質には塩基成分としてアミンが含まれることが多い。そのため、溶質濃度を高くすると電解液中のアミン濃度が高濃度になり、導電性高分子のドーパントが電解液に溶出(脱ドープ)して導電性高分子が酸化劣化し、これにより導電性高分子の導電性が低下するため、高温環境下におけるESRが高くなると考えられる。
本発明者らは、導電性高分子の酸化劣化を抑止可能な溶質について研究したところ、溶質の酸成分に脂肪族ヒドロキシ酸及びその塩からなる群より選択される少なくとも1種を用いると、溶質濃度を高くしても、高温環境下でESRを低くすることができるという知見を得た。
そこで、本発明の電解液を以下のように構成した。具体的には、本発明の電解液は、誘電体酸化皮膜を有する陽極及び陰極と、前記陽極及び陰極の間に配置されたセパレータと、前記セパレータに保持された導電性高分子及び電解液とを備えた電解コンデンサに用いられる電解液であり、リシノール酸、リンゴ酸及びそれらの塩からなる群より選択される少なくとも1種を3wt%以上30wt%以下含む溶質と、溶媒とを含む。
本発明者らの研究から、脂肪族ヒドロキシ酸の−OH(ヒドロキシ基)が導電性高分子表面に吸着することで、導電性高分子の酸化劣化を抑止できるという知見を得た。また、脂肪族ヒドロキシ酸の−OH(ヒドロキシ基)が酸化されることで、脂肪族ヒドロキシ酸自身が有する酸化劣化防止作用により、導電性高分子の酸化を抑止できることがわかった。これにより導電性の低下を抑止できるため、高温環境下でESRを低くすることができることがわかった。
このように本発明では、電解液の溶質に脂肪族ヒドロキシ酸及びその塩からなる群より選択される少なくとも1種を用いることで、溶質濃度を高くしても、高温環境下でESRを低くすることができる。
また、本発明の電解コンデンサは、誘電体酸化皮膜を有する陽極及び陰極がセパレータを介して巻回されたコンデンサ素子を備え、前記セパレータは導電性高分子と上述した電解液とを保持している。
本発明では、電解液の溶質に、リシノール酸、リンゴ酸及びそれらの塩からなる群より選択される少なくとも1種を含む溶質を用いることで、溶質濃度を高くしても、高温環境下でESRを低くすることができる。
本発明の実施形態に係る電解コンデンサの要部切断正面図である。 図1に示すコンデンサ素子の分解斜視図である。
以下、本発明の好適な実施形態について、図面を参照しつつ説明する。
ハイブリッドコンデンサ1は、図1に示すように、外装ケース2と、外装ケース2に収容されたコンデンサ素子3と、外装ケース2の開口を封止した封口体4とを備えている。
コンデンサ素子3は、図2に示すように、陽極箔(陽極)11と陰極箔(陰極)12とをセパレータ13を介して円筒形に巻回して形成され、外周面に貼り付けられたテープ14により巻止めされている。
陽極箔11は、表面に誘導体酸化皮膜が形成されたアルミニウム等の弁作用金属の箔である。誘導体酸化皮膜は、エッチング処理にて表面を粗面化した弁作用金属箔に化成処理を施すことによって形成されている。
陰極箔12もアルミニウム等の弁作用金属箔を用いて形成され、エッチング処理により表面が粗面化されたもの(粗面化箔)が使用される。陰極箔12として、他にエッチング処理を施さないプレーン箔も使用でき、また、前記粗面化箔もしくはプレーン箔の表面に、チタンやニッケルやその炭化物、窒化物、炭窒化物又はこれらの混合物からなる金属薄膜や、カーボン薄膜を形成したコーティング箔も使用することができる。
陽極箔11及び陰極箔12にはそれぞれ図示しないリードタブが接続されている。陽極箔11及び陰極箔12は、リードタブを介して、リード端子21及びリード端子22と接続されている。リード端子21及びリード端子22は、図1に示すように、封口体4に形成された孔31及び孔32を通って外部に引き出されている。
