JP6924871B2 - Luminous display panel - Google Patents

Luminous display panel Download PDF

Info

Publication number
JP6924871B2
JP6924871B2 JP2020087834A JP2020087834A JP6924871B2 JP 6924871 B2 JP6924871 B2 JP 6924871B2 JP 2020087834 A JP2020087834 A JP 2020087834A JP 2020087834 A JP2020087834 A JP 2020087834A JP 6924871 B2 JP6924871 B2 JP 6924871B2
Authority
JP
Japan
Prior art keywords
layer
transistor
thin film
light emitting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020087834A
Other languages
Japanese (ja)
Other versions
JP2020166278A (en
Inventor
宏充 郷戸
宏充 郷戸
村上 智史
智史 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020166278A publication Critical patent/JP2020166278A/en
Priority to JP2021126433A priority Critical patent/JP7101852B2/en
Application granted granted Critical
Publication of JP6924871B2 publication Critical patent/JP6924871B2/en
Priority to JP2022108235A priority patent/JP7291275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

酸化物半導体を用いる半導体装置およびその作製方法に関する。 The present invention relates to a semiconductor device using an oxide semiconductor and a method for manufacturing the same.

なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
In the present specification, the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics, and the electro-optical device, the semiconductor circuit, and the electronic device are all semiconductor devices.

近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用い
て薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはI
Cや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチン
グ素子として開発が急がれている。また、半導体薄膜としては、金属酸化物が注目されて
おり、多様な金属酸化物が存在し、さまざまな用途に用いられている。特に、金属酸化物
として、酸化インジウムはよく知られた材料であり、液晶ディスプレイなどで必要とされ
る透明電極材料として用いられている。
In recent years, a technique for forming a thin film transistor (TFT) using a semiconductor thin film (thickness of several to several hundred nm) formed on a substrate having an insulating surface has attracted attention. Thin film transistor is I
It is widely applied to electronic devices such as C and electro-optical devices, and its development is urgently needed as a switching element for image display devices. Further, as a semiconductor thin film, metal oxides are attracting attention, and various metal oxides exist and are used for various purposes. In particular, as a metal oxide, indium oxide is a well-known material and is used as a transparent electrode material required for liquid crystal displays and the like.

金属酸化物の中には半導体特性を示すものがある。半導体特性を示す金属酸化物としては
、例えば、酸化タングステン、酸化錫、酸化インジウム、酸化亜鉛などがあり、このよう
な半導体特性を示す金属酸化物をチャネル形成領域とする薄膜トランジスタが既に知られ
ている(特許文献1及び特許文献2)。
Some metal oxides exhibit semiconductor properties. Examples of the metal oxide exhibiting semiconductor characteristics include tungsten oxide, tin oxide, indium oxide, zinc oxide, and the like, and a thin film having a metal oxide exhibiting such semiconductor characteristics as a channel forming region is already known. (Patent Document 1 and Patent Document 2).

特開2007−123861号公報Japanese Unexamined Patent Publication No. 2007-123861 特開2007−96055号公報JP-A-2007-96055

アクティブマトリクス型の表示装置においては、回路を構成する薄膜トランジスタの電気
特性が重要であり、この電気特性が表示装置の性能を左右する。特に、薄膜トランジスタ
の電気特性のうち、オフ電流(リーク電流、Ioffなどともいう)の増大に起因する非
動作時の消費電力(待機時の消費電力)が重要になる。
In the active matrix type display device, the electrical characteristics of the thin film transistors constituting the circuit are important, and these electrical characteristics affect the performance of the display device. In particular, among the electrical characteristics of the thin film transistor, the power consumption during non-operation (power consumption during standby) due to the increase in off current (also referred to as leakage current, Ifoff, etc.) becomes important.

nチャネル型の薄膜トランジスタの場合、ゲート電圧に正の電圧を印加してはじめてチャ
ネルが形成されて、ドレイン電流が流れ出す薄膜トランジスタが望ましい。ゲートに印加
される電圧が負の電圧状態でオフ電流が流れる薄膜トランジスタは、回路に用いる薄膜ト
ランジスタとしては不向きである。
In the case of an n-channel thin film transistor, a thin film transistor in which a channel is formed only when a positive voltage is applied to the gate voltage and a drain current flows out is desirable. A thin film transistor in which an off-current flows when the voltage applied to the gate is a negative voltage is not suitable as a thin film transistor used in a circuit.

例えば、半導体装置において回路を構成する薄膜トランジスタのオフ電流が大きい場合、
そのオフ電流の増大に起因する電流漏れが発生する恐れがある。そこで、本発明の一形態
は、広い温度範囲で安定して動作する薄膜トランジスタ及びそれを用いた半導体装置を提
供することを目的とする。なお、本明細書等において、薄膜トランジスタのオフ電流とは
、ゲートに印加される電圧が負の電圧の時の電流値を示す。
For example, when the off-current of the thin film transistor constituting the circuit in the semiconductor device is large,
There is a risk of current leakage due to the increase in the off-current. Therefore, one aspect of the present invention is to provide a thin film transistor that operates stably in a wide temperature range and a semiconductor device using the thin film transistor. In the present specification and the like, the off-current of the thin film transistor indicates a current value when the voltage applied to the gate is a negative voltage.

本明細書で開示する本発明の一態様は、絶縁表面を有する基板上に、ゲート電極層を有し
、ゲート電極層上にゲート絶縁層を有し、ゲート絶縁層上に酸化物半導体層を有し、酸化
物半導体層上に、ソース電極層及びドレイン電極層を有し、ゲート絶縁層、酸化物半導体
層、ソース電極層及びドレイン電極層上に酸化物半導体層の一部と接する絶縁層を有し、
−25℃以上150℃以下の温度範囲において、チャネル幅が1μmあたりのオフ電流の
値が1×10−12A以下であることを特徴とする半導体装置である。
One aspect of the present invention disclosed herein has a gate electrode layer on a substrate having an insulating surface, a gate insulating layer on the gate electrode layer, and an oxide semiconductor layer on the gate insulating layer. An insulating layer having a source electrode layer and a drain electrode layer on the oxide semiconductor layer and in contact with a part of the oxide semiconductor layer on the gate insulating layer, the oxide semiconductor layer, the source electrode layer and the drain electrode layer. Have,
The semiconductor device is characterized in that the off-current value per 1 μm of the channel width is 1 × 10 -12 A or less in the temperature range of -25 ° C. or higher and 150 ° C. or lower.

上記構成において、酸化物半導体層のチャネル長は、1.5μm以上100μm以下であ
ってもよい。また、酸化物半導体層のチャネル長は、3μ以上10μm以下であってもよ
い。
In the above configuration, the channel length of the oxide semiconductor layer may be 1.5 μm or more and 100 μm or less. Further, the channel length of the oxide semiconductor layer may be 3 μm or more and 10 μm or less.

また、本明細書で開示する本発明の一態様は、絶縁表面を有する基板上に、ゲート電極層
を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に酸化物半導体層を
形成し、酸化物半導体層を形成した後、第1の熱処理、及び第2の熱処理を行い、酸化物
半導体層上に、ソース電極層及びドレイン電極層を形成し、ゲート絶縁層、酸化物半導体
層、ソース電極層及びドレイン電極層上に酸化物半導体層の一部と接する絶縁層を形成し
、絶縁層を形成した後、第3の熱処理を行うことを特徴とする半導体装置の作製方法であ
る。
Further, one aspect of the present invention disclosed in the present specification is to form a gate electrode layer on a substrate having an insulating surface, form a gate insulating layer on the gate electrode layer, and form an oxide semiconductor on the gate insulating layer. After forming the layer and forming the oxide semiconductor layer, the first heat treatment and the second heat treatment are performed to form the source electrode layer and the drain electrode layer on the oxide semiconductor layer, and the gate insulating layer and the oxidation Fabrication of a semiconductor device characterized in that an insulating layer in contact with a part of the oxide semiconductor layer is formed on a physical semiconductor layer, a source electrode layer and a drain electrode layer, and after forming the insulating layer, a third heat treatment is performed. The method.

上記構成において、第1の熱処理は、窒素雰囲気または希ガス雰囲気下で行うことが好ま
しい。また、第1の熱処理は、350℃以上750℃以下の温度で行うことが好ましい。
In the above configuration, the first heat treatment is preferably performed in a nitrogen atmosphere or a noble gas atmosphere. Further, the first heat treatment is preferably performed at a temperature of 350 ° C. or higher and 750 ° C. or lower.

上記構成において、第2の熱処理は、大気雰囲気、酸素雰囲気下で行うことが好ましい。
また、第2の熱処理は、100℃以上第1の熱処理温度以下で行うことが好ましい。
In the above configuration, the second heat treatment is preferably performed in an air atmosphere or an oxygen atmosphere.
The second heat treatment is preferably performed at 100 ° C. or higher and lower than the first heat treatment temperature.

上記構成は、上記課題の少なくとも一つを解決する。 The above configuration solves at least one of the above problems.

本明細書中で用いる酸化物半導体で、InMO(ZnO)(m>0)で表記される薄
膜を形成し、その薄膜を酸化物半導体層として用いた薄膜トランジスタを作製する。ただ
し、mは必ずしも整数にはならない。なお、Mは、Ga、Fe、Ni、Mn及びCoから
選ばれた一の金属元素または複数の金属元素を示す。例えばMとして、Gaの場合がある
ことの他、GaとNiまたはGaとFeなど、Ga以外の上記金属元素が含まれる場合が
ある。また、上記酸化物半導体において、Mとして含まれる金属元素の他に、不純物元素
としてFe、Niその他の遷移金属元素、または該遷移金属の酸化物が含まれている場合
がある。本明細書においては、InMO(ZnO)(m>0)で表記される構造の酸
化物半導体層のうち、MとしてGaを含む構造の酸化物半導体をIn−Ga−Zn−O系
酸化物半導体とよび、その薄膜をIn−Ga−Zn−O系非単結晶膜とも呼ぶ。
A thin film represented by InMO 3 (ZnO) m (m> 0) is formed from the oxide semiconductor used in the present specification, and the thin film is used as the oxide semiconductor layer to produce a thin film transistor. However, m is not necessarily an integer. In addition, M represents one metal element selected from Ga, Fe, Ni, Mn and Co, or a plurality of metal elements. For example, M may be Ga, or may contain the above metal elements other than Ga, such as Ga and Ni or Ga and Fe. Further, in the oxide semiconductor, in addition to the metal element contained as M, Fe, Ni or other transition metal element, or an oxide of the transition metal may be contained as an impurity element. In the present specification , among the oxide semiconductor layers having a structure represented by InMO 3 (ZnO) m (m> 0), an oxide semiconductor having a structure containing Ga as M is oxidized by In-Ga-Zn-O system. It is called a physical semiconductor, and its thin film is also called an In-Ga-Zn-O-based non-single crystal film.

また、酸化物半導体層に適用する酸化物半導体として上記の他にも、In−Sn−Zn−
O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、S
n−Al−Zn−O系、In−Zn−O系、In−Ga−O系、Sn−Zn−O系、Al
−Zn−O系、In−O系、Sn−O系、Zn−O系の酸化物半導体を適用することがで
きる。また上記酸化物半導体層に酸化珪素を含ませてもよい。酸化物半導体層に結晶化を
阻害する酸化珪素(SiOx(X>0))を含ませることで、製造プロセス中において酸
化物半導体層の形成後に加熱処理した場合に、結晶化してしまうのを抑制することができ
る。なお、酸化物半導体層は非晶質な状態であることが好ましく、一部結晶化していても
よい。
In addition to the above, In-Sn-Zn- is also used as an oxide semiconductor applied to the oxide semiconductor layer.
O system, In-Al-Zn-O system, Sn-Ga-Zn-O system, Al-Ga-Zn-O system, S
n-Al-Zn-O system, In-Zn-O system, In-Ga-O system, Sn-Zn-O system, Al
−Zn—O-based, In—O-based, Sn—O-based, and Zn—O-based oxide semiconductors can be applied. Further, the oxide semiconductor layer may contain silicon oxide. By including silicon oxide (SiOx (X> 0)) that inhibits crystallization in the oxide semiconductor layer, it is possible to prevent crystallization when heat treatment is performed after the formation of the oxide semiconductor layer during the manufacturing process. can do. The oxide semiconductor layer is preferably in an amorphous state, and may be partially crystallized.

また、加熱処理の条件または酸化物半導体層の材料によっては、酸化物半導体層が非晶質
な状態から微結晶膜または多結晶膜となる場合もある。微結晶膜または多結晶膜となる場
合であっても、TFTとしてスイッチング特性を得ることができる。
Further, depending on the heat treatment conditions or the material of the oxide semiconductor layer, the oxide semiconductor layer may change from an amorphous state to a microcrystalline film or a polycrystalline film. Even in the case of a microcrystal film or a polycrystalline film, switching characteristics can be obtained as a TFT.

オフ電流の変動幅が小さく、安定した電気特性を有する薄膜トランジスタを作製し、提供
することができる。よって、電気特性が良好で信頼性のよい薄膜トランジスタを有する半
導体装置を提供することができる。
It is possible to fabricate and provide a thin film transistor having a small fluctuation range of off-current and stable electrical characteristics. Therefore, it is possible to provide a semiconductor device having a thin film transistor having good electrical characteristics and good reliability.

半導体装置の作製工程を説明する図。The figure explaining the manufacturing process of the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 酸化物半導体層中の分析方法及び水素濃度を示す図。The figure which shows the analysis method and hydrogen concentration in an oxide semiconductor layer. 実施例1の薄膜トランジスタのオフ電流特性を示すグラフ。The graph which shows the off-current characteristic of the thin film transistor of Example 1. FIG. 半導体装置の計算に用いた断面構造を示す図。The figure which shows the cross-sectional structure used for the calculation of a semiconductor device. 半導体装置の計算で仮定した構造を説明する図。The figure explaining the structure assumed in the calculation of a semiconductor device. 半導体装置のブロック図を説明する図。The figure explaining the block diagram of the semiconductor device. 信号線駆動回路の構成及び動作を説明する図。The figure explaining the structure and operation of the signal line drive circuit. シフトレジスタの構成を示す回路図。A circuit diagram showing the configuration of a shift register. シフトレジスタの動作を説明する構成及びタイミングチャート。A configuration and timing chart illustrating the operation of the shift register. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置の画素等価回路を説明する図。The figure explaining the pixel equivalent circuit of the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置の構成を示す回路図。A circuit diagram showing the configuration of a semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置を説明する図。The figure explaining the semiconductor device. 半導体装置の構成を示す回路図。A circuit diagram showing the configuration of a semiconductor device. 電子書籍の例を示す図。The figure which shows the example of the electronic book. テレビジョン装置およびデジタルフォトフレームの例を示す図。The figure which shows the example of a television apparatus and a digital photo frame. 遊技機の例を示す図。The figure which shows the example of the gaming machine. 携帯型のコンピュータ及び携帯電話機の例を示す図。The figure which shows the example of the portable computer and the mobile phone. 半導体装置の計算結果を説明する図。The figure explaining the calculation result of the semiconductor device. 半導体装置の計算結果を説明する図。The figure explaining the calculation result of the semiconductor device. 半導体装置の計算結果を説明する図。The figure explaining the calculation result of the semiconductor device.

以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は
以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれ
ば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈さ
れるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that the form and details thereof can be changed in various ways. Further, the present invention is not construed as being limited to the description contents of the embodiments shown below.

(実施の形態1)
本実施の形態では、図1(E)に示す薄膜トランジスタ150の作製方法の一形態につい
て、薄膜トランジスタ作製工程の断面図である図1(A)乃至図1(E)を用いて説明す
る。なお、図1(F)は、図1(E)に示す薄膜トランジスタ150の上面図である。薄
膜トランジスタ150は、チャネルエッチ型と呼ばれるボトムゲート構造の一つである。
(Embodiment 1)
In this embodiment, one embodiment of the method for manufacturing the thin film transistor 150 shown in FIG. 1 (E) will be described with reference to FIGS. 1 (A) to 1 (E), which are cross-sectional views of the thin film transistor manufacturing process. Note that FIG. 1F is a top view of the thin film transistor 150 shown in FIG. 1E. The thin film transistor 150 is one of the bottom gate structures called a channel etch type.

まず、絶縁表面を有する基板である基板100上に、金属導電膜を形成し、所望の形状に
加工するため、フォトマスクを用いてフォトリソグラフィ工程、及びエッチング工程を行
いゲート電極層101を設ける。なお、レジストマスクをインクジェット法で形成しても
よい。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、
製造コストを低減できる。
First, in order to form a metal conductive film on the substrate 100, which is a substrate having an insulating surface, and process it into a desired shape, a photolithography step and an etching step are performed using a photomask to provide a gate electrode layer 101. The resist mask may be formed by an inkjet method. Since a photomask is not used when the resist mask is formed by the inkjet method,
Manufacturing cost can be reduced.

基板100としては、ガラス基板を用いることが好ましい。基板100として用いるガラ
ス基板は、後の加熱処理の温度が高い場合には、歪み点が730℃以上のものを用いると
良い。また、基板100には、例えば、アルミノシリケートガラス、アルミノホウケイ酸
ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている。ホウ酸と比較し
て酸化バリウム(BaO)を多く含ませることで、より実用的な耐熱ガラスが得られる。
このため、BよりBaOを多く含むガラス基板を用いることが好ましい。
As the substrate 100, it is preferable to use a glass substrate. As the glass substrate used as the substrate 100, when the temperature of the subsequent heat treatment is high, it is preferable to use a glass substrate having a strain point of 730 ° C. or higher. Further, for the substrate 100, for example, glass materials such as aluminosilicate glass, aluminoborosilicate glass, and bariumborosilicate glass are used. By containing a large amount of barium oxide (BaO) as compared with boric acid, more practical heat-resistant glass can be obtained.
Therefore, it is preferred that from B 2 O 3 is used a glass substrate containing more BaO.

なお、上記の基板100に代えて、セラミック基板、石英ガラス基板、石英基板、サファ
イア基板などの絶縁体でなる基板を用いても良い。他にも、結晶化ガラスなどを用いるこ
とができる。
Instead of the above substrate 100, a substrate made of an insulator such as a ceramic substrate, a quartz glass substrate, a quartz substrate, or a sapphire substrate may be used. In addition, crystallized glass or the like can be used.

また、下地膜となる絶縁膜を基板100とゲート電極層101の間に設けてもよい。下地
膜は、基板100からの不純物元素の拡散を防止する機能があり、窒化珪素膜、酸化珪素
膜、窒化酸化珪素膜、または酸化窒化珪素膜から選ばれた一または複数の膜による積層構
造により形成することができる。
Further, an insulating film serving as a base film may be provided between the substrate 100 and the gate electrode layer 101. The undercoat film has a function of preventing the diffusion of impurity elements from the substrate 100, and has a laminated structure of one or more films selected from a silicon nitride film, a silicon oxide film, a silicon nitride film, or a silicon nitride film. Can be formed.

下地膜に、塩素、フッ素などのハロゲン元素を含ませることで、基板100からの不純物
元素の拡散を防止する機能をさらに高めることができる。下地膜中に含ませるハロゲン元
素の濃度は、SIMS(二次イオン質量分析計)を用いた分析により得られる濃度ピーク
を1×1015atoms/cm以上1×1020atoms/cm以下とすればよ
い。
By impregnating the base film with halogen elements such as chlorine and fluorine, the function of preventing the diffusion of impurity elements from the substrate 100 can be further enhanced. As for the concentration of halogen elements contained in the base film, the concentration peak obtained by analysis using SIMS (secondary ion mass spectrometer) is 1 × 10 15 atoms / cm 3 or more and 1 × 10 20 atoms / cm 3 or less. do it.