図2に示すセパレータ13は、導電性高分子及び電解液を保持している。
導電性高分子には、例えば、ポリチオフェン、ポリピロール、ポリアニリン又はそれらの誘導体、一般的にはポリエチレンジオキシチオフェン(PEDOT)が用いられ、ドーパントには、p−トルエンスルホン酸、ポリスチレンスルホン酸(PSS)等が一般的に用いられる。
電解液は、溶媒及び溶質を含み、酸化防止剤などの添加剤をさらに含んでいてもよい。
溶媒には、例えば低粘性溶媒と難揮発性溶媒が用いられる。低粘性溶媒は、低温度域における静電容量の低下を抑止する等の低温特性に優れるとともに、漏れ電流の増大を抑止する。難揮発性溶媒は高温特性に優れる。低粘性溶媒と難揮発性溶媒を併用することで、低温から高温まで良好な特性を備えたものとなる。
低粘性溶媒としては、例えばラクトン類が挙げられ、ラクトン類としてはγ−ブチロラクトン、γ−バレロラクトン等が使用できる。また、難揮発性溶媒として、例えばジオール類及びポリアルキレングリコールが挙げられ、ジオール類としてはエチレングリコール、ジエチレングリコール、プロピレングリコール、1,5−ペンタンジオール等を使用できる。なお、難揮発性溶媒を単独で使用してもよい。
溶質は、一般的に、酸成分と塩基成分(アミン)を含む。溶媒だけでは一部の特性が十分でない場合、溶質濃度を高くすることでその特性を良好にすることがある。しかし溶質濃度を3wt%以上にすると、アミンが導電性高分子に含まれる酸成分であるドーパントと塩を形成することで、ドーパントが電解液へ脱ドープ(導電性高分子の酸化劣化)すると考えられ、導電性高分子の導電性が低下し、高温環境下でのESRが高くなる。
そこで、本発明者らは導電性高分子の酸化劣化を抑止可能な溶質について研究したところ、溶質の酸成分として、脂肪族ヒドロキシ酸を用いると、導電性高分子の酸化劣化を抑止できることを見出した。脂肪族ヒドロキシ酸に含まれる−OH(ヒドロキシ基)が導電性高分子の表面に付着することで、アミン濃度を高くしてもアミンが酸成分であるドーパントと塩を形成することを抑止することができると考えられ、これにより導電性高分子に含まれるドーパントが脱ドープすることを抑止できるという知見を得た。また、脂肪族ヒドロキシ酸自身が有する酸化劣化防止作用(脂肪族ヒドロキシ酸のヒドロキシ基の酸化作用)により、導電性高分子に付着した−OHが酸化することで、導電性高分子の酸化劣化を抑止できることがわかった。
上記より、脂肪族ヒドロキシ酸及びその塩からなる群より選択される少なくとも1種を含む溶質を用いることで、導電性高分子の酸化劣化を抑止できるため、溶質濃度を高くしても、高温環境下でESRを低くすることができることがわかった。
なお、脂肪族ヒドロキシ酸に含まれる−COOHにも−OHが含まれるが、−COOHに含まれる−OHは電解液中で解離して−O-となり、−OH(ヒドロキシ基)と同様な働きをしない。また、−COOHはこれ以上酸化されないため、−COOHの−OHも酸化されない。したがって、溶質に−COOHだけを有する化合物を用いても、導電性高分子の酸化劣化を抑止することはできない。よって、溶質は、−OH(ヒドロキシ基)を含む化合物であることが必要である。なお、溶質としての効果を奏するためには、−COOHも含んでいる必要がある。
上記より、溶質の酸成分として、−OH(ヒドロキシ基)と−COOHを含む脂肪族ヒドロキシ酸を用いると、導電性高分子の酸化劣化を抑止できるため、高温環境下でESRを低くすることができることがわかった。