ゲート電極層101としては、金属導電膜を用いることができる。金属導電膜の材料とし
ては、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素
を成分とする合金か、上述した元素を組み合わせた合金等を用いるのが好ましい。例えば
、チタン層上にアルミニウム層と、該アルミニウム層上にチタン層が積層された三層の積
層構造、またはモリブデン層上にアルミニウム層と、該アルミニウム層上にモリブデン層
を積層した三層の積層構造とすることが好ましい。勿論、金属導電膜として単層、または
2層構造、または4層以上の積層構造としてもよい。
A metal conductive film can be used as the gate electrode layer 101. As the material of the metal conductive film, an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, an alloy containing the above-mentioned elements as a component, an alloy in which the above-mentioned elements are combined, or the like is used. preferable. For example, a three-layer laminated structure in which an aluminum layer is laminated on a titanium layer and a titanium layer is laminated on the aluminum layer, or a three-layer laminate in which an aluminum layer is laminated on a molybdenum layer and a molybdenum layer is laminated on the aluminum layer. It is preferable to have a structure. Of course, the metal conductive film may have a single layer, a two-layer structure, or a laminated structure of four or more layers.

次いで、ゲート電極層101上にゲート絶縁層102を形成する。 Next, the gate insulating layer 102 is formed on the gate electrode layer 101.

ゲート絶縁層102は、プラズマCVD法またはスパッタリング法等を用いて、酸化珪素
層、窒化珪素層、酸化窒化珪素層または窒化酸化珪素層を単層でまたは積層して形成する
ことができる。例えば、成膜ガスとして、SiH、酸素及び窒素を用いてプラズマCV
D法により酸化窒化珪素層を形成すればよい。ゲート絶縁層102の膜厚は、100nm
以上500nm以下とし、積層の場合は、例えば、膜厚50nm以上200nm以下の第
1のゲート絶縁層と、第1のゲート絶縁層上に膜厚5nm以上300nm以下の第2のゲ
ート絶縁層の積層とする。
The gate insulating layer 102 can be formed by using a plasma CVD method, a sputtering method, or the like to form a silicon oxide layer, a silicon nitride layer, a silicon nitride layer, or a silicon nitride layer in a single layer or in a laminated manner. For example, plasma CV using SiH 4 , oxygen and nitrogen as the film forming gas.
The silicon oxide layer may be formed by the D method. The film thickness of the gate insulating layer 102 is 100 nm.
In the case of lamination, for example, a first gate insulating layer having a film thickness of 50 nm or more and 200 nm or less and a second gate insulating layer having a film thickness of 5 nm or more and 300 nm or less are laminated on the first gate insulating layer. And.

また、酸化物半導体膜の成膜前に、不活性ガス雰囲気(窒素、またはヘリウム、ネオン、
アルゴン等)下において加熱処理(400℃以上基板の歪み点未満)を行い、層内に含ま
れる水素及び水などの不純物を除去したゲート絶縁層102としてもよい。
Also, before the film formation of the oxide semiconductor film, an inert gas atmosphere (nitrogen, or helium, neon, etc.)
The gate insulating layer 102 may be obtained by performing heat treatment (400 ° C. or higher and less than the distortion point of the substrate) under (argon or the like) to remove impurities such as hydrogen and water contained in the layer.

次いで、ゲート絶縁層102上に、膜厚5nm以上200nm以下、好ましくは10nm
以上50nm以下の酸化物半導体膜を形成する。酸化物半導体膜の形成後に脱水化または
脱水素化のための加熱処理を行っても酸化物半導体膜を非晶質な状態とするため、膜厚を
50nm以下と薄くすることが好ましい。酸化物半導体膜の膜厚を薄くすることで酸化物
半導体層の形成後に加熱処理した場合に、結晶化してしまうのを抑制することができる。
Next, on the gate insulating layer 102, the film thickness is 5 nm or more and 200 nm or less, preferably 10 nm.
An oxide semiconductor film having a diameter of 50 nm or less is formed. Even if heat treatment for dehydration or dehydrogenation is performed after the formation of the oxide semiconductor film, the oxide semiconductor film is in an amorphous state, so that the film thickness is preferably as thin as 50 nm or less. By reducing the film thickness of the oxide semiconductor film, it is possible to prevent crystallization when heat treatment is performed after the formation of the oxide semiconductor layer.

なお、酸化物半導体膜をスパッタリング法により成膜する前に、アルゴンガスを導入して
プラズマを発生させて逆スパッタリングを行い、ゲート絶縁層102の表面に付着してい
るゴミを除去することが好ましい。逆スパッタリングとは、ターゲット側に電圧を印加せ
ずに、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板表面がプラズマ
に曝されて表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウムな
どを用いてもよい。
Before forming the oxide semiconductor film by the sputtering method, it is preferable to introduce argon gas to generate plasma and perform reverse sputtering to remove dust adhering to the surface of the gate insulating layer 102. .. Inverse sputtering is a method in which a voltage is applied to the substrate side using an RF power supply in an argon atmosphere without applying a voltage to the target side, and the substrate surface is exposed to plasma to modify the surface. In addition, nitrogen, helium or the like may be used instead of the argon atmosphere.

酸化物半導体膜は、In−Ga−Zn−O系非単結晶膜、In−Sn−Zn−O系、In
−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−
Zn−O系、In−Ga−O系、In−Zn−O系、Sn−Zn−O系、Al−Zn−O
系、In−O系、Sn−O系、Zn−O系の酸化物半導体膜を用いる。本実施の形態では
、例えば、In−Ga−Zn−O系金属酸化物ターゲットを用いてスパッタリング法によ
り成膜する。また、酸化物半導体膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰
囲気下、又は希ガス(代表的にはアルゴン)及び酸素雰囲気下においてスパッタリング法
により酸化物半導体膜を形成することができる。また、スパッタリング法を用いる場合、
SiOを2重量%以上10重量%以下含むターゲットを用いて成膜を行い、酸化物半導
体膜に結晶化を阻害するSiOx(X>0)を含ませ、後の工程で行う脱水化または脱水
素化のための加熱処理の際に結晶化してしまうのを抑制することが好ましい。なお、電源
としてパルス直流(DC)電源を用いると、ごみが軽減でき、膜厚分布も均一となるため
に好ましい。
The oxide semiconductor film is an In-Ga-Zn-O-based non-single crystal film, In-Sn-Zn-O-based film, In.
-Al-Zn-O system, Sn-Ga-Zn-O system, Al-Ga-Zn-O system, Sn-Al-
Zn-O system, In-Ga-O system, In-Zn-O system, Sn-Zn-O system, Al-Zn-O
A system, In—O system, Sn—O system, or Zn—O system oxide semiconductor film is used. In the present embodiment, for example, a film is formed by a sputtering method using an In-Ga-Zn-O-based metal oxide target. Further, the oxide semiconductor film is formed by a sputtering method in a rare gas (typically argon) atmosphere, an oxygen atmosphere, or a rare gas (typically argon) and an oxygen atmosphere. Can be done. When using the sputtering method,
Film formation is performed using a target containing SiO 2 in an amount of 2% by weight or more and 10% by weight or less, the oxide semiconductor film is impregnated with SiOx (X> 0) that inhibits crystallization, and dehydrogenation or dehydration is performed in a later step. It is preferable to prevent crystallization during heat treatment for dehydrogenation. It is preferable to use a pulsed direct current (DC) power source as the power source because dust can be reduced and the film thickness distribution becomes uniform.

また、金属酸化物ターゲット中の金属酸化物の相対密度は好ましくは95%以上、更に好
ましくは99%以上とする。これにより、形成された酸化物半導体膜中の不純物濃度を低
減することができ、電気特性または信頼性の高い薄膜トランジスタを得ることができる。
本実施の形態では、金属酸化物の相対密度が97%の金属酸化物ターゲットを用いる。
The relative density of the metal oxide in the metal oxide target is preferably 95% or more, more preferably 99% or more. As a result, the concentration of impurities in the formed oxide semiconductor film can be reduced, and a thin film transistor having high electrical characteristics or reliability can be obtained.
In this embodiment, a metal oxide target having a relative density of metal oxides of 97% is used.

スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法
と、直流電源を用いるDCスパッタリング法があり、さらにパルス的にバイアスを与える
パルスDCスパッタリング法もある。RFスパッタリング法は主に絶縁膜を成膜する場合
に用いられ、DCスパッタリング法は主に金属膜を成膜する場合に用いられる。
The sputtering method includes an RF sputtering method in which a high-frequency power source is used as a power source for sputtering, a DC sputtering method in which a DC power source is used, and a pulse DC sputtering method in which a bias is applied in a pulsed manner. The RF sputtering method is mainly used when forming an insulating film, and the DC sputtering method is mainly used when forming a metal film.

また、材料の異なるターゲットを複数設置できる多元スパッタリング装置もある。多元ス
パッタリング装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャン
バーで複数種類の材料を同時に放電させて成膜することもできる。
There is also a multi-dimensional sputtering device that can install a plurality of targets made of different materials. The multi-dimensional sputtering apparatus can form a laminated film of different material films in the same chamber, or can simultaneously discharge a plurality of types of materials in the same chamber to form a film.

また、チャンバー内部に磁石機構を備えたマグネトロンスパッタリング法を用いるスパッ
タ装置や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRス
パッタリング法を用いるスパッタ装置がある。
Further, there are a sputtering apparatus using a magnetron sputtering method having a magnet mechanism inside the chamber and a sputtering apparatus using an ECR sputtering method using plasma generated by using microwaves without using glow discharge.

また、スパッタリング法を用いる成膜方法として、成膜中にターゲット物質とスパッタリ
ングガス成分とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタリ
ング法や、成膜中に基板にも電圧をかけるバイアススパッタリング法もある。
Further, as a film forming method using a sputtering method, a reactive sputtering method in which a target substance and a sputtering gas component are chemically reacted to form a thin film of the compound during film formation, or a voltage is applied to a substrate during film formation. There is also a bias sputtering method.

また、ゲート絶縁層102、及び酸化物半導体膜を大気に触れさせることなく連続的に形
成してもよい。大気に触れさせることなく成膜することで、水やハイドロカーボンなどの
、大気成分や大気中に浮遊する不純物元素に汚染されることなく各積層界面を形成するこ
とができるので、薄膜トランジスタ特性のばらつきを低減することができる。
Further, the gate insulating layer 102 and the oxide semiconductor film may be continuously formed without being exposed to the atmosphere. By forming the film without exposing it to the atmosphere, each laminated interface can be formed without being contaminated by atmospheric components such as water and hydrocarbons and impurity elements suspended in the atmosphere, so that the characteristics of the thin film transistor vary. Can be reduced.

次いで、酸化物半導体膜をフォトリソグラフィ工程により島状の酸化物半導体層103に
加工する(図1(A)参照)。また、島状の酸化物半導体層103を形成するためのレジ
ストマスクをインクジェット法で形成してもよい。レジストマスクをインクジェット法で
形成するとフォトマスクを使用しないため、製造コストを低減できる。
Next, the oxide semiconductor film is processed into an island-shaped oxide semiconductor layer 103 by a photolithography step (see FIG. 1 (A)). Further, the resist mask for forming the island-shaped oxide semiconductor layer 103 may be formed by an inkjet method. When the resist mask is formed by the inkjet method, the photomask is not used, so that the manufacturing cost can be reduced.

次いで、第1の熱処理を行って、酸化物半導体層103の脱水化または脱水素化を行う。
脱水化または脱水素化を行う第1の熱処理の温度は、350℃以上750℃以下、好まし
くは425℃以上とする。なお、425℃以上であれば熱処理時間は1時間以下でよいが
、425℃未満であれば加熱処理時間は、1時間よりも長時間行うこととする。例えば、
加熱処理装置の一つである電気炉に基板を導入し、酸化物半導体層103に対して窒素雰
囲気下において加熱処理を行った後、大気に触れることなく、酸化物半導体層103への
水や水素の再混入を防ぎ、酸化物半導体層103を得ることができる。本実施の形態では
、酸化物半導体層103の脱水化または脱水素化を行う加熱温度Tから、再び水が入らな
いような十分な温度まで同じ炉を用い、具体的には加熱温度Tよりも100℃以上下がる
まで窒素雰囲気下で徐冷する。また、窒素雰囲気に限定されず、不活性ガス雰囲気(ヘリ
ウム、ネオン、アルゴン等)下において脱水化または脱水素化を行う。
Next, the first heat treatment is performed to dehydrate or dehydrogenate the oxide semiconductor layer 103.
The temperature of the first heat treatment for dehydration or dehydrogenation is 350 ° C. or higher and 750 ° C. or lower, preferably 425 ° C. or higher. If the temperature is 425 ° C. or higher, the heat treatment time may be 1 hour or less, but if the temperature is lower than 425 ° C., the heat treatment time is longer than 1 hour. for example,
After introducing the substrate into an electric furnace, which is one of the heat treatment devices, and heat-treating the oxide semiconductor layer 103 in a nitrogen atmosphere, water or water to the oxide semiconductor layer 103 is not exposed to the atmosphere. The oxide semiconductor layer 103 can be obtained by preventing the remixing of hydrogen. In the present embodiment, the same furnace is used from the heating temperature T for dehydrating or dehydrogenating the oxide semiconductor layer 103 to a sufficient temperature so that water does not enter again, specifically, higher than the heating temperature T. Slowly cool in a nitrogen atmosphere until the temperature drops to 100 ° C. or higher. Further, the dehydrogenation or dehydrogenation is performed in an inert gas atmosphere (helium, neon, argon, etc.) without being limited to the nitrogen atmosphere.

第1の熱処理により酸化物半導体層103を構成する酸化物半導体の原子レベルの再配列
が行われる。第1の熱処理は、酸化物半導体層103中におけるキャリアの移動を阻害す
る歪みを解放できる点で重要である。
The first heat treatment performs atomic-level rearrangement of the oxide semiconductors constituting the oxide semiconductor layer 103. The first heat treatment is important in that it can release the strain that hinders the movement of carriers in the oxide semiconductor layer 103.

なお、第1の熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに
、水、水素などが含まれないことが好ましい。または、加熱処理装置に導入する窒素、ま
たはヘリウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上、
好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好まし
くは0.1ppm以下)とすることが好ましい。
In the first heat treatment, it is preferable that nitrogen, or a rare gas such as helium, neon, or argon does not contain water, hydrogen, or the like. Alternatively, the purity of nitrogen or a rare gas such as helium, neon, or argon to be introduced into the heat treatment apparatus is 6N (99.99999%) or more.
It is preferably 7N (99.999999%) or more (that is, the impurity concentration is 1 ppm or less, preferably 0.1 ppm or less).

また、第1の熱処理の加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの
熱伝導または熱輻射によって、被処理物を加熱する装置を備えていてもよい。例えば、G
RTA(Gas Rapid Thermal Anneal)装置、LRTA(Lam
p Rapid Thermal Anneal)装置等のRTA(Rapid The
rmal Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ
、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウ
ムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物
を加熱する装置である。GRTA装置は、高温のガスを用いて加熱処理を行う装置である
。気体には、アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と
反応しない不活性気体が用いられる。
Further, the heat treatment device for the first heat treatment is not limited to the electric furnace, and may include a device for heating the object to be treated by heat conduction or heat radiation from a heating element such as a resistance heating element. For example, G
RTA (Gas Rapid Thermal Anneal) device, LRTA (Lam)
RTA (Rapid The) such as pRapid Thermal Anneal equipment
An rmal Anneal) device can be used. The LRTA device is a device that heats an object to be processed by radiation of light (electromagnetic waves) emitted from lamps such as halogen lamps, metal halide lamps, xenon arc lamps, carbon arc lamps, high pressure sodium lamps, and high pressure mercury lamps. The GRTA device is a device that performs heat treatment using a high-temperature gas. As the gas, a rare gas such as argon or an inert gas such as nitrogen that does not react with the object to be treated by heat treatment is used.

また、第1の熱処理の条件、または酸化物半導体層の材料によっては、酸化物半導体層が
結晶化し、微結晶膜または多結晶膜となる場合もある。ここで、酸化物半導体層は、結晶
化率が80%以上の微結晶膜となることがある。また、酸化物半導体層の材料によっては
、結晶を有さない酸化物半導体層となることもある。
Further, depending on the conditions of the first heat treatment or the material of the oxide semiconductor layer, the oxide semiconductor layer may crystallize to become a microcrystalline film or a polycrystalline film. Here, the oxide semiconductor layer may be a microcrystal film having a crystallization rate of 80% or more. Further, depending on the material of the oxide semiconductor layer, the oxide semiconductor layer may have no crystals.

また、酸化物半導体層の第1の熱処理は、島状の酸化物半導体層103に加工する前の酸
化物半導体層に行うこともできる。その場合には、第1の熱処理後に、加熱装置から基板
を取り出し、フォトリソグラフィ工程を行う。
Further, the first heat treatment of the oxide semiconductor layer can also be performed on the oxide semiconductor layer before being processed into the island-shaped oxide semiconductor layer 103. In that case, after the first heat treatment, the substrate is taken out from the heating device and a photolithography step is performed.

ここで、酸化物半導体層中の脱水素化を行った場合と、行わない場合の水素濃度分析結果
について触れておく。図3(A)は、本分析で用いた試料の断面構造模式図である。ガラ
ス基板400上にプラズマCVD法で酸化窒化絶縁層401を形成し、酸化窒化絶縁層4
01上にIn−Ga−Zn−O系酸化物半導体層402を約40nm形成したものを用意
した。用意した試料を分断し、一つは脱水素化を行わず、もう一つはGRTA法による窒
素雰囲気中650℃、6分間の脱水素化を行なった。それぞれの試料について、酸化物半
導体層中の水素濃度を測定することで、熱処理による脱水素化の効果について調査した。
Here, the results of hydrogen concentration analysis with and without dehydrogenation in the oxide semiconductor layer will be described. FIG. 3A is a schematic cross-sectional structure of the sample used in this analysis. An oxide nitriding insulating layer 401 is formed on a glass substrate 400 by a plasma CVD method, and the oxide nitriding insulating layer 4 is formed.
An In-Ga-Zn-O-based oxide semiconductor layer 402 having an In-Ga-Zn-O oxide semiconductor layer 402 formed on the 01 at about 40 nm was prepared. The prepared sample was divided, one was not dehydrogenated, and the other was dehydrogenated at 650 ° C. for 6 minutes in a nitrogen atmosphere by the GRTA method. The effect of dehydrogenation by heat treatment was investigated by measuring the hydrogen concentration in the oxide semiconductor layer for each sample.

酸化物半導体層中の水素濃度測定は、二次イオン質量分析法(SIMS:Seconda
ry Ion Mass Spectroscopy)で分析が行われた。図3(B)は
、酸化物半導体層中の膜厚方向の水素濃度分布を示すSIMS分析結果である。横軸は試
料表面からの深さを示しており、左端の深さ0nmの位置が試料最表面(酸化物半導体層
の最表面)に相当する。図3(A)に示す分析方向403は、SIMS分析の分析方向を
示している。分析は酸化物半導体層の最表面からガラス基板400に向かう方向で行った
。つまり、図3(B)の横軸において、左端から右端の方向に向かって行った。図3(B
)の縦軸は、特定深さにおける試料中の水素濃度と、酸素イオン強度を対数軸で示してい
る。
The measurement of hydrogen concentration in the oxide semiconductor layer is performed by secondary ion mass spectrometry (SIMS: Seconda).
Analysis was performed on ry Ion Mass Spectroscopy). FIG. 3B is a SIMS analysis result showing the hydrogen concentration distribution in the film thickness direction in the oxide semiconductor layer. The horizontal axis indicates the depth from the sample surface, and the position at the left end at a depth of 0 nm corresponds to the outermost surface of the sample (the outermost surface of the oxide semiconductor layer). The analysis direction 403 shown in FIG. 3A indicates the analysis direction of the SIMS analysis. The analysis was performed in the direction from the outermost surface of the oxide semiconductor layer toward the glass substrate 400. That is, on the horizontal axis of FIG. 3B, the direction was from the left end to the right end. FIG. 3 (B
) Indicates the hydrogen concentration in the sample at a specific depth and the oxygen ionic strength on the logarithmic axis.

図3(B)において、水素濃度プロファイル412は、脱水素化を行っていない酸化物半
導体層中の水素濃度プロファイルを示しており、水素濃度プロファイル413は、熱処理
による脱水素化を行った後の酸化物半導体層中の水素濃度プロファイルを示している。酸
素イオン強度プロファイル411は、水素濃度プロファイル412測定時に同時に取得し
た酸素イオン強度を示している。酸素イオン強度プロファイル411に極端な変動が無く
、ほぼ一定のイオン強度が得られていることから、SIMS分析が正確に行われているこ
とがわかる。なお、水素濃度プロファイル413測定時も同様に酸素イオン強度を測定し
ており、こちらもほぼ一定のイオン強度が得られている。水素濃度プロファイル412及
び水素濃度プロファイル413は、試料と同じIn−Ga−Zn−O系酸化物半導体層で
作製した標準試料を用いて定量している。
In FIG. 3B, the hydrogen concentration profile 412 shows the hydrogen concentration profile in the oxide semiconductor layer that has not been dehydrogenated, and the hydrogen concentration profile 413 is after dehydrogenation by heat treatment. The hydrogen concentration profile in the oxide semiconductor layer is shown. The oxygen ionic strength profile 411 shows the oxygen ionic strength acquired at the same time when the hydrogen concentration profile 412 was measured. Since there is no extreme fluctuation in the oxygen ion intensity profile 411 and a substantially constant ionic strength is obtained, it can be seen that the SIMS analysis is performed accurately. The oxygen ionic strength was also measured at the time of measuring the hydrogen concentration profile 413, and a substantially constant ionic strength was also obtained here. The hydrogen concentration profile 412 and the hydrogen concentration profile 413 are quantified using a standard sample prepared from the same In-Ga-Zn-O oxide semiconductor layer as the sample.

なお、SIMS分析は、その原理上、試料表面近傍や、材質が異なる積層膜界面近傍のデ
ータを正確に得ることが困難であることが知られている。本分析においては、試料最表面
から深さ約15nmまでは正確なデータが得られていないと考えられるため、深さ15n
m以降のプロファイルを用いて評価した。
It is known that it is difficult for SIMS analysis to accurately obtain data in the vicinity of the sample surface or in the vicinity of the interface between laminated films of different materials due to its principle. In this analysis, it is considered that accurate data cannot be obtained from the outermost surface of the sample to a depth of about 15 nm, so the depth is 15 n.
Evaluation was made using the profile after m.

水素濃度プロファイル412から、脱水素化を行っていない酸化物半導体層中に、水素が
約3×1020atoms/cm以上、約5×1020atoms/cm以下、平均
水素濃度で約4×1020atoms/cm含まれていることがわかる。また、水素濃
度プロファイル413から、脱水素化により、酸化物半導体層中の平均水素濃度を約2×
1019atoms/cmに低減できていることがわかる。
From the hydrogen concentration profile 412, hydrogen is about 3 × 10 20 atoms / cm 3 or more, about 5 × 10 20 atoms / cm 3 or less, and an average hydrogen concentration of about 4 in the non-dehydrogenated oxide semiconductor layer. × 10 20 atoms / cm 3 It can be seen that it is contained. Further, from the hydrogen concentration profile 413, the average hydrogen concentration in the oxide semiconductor layer was reduced to about 2 × by dehydrogenation.
It can be seen that the amount can be reduced to 10 19 atoms / cm 3.

本分析により、GRTA法による窒素雰囲気中650℃、6分間の熱処理を行った試料を
SIMS分析する事で水素濃度が低減できたので、この熱処理工程で酸化物半導体層から
の脱水素化が確認できた。
By this analysis, the hydrogen concentration could be reduced by SIMS analysis of the sample that had been heat-treated at 650 ° C for 6 minutes in a nitrogen atmosphere by the GRTA method, so dehydrogenation from the oxide semiconductor layer was confirmed in this heat treatment step. did it.

次いで、第2の熱処理を行う。第2の熱処理の温度は、100℃以上第1の熱処理の温度
以下で行う。例えば、加熱処理装置の一つである電気炉に基板を導入し、大気雰囲気下、
若しくは酸素雰囲気下において加熱処理を行う。
Next, a second heat treatment is performed. The temperature of the second heat treatment is 100 ° C. or higher and lower than the temperature of the first heat treatment. For example, a substrate is introduced into an electric furnace, which is one of the heat treatment devices, and under an atmospheric atmosphere,
Alternatively, heat treatment is performed in an oxygen atmosphere.

次いで、ゲート絶縁層102、及び酸化物半導体層103上にソース電極層及びドレイン
電極層を形成するための導電膜を成膜する。
Next, a conductive film for forming the source electrode layer and the drain electrode layer is formed on the gate insulating layer 102 and the oxide semiconductor layer 103.

ソース電極層及びドレイン電極層を形成するための導電膜としては、ゲート電極層101
と同様に、金属導電膜を用いることができる。金属導電膜の材料としては、Al、Cr、
Cu、Ta、Ti、Mo、Wから選ばれた元素、または上述した元素を成分とする合金か
、上述した元素を組み合わせた合金等を用いるのが好ましい。例えば、チタン層上にアル
ミニウム層と、該アルミニウム層上にチタン層が積層された三層の積層構造、またはモリ
ブデン層上にアルミニウム層と、該アルミニウム層上にモリブデン層を積層した三層の積
層構造とすることが好ましい。勿論、金属導電膜として単層、または2層構造、または4
層以上の積層構造としてもよい。
The gate electrode layer 101 is used as a conductive film for forming the source electrode layer and the drain electrode layer.
Similarly, a metal conductive film can be used. Materials for the metal conductive film include Al, Cr,
It is preferable to use an element selected from Cu, Ta, Ti, Mo, and W, an alloy containing the above-mentioned elements as a component, an alloy in which the above-mentioned elements are combined, and the like. For example, a three-layer laminated structure in which an aluminum layer is laminated on a titanium layer and a titanium layer is laminated on the aluminum layer, or a three-layer laminate in which an aluminum layer is laminated on a molybdenum layer and a molybdenum layer is laminated on the aluminum layer. It is preferable to have a structure. Of course, the metal conductive film has a single-layer or two-layer structure, or 4
It may have a laminated structure of more than one layer.

フォトマスクを用いてフォトリソグラフィ工程により、ソース電極層及びドレイン電極層
を形成するための導電膜から、ソース電極層105a及びドレイン電極層105bを形成
する(図1(B)参照)。また、このとき酸化物半導体層103も一部がエッチングされ
、溝部(凹部)を有する酸化物半導体層103となる。
The source electrode layer 105a and the drain electrode layer 105b are formed from the conductive film for forming the source electrode layer and the drain electrode layer by a photolithography step using a photomask (see FIG. 1 (B)). Further, at this time, a part of the oxide semiconductor layer 103 is also etched to become the oxide semiconductor layer 103 having a groove (recess).

なお、ソース電極層105a及びドレイン電極層105bを形成するためのレジストマス
クをインクジェット法で形成してもよい。レジストマスクをインクジェット法で形成する
とフォトマスクを使用しないため、製造コストを低減できる。
The resist mask for forming the source electrode layer 105a and the drain electrode layer 105b may be formed by an inkjet method. When the resist mask is formed by the inkjet method, the photomask is not used, so that the manufacturing cost can be reduced.

また、酸化物半導体層103と、ソース電極層105a及びドレイン電極層105bの間
に、酸化物半導体層103よりも抵抗が低い酸化物導電層を形成しても良い。このような
積層構成とすることで、薄膜トランジスタの耐圧を向上させることができる。具体的には
、抵抗が低い酸化物導電層のキャリア濃度は、例えば1×1020/cm以上1×10
21/cm以下の範囲内であると好ましい。
Further, an oxide conductive layer having a resistance lower than that of the oxide semiconductor layer 103 may be formed between the oxide semiconductor layer 103 and the source electrode layer 105a and the drain electrode layer 105b. With such a laminated structure, the withstand voltage of the thin film transistor can be improved. Specifically, the carrier concentration of the oxide conductive layer having low resistance is, for example, 1 × 10 20 / cm 3 or more and 1 × 10.
Preferably in the range of from 21 / cm 3 or less.

次に、ゲート絶縁層102、酸化物半導体層103、ソース電極層105a及びドレイン
電極層105bを覆い、酸化物半導体層103の一部と接する絶縁層107を形成する(
図1(C)参照)。絶縁層107は、少なくとも1nm以上の膜厚とし、CVD法、スパ
ッタリング法など、絶縁層107に水、水素等の不純物を混入させない方法を適宜用いて
形成することができる。ここでは、絶縁層107は、スパッタリング法を用いて形成する
。酸化物半導体層103の一部と接して形成される絶縁層107は、水分や、水素イオン
や、酸素イオンや、OHなどの不純物を含まず、これらが外部から侵入することをブロ
ックする無機絶縁膜を用い、代表的には酸化珪素膜、窒化酸化珪素膜、窒化珪素膜、酸化
ガリウム膜、酸化アルミニウム膜、酸化窒化アルミニウム膜又は窒化アルミニウム膜、を
用いることができる。
Next, the gate insulating layer 102, the oxide semiconductor layer 103, the source electrode layer 105a, and the drain electrode layer 105b are covered to form an insulating layer 107 in contact with a part of the oxide semiconductor layer 103 (.
See FIG. 1 (C)). The insulating layer 107 has a film thickness of at least 1 nm or more, and can be formed by appropriately using a method such as a CVD method or a sputtering method that does not allow impurities such as water and hydrogen to be mixed into the insulating layer 107. Here, the insulating layer 107 is formed by using a sputtering method. The insulating layer 107 formed in contact with a part of the oxide semiconductor layer 103 does not contain impurities such as water, hydrogen ions, oxygen ions, and OH −, and is an inorganic substance that blocks the invasion of these from the outside. An insulating film can be used, and typically a silicon oxide film, a silicon nitride film, a silicon nitride film, a gallium oxide film, an aluminum oxide film, an aluminum nitride film, or an aluminum nitride film can be used.

また、絶縁層107は、酸化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜又は酸化窒化
アルミニウム膜の上に、窒化珪素膜又は窒化アルミニウム膜を積層する構造としてもよい
。特に窒化珪素膜は水分や、水素イオンや、酸素イオンや、OHなどの不純物を含まず
、これらが外部から侵入することをブロックしやすいので好ましい。
Further, the insulating layer 107 may have a structure in which a silicon nitride film or an aluminum nitride film is laminated on a silicon oxide film, a silicon nitride film, an aluminum oxide film or an aluminum nitride film. In particular, the silicon nitride film is preferable because it does not contain impurities such as water, hydrogen ions, oxygen ions, and OH −, and it is easy to block the invasion of these from the outside.

絶縁層107の成膜時の基板温度は、室温以上300℃以下とすればよく、酸化珪素膜の
スパッタリング法による成膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下
、または希ガス(代表的にはアルゴン)及び酸素雰囲気下において行うことができる。ま
た、ターゲットとして酸化珪素ターゲットまたは珪素ターゲットを用いることができる。
例えば、珪素ターゲットを用いて、酸素雰囲気下でスパッタリング法により酸化珪素を形
成することができる。
The substrate temperature at the time of film formation of the insulating layer 107 may be room temperature or higher and 300 ° C. or lower, and the film formation of the silicon oxide film by the sputtering method is performed in a noble gas (typically argon) atmosphere, an oxygen atmosphere, or. It can be carried out in a noble gas (typically argon) and oxygen atmosphere. Further, a silicon oxide target or a silicon target can be used as the target.
For example, using a silicon target, silicon oxide can be formed by a sputtering method in an oxygen atmosphere.

次いで、第3の熱処理を行う。第3の熱処理は、100℃以上第1の熱処理の温度以下で
行う。例えば、加熱処理装置の一つである電気炉に基板を導入し、窒素雰囲気下において
加熱処理を行う。第3の熱処理は、絶縁層107形成以降の工程であれば、いつ行っても
よい。
Then, a third heat treatment is performed. The third heat treatment is performed at 100 ° C. or higher and lower than the temperature of the first heat treatment. For example, the substrate is introduced into an electric furnace, which is one of the heat treatment devices, and the heat treatment is performed in a nitrogen atmosphere. The third heat treatment may be performed at any time as long as it is a step after the formation of the insulating layer 107.

以上の工程より、絶縁表面を有する基板である基板100上にゲート電極層101が設け
られ、ゲート電極層101の上にゲート絶縁層102が設けられ、ゲート絶縁層102の
上に酸化物半導体層103が設けられ、酸化物半導体層103の上にソース電極層105
a及びドレイン電極層105bが設けられ、ゲート絶縁層102、酸化物半導体層103
、ソース電極層105a及びドレイン電極層105bを覆い、酸化物半導体層103の一
部と接する絶縁層107が設けられている、チャネルエッチ型の薄膜トランジスタ150
を形成することができる(図1(E)参照)。
From the above steps, the gate electrode layer 101 is provided on the substrate 100 which is a substrate having an insulating surface, the gate insulating layer 102 is provided on the gate electrode layer 101, and the oxide semiconductor layer is provided on the gate insulating layer 102. 103 is provided, and the source electrode layer 105 is provided on the oxide semiconductor layer 103.
a and a drain electrode layer 105b are provided, and a gate insulating layer 102 and an oxide semiconductor layer 103 are provided.
, A channel-etched thin film transistor 150 that covers the source electrode layer 105a and the drain electrode layer 105b and is provided with an insulating layer 107 that is in contact with a part of the oxide semiconductor layer 103.
Can be formed (see FIG. 1 (E)).

図1(F)は、本実施の形態で示した薄膜トランジスタ150の上面図である。図1(E
)は、図1(F)のX1−X2部位の断面構成を示している。図1(F)において、Lは
チャネル長を示しており、Wはチャネル幅を示している。また、Aはチャネル幅方向と平
行な方向において、酸化物半導体層103がソース電極層105a及びドレイン電極層1
05bと重ならない領域の長さを示している。Lsはソース電極層105aとゲート電極
層101が重なる長さを示しており、Ldはドレイン電極層105bとゲート電極層10
1が重なる長さを示している。
FIG. 1 (F) is a top view of the thin film transistor 150 shown in the present embodiment. Figure 1 (E
) Shows the cross-sectional structure of the X1-X2 portion of FIG. 1 (F). In FIG. 1 (F), L indicates the channel length and W indicates the channel width. Further, in A, the oxide semiconductor layer 103 is the source electrode layer 105a and the drain electrode layer 1 in the direction parallel to the channel width direction.
The length of the region that does not overlap with 05b is shown. Ls indicates the length at which the source electrode layer 105a and the gate electrode layer 101 overlap, and Ld indicates the length at which the drain electrode layer 105b and the gate electrode layer 10 overlap.
1 indicates the overlapping length.

本実施の形態では、薄膜トランジスタ150をシングルゲート構造の薄膜トランジスタを
用いて説明したが、必要に応じて、チャネル形成領域を複数有するマルチゲート構造の薄
膜トランジスタや、絶縁層107上に第2のゲート電極層を有する構造の薄膜トランジス
タとすることもできる。
In the present embodiment, the thin film transistor 150 has been described using a thin film transistor having a single gate structure, but if necessary, a thin film transistor having a multi-gate structure having a plurality of channel forming regions or a second gate electrode layer on the insulating layer 107. It can also be a thin film transistor having a structure having the above.

また、本実施の形態では、チャネルエッチ型の薄膜トランジスタ150の作製方法につい
て説明したが、本実施の形態の構成はこれに限られるものではない。図2(A)に示すよ
うな、ボトムゲート構造のボトムコンタクト型(逆コプラナ型とも呼ぶ)の薄膜トランジ
スタ160や、図2(B)に示すような、チャネル保護層110を有するチャネル保護型
(チャネルストップ型ともいう)の薄膜トランジスタ170等も同様の材料、方法を用い
て形成することができる。図2(C)は、チャネルエッチ型薄膜トランジスタの他の例を
示している。図2(C)に示す薄膜トランジスタ180のゲート電極層101の幅は、酸
化物半導体層103の幅よりも大きい構造となっている。
Further, in the present embodiment, a method for manufacturing the channel-etched thin film transistor 150 has been described, but the configuration of the present embodiment is not limited to this. A bottom contact type (also referred to as an inverted coplanar type) thin film transistor 160 having a bottom gate structure as shown in FIG. 2 (A) and a channel protection type (channel) having a channel protection layer 110 as shown in FIG. 2 (B). A thin film transistor 170 or the like (also referred to as a stop type) can be formed by using the same material and method. FIG. 2C shows another example of a channel-etched thin film transistor. The width of the gate electrode layer 101 of the thin film transistor 180 shown in FIG. 2C has a structure larger than the width of the oxide semiconductor layer 103.

なお、薄膜トランジスタのチャネル長(図1(F)中のL)は、ソース電極層105aと
ドレイン電極層105bとの距離で定義されるが、チャネル保護型の薄膜トランジスタの
チャネル長は、キャリアの流れる方向と平行な方向のチャネル保護層の幅で定義される。
The channel length of the thin film transistor (L in FIG. 1F) is defined by the distance between the source electrode layer 105a and the drain electrode layer 105b, but the channel length of the channel-protected thin film transistor is the direction in which carriers flow. It is defined by the width of the channel protection layer in the direction parallel to.

本実施の形態により、酸化物半導体層を有する薄膜トランジスタのチャネル幅が1μmあ
たりのオフ電流を1×10−12A以下にすることができる。
According to this embodiment, the off-current per 1 μm of the channel width of the thin film transistor having the oxide semiconductor layer can be reduced to 1 × 10 -12 A or less.

また、薄膜トランジスタのチャネル長が3μm以上10μm以下の範囲、もしくは、1.
5μm以上乃至100μm以下の範囲において、−25℃から150℃までの動作温度範
囲における薄膜トランジスタのチャネル幅が1μmあたりのオフ電流を1×10−12
以下にすることができる。薄膜トランジスタのチャネル長を1.5μm以上、または3μ
m以上とすることで、短チャネル効果を抑制できるため好ましい。
Further, the channel length of the thin film transistor is in the range of 3 μm or more and 10 μm or less, or 1.
In the range of 5 μm or more and 100 μm or less, the channel width of the thin film transistor in the operating temperature range of -25 ° C to 150 ° C is 1 × 10 -12 A per off current per 1 μm.
It can be: The channel length of the thin film transistor is 1.5 μm or more, or 3 μm.
When it is m or more, the short channel effect can be suppressed, which is preferable.

ここで、図4(A)に示す断面構造の薄膜トランジスタを用いた、−25℃から150℃
までの環境下における薄膜トランジスタ特性の評価結果について説明しておく。
Here, -25 ° C to 150 ° C using the thin film transistor having the cross-sectional structure shown in FIG. 4 (A).
The evaluation results of the thin film transistor characteristics under the above environment will be described.

まず、ガラス基板801上に、ゲート電極層802としてタングステン層を100nmの
厚さで形成し、ゲート電極層802上に、ゲート絶縁層803として、酸化窒化層を10
0nmの厚さで形成し、ゲート絶縁層803上に、In−Ga−Zn−O系の酸化物半導
体層804を30nmの厚さで形成し、酸化物半導体層804上に、ソース電極層805
及びドレイン電極層806としてチタン層を形成し、薄膜トランジスタを作製した。なお
、薄膜トランジスタのチャネル長Lを3μm、チャネル幅Wを20μmとした。
First, a tungsten layer having a thickness of 100 nm is formed on the glass substrate 801 as the gate electrode layer 802, and 10 oxide nitride layers are formed on the gate electrode layer 802 as the gate insulating layer 803.
It is formed with a thickness of 0 nm, an In-Ga-Zn-O based oxide semiconductor layer 804 is formed with a thickness of 30 nm on the gate insulating layer 803, and a source electrode layer 805 is formed on the oxide semiconductor layer 804.
A titanium layer was formed as the drain electrode layer 806, and a thin film transistor was produced. The channel length L of the thin film transistor was 3 μm, and the channel width W was 20 μm.