脂肪族ヒドロキシ酸として、例えば、リシノール酸、キナ酸及びリンゴ酸が挙げられる。溶質の塩基成分は特に限定されず、例えば、一般的に用いられているアミン類を用いることができる。溶質には、酸成分の化合物と塩基成分の化合物を併用してもよく、塩基成分(アミノ基)を有する脂肪族ヒドロキシ酸を用いてもよい。
溶質濃度を高くすることで、アミンが過剰になっても、脂肪族ヒドロキシ酸に含まれる−OH(ヒドロキシ基)により導電性高分子の酸化劣化を抑止できるため、高温環境下でESRを低くすることができる。
電解液において、溶質として脂肪族ヒドロキシ酸及びその塩からなる群より選択される少なくとも1種は3wt%以上含有されていることが好ましい。電解液に対して脂肪族ヒドロキシ酸及びその塩からなる群より選択される少なくとも1種を3wt%以上含有することで、上記した溶質としての効果が得られる。なお、含有量の上限には制限がないが、析出の防止という観点から、例えば30wt%以下とする。
例えば、電解液の溶媒に低粘性溶媒と難粘性溶媒を併用し、高温度域での溶媒の揮発を抑制するため、難粘性溶媒の配合比率を高くした場合、低粘性溶媒の配合比率が低くなることで、比抵抗及び粘度が上昇し、低温度域での静電容量の低下及びリフロー後の漏れ電流の増加を招く。そこで、溶質濃度を高くすることにより、低温度域での静電容量の低下及びリフロー後の漏れ電流の増加を抑止できるが、溶質濃度を高くしたことが原因で高温環境下においてESRが高くなる。
ここで、電解液の溶質に、脂肪族ヒドロキシ酸及びその塩からなる群より選択される少なくとも1種を含むものを用いると、溶質濃度を高くしても、高温環境下でESRを低くすることができる。したがって、低温度域での静電容量の低下及びリフロー後の漏れ電流の増加を抑止しつつ、高温環境下でESRを低くすることができる。
以上に述べたように、本実施形態のハイブリッドコンデンサ1では、電解液に脂肪族ヒドロキシ酸及びその塩からなる群より選択される少なくとも1種を含む溶質を用いることにより、溶質濃度を高くしても、高温環境下でESRを低くすることができる。
電解液には、上述した溶媒及び溶質に加え、酸化防止剤等の添加剤がさらに含まれていてもよい。酸化防止剤として、例えば、ニトロベンジルアルコール、ピロガロール、及びカテコールを使用することができる。酸化防止剤を用いることで、導電性高分子及び脂肪族ヒドロキシ酸の酸化を抑止することができる。酸化防止剤の添加量は、好ましくは0.5wt%以上3wt%以下である。この範囲であれば、溶質の溶解性及びコンデンサのESR特性を悪化させることなく導電性高分子及び脂肪族ヒドロキシ酸の酸化を抑止することができる。
以下、実施例により、本発明をさらに具体的に説明する。
(コンデンサの作製)
所定の幅に切断された陽極箔及び陰極箔に外部引き出し電極用のリードタブを接続した。リードタブはアルミニウムで形成されている。陽極箔には、弁作用金属であるアルミニウム箔をエッチング処理にて粗面化した後、化成処理を施すことにより、誘電体酸化皮膜が形成されたものを用いた。陰極箔には、弁作用金属であるアルミニウム箔をエッチング処理にて粗面化されているものを用いた。陽極箔及び陰極箔を、天然繊維を主体としたセパレータを介して巻回することにより、巻回素子を作製した。
陽極箔の切断された端面及びリードタブとの取り付け部は、誘電体酸化皮膜が欠損しているため、この部分を化成処理し、修復した。化成処理で用いた化成液にはアジピン酸アンモニウム水溶液を使用した。
次に、減圧下で、PEDOT/PSSを含むポリマ分散体水溶液に巻回素子を30分間浸漬・含浸させた後、乾燥して水分を除去した。これによりコンデンサの陰極層となる導電性高分子層を形成した。