次に、薄膜トランジスタに対して、測定時の基板温度を、−25℃、0℃、25℃、50
℃、100℃、150℃と変化させ、それぞれの基板温度(動作温度)における薄膜トラ
ンジスタのオフ電流を測定した。オフ電流特性の測定は、ソースとドレインの間の電圧(
以下、ドレイン電圧もしくはVdという)を10Vとし、ソースとゲートの間の電圧(以
下、ゲート電圧もしくはVgという)を−10Vにて行った。
Next, for the thin film transistor, the substrate temperature at the time of measurement was set to -25 ° C, 0 ° C, 25 ° C, 50.
The off-current of the thin film transistor at each substrate temperature (operating temperature) was measured at different temperatures of ° C., 100 ° C., and 150 ° C. The measurement of off-current characteristics is the voltage between the source and drain (
Hereinafter, the drain voltage (hereinafter referred to as Vd) was set to 10 V, and the voltage between the source and the gate (hereinafter referred to as the gate voltage or Vg) was set to −10 V.

図4(B)に、本測定で得られたオフ電流測定結果を示す。横軸の測定温度は、薄膜トラ
ンジスタのオフ電流測定時の基板温度(動作温度)をリニアスケールで示してあり、縦軸
は、各基板温度におけるオフ電流(Ioff)をログスケールで示している。
FIG. 4B shows the off-current measurement results obtained in this measurement. The horizontal axis shows the substrate temperature (operating temperature) at the time of measuring the off-current of the thin film transistor on a linear scale, and the vertical axis shows the off-current (Off) at each substrate temperature on a log scale.

図4(B)に示す、図中「□」はアモルファスシリコン膜を半導体層として使用した場合
のオフ電流を示してあり、図中「●」は酸化物半導体膜を半導体層として使用した場合の
オフ電流を示している。
In the figure, "□" shown in FIG. 4 (B) shows the off-current when the amorphous silicon film is used as the semiconductor layer, and "●" in the figure shows the case where the oxide semiconductor film is used as the semiconductor layer. Shows off current.

図4(B)より、アモルファスシリコン膜を半導体層として使用した場合のオフ電流は、
測定時の基板温度が上昇するに従い、オフ電流が上昇していることがわかる。酸化物半導
体膜を半導体層として使用した場合のオフ電流は、測定時の基板温度が上昇してもオフ電
流を1pA、即ち1×10−12A以下になっていることがわかる。
From FIG. 4B, the off-current when the amorphous silicon film is used as the semiconductor layer is
It can be seen that the off-current increases as the substrate temperature at the time of measurement increases. It can be seen that the off-current when the oxide semiconductor film is used as the semiconductor layer is 1 pA, that is, 1 × 10 -12 A or less even if the substrate temperature at the time of measurement rises.

ここで、オフ電流(Ioff)の温度依存性について以下に考察する。 Here, the temperature dependence of the off-current (Ioff) will be considered below.

薄膜トランジスタのオフ電流は電子と正孔の生成(以下、キャリアの生成という)、及び
電子と正孔の再結合(以下、キャリアの再結合という)により電流が流れることが一般的
に知られている。また、キャリアの再結合としては、電子が価電子帯(Ev)から伝導帯
(Ec)へ励起される直接再結合と、バンドギャップ(Eg)内の局在準位(Et)を介
して励起される間接再結合がある。
It is generally known that the off-current of a thin film transistor flows due to the generation of electrons and holes (hereinafter referred to as carrier generation) and the recombination of electrons and holes (hereinafter referred to as carrier recombination). .. Carrier recombination includes direct recombination in which electrons are excited from the valence band (Ev) to the conduction band (Ec) and excitation via localized levels (Et) in the bandgap (Eg). There is an indirect recombination that is done.

バンドギャップが狭い半導体の場合、電子が励起される熱エネルギーが少なくてすむため
、直接再結合も間接再結合も起こりやすいが、酸化物半導体のようにバンドギャップ(E
g)が広い半導体の場合は、電子の励起には大きな熱エネルギーが必要なため、直接再結
合も間接再結合も起こりにくいと仮定した。
In the case of a semiconductor with a narrow bandgap, less thermal energy is required to excite electrons, so direct recombination and indirect recombination are likely to occur, but the bandgap (E) is similar to that of oxide semiconductors.
In the case of a semiconductor with a wide g), it is assumed that direct recombination and indirect recombination are unlikely to occur because a large amount of thermal energy is required to excite electrons.

また、バンドギャップが広いと、半導体の真性キャリア濃度が極端に少なくなり、キャリ
ア総数も極めて少なくなる。キャリア総数が少ない結果として、キャリアの生成、キャリ
アの再結合の確率も減少するため、オフ電流が小さくなると仮定した。
Further, when the band gap is wide, the intrinsic carrier concentration of the semiconductor becomes extremely small, and the total number of carriers also becomes extremely small. As a result of the small total number of carriers, the probability of carrier generation and carrier recombination also decreases, so it is assumed that the off-current becomes small.

異なるバンドギャップ(Eg)を持つ半導体にて薄膜トランジスタのオフ電流の温度依存
について計算することを試みた。
Attempts were made to calculate the temperature dependence of the off-current of the thin film transistors in semiconductors with different bandgap (Eg).

計算で仮定した構造を図5に示す。ゲート電極層701としてタングステン層を100n
mの厚さで形成し、ゲート電極層701上に、ゲート絶縁層702として、酸化窒化層を
100nmの厚さで形成し、ゲート絶縁層702上に、半導体層703を30nmの厚さ
で形成し、半導体層703上に、ソース電極層704及びドレイン電極層705を形成し
た薄膜トランジスタを仮定した。
The structure assumed in the calculation is shown in FIG. 100n tungsten layer as gate electrode layer 701
It is formed with a thickness of m, an oxide nitride layer is formed with a thickness of 100 nm as a gate insulating layer 702 on the gate electrode layer 701, and a semiconductor layer 703 is formed with a thickness of 30 nm on the gate insulating layer 702. A thin film transistor in which the source electrode layer 704 and the drain electrode layer 705 are formed on the semiconductor layer 703 is assumed.

TFTのサイズはL/W=10/1μmとした。半導体のバンドギャップEg=1.1e
V、1.8eV、3.15eVの3種類とし、酸化物半導体はバンドギャップEg=3.
15eVと想定している。また、電子親和力χ=4.3eVと仮定し、ソース電極層70
4及びドレイン電極層705に使用する金属の仕事関数は酸化物半導体の電子親和力と同
じ4.3eVと仮定した。また、温度T=25℃、100℃、150℃の3条件の温度に
て計算を行った。なお、計算にはSilvaco社製デバイスシミュレーションソフトA
tlasを使用した。
The size of the TFT was L / W = 10/1 μm. Semiconductor bandgap Eg = 1.1e
There are three types of V, 1.8 eV and 3.15 eV, and the oxide semiconductor has a bandgap Eg = 3.
It is assumed to be 15 eV. Further, assuming that the electron affinity χ = 4.3 eV, the source electrode layer 70
The work function of the metal used for 4 and the drain electrode layer 705 was assumed to be 4.3 eV, which is the same as the electron affinity of the oxide semiconductor. Further, the calculation was performed under three conditions of temperature T = 25 ° C., 100 ° C., and 150 ° C. For calculation, device simulation software A manufactured by Silvaco
I used two.

アモルファス半導体では欠陥準位が温度特性に強く影響すると考え、計算では、直接再結
合のみを仮定した場合と、直接再結合と間接再結合の両方を仮定した場合について実施し
た。なお、間接再結合の準位はバンドギャップの中央に仮定した。計算で仮定した構造を
図6(A)、及び図6(B)に示す。直接再結合のみを仮定した図6(A)と、直接再結
合と間接再結合の両方を仮定した図6(B)の2種類にて計算した。
Considering that the defect level strongly affects the temperature characteristics in amorphous semiconductors, the calculation was performed when only direct recombination was assumed and when both direct recombination and indirect recombination were assumed. The level of indirect recombination was assumed to be in the center of the bandgap. The structures assumed in the calculation are shown in FIGS. 6 (A) and 6 (B). Calculations were made using two types: FIG. 6 (A), which assumes only direct recombination, and FIG. 6 (B), which assumes both direct recombination and indirect recombination.

図6(A)、及び図6(B)の図中「Ev」は価電子帯、「Ec」は伝導体、「Et」は
局在準位を示す。また、実線はキャリアの生成、破線はキャリアの再結合を想定している
In the drawings of FIGS. 6 (A) and 6 (B), “Ev” indicates a valence band, “Ec” indicates a conductor, and “Et” indicates a localized level. The solid line assumes carrier generation, and the broken line assumes carrier recombination.

計算結果を図29に示す。図29は、バンドギャップ(Eg)=1.1eVと仮定した場
合の計算結果であり、図29(A)は直接再結合のみを仮定した場合の計算結果、図29
(B)は直接再結合と間接再結合の両方を仮定した場合の計算結果である。
The calculation result is shown in FIG. FIG. 29 shows the calculation result when the band gap (Eg) = 1.1 eV is assumed, and FIG. 29 (A) shows the calculation result when only the direct recombination is assumed.
(B) is a calculation result when both direct recombination and indirect recombination are assumed.

なお、図29(A)中に示す、スペクトル201は25℃、スペクトル202は100℃
、スペクトル203は150℃を仮定した場合の計算結果であり、図29(B)中に示す
、スペクトル301は25℃、スペクトル302は100℃、スペクトル303は150
℃を仮定した場合の計算結果である。
The spectrum 201 shown in FIG. 29 (A) is 25 ° C., and the spectrum 202 is 100 ° C.
, Spectrum 203 is a calculation result assuming 150 ° C., and is shown in FIG. 29 (B), spectrum 301 is 25 ° C., spectrum 302 is 100 ° C., and spectrum 303 is 150.
This is the calculation result assuming ℃.

計算結果を図30に示す。図30は、バンドギャップ(Eg)=1.8eVと仮定した場
合の計算結果であり、図30(A)は直接再結合のみを仮定した場合の計算結果、図30
(B)は直接再結合と間接再結合の両方を仮定した場合の計算結果である。
The calculation result is shown in FIG. FIG. 30 shows the calculation result when the band gap (Eg) = 1.8 eV is assumed, and FIG. 30 (A) shows the calculation result when only the direct recombination is assumed.
(B) is a calculation result when both direct recombination and indirect recombination are assumed.

なお、図30(A)中に示す、スペクトル311は25℃、スペクトル312は100℃
、スペクトル313は150℃を仮定した場合の計算結果であり、図30(B)中に示す
、スペクトル321は25℃、スペクトル322は100℃、スペクトル323は150
℃を仮定した場合の計算結果である。
The spectrum 311 and the spectrum 312 shown in FIG. 30 (A) are at 25 ° C. and 100 ° C.
, Spectrum 313 is a calculation result assuming 150 ° C., and is shown in FIG. 30 (B), spectrum 321 is 25 ° C., spectrum 322 is 100 ° C., and spectrum 323 is 150.
This is the calculation result assuming ℃.

計算結果を図31に示す。図31は、バンドギャップ(Eg)=3.15eVと仮定した
場合の計算結果であり、図31(A)は直接再結合のみを仮定した場合の計算結果、図3
1(B)は直接再結合と間接再結合の両方を仮定した場合の計算結果である。
The calculation result is shown in FIG. FIG. 31 shows the calculation result when the band gap (Eg) = 3.15 eV is assumed, and FIG. 31 (A) shows the calculation result when only the direct recombination is assumed.
1 (B) is a calculation result assuming both direct recombination and indirect recombination.

なお、図31(A)中に示す、スペクトル451は25℃、スペクトル452は100℃
、スペクトル453は150℃を仮定した場合の計算結果であり、図31(B)中に示す
、スペクトル461は25℃、スペクトル462は100℃、スペクトル463は150
℃を仮定した場合の計算結果である。
The spectrum 451 and the spectrum 452 shown in FIG. 31 (A) are 25 ° C. and 100 ° C.
, Spectrum 453 is a calculation result assuming 150 ° C., and is shown in FIG. 31 (B), spectrum 461 is 25 ° C., spectrum 462 is 100 ° C., and spectrum 463 is 150.
This is the calculation result assuming ℃.

図29(B)から、バンドギャップ(Eg)=1.1eVと仮定した場合、25℃時では
、1×10−13A以上のオフ電流が確認され、150℃の時では1×10−10A以上
のオフ電流が確認されており、温度依存性があることがわかる。
From FIG. 29 (B), assuming a bandgap (Eg) = 1.1 eV, an off-current of 1 × 10 -13 A or more was confirmed at 25 ° C, and 1 × 10 -10 at 150 ° C. An off-current of A or more has been confirmed, indicating that it is temperature-dependent.

図30(B)から、バンドギャップ(Eg)=1.8eVと仮定した場合、図29(B)
のバンドギャップ(Eg)=1.1eVと比較し、25℃時のオフ電流は1×10−16
A以下、150℃の時では1×10−13A以下のオフ電流が確認されており、温度依存
性があることがわかる。
From FIG. 30 (B), assuming that the band gap (Eg) = 1.8 eV, FIG. 29 (B)
Compared with the band gap (Eg) = 1.1 eV, the off current at 25 ° C is 1 × 10-16.
At A or less and 150 ° C., an off-current of 1 × 10 -13 A or less has been confirmed, indicating that there is temperature dependence.

図31(B)から、バンドギャップ(Eg)=3.15eVと仮定した場合、図29(B
)のバンドギャップ(Eg)=1.1eV、及び、図30(B)のバンドギャップ(Eg
)=1.8eVと比較し、計算した3条件の温度25℃、100℃、150℃において、
1×10−16A以下のオフ電流となっており、温度依存性はない結果が得られている。
From FIG. 31 (B), assuming that the band gap (Eg) = 3.15 eV, FIG. 29 (B).
) Bandgap (Eg) = 1.1eV, and the bandgap (Eg) of FIG. 30 (B).
) = 1.8 eV, at the calculated temperatures of 25 ° C, 100 ° C, and 150 ° C under the three conditions.
The off-current is 1 × 10 -16 A or less, and the result is that there is no temperature dependence.

以上のように、バンドギャップが狭い半導体の場合、電子が励起される熱エネルギーが少
なくてすむため、直接再結合も間接再結合も起こりやすいが、酸化物半導体のようにバン
ドギャップ(Eg)が広い半導体の場合は、電子の励起には大きな熱エネルギーが必要な
ため、直接再結合も間接再結合も起こりにくい計算結果が得られている。
As described above, in the case of a semiconductor having a narrow bandgap, since the thermal energy for exciting electrons is small, both direct recombination and indirect recombination are likely to occur, but the bandgap (Eg) is large like an oxide semiconductor. In the case of a wide semiconductor, a large amount of thermal energy is required to excite electrons, so calculation results are obtained in which both direct recombination and indirect recombination are unlikely to occur.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
This embodiment can be implemented in combination with the configurations described in other embodiments as appropriate.

(実施の形態2)
本実施の形態では、同一基板上に少なくとも駆動回路の一部と、画素部に配置する薄膜ト
ランジスタを作製する例について以下に説明する。
(Embodiment 2)
In the present embodiment, an example of producing at least a part of the drive circuit and a thin film transistor to be arranged in the pixel portion on the same substrate will be described below.

画素部に配置する薄膜トランジスタは、実施の形態1に従って形成する。また、実施の形
態1に示す薄膜トランジスタはnチャネル型TFTであるため、駆動回路のうち、nチャ
ネル型TFTで構成することができる駆動回路の一部を画素部の薄膜トランジスタと同一
基板上に形成する。
The thin film transistor to be arranged in the pixel portion is formed according to the first embodiment. Further, since the thin film transistor shown in the first embodiment is an n-channel type TFT, a part of the drive circuit that can be configured by the n-channel type TFT is formed on the same substrate as the thin film transistor of the pixel portion. ..

アクティブマトリクス型表示装置のブロック図の一例を図7(A)に示す。表示装置の基
板上5300には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆動
回路5303、信号線駆動回路5304を有する。画素部5301には、複数の信号線が
信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査線駆動回路5
302、及び走査線駆動回路5303から延伸して配置されている。なお走査線と信号線
との交差領域には、各々、表示素子を有する画素がマトリクス状に配置されている。また
、表示装置の基板5300はFPC(Flexible Printed Circui
t)等の接続部を介して、タイミング制御回路5305(コントローラ、制御ICともい
う)に接続されている。
An example of a block diagram of the active matrix type display device is shown in FIG. 7 (A). The 5300 on the substrate of the display device includes a pixel unit 5301, a first scanning line driving circuit 5302, a second scanning line driving circuit 5303, and a signal line driving circuit 5304. A plurality of signal lines are extended from the signal line drive circuit 5304 and arranged in the pixel unit 5301, and the plurality of scan lines are arranged in the first scan line drive circuit 5.
It is arranged so as to extend from 302 and the scanning line drive circuit 5303. In the intersection region of the scanning line and the signal line, pixels having a display element are arranged in a matrix. Further, the substrate 5300 of the display device is FPC (Flexible Printed Circuit).
It is connected to the timing control circuit 5305 (also referred to as a controller or control IC) via a connection portion such as t).

図7(A)では、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信号
線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのため、
外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また
、基板5300外部に駆動回路を設けた場合の配線を延伸させることによる接続部での接
続数を減らすことができ、信頼性の向上、または歩留まりの向上を図ることができる。
In FIG. 7A, the first scanning line driving circuit 5302, the second scanning line driving circuit 5303, and the signal line driving circuit 5304 are formed on the same substrate 5300 as the pixel unit 5301. for that reason,
Since the number of external parts such as drive circuits is reduced, the cost can be reduced. Further, when the drive circuit is provided outside the substrate 5300, the number of connections at the connection portion can be reduced by extending the wiring, and the reliability or the yield can be improved.

なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対し、一例とし
て、第1の走査線駆動回路用スタート信号(GSP1)(スタートパルス)、走査線駆動
回路用クロック信号(GCK1)を供給する。また、タイミング制御回路5305は、第
2の走査線駆動回路5303に対し、一例として、第2の走査線駆動回路用スタート信号
(GSP2)(スタートパルスともいう)、走査線駆動回路用クロック信号(GCK2)
を供給する。信号線駆動回路5304に対し、一例として、信号線駆動回路用スタート信
号(SSP)、信号線駆動回路用クロック信号(SCK)、ビデオ信号用データ(DAT
A)(単にビデオ信号ともいう)、ラッチ信号(LAT)を供給するものとする。なお各
クロック信号(GCK1、GCK2、SCK)は、周期のずれた複数のクロック信号でも
よいし、クロック信号を反転させた信号(CKB)とともに供給されるものであってもよ
い。なお、第1の走査線駆動回路5302と第2の走査線駆動回路5303の一方を省略
することが可能である。
The timing control circuit 5305 has, as an example, a start signal (GSP1) (start pulse) for the first scanning line driving circuit and a clock signal (GCK1) for the scanning line driving circuit with respect to the first scanning line driving circuit 5302. To supply. Further, the timing control circuit 5305 has, as an example, a second scanning line driving circuit start signal (GSP2) (also referred to as a start pulse) and a scanning line driving circuit clock signal (also referred to as a start pulse) with respect to the second scanning line driving circuit 5303. GCK2)
To supply. For the signal line drive circuit 5304, as an example, a signal line drive circuit start signal (SSP), a signal line drive circuit clock signal (SCK), and a video signal data (DAT).
A) (also simply referred to as a video signal) and a latch signal (LAT) shall be supplied. Each clock signal (GCK1, GCK2, SCK) may be a plurality of clock signals having different periods, or may be supplied together with a signal (CKB) obtained by inverting the clock signal. It is possible to omit one of the first scanning line driving circuit 5302 and the second scanning line driving circuit 5303.

図7(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第2
の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆動
回路5304を画素部5301とは別の基板に形成する構成について示している。当該構
成により、単結晶半導体を用いたトランジスタと比較すると電界効果移動度が小さい薄膜
トランジスタによって、基板5300に形成する駆動回路を構成することができる。した
がって、表示装置の大型化、工程数の削減、コストの低減、又は歩留まりの向上などを図
ることができる。
In FIG. 7B, a circuit having a low drive frequency (for example, the first scanning line drive circuit 5302, the second
The scanning line drive circuit 5303) is formed on the same substrate 5300 as the pixel unit 5301, and the signal line drive circuit 5304 is formed on a substrate different from the pixel unit 5301. With this configuration, a drive circuit formed on the substrate 5300 can be configured by a thin film transistor having a smaller field effect mobility than a transistor using a single crystal semiconductor. Therefore, it is possible to increase the size of the display device, reduce the number of processes, reduce the cost, or improve the yield.

また、実施の形態1に示す薄膜トランジスタは、nチャネル型TFTである。図8(A)
、図8(B)ではnチャネル型TFTで構成する信号線駆動回路の構成、動作について一
例を示し説明する。
The thin film transistor shown in the first embodiment is an n-channel TFT. FIG. 8 (A)
8 (B) shows and describes an example of the configuration and operation of the signal line drive circuit configured by the n-channel TFT.

信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路部5602を有する
。スイッチング回路部5602は、スイッチング回路5602_1〜5602_N(Nは
自然数)という複数の回路を有する。スイッチング回路5602_1〜5602_Nは、
各々、薄膜トランジスタ5603_1〜5603_k(kは自然数)という複数のトラン
ジスタを有する。薄膜トランジスタ5603_1〜5603_kは、nチャネル型TFT
である例を説明する。
The signal line drive circuit has a shift register 5601 and a switching circuit unit 5602. The switching circuit unit 5602 has a plurality of circuits called switching circuits 5602_1 to 5602_N (N is a natural number). The switching circuits 5602_1 to 5602_N are
Each has a plurality of transistors called thin film transistors 5603_1 to 5603_k (k is a natural number). The thin film transistors 5603_1 to 5603_k are n-channel TFTs.
An example is described.

信号線駆動回路の接続関係について、スイッチング回路5602_1を例にして説明する
。薄膜トランジスタ5603_1〜5603_kの第1端子は、各々、配線5604_1
〜5604_kと接続される。薄膜トランジスタ5603_1〜5603_kの第2端子
は、各々、信号線S1〜Skと接続される。薄膜トランジスタ5603_1〜5603_
kのゲートは、配線5605_1と接続される。
The connection relationship of the signal line drive circuit will be described by taking the switching circuit 5602_1 as an example. The first terminals of the thin film transistors 5603_1 to 5603_k are each wired 5604_1.
It is connected to ~ 5604_k. The second terminals of the thin film transistors 5603_1 to 5603_k are connected to the signal lines S1 to Sk, respectively. Thin film transistor 5603_1 to 5603_
The gate of k is connected to the wiring 5605_1.

シフトレジスタ5601は、配線5605_1〜5605_Nに順番にHレベル(H信号
、高電源電位レベル、ともいう)の信号を出力し、スイッチング回路5602_1〜56
02_Nを順番に選択する機能を有する。
The shift register 5601 outputs H level (also referred to as H signal, high power supply potential level) signals to the wirings 5605_1 to 5605_N in order, and the switching circuit 5602_1 to 56
It has a function to select 02_N in order.

スイッチング回路5602_1は、配線5604_1〜5604_kと信号線S1〜Sk
との導通状態(第1端子と第2端子との間の導通)を制御する機能、即ち配線5604_
1〜5604_kの電位を信号線S1〜Skに供給するか否かを制御する機能を有する。
このように、スイッチング回路5602_1は、セレクタとしての機能を有する。また薄
膜トランジスタ5603_1〜5603_Nは、各々、配線5604_1〜5604_k
と信号線S1〜Skとの導通状態を制御する機能、即ち配線5604_1〜5604_k
の電位を信号線S1〜Skに供給する機能を有する。このように、薄膜トランジスタ56
03_1〜5603_Nは、各々、スイッチとしての機能を有する。
The switching circuit 5602_1 includes wirings 5604_1 to 5604_k and signal lines S1 to Sk.
Function to control the continuity state (conduction between the first terminal and the second terminal), that is, wiring 5604_
It has a function of controlling whether or not a potential of 1 to 5604_k is supplied to the signal lines S1 to Sk.
As described above, the switching circuit 5602_1 has a function as a selector. Further, the thin film transistors 5603_1 to 5603_N are each wired 5604_1 to 5604_k.
A function of controlling the conduction state between the signal lines S1 to Sk, that is, wiring 5604_1 to 5604_k.
Has a function of supplying the potential of the above to the signal lines S1 to Sk. Thus, the thin film transistor 56
Each of 03_1 to 5603_N has a function as a switch.

なお、配線5604_1〜5604_kには、各々、ビデオ信号用データ(DATA)が
入力される。ビデオ信号用データ(DATA)は、画像情報又は画像信号に応じたアナロ
グ信号である場合が多い。
Video signal data (DATA) is input to the wirings 5604_1 to 5604_k, respectively. The video signal data (DATA) is often image information or an analog signal corresponding to the image signal.

次に、図8(A)の信号線駆動回路の動作について、図8(B)のタイミングチャートを
参照して説明する。図8(B)には、信号Sout_1〜Sout_N、及び信号Vda
ta_1〜Vdata_kの一例を示す。信号Sout_1〜Sout_Nは、各々、シ
フトレジスタ5601の出力信号の一例であり、信号Vdata_1〜Vdata_kは
、各々、配線5604_1〜5604_kに入力される信号の一例である。なお、信号線
駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲート選択
期間は、一例として、期間T1〜期間TNに分割される。期間T1〜TNは、各々、選択
された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間である。
Next, the operation of the signal line drive circuit of FIG. 8A will be described with reference to the timing chart of FIG. 8B. 8 (B) shows the signals Sout_1 to Sout_N and the signal Vda.
An example of ta_1 to Vdata_k is shown. The signals Sout_1 to Sout_N are examples of output signals of the shift register 5601, and the signals Vdata_1 to Vdata_k are examples of signals input to the wirings 5604_1 to 5604_k, respectively. One operation period of the signal line drive circuit corresponds to one gate selection period in the display device. As an example, one gate selection period is divided into period T1 to period TN. The periods T1 to TN are periods for writing the video signal data (DATA) to the pixels belonging to the selected row, respectively.

なお、本実施の形態の図面等において示す各構成の、信号波形のなまり等は、明瞭化のた
めに誇張して表記している場合がある。よって、必ずしもそのスケールに限定されないも
のであることを付記する。
In addition, the bluntness of the signal waveform and the like of each configuration shown in the drawings and the like of the present embodiment may be exaggerated for the sake of clarification. Therefore, it should be added that it is not necessarily limited to that scale.

期間T1〜期間TNにおいて、シフトレジスタ5601は、Hレベルの信号を配線560
5_1〜5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ5
601は、ハイレベルの信号を配線5605_1に出力する。すると、薄膜トランジスタ
5603_1〜5603_kはオンになるので、配線5604_1〜5604_kと、信
号線S1〜Skとが導通状態になる。このとき、配線5604_1〜5604_kには、
Data(S1)〜Data(Sk)が入力される。Data(S1)〜Data(Sk
)は、各々、薄膜トランジスタ5603_1〜5603_kを介して、選択される行に属
する画素のうち、1列目〜k列目の画素に書き込まれる。こうして、期間T1〜TNにお
いて、選択された行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)が
書き込まれる。
In the period T1 to the period TN, the shift register 5601 routes the H level signal 560.
Outputs in order from 5-1 to 5605_N. For example, in period T1, shift register 5
The 601 outputs a high level signal to the wiring 5605_1. Then, since the thin film transistors 5603_1 to 5603_k are turned on, the wirings 5604_1 to 5604_k and the signal lines S1 to Sk become conductive. At this time, in the wirings 5604_1 to 5604_k,
Data (S1) to Data (Sk) are input. Data (S1) to Data (Sk)
) Are written to the pixels in the first column to the kth column among the pixels belonging to the selected row via the thin film transistors 5603_1 to 5603_k, respectively. In this way, in the periods T1 to TN, the video signal data (DATA) is written in order of k columns to the pixels belonging to the selected row.

以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれること
によって、ビデオ信号用データ(DATA)の数、又は配線の数を減らすことができる。
よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ画
素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書き
込み不足を防止することができる。
As described above, the number of video signal data (DATA) or the number of wirings can be reduced by writing the video signal data (DATA) to the pixels in a plurality of columns.
Therefore, the number of connections with external circuits can be reduced. Further, by writing the video signal to the pixels in a plurality of columns, the writing time can be lengthened and the writing shortage of the video signal can be prevented.

なお、シフトレジスタ5601及びスイッチング回路部5602としては、実施の形態1
に示す薄膜トランジスタで構成される回路を用いることが可能である。この場合、シフト
レジスタ5601が有する全てのトランジスタの極性をnチャネル型で構成することがで
きる。
The shift register 5601 and the switching circuit unit 5602 include the first embodiment.
It is possible to use a circuit composed of the thin film transistor shown in. In this case, the polarities of all the transistors of the shift register 5601 can be configured as an n-channel type.

次に、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタ、バ
ッファを有している。また場合によってはレベルシフタを有していても良い。走査線駆動
回路において、シフトレジスタにクロック信号(CK)及びスタートパルス信号(SP)
が入力されることによって、選択信号が生成される。生成された選択信号はバッファにお
いて緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のトラ
ンジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタを一
斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なものが用
いられる。
Next, the configuration of the scanning line drive circuit will be described. The scanning line drive circuit has a shift register and a buffer. In some cases, it may have a level shifter. In the scanning line drive circuit, the clock signal (CK) and start pulse signal (SP) are stored in the shift register.
Is input to generate a selection signal. The generated selection signal is buffer amplified in the buffer and fed to the corresponding scan line. The gate electrode of the transistor of one line of pixels is connected to the scanning line. Then, since the transistors of one line of pixels must be turned on all at once, a buffer capable of passing a large current is used.

走査線駆動回路及び/または信号線駆動回路の一部に用いるシフトレジスタの一形態につ
いて図9及び図10を用いて説明する。
A form of a shift register used as a part of a scanning line driving circuit and / or a signal line driving circuit will be described with reference to FIGS. 9 and 10.

走査線駆動回路、信号線駆動回路のシフトレジスタについて、図9及び図10を参照して
説明する。シフトレジスタは、第1のパルス出力回路10_1乃至第Nのパルス出力回路
10_N(Nは3以上の自然数)を有している(図9(A)参照)。図9(A)に示すシ
フトレジスタの第1のパルス出力回路10_1乃至第Nのパルス出力回路10_Nには、
第1の配線11より第1のクロック信号CK1、第2の配線12より第2のクロック信号
CK2、第3の配線13より第3のクロック信号CK3、第4の配線14より第4のクロ
ック信号CK4が供給される。また第1のパルス出力回路10_1では、第5の配線15
からのスタートパルスSP1(第1のスタートパルス)が入力される。また2段目以降の
第nのパルス出力回路10_n(nは、2以上N以下の自然数)では、一段前段のパルス
出力回路からの信号(前段信号OUT(n−1)という)(nは2以上の自然数)が入力
される。また第1のパルス出力回路10_1では、2段後段の第3のパルス出力回路10
_3からの信号、または2段目以降の第nのパルス出力回路10_nでは、2段後段の第
(n+2)のパルス出力回路10_n+2からの信号(後段信号OUT(n+2)という
)が入力される。また各段のパルス出力回路からは、前段及び/または後段のパルス出力
回路に入力するための第1の出力信号OUT(1)(SR)、別の配線等に第2の出力信
号OUT(1)が出力される。なお、図9(A)に示すように、シフトレジスタの最終段
の2つの段には、後段信号OUT(n+2)が入力されないため、一例としては、別途第
2のスタートパルスSP2、第3のスタートパルスSP3をそれぞれ入力する構成とすれ
ばよい。
The shift registers of the scanning line drive circuit and the signal line drive circuit will be described with reference to FIGS. 9 and 10. The shift register has a first pulse output circuit 10_1 to an Nth pulse output circuit 10_N (N is a natural number of 3 or more) (see FIG. 9A). The first pulse output circuit 10_1 to the Nth pulse output circuit 10_N of the shift register shown in FIG. 9A has
The first clock signal CK1 from the first wiring 11, the second clock signal CK2 from the second wiring 12, the third clock signal CK3 from the third wiring 13, and the fourth clock signal from the fourth wiring 14. CK4 is supplied. Further, in the first pulse output circuit 10_1, the fifth wiring 15
The start pulse SP1 (first start pulse) from is input. Further, in the nth pulse output circuit 10_n (n is a natural number of 2 or more and N or less) in the second and subsequent stages, the signal from the pulse output circuit of the first stage (referred to as the previous stage signal OUT (n-1)) (n is 2). The above natural number) is input. Further, in the first pulse output circuit 10_1, the third pulse output circuit 10 in the second stage after the second stage
In the signal from _3 or the nth pulse output circuit 10_n in the second and subsequent stages, a signal from the second (n + 2) pulse output circuit 10_n + 2 in the second and subsequent stages (referred to as the subsequent signal OUT (n + 2)) is input. Further, from the pulse output circuit of each stage, the first output signal OUT (1) (SR) for inputting to the pulse output circuit of the previous stage and / or the subsequent stage, and the second output signal OUT (1) to another wiring or the like. ) Is output. As shown in FIG. 9A, since the subsequent stage signal OUT (n + 2) is not input to the two final stages of the shift register, as an example, the second start pulse SP2 and the third stage are separately used. The start pulse SP3 may be input respectively.

なお、クロック信号(CK)は、一定の間隔でHレベルとLレベル(L信号、低電源電位
レベル、ともいう)を繰り返す信号である。ここで、第1のクロック信号(CK1)〜第
4のクロック信号(CK4)は、順に1/4周期分遅延している。本実施の形態では、第
1のクロック信号(CK1)〜第4のクロック信号(CK4)を利用して、パルス出力回
路の駆動の制御等を行う。なお、クロック信号は、入力される駆動回路に応じて、GCK
、SCKということもあるが、ここではCKとして説明を行う。
The clock signal (CK) is a signal that repeats an H level and an L level (also referred to as an L signal or a low power supply potential level) at regular intervals. Here, the first clock signal (CK1) to the fourth clock signal (CK4) are delayed by 1/4 cycle in order. In the present embodiment, the drive of the pulse output circuit is controlled by using the first clock signal (CK1) to the fourth clock signal (CK4). The clock signal is GCK according to the input drive circuit.
, SCK, but here it will be described as CK.

第1の入力端子21、第2の入力端子22及び第3の入力端子23は、第1の配線11
〜第4の配線14のいずれかと電気的に接続されている。例えば、図9(B)において、
第1のパルス出力回路10_1は、第1の入力端子21が第1の配線11と電気的に接続
され、第2の入力端子22が第2の配線12と電気的に接続され、第3の入力端子23が
第3の配線13と電気的に接続されている。また、第2のパルス出力回路10_2は、第
1の入力端子21が第2の配線12と電気的に接続され、第2の入力端子22が第3の配
線13と電気的に接続され、第3の入力端子23が第4の配線14と電気的に接続されて
いる。
The first input terminal 21, the second input terminal 22, and the third input terminal 23 are the first wiring 11
-It is electrically connected to any of the fourth wiring 14. For example, in FIG. 9B.
In the first pulse output circuit 10_1, the first input terminal 21 is electrically connected to the first wiring 11, the second input terminal 22 is electrically connected to the second wiring 12, and the third The input terminal 23 is electrically connected to the third wiring 13. Further, in the second pulse output circuit 10_2, the first input terminal 21 is electrically connected to the second wiring 12, and the second input terminal 22 is electrically connected to the third wiring 13. The input terminal 23 of 3 is electrically connected to the 4th wiring 14.

第1のパルス出力回路10_1〜第Nのパルス出力回路10_Nの各々は、第1の入力端
子21、第2の入力端子22、第3の入力端子23、第4の入力端子24、第5の入力端
子25、第1の出力端子26、第2の出力端子27を有しているとする(図9(B)参照
)。第1のパルス出力回路10_1において、第1の入力端子21に第1のクロック信号
CK1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3の
入力端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタートパ
ルスSP1が入力され、第5の入力端子25に後段信号OUT(3)が入力され、第1の
出力端子26より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27
より第2の出力信号OUT(1)が出力されていることとなる。
Each of the first pulse output circuits 10_1 to Nth pulse output circuits 10_N has a first input terminal 21, a second input terminal 22, a third input terminal 23, a fourth input terminal 24, and a fifth. It is assumed that the input terminal 25, the first output terminal 26, and the second output terminal 27 are provided (see FIG. 9B). In the first pulse output circuit 10_1, the first clock signal CK1 is input to the first input terminal 21, the second clock signal CK2 is input to the second input terminal 22, and the third input terminal 23 is input to the second clock signal CK2. The third clock signal CK3 is input, the start pulse SP1 is input to the fourth input terminal 24, the subsequent signal OUT (3) is input to the fifth input terminal 25, and the first from the first output terminal 26. Output signals OUT (1) (SR) are output, and the second output terminal 27
The second output signal OUT (1) is output.

なお第1のパルス出力回路10_1〜第Nのパルス出力回路10_Nは、3端子の薄膜ト
ランジスタの他に、4端子の薄膜トランジスタを用いることができる。図9(C)に示す
トランジスタ28は、上記実施の形態1で説明した4端子の薄膜トランジスタを意味し、
図面等で以下用いることとする。トランジスタ28は、第1のゲート電極に入力される第
1の制御信号G1及び第2のゲート電極に入力される第2の制御信号G2によって、In
端子とOut端子間の電気的な制御を行うことのできる素子である。
The first pulse output circuit 10_1 to the Nth pulse output circuit 10_N can use a 4-terminal thin film transistor in addition to the 3-terminal thin film transistor. The transistor 28 shown in FIG. 9C means a 4-terminal thin film transistor described in the first embodiment.
It will be used below in drawings and the like. The transistor 28 is In by the first control signal G1 input to the first gate electrode and the second control signal G2 input to the second gate electrode.
It is an element that can perform electrical control between the terminal and the Out terminal.

図9(C)に示すトランジスタ28のしきい値電圧は、トランジスタ28のチャネル形成
領域の上下にゲート絶縁膜を介してゲート電極を設け、上部及び/または下部のゲート電
極の電位を制御することにより所望の値に制御することができる。
The threshold voltage of the transistor 28 shown in FIG. 9C is such that gate electrodes are provided above and below the channel forming region of the transistor 28 via a gate insulating film to control the potential of the upper and / or lower gate electrodes. Can be controlled to a desired value.

次に、パルス出力回路の具体的な回路構成の一例について、図9(D)で説明する。 Next, an example of a specific circuit configuration of the pulse output circuit will be described with reference to FIG. 9D.