続いて、表1に示す電解液をアルミニウム製の有底筒状のケース内に注入した。実施例1〜5では、溶質の酸成分に、脂肪族ヒドロキシ酸(リシノール酸)を用いた。比較例1では、溶質が含まれていない。比較例2及び比較例3では、溶質の酸成分に、ジカルボン酸(アジピン酸)を用いた。溶質の塩基成分には、ジブチルアミンを用いた。また、実施例2〜4では酸化防止剤(ニトロベンジルアルコール)を1wt%添加した。
その後、ケース内にコンデンサ素子を収容し、ケース内の電解液をコンデンサ素子に含浸させると共に、ケースの開口の周縁をカーリング加工した。そして、周囲温度を90℃にしてコンデンサに定格電圧35Vを印加し、エージング処理を施して、直径6.3mm、高さ6.1mmのハイブリッドコンデンサ(カテゴリ上限温度105℃、定格電圧35V、静電容量47μF)を作製した。
(評価方法)
・容量変化率
周囲温度25℃、周波数120Hzの静電容量(A)と、周囲温度−55℃、周波数120Hzの静電容量(B)とを測定し、静電容量(A)に対する静電容量(B)の容量変化率を求めた。
・漏れ電流(L.C.)
ハイブリッドコンデンサをリフロー後の状態にするため、245℃の雰囲気に3分間放置した後、室温(25℃)まで冷却し、再び245℃雰囲気に3分間放置した。その後、ハイブリッドコンデンサを室温まで冷却させてから定格電圧を印加し、2分後に漏れ電流を測定した。
・ESR
ハイブリッドコンデンサの初期のESR(25℃)を測定した。その後、カテゴリ上限温度を超える150℃雰囲気下でハイブリッドコンデンサに定格電圧35Vを60時間印加した後、室温(25℃)まで冷却し、周波数100kHzでESRを測定した。
表1に、実験条件及び評価結果を示す。
Figure 0006936049
表1に示すように、比較例1では、高温度域での溶媒の揮発を抑制するため、低粘性溶媒よりも難揮発性溶媒の配合比率を多くした。比較例1では、溶質は含まれていない。その結果、低温度域で容量低下率が高く、漏れ電流量が大きくなった。
比較例2では、低温度域での容量低下及び漏れ電流量の増大を抑止するため、溶質(アジピン酸)濃度を5wt%にした。その結果、低温度域での容量低下を抑えるとともに、漏れ電流量の増加を抑えることができたが、高温負荷試験後のESRが高くなった。
比較例3では、低粘性溶媒と難揮発性溶媒を同じ配合比率にした。また、溶質(アジピン酸)濃度を5wt%にした。その結果、低温度域での容量低下を抑えるとともに、漏れ電流量の増加を抑えることができたが、高温負荷試験後のESRが高くなった。
一方、実施例1〜5では、電解液の溶質の酸成分に脂肪族ヒドロキシ酸(リシノール酸)を用いた。その結果、低温度域での容量低下を抑えるとともに、漏れ電流量の増加を抑えることができた上に、高温負荷試験後のESRを低く抑えることができた。なお、上記評価結果では、溶質濃度が10wt%までの結果を示しているが、溶質濃度が10wt%を超えても、30wt%以下までは実用上問題のない範囲で高温負荷試験後のESRを低く抑えることが確認できた。
また、本実施例では脂肪族ヒドロキシ酸としてリシノール酸を用いたが、キナ酸及びリンゴ酸でもリシノール酸と同様の効果が得られることを確認した。
以上、本発明の実施形態について実施例に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
例えば、上述した実施形態及び実施例では、電解液の溶媒に低粘性溶媒と難粘性溶媒を用いた場合について説明したが、電解液の溶媒はこれらの溶媒に限定されない。
1 ハイブリッドコンデンサ
2 外装ケース
3 コンデンサ素子
4 封口体
11 陽極箔(陽極)
12 陰極箔(陰極)
21,22 リード端子