第1のパルス出力回路10_1は、第1のトランジスタ31〜第13のトランジスタ4
3を有している(図9(D)参照)。また、上述した第1の入力端子21〜第5の入力端
子25、及び第1の出力端子26、第2の出力端子27に加え、第1の高電源電位VDD
が供給される電源線51、第2の高電源電位VCCが供給される電源線52、低電源電位
VSSが供給される電源線53から、第1のトランジスタ31〜第13のトランジスタ4
3に信号、または電源電位が供給される。ここで図9(D)の各電源線の電源電位の大小
関係は、第1の電源電位VDD>第2の電源電位VCC>第3の電源電位VSSとする。
なお、第1のクロック信号(CK1)〜第4のクロック信号(CK4)は、一定の間隔で
HレベルとLレベルを繰り返す信号であるが、HレベルのときVDD、LレベルのときV
SSであるとする。なお電源線52の電位VCCを、電源線51の電位VDDより低くす
ることにより、動作に影響を与えることなく、トランジスタのゲート電極に印加される電
位を低く抑えることができ、トランジスタのしきい値のシフトを低減し、劣化を抑制する
ことができる。なお図9(D)に図示するように、第1のトランジスタ31〜第13のト
ランジスタ43のうち、第1のトランジスタ31、第6のトランジスタ36乃至第9のト
ランジスタ39には、図9(C)で示した4端子のトランジスタ28を用いることが好ま
しい。第1のトランジスタ31、第6のトランジスタ36乃至第9のトランジスタ39の
動作は、ソースまたはドレインとなる電極の一方が接続されたノードの電位を、ゲート電
極の制御信号によって切り替えることが求められるトランジスタであり、ゲート電極に入
力される制御信号に対する応答が速い(オン電流の立ち上がりが急峻)ことでよりパルス
出力回路の誤動作を低減することができるトランジスタである。そのため、図9(C)で
示した4端子のトランジスタ28を用いることによりしきい値電圧を制御することができ
、誤動作がより低減できるパルス出力回路とすることができる。なお図9(C)では第1
の制御信号G1及び第2の制御信号G2を同じ制御信号としたが、異なる制御信号が入力
される構成としてもよい。
The first pulse output circuit 10_1 includes the first transistor 31 to the thirteenth transistor 4
It has 3 (see FIG. 9 (D)). Further, in addition to the above-mentioned first input terminals 21 to 5 fifth input terminals 25, the first output terminal 26, and the second output terminal 27, the first high power supply potential VDD.
The first transistor 31 to the thirteenth transistor 4 from the power supply line 51 to which the power supply line 51 is supplied, the power supply line 52 to which the second high power supply potential VCS is supplied, and the power supply line 53 to which the low power supply potential VSS is supplied.
A signal or power supply potential is supplied to 3. Here, the magnitude relationship of the power supply potentials of the power supply lines in FIG. 9D is such that the first power supply potential VDD> the second power supply potential VCS> the third power supply potential VSS.
The first clock signal (CK1) to the fourth clock signal (CK4) are signals that repeat the H level and the L level at regular intervals, but are VDD at the H level and V at the L level.
Suppose it is SS. By making the potential VCS of the power supply line 52 lower than the potential VDD of the power supply line 51, the potential applied to the gate electrode of the transistor can be suppressed low without affecting the operation, and the threshold value of the transistor can be suppressed. Shift can be reduced and deterioration can be suppressed. As shown in FIG. 9 (D), among the first transistors 31 to 13 transistors 43, the first transistor 31 and the sixth transistor 36 to the ninth transistor 39 are shown in FIG. 9 (C). ), It is preferable to use the 4-terminal transistor 28. The operation of the first transistor 31, the sixth transistor 36 to the ninth transistor 39 is a transistor in which the potential of the node to which one of the source or drain electrodes is connected is required to be switched by the control signal of the gate electrode. Therefore, it is a transistor that can further reduce the malfunction of the pulse output circuit because the response to the control signal input to the gate electrode is fast (the rise of the on-current is steep). Therefore, the threshold voltage can be controlled by using the 4-terminal transistor 28 shown in FIG. 9C, and the pulse output circuit can further reduce malfunctions. Note that in FIG. 9C, the first
The control signal G1 and the second control signal G2 are the same control signal, but different control signals may be input.

図9(D)において第1のトランジスタ31は、第1端子が電源線51に電気的に接続
され、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極(
第1のゲート電極及び第2のゲート電極)が第4の入力端子24に電気的に接続されてい
る。第2のトランジスタ32は、第1端子が電源線53に電気的に接続され、第2端子が
第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極が第4のトランジス
タ34のゲート電極に電気的に接続されている。第3のトランジスタ33は、第1端子が
第1の入力端子21に電気的に接続され、第2端子が第1の出力端子26に電気的に接続
されている。第4のトランジスタ34は、第1端子が電源線53に電気的に接続され、第
2端子が第1の出力端子26に電気的に接続されている。第5のトランジスタ35は、第
1端子が電源線53に電気的に接続され、第2端子が第2のトランジスタ32のゲート電
極及び第4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極が第4の入
力端子24に電気的に接続されている。第6のトランジスタ36は、第1端子が電源線5
2に電気的に接続され、第2端子が第2のトランジスタ32のゲート電極及び第4のトラ
ンジスタ34のゲート電極に電気的に接続され、ゲート電極(第1のゲート電極及び第2
のゲート電極)が第5の入力端子25に電気的に接続されている。第7のトランジスタ3
7は、第1端子が電源線52に電気的に接続され、第2端子が第8のトランジスタ38の
第2端子に電気的に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が
第3の入力端子23に電気的に接続されている。第8のトランジスタ38は、第1端子が
第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的
に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が第2の入力端子2
2に電気的に接続されている。第9のトランジスタ39は、第1端子が第1のトランジス
タ31の第2端子及び第2のトランジスタ32の第2端子に電気的に接続され、第2端子
が第3のトランジスタ33のゲート電極及び第10のトランジスタ40のゲート電極に電
気的に接続され、ゲート電極(第1のゲート電極及び第2のゲート電極)が電源線52に
電気的に接続されている。第10のトランジスタ40は、第1端子が第1の入力端子21
に電気的に接続され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が
第9のトランジスタ39の第2端子に電気的に接続されている。第11のトランジスタ4
1は、第1端子が電源線53に電気的に接続され、第2端子が第2の出力端子27に電気
的に接続され、ゲート電極が第2のトランジスタ32のゲート電極及び第4のトランジス
タ34のゲート電極に電気的に接続されている。第12のトランジスタ42は、第1端子
が電源線53に電気的に接続され、第2端子が第2の出力端子27に電気的に接続され、
ゲート電極が第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート
電極)に電気的に接続されている。第13のトランジスタ43は、第1端子が電源線53
に電気的に接続され、第2端子が第1の出力端子26に電気的に接続され、ゲート電極が
第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート電極)に電気
的に接続されている。
In FIG. 9D, in the first transistor 31, the first terminal is electrically connected to the power supply line 51, the second terminal is electrically connected to the first terminal of the ninth transistor 39, and the gate electrode (
The first gate electrode and the second gate electrode) are electrically connected to the fourth input terminal 24. In the second transistor 32, the first terminal is electrically connected to the power supply line 53, the second terminal is electrically connected to the first terminal of the ninth transistor 39, and the gate electrode is the fourth transistor 34. It is electrically connected to the gate electrode. In the third transistor 33, the first terminal is electrically connected to the first input terminal 21, and the second terminal is electrically connected to the first output terminal 26. In the fourth transistor 34, the first terminal is electrically connected to the power supply line 53, and the second terminal is electrically connected to the first output terminal 26. In the fifth transistor 35, the first terminal is electrically connected to the power supply line 53, the second terminal is electrically connected to the gate electrode of the second transistor 32 and the gate electrode of the fourth transistor 34, and the gate is formed. The electrodes are electrically connected to the fourth input terminal 24. The first terminal of the sixth transistor 36 is the power supply line 5.
Electrically connected to 2, the second terminal is electrically connected to the gate electrode of the second transistor 32 and the gate electrode of the fourth transistor 34, and the gate electrode (first gate electrode and second gate electrode).
Gate electrode) is electrically connected to the fifth input terminal 25. 7th transistor 3
In No. 7, the first terminal is electrically connected to the power supply line 52, the second terminal is electrically connected to the second terminal of the eighth transistor 38, and the gate electrodes (first gate electrode and second gate) The electrode) is electrically connected to the third input terminal 23. In the eighth transistor 38, the first terminal is electrically connected to the gate electrode of the second transistor 32 and the gate electrode of the fourth transistor 34, and the gate electrodes (first gate electrode and second gate electrode). Is the second input terminal 2
It is electrically connected to 2. In the ninth transistor 39, the first terminal is electrically connected to the second terminal of the first transistor 31 and the second terminal of the second transistor 32, and the second terminal is the gate electrode of the third transistor 33 and the second terminal. It is electrically connected to the gate electrode of the tenth transistor 40, and the gate electrodes (the first gate electrode and the second gate electrode) are electrically connected to the power supply line 52. In the tenth transistor 40, the first terminal is the first input terminal 21.
The second terminal is electrically connected to the second output terminal 27, and the gate electrode is electrically connected to the second terminal of the ninth transistor 39. Eleventh transistor 4
In No. 1, the first terminal is electrically connected to the power supply line 53, the second terminal is electrically connected to the second output terminal 27, and the gate electrode is the gate electrode of the second transistor 32 and the fourth transistor. It is electrically connected to the gate electrode of 34. In the twelfth transistor 42, the first terminal is electrically connected to the power supply line 53, and the second terminal is electrically connected to the second output terminal 27.
The gate electrode is electrically connected to the gate electrode (first gate electrode and second gate electrode) of the seventh transistor 37. The first terminal of the thirteenth transistor 43 is the power supply line 53.
The second terminal is electrically connected to the first output terminal 26, and the gate electrode is electrically connected to the gate electrode (first gate electrode and second gate electrode) of the seventh transistor 37. Is connected.

図9(D)において、第3のトランジスタ33のゲート電極、第10のトランジスタ4
0のゲート電極、及び第9のトランジスタ39の第2端子の接続箇所をノードAとする。
また、第2のトランジスタ32のゲート電極、第4のトランジスタ34のゲート電極、第
5のトランジスタ35の第2端子、第6のトランジスタ36の第2端子、第8のトランジ
スタ38の第1端子、及び第11のトランジスタ41のゲート電極との接続箇所をノード
Bとする(図10(A)参照)。
In FIG. 9D, the gate electrode of the third transistor 33 and the tenth transistor 4
A node A is a connection point between the gate electrode of 0 and the second terminal of the ninth transistor 39.
Further, the gate electrode of the second transistor 32, the gate electrode of the fourth transistor 34, the second terminal of the fifth transistor 35, the second terminal of the sixth transistor 36, the first terminal of the eighth transistor 38, And the connection point of the eleventh transistor 41 with the gate electrode is a node B (see FIG. 10A).

なお、薄膜トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの
端子を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、
ドレイン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、
ソースとドレインとは、薄膜トランジスタの構造や動作条件等によって変わるため、いず
れがソースまたはドレインであるかを限定することが困難である。そこで、ソース及びド
レインとして機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合
、一例としては、それぞれを第1端子、第2端子と表記する場合がある。
The thin film transistor is an element having at least three terminals including a gate, a drain, and a source, and has a channel region between the drain region and the source region.
A current can flow through the drain region, the channel region, and the source region. here,
Since the source and drain change depending on the structure and operating conditions of the thin film transistor, it is difficult to limit which is the source or drain. Therefore, the region that functions as a source and a drain may not be called a source or a drain. In that case, as an example, they may be referred to as a first terminal and a second terminal, respectively.

なお図9(D)、図10(A)において、ノードAを浮遊状態とすることによりブートス
トラップ動作を行うための、容量素子を別途設けても良い。またノードBの電位を保持す
るため、一方の電極をノードBに電気的に接続した容量素子を別途設けてもよい。
Note that, in FIGS. 9D and 10A, a capacitive element may be separately provided to perform the bootstrap operation by putting the node A in a floating state. Further, in order to hold the potential of the node B, a capacitive element in which one electrode is electrically connected to the node B may be separately provided.

ここで、図10(A)に示したパルス出力回路を複数具備するシフトレジスタのタイミン
グチャートについて図10(B)に示す。なおシフトレジスタが走査線駆動回路である場
合、図10(B)中の期間61は垂直帰線期間であり、期間62はゲート選択期間に相当
する。
Here, the timing chart of the shift register including the plurality of pulse output circuits shown in FIG. 10 (A) is shown in FIG. 10 (B). When the shift register is a scanning line drive circuit, the period 61 in FIG. 10B corresponds to the vertical blanking interval, and the period 62 corresponds to the gate selection period.

なお、図10(A)に示すように、ゲートに第2の電源電位VCCが印加される第9のト
ランジスタ39を設けておくことにより、ブートストラップ動作の前後において、以下の
ような利点がある。
As shown in FIG. 10A, by providing the ninth transistor 39 to which the second power supply potential VCS is applied to the gate, there are the following advantages before and after the bootstrap operation. ..

ゲート電極に第2の電位VCCが印加される第9のトランジスタ39がない場合、ブート
ストラップ動作によりノードAの電位が上昇すると、第1のトランジスタ31の第2端子
であるソースの電位が上昇していき、第1の電源電位VDDより大きくなる。そして、第
1のトランジスタ31のソースが第1端子側、即ち電源線51側に切り替わる。そのため
、第1のトランジスタ31においては、ゲートとソースの間、ゲートとドレインの間とも
に、大きなバイアス電圧が印加されるために大きなストレスがかかり、トランジスタの劣
化の要因となりうる。そこで、ゲート電極に第2の電源電位VCCが印加される第9のト
ランジスタ39を設けておくことにより、ブートストラップ動作によりノードAの電位は
上昇するものの、第1のトランジスタ31の第2端子の電位の上昇を生じないようにする
ことができる。つまり、第9のトランジスタ39を設けることにより、第1のトランジス
タ31のゲートとソースの間に印加される負のバイアス電圧の値を小さくすることができ
る。よって、本実施の形態の回路構成とすることにより、第1のトランジスタ31のゲー
トとソースの間に印加される負のバイアス電圧も小さくできるため、ストレスによる第1
のトランジスタ31の劣化を抑制することができる。
When the gate electrode does not have the ninth transistor 39 to which the second potential VCS is applied, when the potential of the node A rises due to the bootstrap operation, the potential of the source which is the second terminal of the first transistor 31 rises. The potential becomes larger than the first power supply potential VDD. Then, the source of the first transistor 31 is switched to the first terminal side, that is, the power supply line 51 side. Therefore, in the first transistor 31, a large bias voltage is applied between the gate and the source and between the gate and the drain, so that a large stress is applied, which may cause deterioration of the transistor. Therefore, by providing the ninth transistor 39 to which the second power supply potential VCS is applied to the gate electrode, the potential of the node A rises due to the bootstrap operation, but the second terminal of the first transistor 31 It is possible to prevent the potential from rising. That is, by providing the ninth transistor 39, the value of the negative bias voltage applied between the gate and the source of the first transistor 31 can be reduced. Therefore, by adopting the circuit configuration of the present embodiment, the negative bias voltage applied between the gate and the source of the first transistor 31 can be reduced, so that the first stress is generated.
Deterioration of the transistor 31 can be suppressed.

なお、第9のトランジスタ39を設ける箇所については、第1のトランジスタ31の第2
端子と第3のトランジスタ33のゲートとの間に第1端子と第2端子を介して接続される
ように設ける構成であればよい。なお、本実施形態でのパルス出力回路を複数具備するシ
フトレジスタの場合、走査線駆動回路より段数の多い信号線駆動回路では、第9のトラン
ジスタ39を省略してもよく、トランジスタ数を削減することが利点である。
It should be noted that the location where the ninth transistor 39 is provided is the second of the first transistor 31.
The configuration may be such that the terminal and the gate of the third transistor 33 are connected via the first terminal and the second terminal. In the case of the shift register including a plurality of pulse output circuits in the present embodiment, the ninth transistor 39 may be omitted in the signal line drive circuit having more stages than the scan line drive circuit, and the number of transistors is reduced. Is an advantage.

なお第1のトランジスタ31乃至第13のトランジスタ43の半導体層として、酸化物半
導体を用いることにより、薄膜トランジスタのオフ電流を低減すると共に、オン電流及び
電界効果移動度を高めることができ、劣化の度合いを低減することが出来るため、回路内
の誤動作を低減することができる。また酸化物半導体を用いたトランジスタは、アモルフ
ァスシリコンを用いたトランジスタに比べ、ゲート電極に高電位が印加されることによる
トランジスタの劣化の程度が小さい。そのため、第2の電源電位VCCを供給する電源線
に、第1の電源電位VDDを供給しても同様の動作が得られ、且つ回路間を引き回す電源
線の数を低減することができるため、回路の小型化を図ることが出来る。
By using an oxide semiconductor as the semiconductor layer of the first transistor 31 to the thirteenth transistor 43, it is possible to reduce the off-current of the thin film transistor and increase the on-current and field effect mobility, and the degree of deterioration. Therefore, it is possible to reduce malfunctions in the circuit. Further, the transistor using the oxide semiconductor has a smaller degree of deterioration of the transistor due to the application of a high potential to the gate electrode than the transistor using amorphous silicon. Therefore, the same operation can be obtained even if the first power supply potential VDD is supplied to the power supply line that supplies the second power supply potential VCS, and the number of power supply lines running between the circuits can be reduced. The circuit can be miniaturized.

なお、第7のトランジスタ37のゲート電極(第1のゲート電極及び第2のゲート電極)
に第3の入力端子23によって供給されるクロック信号、第8のトランジスタ38のゲー
ト電極(第1のゲート電極及び第2のゲート電極)に第2の入力端子22によって供給さ
れるクロック信号は、第7のトランジスタ37のゲート電極(第1のゲート電極及び第2
のゲート電極)に第2の入力端子22によって供給されるクロック信号、第8のトランジ
スタ38のゲート電極(第1のゲート電極及び第2のゲート電極)に第3の入力端子23
によって供給されるクロック信号となるように、結線関係を入れ替えても同様の作用を奏
する。なお、図10(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び
第8のトランジスタ38が共にオンの状態から、第7のトランジスタ37がオフ、第8の
トランジスタ38がオンの状態、次いで第7のトランジスタ37がオフ、第8のトランジ
スタ38がオフの状態とすることによって、第2の入力端子22及び第3の入力端子23
の電位が低下することで生じる、ノードBの電位の低下が第7のトランジスタ37のゲー
ト電極の電位の低下、及び第8のトランジスタ38のゲート電極の電位の低下に起因して
2回生じることとなる。一方、図10(A)に示すシフトレジスタを図10(B)の期間
のように、第7のトランジスタ37及び第8のトランジスタ38が共にオンの状態から、
第7のトランジスタ37がオン、第8のトランジスタ38がオフの状態、次いで、第7の
トランジスタ37がオフ、第8のトランジスタ38がオフの状態とすることによって、第
2の入力端子22及び第3の入力端子23の電位が低下することで生じるノードBの電位
の低下を、第8のトランジスタ38のゲート電極の電位の低下による一回に低減すること
ができる。そのため、第7のトランジスタ37のゲート電極(第1のゲート電極及び第2
のゲート電極)に第3の入力端子によって供給されるクロック信号、第8のトランジスタ
38のゲート電極(第1のゲート電極及び第2のゲート電極)に第2の入力端子によって
供給されるクロック信号とすることによって、ノードBの電位の変動を小さくすることで
、ノイズを低減することが出来るため好適である。
The gate electrode of the seventh transistor 37 (first gate electrode and second gate electrode)
The clock signal supplied by the third input terminal 23 and the clock signal supplied by the second input terminal 22 to the gate electrodes (first gate electrode and second gate electrode) of the eighth transistor 38 are Gate electrode of the seventh transistor 37 (first gate electrode and second gate electrode)
The clock signal supplied by the second input terminal 22 to the gate electrode of the eighth transistor 38, and the third input terminal 23 to the gate electrode (first gate electrode and second gate electrode) of the eighth transistor 38.
The same effect is obtained even if the connection relationship is exchanged so that the clock signal is supplied by. In the shift register shown in FIG. 10A, the seventh transistor 37 and the eighth transistor 38 are both on, the seventh transistor 37 is off, the eighth transistor 38 is on, and then. By turning off the seventh transistor 37 and turning off the eighth transistor 38, the second input terminal 22 and the third input terminal 23 are turned off.
The decrease in the potential of the node B caused by the decrease in the potential of the node B occurs twice due to the decrease in the potential of the gate electrode of the seventh transistor 37 and the decrease in the potential of the gate electrode of the eighth transistor 38. It becomes. On the other hand, the shift register shown in FIG. 10 (A) is changed from the state in which both the seventh transistor 37 and the eighth transistor 38 are on as in the period of FIG. 10 (B).
The second input terminal 22 and the second input terminal 22 and the second transistor 38 are turned on by turning the seventh transistor 37 on and the eighth transistor 38 off, then turning the seventh transistor 37 off and turning the eighth transistor 38 off. The decrease in the potential of the node B caused by the decrease in the potential of the input terminal 23 of 3 can be reduced to one time due to the decrease in the potential of the gate electrode of the eighth transistor 38. Therefore, the gate electrode of the seventh transistor 37 (the first gate electrode and the second gate electrode)
The clock signal supplied by the third input terminal to the gate electrode of the eighth transistor 38, and the clock signal supplied by the second input terminal to the gate electrode (first gate electrode and second gate electrode) of the eighth transistor 38. This is preferable because noise can be reduced by reducing the fluctuation of the potential of the node B.

このように、第1の出力端子26及び第2の出力端子27の電位をLレベルに保持する
期間に、ノードBに定期的にHレベルの信号が供給される構成とすることにより、パルス
出力回路の誤動作を抑制することができる。
In this way, the pulse output is configured so that the H level signal is periodically supplied to the node B during the period in which the potentials of the first output terminal 26 and the second output terminal 27 are held at the L level. It is possible to suppress the malfunction of the circuit.

実施の形態1に示す薄膜トランジスタの作製方法を用いて上記駆動回路の薄膜トランジス
タを作製することにより、駆動回路部の薄膜トランジスタの高速動作を実現し、省電力化
を図ることができる。
By manufacturing the thin film transistor of the drive circuit by using the method of manufacturing the thin film transistor shown in the first embodiment, high-speed operation of the thin film transistor of the drive circuit unit can be realized and power saving can be achieved.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
This embodiment can be implemented in combination with the configurations described in other embodiments as appropriate.

(実施の形態3)
本実施の形態では、薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さらには
駆動回路に用いて表示機能を有する半導体装置(表示装置ともいう)を作製する場合につ
いて説明する。また、薄膜トランジスタを用いて、駆動回路の一部または全体を、画素部
と同じ基板上に一体形成し、システムオンパネルを形成することができる。
(Embodiment 3)
In the present embodiment, a case where a thin film transistor is produced and the thin film transistor is used for a pixel portion and further for a drive circuit to produce a semiconductor device (also referred to as a display device) having a display function will be described. Further, using the thin film transistor, a part or the whole of the drive circuit can be integrally formed on the same substrate as the pixel portion to form a system on panel.

表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光
素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によ
って輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electr
o Luminescence)、有機EL等が含まれる。また、電子インクなど、電気
的作用によりコントラストが変化する表示媒体も適用することができる。
The display device includes a display element. As the display element, a liquid crystal element (also referred to as a liquid crystal display element) or a light emitting element (also referred to as a light emitting display element) can be used. The light emitting element includes an element whose brightness is controlled by current or voltage in its category, and specifically, an inorganic EL (Electr).
o Luminescence), organic EL and the like are included. Further, a display medium whose contrast changes due to an electric action, such as electronic ink, can also be applied.

また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラ
を含むIC等を実装した状態にあるモジュールとを含む。さらに表示装置において、該表
示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板が、
電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的には
、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を
成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、あ
らゆる形態があてはまる。
Further, the display device includes a panel in which the display element is sealed, and a module in which an IC or the like including a controller is mounted on the panel. Further, in the display device, the element substrate corresponding to one form before the display element is completed in the process of manufacturing the display device is
Each of the plurality of pixels is provided with means for supplying a current to the display element. Specifically, the element substrate may be in a state in which only the pixel electrodes of the display element are formed, or after the conductive film to be the pixel electrodes is formed, the pixel electrodes are formed by etching. It may be in the previous state, and all forms apply.

なお、本明細書中における表示装置とは、画像表示デバイス、もしくは光源(照明装置含
む)を指す。また、コネクター、例えばFPC(Flexible printed c
ircuit)もしくはTAB(Tape Automated Bonding)テー
プもしくはTCP(Tape Carrier Package)が取り付けられたモジ
ュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表
示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装
されたモジュールも全て表示装置に含むものとする。
The display device in the present specification refers to an image display device or a light source (including a lighting device). Also, a connector such as FPC (Flexible printed c)
A module with an ircuit) or TAB (Tape Implemented Bonding) tape or TCP (Tape Carrier Package) attached, a module with a printed wiring board at the end of a TAB tape or TCP, or a COG (Chip On Glass) method for the display element. The display device also includes all modules in which ICs (integrated circuits) are directly mounted.

本実施の形態では、本発明の一形態である半導体装置として液晶表示装置の例を示す。ま
ず、半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、図11を用
いて説明する。図11は、第1の基板4001上に形成されたIn−Ga−Zn−O系非
単結晶膜を半導体層として含む信頼性の高い薄膜トランジスタ4010、4011、及び
液晶素子4013を、第2の基板4006との間にシール材4005によって封止した、
パネルの上面図であり、図11(B)は、図11(A1)(A2)のM−Nにおける断面
図に相当する。
In the present embodiment, an example of a liquid crystal display device as a semiconductor device according to the present invention is shown. First, the appearance and cross section of the liquid crystal display panel corresponding to one form of the semiconductor device will be described with reference to FIG. FIG. 11 shows a highly reliable thin film transistor 4010, 4011 and a liquid crystal element 4013 including an In—Ga—Zn—O-based non-single crystal film formed on the first substrate 4001 as a semiconductor layer, as a second substrate. Sealed with a sealing material 4005 between 4006,
It is a top view of the panel, and FIG. 11 (B) corresponds to a cross-sectional view taken along the line MN of FIGS. 11 (A1) and 11 (A2).

第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲む
ようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回
路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査
線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006
とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール
材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶
半導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
A sealing material 4005 is provided so as to surround the pixel portion 4002 provided on the first substrate 4001 and the scanning line drive circuit 4004. Further, a second substrate 4006 is provided on the pixel unit 4002 and the scanning line drive circuit 4004. Therefore, the pixel unit 4002 and the scanning line drive circuit 4004 are composed of the first substrate 4001, the sealing material 4005, and the second substrate 4006.
It is sealed together with the liquid crystal layer 4008. Further, a signal line drive circuit 4003 formed of a single crystal semiconductor film or a polycrystalline semiconductor film is mounted on a separately prepared substrate in a region different from the region surrounded by the sealing material 4005 on the first substrate 4001. Has been done.

なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG方法、
ワイヤボンディング方法、或いはTAB方法などを用いることができる。図11(A1)
は、COG方法により信号線駆動回路4003を実装する例であり、図11(A2)は、
TAB方法により信号線駆動回路4003を実装する例である。
The method of connecting the separately formed drive circuit is not particularly limited, and the COG method,
A wire bonding method, a TAB method, or the like can be used. FIG. 11 (A1)
Is an example of mounting the signal line drive circuit 4003 by the COG method, and FIG. 11 (A2) shows.
This is an example of mounting the signal line drive circuit 4003 by the TAB method.

また、第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は
、薄膜トランジスタを複数有しており、図11(B)では、画素部4002に含まれる薄
膜トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ401
1とを例示している。薄膜トランジスタ4010、4011上には絶縁層4020、40
21が設けられている。
Further, the pixel unit 4002 provided on the first substrate 4001 and the scanning line drive circuit 4004 have a plurality of thin film transistors, and in FIG. 11B, the thin film transistor 4010 included in the pixel unit 4002 and scanning are performed. Thin film transistor 401 included in line drive circuit 4004
1 and are illustrated. Insulating layers 4020, 40 on thin film transistors 4010, 4011
21 is provided.

薄膜トランジスタ4010、4011は、実施の形態1で示した酸化物半導体層を含む信
頼性の高い薄膜トランジスタを適用することができる。本実施の形態において、薄膜トラ
ンジスタ4010、4011はnチャネル型薄膜トランジスタである。
As the thin film transistors 4010 and 4011, highly reliable thin film transistors including the oxide semiconductor layer shown in the first embodiment can be applied. In the present embodiment, the thin film transistors 4010 and 4011 are n-channel thin film transistors.

絶縁層4021上において、駆動回路用の薄膜トランジスタ4011の酸化物半導体層の
チャネル形成領域と重なる位置に導電層4040が設けられている。導電層4040を酸
化物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後にお
ける薄膜トランジスタ4011のしきい値電圧の変化量を低減することができる。また、
導電層4040は、薄膜トランジスタ4011のゲート電極層と同じ電位でもよいし、異
なる電位でも良く、第2のゲート電極層として機能させることもできる。また、導電層4
040の電位がGND、0V、或いはフローティング状態であってもよい。
On the insulating layer 4021, the conductive layer 4040 is provided at a position overlapping the channel forming region of the oxide semiconductor layer of the thin film transistor 4011 for the drive circuit. By providing the conductive layer 4040 at a position overlapping the channel formation region of the oxide semiconductor layer, it is possible to reduce the amount of change in the threshold voltage of the thin film transistor 4011 before and after the BT test. again,
The conductive layer 4040 may have the same potential as the gate electrode layer of the thin film transistor 4011 or may have a different potential, and may function as a second gate electrode layer. In addition, the conductive layer 4
The potential of 040 may be GND, 0V, or a floating state.

また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電
気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板40
06上に形成されている。画素電極層4030と対向電極層4031と液晶層4008と
が重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向
電極層4031はそれぞれ配向膜として機能する絶縁層4032、絶縁層4033が設け
られ、絶縁層4032、絶縁層4033を介して液晶層4008を挟持している。
Further, the pixel electrode layer 4030 included in the liquid crystal element 4013 is electrically connected to the thin film transistor 4010. The counter electrode layer 4031 of the liquid crystal element 4013 is the second substrate 40.
It is formed on 06. The portion where the pixel electrode layer 4030, the counter electrode layer 4031, and the liquid crystal layer 4008 overlap each other corresponds to the liquid crystal element 4013. The pixel electrode layer 4030 and the counter electrode layer 4031 are provided with an insulating layer 4032 and an insulating layer 4033 that function as alignment films, respectively, and sandwich the liquid crystal layer 4008 via the insulating layer 4032 and the insulating layer 4033, respectively.

なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはス
テンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては
、FRP(Fiberglass−Reinforced Plastics)板、PV
F(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィ
ルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステル
フィルムで挟んだ構造のシートを用いることもできる。
As the first substrate 4001 and the second substrate 4006, glass, metal (typically stainless steel), ceramics, and plastic can be used. As plastic, FRP (Fiberglass-Reinforced Plastics) plate, PV
F (polyvinyl fluoride) film, polyester film or acrylic resin film can be used. Further, a sheet having a structure in which an aluminum foil is sandwiched between a PVC film or a polyester film can also be used.

また、スペーサ4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペー
サであり、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制
御するために設けられている。なお球状のスペーサを用いても良い。また、対向電極層4
031は、薄膜トランジスタ4010と同一基板上に設けられる共通電位線と電気的に接
続される。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電極
層4031と共通電位線とを電気的に接続することができる。なお、導電性粒子はシール
材4005に含有させる。
Further, the spacer 4035 is a columnar spacer obtained by selectively etching the insulating film, and is provided to control the distance (cell gap) between the pixel electrode layer 4030 and the counter electrode layer 4031. .. A spherical spacer may be used. Further, the counter electrode layer 4
031 is electrically connected to a common potential line provided on the same substrate as the thin film transistor 4010. Using the common connection portion, the counter electrode layer 4031 and the common potential line can be electrically connected via the conductive particles arranged between the pair of substrates. The conductive particles are contained in the sealing material 4005.

また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つで
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善
するために5重量%以上のカイラル剤を混合させた液晶組成物を液晶層4008に用いる
。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1msec以下と
短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さい。
Further, a liquid crystal display showing a blue phase without using an alignment film may be used. The blue phase is one of the liquid crystal phases, and is a phase that appears immediately before the transition from the cholesteric phase to the isotropic phase when the temperature of the cholesteric liquid crystal is raised. Since the blue phase is expressed only in a narrow temperature range, a liquid crystal composition mixed with 5% by weight or more of a chiral agent is used for the liquid crystal layer 4008 in order to improve the temperature range. A liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral agent has a short response speed of 1 msec or less, is optically isotropic, does not require an orientation treatment, and has a small viewing angle dependence.

なお、本実施の形態で示す液晶表示装置は透過型液晶表示装置の例であるが、液晶表示装
置は反射型液晶表示装置でも半透過型液晶表示装置でも適用できる。
The liquid crystal display device shown in the present embodiment is an example of a transmissive liquid crystal display device, but the liquid crystal display device can be applied to either a reflective liquid crystal display device or a semi-transmissive liquid crystal display device.

また、本実施の形態で示す液晶表示装置では、基板の外側(視認側)に偏光板を設け、内
側に着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側
に設けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板
及び着色層の材料や作製工程条件によって適宜設定すればよい。また、必要に応じてブラ
ックマトリクスとして機能する遮光膜を設けてもよい。
Further, in the liquid crystal display device shown in the present embodiment, an example is shown in which a polarizing plate is provided on the outside (visual side) of the substrate, a colored layer is provided on the inside, and an electrode layer used for the display element is provided in this order. It may be provided inside. Further, the laminated structure of the polarizing plate and the colored layer is not limited to the present embodiment, and may be appropriately set depending on the material of the polarizing plate and the colored layer and the manufacturing process conditions. Further, if necessary, a light-shielding film that functions as a black matrix may be provided.

また、本実施の形態では、薄膜トランジスタの表面凹凸を低減するため、及び薄膜トラン
ジスタの信頼性を向上させるため、薄膜トランジスタを保護膜や平坦化絶縁膜として機能
する絶縁層(絶縁層4020、絶縁層4021)で覆う構成となっている。なお、保護膜
は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのもの
であり、緻密な膜が好ましい。保護膜は、スパッタリング法を用いて、酸化シリコン膜、
窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化
アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム膜の単層、又は積
層で形成すればよい。本実施の形態では保護膜をスパッタリング法で形成する例を示すが
、特に限定されず種々の方法で形成すればよい。
Further, in the present embodiment, in order to reduce the surface unevenness of the thin film transistor and improve the reliability of the thin film transistor, the insulating layer (insulating layer 4020, insulating layer 4021) that functions as a protective film or a flattening insulating film of the thin film transistor. It is configured to be covered with. The protective film is for preventing the invasion of pollutant impurities such as organic substances, metal substances, and water vapor floating in the atmosphere, and a dense film is preferable. The protective film is a silicon oxide film, using the sputtering method.
It may be formed by a single layer or a laminate of a silicon nitride film, a silicon nitride film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, an aluminum nitride film, or an aluminum nitride film. In the present embodiment, an example in which the protective film is formed by a sputtering method is shown, but the protective film may be formed by various methods without particular limitation.

ここでは、保護膜として積層構造の絶縁層4020を形成する。ここでは、絶縁層402
0の一層目として、スパッタリング法を用いて酸化シリコン膜を形成する。保護膜として
酸化シリコン膜を用いると、ソース電極層及びドレイン電極層として用いるアルミニウム
膜のヒロック防止に効果がある。
Here, an insulating layer 4020 having a laminated structure is formed as a protective film. Here, the insulating layer 402
As the first layer of 0, a silicon oxide film is formed by using a sputtering method. When a silicon oxide film is used as the protective film, it is effective in preventing hilocation of the aluminum film used as the source electrode layer and the drain electrode layer.

また、保護膜の二層目として絶縁層を形成する。ここでは、絶縁層4020の二層目とし
て、スパッタリング法を用いて窒化シリコン膜を形成する。保護膜として窒化シリコン膜
を用いると、ナトリウム等のイオンが半導体領域中に侵入して、TFTの電気特性を変化
させることを抑制することができる。
In addition, an insulating layer is formed as the second layer of the protective film. Here, as the second layer of the insulating layer 4020, a silicon nitride film is formed by using a sputtering method. When a silicon nitride film is used as the protective film, it is possible to prevent ions such as sodium from invading the semiconductor region and changing the electrical characteristics of the TFT.

また、保護膜を形成した後に、半導体層のアニール(300℃〜400℃)を行ってもよ
い。
Further, after forming the protective film, the semiconductor layer may be annealed (300 ° C. to 400 ° C.).

また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、ポリイ
ミド、アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の、耐熱性を有する有機
材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)
、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いる
ことができる。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層
4021を形成してもよい。
In addition, an insulating layer 4021 is formed as a flattening insulating film. As the insulating layer 4021, an organic material having heat resistance such as polyimide, acrylic, benzocyclobutene, polyamide, and epoxy can be used. In addition to the above organic materials, low dielectric constant materials (low-k materials)
, Siloxane resin, PSG (phosphorus glass), BPSG (phosphorus glass) and the like can be used. The insulating layer 4021 may be formed by laminating a plurality of insulating films formed of these materials.

なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−S
i結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキ
ル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有してい
ても良い。
The siloxane-based resin is Si—O—S formed using a siloxane-based material as a starting material.
Corresponds to a resin containing an i-bond. As the substituent of the siloxane-based resin, an organic group (for example, an alkyl group or an aryl group) or a fluoro group may be used. Moreover, the organic group may have a fluoro group.

絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタリング法、S
OG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スク
リーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター
、ナイフコーター等を用いることができる。絶縁層4021として材料液を用いて形成す
る場合、ベークする工程で同時に、半導体層のアニール(300℃〜400℃)を行って
もよい。絶縁層4021の焼成工程と半導体層のアニールを兼ねることで効率よく半導体
装置を作製することが可能となる。
The method for forming the insulating layer 4021 is not particularly limited, and depending on the material thereof, a sputtering method, S.
OG method, spin coating, dip, spray coating, droplet ejection method (inkjet method, screen printing, offset printing, etc.), doctor knife, roll coater, curtain coater, knife coater and the like can be used. When the insulating layer 4021 is formed by using a material liquid, the semiconductor layer may be annealed (300 ° C. to 400 ° C.) at the same time in the baking step. By combining the firing process of the insulating layer 4021 and the annealing of the semiconductor layer, it is possible to efficiently manufacture a semiconductor device.

画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物
、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、
酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、
インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する
導電性材料を用いることができる。
The pixel electrode layer 4030 and the counter electrode layer 4031 include indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, and indium oxide containing titanium oxide.
Indium tin oxide containing titanium oxide, indium tin oxide (hereinafter referred to as ITO),
A translucent conductive material such as indium zinc oxide or indium tin oxide to which silicon oxide is added can be used.

また、画素電極層4030、対向電極層4031を、導電性高分子(導電性ポリマーとも
いう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形成し
た画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率が7
0%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が
0.1Ω・cm以下であることが好ましい。
Further, the pixel electrode layer 4030 and the counter electrode layer 4031 can be formed by using a conductive composition containing a conductive polymer (also referred to as a conductive polymer). The pixel electrode formed by using the conductive composition has a sheet resistance of 10000 Ω / □ or less and a light transmittance of 7 at a wavelength of 550 nm.
It is preferably 0% or more. Further, the resistivity of the conductive polymer contained in the conductive composition is preferably 0.1 Ω · cm or less.

導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
As the conductive polymer, a so-called π-electron conjugated conductive polymer can be used. For example, polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, or a copolymer of two or more kinds thereof can be mentioned.

また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4
002に与えられる各種信号及び電位は、FPC4018から供給されている。
Further, a separately formed signal line drive circuit 4003 and a scan line drive circuit 4004 or a pixel unit 4
Various signals and potentials given to 002 are supplied from FPC4018.

本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極層40
30と同じ導電膜から形成され、端子電極4016は、薄膜トランジスタ4010、40
11のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
In the present embodiment, the connection terminal electrode 4015 is the pixel electrode layer 40 included in the liquid crystal element 4013.
Formed from the same conductive film as 30, the terminal electrode 4016 is a thin film transistor 4010, 40.
It is formed of the same conductive film as the source electrode layer and the drain electrode layer of No. 11.

接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介し
て電気的に接続されている。
The connection terminal electrode 4015 is electrically connected to the terminal of the FPC 4018 via the anisotropic conductive film 4019.