Claims (2)

  1. 誘電体酸化皮膜を有する陽極及び陰極と、前記陽極及び陰極の間に配置されたセパレータと、前記セパレータに保持された導電性高分子及び電解液とを備えた電解コンデンサに用いられる電解液であり、
    リシノール酸、リンゴ酸及びそれらの塩からなる群より選択される少なくとも1種を3wt%以上30wt%以下含む溶質と、溶媒とを含むことを特徴とする電解液。
  2. 誘電体酸化皮膜を有する陽極及び陰極がセパレータを介して巻回されたコンデンサ素子を備え、
    前記セパレータは導電性高分子と請求項1に記載の電解液とを保持していることを特徴とする電解コンデンサ。
JP2017101814A 2017-05-23 2017-05-23 電解液及び電解コンデンサ Active JP6936049B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017101814A JP6936049B2 (ja) 2017-05-23 2017-05-23 電解液及び電解コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101814A JP6936049B2 (ja) 2017-05-23 2017-05-23 電解液及び電解コンデンサ

Publications (2)

Publication Number Publication Date
JP2018198248A JP2018198248A (ja) 2018-12-13
JP6936049B2 true JP6936049B2 (ja) 2021-09-15

Family

ID=64663495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101814A Active JP6936049B2 (ja) 2017-05-23 2017-05-23 電解液及び電解コンデンサ

Country Status (1)

Country Link
JP (1) JP6936049B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275588B2 (ja) * 2019-01-15 2023-05-18 日本ケミコン株式会社 電子部品、電子部品の製造方法およびノイズ処理方法
JP7323389B2 (ja) * 2019-09-03 2023-08-08 ニチコン株式会社 電解液およびハイブリッド電解コンデンサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138134A (ja) * 1998-10-29 2000-05-16 Matsushita Electric Ind Co Ltd アルミニウム電解コンデンサ駆動用電解液およびそれを用いたアルミニウム電解コンデンサ
JP4534712B2 (ja) * 2004-10-21 2010-09-01 パナソニック株式会社 電解コンデンサ
JP6223703B2 (ja) * 2013-04-03 2017-11-01 株式会社トーキン 導電性高分子溶液及びその製造方法、導電性高分子材料、ならびに固体電解コンデンサ

Also Published As

Publication number Publication date
JP2018198248A (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6511649B2 (ja) 電解コンデンサの製造方法及び電解コンデンサ
US5507966A (en) Electrolyte for an electrolytic capacitor
US10062519B2 (en) Tantalum capacitor with polymer cathode
JP7113199B2 (ja) 電解コンデンサ
US20230109930A1 (en) Electrolytic capacitor
JP6669461B2 (ja) 電解コンデンサおよびその製造方法
WO2015119047A1 (ja) 固体電解コンデンサ及びその製造方法
JP6936049B2 (ja) 電解液及び電解コンデンサ
JP6767527B2 (ja) ハイブリッド型電解コンデンサ用電解液
JP7072487B2 (ja) 電解コンデンサの製造方法
JP6901299B2 (ja) 電解コンデンサ
JP2020141072A (ja) 電解液および電解コンデンサ
JP4780893B2 (ja) 固体電解コンデンサ
JP7323389B2 (ja) 電解液およびハイブリッド電解コンデンサ
JP5289016B2 (ja) 固体電解コンデンサの製造方法
JP7274440B2 (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP2022165319A (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP7391812B2 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP4366170B2 (ja) 電解コンデンサの駆動用電解液
WO1997039465A1 (en) Electrolyte for electrolytic capacitor
JP2017228739A (ja) 電解液及び電解コンデンサ
JP2003109861A (ja) 電気二重層コンデンサおよび電気二重層コンデンサ用の電解液
JP2022002239A (ja) 固体電解コンデンサ及びその製造方法
JP4474886B2 (ja) 固体電解コンデンサ及びその製造方法
JP4354244B2 (ja) 電解コンデンサの駆動用電解液

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210716

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6936049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150