また図11においては、信号線駆動回路4003を別途形成し、第1の基板4001に実
装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路
を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部の
みを別途形成して実装しても良い。
Further, FIG. 11 shows an example in which the signal line drive circuit 4003 is separately formed and mounted on the first substrate 4001, but the present embodiment is not limited to this configuration. The scanning line drive circuit may be separately formed and mounted, or only a part of the signal line driving circuit or a part of the scanning line driving circuit may be separately formed and mounted.

図12は、半導体装置の一形態に相当する液晶表示モジュールにTFT基板2600を用
いて構成する一例を示している。
FIG. 12 shows an example in which a TFT substrate 2600 is used in a liquid crystal display module corresponding to one form of a semiconductor device.

図12は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシ
ール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む
表示素子2604、着色層2605、偏光板2606が設けられ表示領域を形成している
。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、
青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対
向基板2601の外側には偏光板2606、偏光板2607、拡散板2613が配設され
ている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は
、フレキシブル配線基板2609によりTFT基板2600の配線回路部2608と接続
され、コントロール回路や電源回路などの外部回路が組みこまれている。また偏光板と、
液晶層との間に位相差板を有した状態で積層してもよい。
FIG. 12 is an example of a liquid crystal display module, in which a TFT substrate 2600 and an opposing substrate 2601 are fixed by a sealing material 2602, and a pixel portion 2603 including a TFT or the like, a display element 2604 including a liquid crystal layer, a colored layer 2605, and a polarizing plate are provided between them. 2606 is provided to form a display area. The colored layer 2605 is necessary for color display, and in the case of the RGB method, red, green,
A colored layer corresponding to each blue color is provided corresponding to each pixel. A polarizing plate 2606, a polarizing plate 2607, and a diffusion plate 2613 are arranged outside the TFT substrate 2600 and the opposing substrate 2601. The light source is composed of a cold cathode fluorescent lamp 2610 and a reflector 2611, and the circuit board 2612 is connected to the wiring circuit section 2608 of the TFT board 2600 by the flexible wiring board 2609, and external circuits such as a control circuit and a power supply circuit are incorporated. There is. Also with a polarizing plate
It may be laminated with a retardation plate between it and the liquid crystal layer.

液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n−Plane−Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi−domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)、ASM(Axially Symmetric aligned Mic
ro−cell)モード、OCB(Optical Compensated Bire
fringence)モード、FLC(Ferroelectric Liquid C
rystal)モード、AFLC(AntiFerroelectric Liquid
Crystal)モードなどを用いることができる。
The liquid crystal display module has TN (Twisted Nematic) mode and IPS (I).
n-Plane-Switching mode, FFS (Fringe Field S)
(witching) mode, MVA (Multi-domain Vertical A)
lightweight mode, PVA (Patterned Vertical Alig)
nment), ASM (Axially Symmetrically named Mic)
ro-cell) mode, OCB (Optical Compensated Bire)
fringence mode, FLC (Ferroelectric Liquid C)
rhythm mode, AFLC (Antiferroelectric Liquid)
Crystal) mode and the like can be used.

以上の工程により、半導体装置として信頼性の高い液晶表示装置を作製することができる
Through the above steps, a highly reliable liquid crystal display device can be manufactured as a semiconductor device.

実施の形態1に示す薄膜トランジスタを用いて液晶表示装置の画素部の薄膜トランジスタ
を作製することにより、各画素の薄膜トランジスタのオフ電流の変動に起因する消費電力
増加を抑制することができる。
By producing a thin film transistor in the pixel portion of the liquid crystal display device using the thin film transistor shown in the first embodiment, it is possible to suppress an increase in power consumption due to fluctuations in the off-current of the thin film transistor in each pixel.

また、実施の形態1に示す薄膜トランジスタの作製方法を用いて液晶表示装置の駆動回路
の薄膜トランジスタを作製することにより、駆動回路部の薄膜トランジスタの高速動作を
実現し、省電力化を図ることができる。
Further, by manufacturing the thin film transistor of the drive circuit of the liquid crystal display device by using the method of manufacturing the thin film transistor shown in the first embodiment, high-speed operation of the thin film transistor of the drive circuit unit can be realized and power saving can be achieved.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
This embodiment can be implemented in combination with the configurations described in other embodiments as appropriate.

(実施の形態4)
半導体装置の一形態として電子ペーパーの例を示す。
(Embodiment 4)
An example of electronic paper is shown as a form of a semiconductor device.

実施の形態1の薄膜トランジスタは、スイッチング素子と電気的に接続する素子を利用し
て電子インクを駆動させる電子ペーパーに用いてもよい。電子ペーパーは、電気泳動表示
装置(電気泳動ディスプレイ)とも呼ばれており、紙と同じ読みやすさ、他の表示装置に
比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
The thin film transistor of the first embodiment may be used for electronic paper for driving electronic ink by utilizing an element electrically connected to a switching element. Electronic paper is also called an electrophoresis display device (electrophoresis display), and has the advantages of being as easy to read as paper, having lower power consumption than other display devices, and being able to have a thin and light shape. ing.

電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒
子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に
複数分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロ
カプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示す
るものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合におい
て移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を
含む)とする。
The electrophoresis display may take various forms, but is a microcapsule containing a first particle having a positive charge and a second particle having a negative charge dispersed in a solvent or a solute. By applying an electric charge to the microcapsules, the particles in the microcapsules are moved in opposite directions, and only the color of the particles aggregated on one side is displayed. The first particle or the second particle contains a dye and does not move in the absence of an electric field. Further, the color of the first particle and the color of the second particle are different (including colorless).

このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する、
いわゆる誘電泳動的効果を利用したディスプレイである。
In this way, in the electrophoretic display, a substance having a high dielectric constant moves to an electric field region having a high dielectric constant.
It is a display that utilizes the so-called dielectrophoretic effect.

上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、こ
の電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また
、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
The microcapsules dispersed in a solvent are called electronic inks, and the electronic inks can be printed on the surface of glass, plastic, cloth, paper, or the like. In addition, color display is also possible by using a color filter or particles having a dye.

また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイク
ロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカプ
セルに電界を印加すれば表示を行うことができる。例えば、実施の形態1の薄膜トランジ
スタによって得られるアクティブマトリクス基板を用いることができる。
Further, if a plurality of the above microcapsules are appropriately arranged on the active matrix substrate so as to be sandwiched between the two electrodes, an active matrix type display device is completed, and display can be performed by applying an electric field to the microcapsules. can. For example, an active matrix substrate obtained by the thin film transistor of the first embodiment can be used.

なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、
半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレク
トロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を
用いればよい。
The first particles and the second particles in the microcapsules are a conductor material, an insulator material, and the like.
A semiconductor material, a magnetic material, a liquid crystal material, a ferroelectric material, an electroluminescent material, an electrochromic material, a kind of material selected from a magnetic electrophoresis material, or a composite material thereof may be used.

図13は、半導体装置の例としてアクティブマトリクス型の電子ペーパーを示す。半導体
装置に用いられる薄膜トランジスタ581は、実施の形態1で示す薄膜トランジスタと同
様に作製でき、酸化物半導体層を含む信頼性の高い薄膜トランジスタである。
FIG. 13 shows an active matrix type electronic paper as an example of a semiconductor device. The thin film transistor 581 used in the semiconductor device can be manufactured in the same manner as the thin film transistor shown in the first embodiment, and is a highly reliable thin film transistor including an oxide semiconductor layer.

図13の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイス
トボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層であ
る第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差
を生じさせて球形粒子の向きを制御することにより、表示を行う方法である。
The electronic paper of FIG. 13 is an example of a display device using the twist ball display method. In the twist ball display method, spherical particles painted in black and white are arranged between a first electrode layer and a second electrode layer, which are electrode layers used for a display element, and the first electrode layer and the first electrode layer are arranged. This is a method of displaying by controlling the orientation of spherical particles by causing a potential difference in the electrode layer of 2.

薄膜トランジスタ581はボトムゲート構造の薄膜トランジスタであり、半導体層と接す
る絶縁膜583に覆われている。薄膜トランジスタ581のソース電極層又はドレイン電
極層は第1の電極層587と、絶縁層585に形成する開口で接しており電気的に接続し
ている。第1の電極層587と第2の電極層588との間には黒色領域590a及び白色
領域590bを有し、周りに液体で満たされているキャビティ594を含む球形粒子58
9が設けられており、球形粒子589の周囲は樹脂等の充填材595で充填されている(
図13参照)。第1の電極層587が画素電極に相当し、第2の電極層588が共通電極
に相当する。第2の電極層588は、薄膜トランジスタ581と同一基板上に設けられる
共通電位線と電気的に接続される。共通接続部を用いて、一対の基板間に配置される導電
性粒子を介して第2の電極層588と共通電位線とを電気的に接続することができる。
The thin film transistor 581 is a thin film transistor having a bottom gate structure, and is covered with an insulating film 583 in contact with the semiconductor layer. The source electrode layer or drain electrode layer of the thin film transistor 581 is in contact with the first electrode layer 587 by an opening formed in the insulating layer 585 and is electrically connected. Spherical particles 58 having a black region 590a and a white region 590b between the first electrode layer 587 and the second electrode layer 588 and containing a cavity 594 surrounded by a liquid.
9 is provided, and the periphery of the spherical particles 589 is filled with a filler 595 such as resin (
See FIG. 13). The first electrode layer 587 corresponds to the pixel electrode, and the second electrode layer 588 corresponds to the common electrode. The second electrode layer 588 is electrically connected to a common potential line provided on the same substrate as the thin film transistor 581. The common connection portion can be used to electrically connect the second electrode layer 588 and the common potential line via conductive particles arranged between the pair of substrates.

また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体
と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜20
0μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられ
るマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白
い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この
原理を応用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれてい
る。電気泳動表示素子は、液晶表示素子に比べて反射率が高いため、補助ライトは不要で
あり、また消費電力が小さく、薄暗い場所でも表示部を認識することが可能である。また
、表示部に電源が供給されない場合であっても、一度表示した像を保持することが可能で
あるため、電波発信源から表示機能付き半導体装置(単に表示装置、又は表示装置を具備
する半導体装置ともいう)を遠ざけた場合であっても、表示された像を保存しておくこと
が可能となる。
It is also possible to use an electrophoretic element instead of the twist ball. A diameter of 10 μm to 20 containing a transparent liquid, positively charged white fine particles, and negatively charged black fine particles.
Use microcapsules of about 0 μm. The microcapsules provided between the first electrode layer and the second electrode layer have white fine particles and black fine particles in opposite directions when an electric field is applied by the first electrode layer and the second electrode layer. You can go to and display white or black. A display element to which this principle is applied is an electrophoretic display element, which is generally called electronic paper. Since the electrophoresis display element has a higher reflectance than the liquid crystal display element, an auxiliary light is unnecessary, the power consumption is low, and the display unit can be recognized even in a dim place. Further, since it is possible to hold the image once displayed even when the power is not supplied to the display unit, a semiconductor device with a display function (simply a display device or a semiconductor provided with the display device) from the radio wave transmission source. Even when the device is moved away, the displayed image can be saved.

以上の工程により、半導体装置として信頼性の高い電子ペーパーを作製することができる
Through the above steps, highly reliable electronic paper can be produced as a semiconductor device.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
This embodiment can be implemented in combination with the configurations described in other embodiments as appropriate.

(実施の形態5)
半導体装置として発光表示装置の例を示す。表示装置の有する表示素子としては、ここで
はエレクトロルミネッセンスを利用する発光素子を用いて示す。エレクトロルミネッセン
スを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって
区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
(Embodiment 5)
An example of a light emitting display device as a semiconductor device is shown. As the display element included in the display device, a light emitting element using electroluminescence is used here. A light emitting element that utilizes electroluminescence is distinguished by whether the light emitting material is an organic compound or an inorganic compound, and the former is generally called an organic EL element and the latter is called an inorganic EL element.

有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成
し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このよう
な発光素子は、電流励起型の発光素子と呼ばれる。
In the organic EL element, by applying a voltage to the light emitting element, electrons and holes are injected into the layer containing the luminescent organic compound from the pair of electrodes, respectively, and a current flows. Then, when those carriers (electrons and holes) are recombined, the luminescent organic compound forms an excited state, and when the excited state returns to the ground state, it emits light. From such a mechanism, such a light emitting element is called a current excitation type light emitting element.

無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
The inorganic EL element is classified into a dispersed inorganic EL element and a thin film type inorganic EL element according to the element configuration. The dispersed inorganic EL element has a light emitting layer in which particles of a light emitting material are dispersed in a binder, and the light emitting mechanism is donor-acceptor recombination type light emission utilizing a donor level and an acceptor level. In the thin film type inorganic EL element, the light emitting layer is sandwiched between the dielectric layers, and the light emitting layer is sandwiched between the dielectric layers.
Furthermore, it has a structure in which it is sandwiched between electrodes, and the light emission mechanism is localized light emission that utilizes the inner-shell electronic transition of metal ions. Here, an organic EL element will be used as the light emitting element.

図14は、半導体装置の例としてデジタル時間階調駆動を適用可能な画素構成の一例を示
す図である。
FIG. 14 is a diagram showing an example of a pixel configuration to which digital time gradation drive can be applied as an example of a semiconductor device.

デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここで
は酸化物半導体層をチャネル形成領域に用いるnチャネル型のトランジスタを1つの画素
に2つ用いる例を示す。
The configuration of pixels to which digital time gradation drive can be applied and the operation of pixels will be described. Here, an example is shown in which two n-channel type transistors using an oxide semiconductor layer in the channel forming region are used in one pixel.

画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、
発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ64
01はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一
方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆
動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、
ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線640
7に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。
発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同一
基板上に形成される共通電位線と電気的に接続される。
Pixel 6400 is a switching transistor 6401, a driving transistor 6402,
It has a light emitting element 6404 and a capacitive element 6403. Switching transistor 64
In 01, the gate is connected to the scanning line 6406, the first electrode (one of the source electrode and the drain electrode) is connected to the signal line 6405, and the second electrode (the other of the source electrode and the drain electrode) is the gate of the driving transistor 6402. It is connected to the. The drive transistor 6402 is
The gate is connected to the power supply line 6407 via the capacitive element 6403, and the first electrode is the power supply line 640.
The second electrode is connected to the first electrode (pixel electrode) of the light emitting element 6404.
The second electrode of the light emitting element 6404 corresponds to the common electrode 6408. The common electrode 6408 is electrically connected to a common potential line formed on the same substrate.

なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されてい
る。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源
電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設
定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加
して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位
と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれ
ぞれの電位を設定する。
A low power supply potential is set in the second electrode (common electrode 6408) of the light emitting element 6404. The low power supply potential is a potential that satisfies the low power supply potential <high power supply potential with reference to the high power supply potential set in the power supply line 6407, and the low power supply potential is set to, for example, GND or 0V. Is also good. Since the potential difference between the high power supply potential and the low power supply potential is applied to the light emitting element 6404 and a current is passed through the light emitting element 6404 to cause the light emitting element 6404 to emit light, the potential difference between the high power supply potential and the low power supply potential is the light emitting element 6404. Set each potential so that it is equal to or higher than the forward threshold voltage of.

なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略する
ことも可能である。駆動用トランジスタ6402のゲート容量については、チャネル領域
とゲート電極との間で容量が形成されていてもよい。
The capacitive element 6403 can be omitted by substituting the gate capacitance of the driving transistor 6402. Regarding the gate capacitance of the drive transistor 6402, a capacitance may be formed between the channel region and the gate electrode.

ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、
駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるような
ビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。
駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも
高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、
(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
Here, in the case of the voltage input voltage drive system, the gate of the drive transistor 6402 is
A video signal is input so that the drive transistor 6402 is fully turned on or off. That is, the driving transistor 6402 is operated in the linear region.
Since the drive transistor 6402 operates in the linear region, a voltage higher than the voltage of the power supply line 6407 is applied to the gate of the drive transistor 6402. In addition, in the signal line 6405,
Apply a voltage higher than (power supply line voltage + Vth of drive transistor 6402).

また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力方法を
変えることで、図14と同じ画素構成を用いることができる。
Further, when analog gradation drive is performed instead of digital time gradation drive, the same pixel configuration as in FIG. 14 can be used by changing the signal input method.

アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404
の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子64
04の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向し
きい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデ
オ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジ
スタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジス
タ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子
6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
When performing analog gradation drive, the light emitting element 6404 is connected to the gate of the drive transistor 6402.
The forward voltage of + the voltage of Vth or more of the driving transistor 6402 is applied. Light emitting element 64
The forward voltage of 04 refers to a voltage at which a desired brightness is obtained, and includes at least a forward threshold voltage. By inputting a video signal such that the driving transistor 6402 operates in the saturation region, a current can be passed through the light emitting element 6404. In order to operate the drive transistor 6402 in the saturation region, the potential of the power supply line 6407 is made higher than the gate potential of the drive transistor 6402. By making the video signal analog, a current corresponding to the video signal can be passed through the light emitting element 6404 to drive the analog gradation.

なお、図14に示す画素構成は、これに限定されない。例えば、図14に示す画素に新た
にスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
The pixel configuration shown in FIG. 14 is not limited to this. For example, a switch, a resistance element, a capacitance element, a transistor, a logic circuit, or the like may be newly added to the pixel shown in FIG.

次に、発光素子の構成について、図15を用いて説明する。ここでは、駆動用TFTがn
型の場合を例に挙げて、画素の断面構造について説明する。図15(A)(B)(C)の
発光素子に用いられる駆動用TFTであるTFT7001、7011、7021は、実施
の形態1で示す薄膜トランジスタと同様に作製でき、酸化物半導体層を含む信頼性の高い
薄膜トランジスタである。
Next, the configuration of the light emitting element will be described with reference to FIG. Here, the driving TFT is n
The cross-sectional structure of the pixel will be described by taking the case of a mold as an example. The driving TFTs 7001, 7011, and 7021 used for the light emitting elements of FIGS. 15 (A), (B), and (C) can be manufactured in the same manner as the thin film transistor shown in the first embodiment, and the reliability including the oxide semiconductor layer can be produced. It is a high-quality thin film transistor.

発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そ
して、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取
り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対
側の面から発光を取り出す両面射出構造の発光素子があり、画素構成はどの射出構造の発
光素子にも適用することができる。
The light emitting element may have at least one of the anode and the cathode transparent in order to extract light emission. Then, a thin film transistor and a light emitting element are formed on the substrate, and the top surface injection that extracts light emission from the surface opposite to the substrate, the bottom surface injection that extracts light emission from the surface on the substrate side, and the surface on the substrate side and the surface opposite to the substrate. There is a light emitting device having a double-sided injection structure that extracts light from the light emitting device, and the pixel configuration can be applied to a light emitting device having any injection structure.

下面射出構造の発光素子について図15(A)を用いて説明する。 A light emitting element having a bottom injection structure will be described with reference to FIG. 15 (A).

駆動用TFT7011がn型で、EL層7014から発せられる光が陰極7013側に射
出する場合の、画素の断面図を示す。図15(A)では、駆動用TFT7011と電気的
に接続された透光性を有する導電膜7017上に、発光素子7012の陰極7013が形
成されており、陰極7013上にEL層7014、陽極7015が順に積層されている。
なお、透光性を有する導電膜7017は、酸化物絶縁層7031に形成されたコンタクト
ホールを介して駆動用TFT7011のドレイン電極層と電気的に接続されている。
The cross-sectional view of a pixel is shown in the case where the driving TFT 7011 is n type, and the light emitted from the EL layer 7014 is emitted to the cathode 7013 side. In FIG. 15A, the cathode 7013 of the light emitting element 7012 is formed on the translucent conductive film 7017 electrically connected to the driving TFT 7011, and the EL layer 7014 and the anode 7015 are formed on the cathode 7013. Are stacked in order.
The translucent conductive film 7017 is electrically connected to the drain electrode layer of the driving TFT 7011 via a contact hole formed in the oxide insulating layer 7031.

透光性を有する導電膜7017としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、イン
ジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電
膜を用いることができる。
Examples of the translucent conductive film 7017 include indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, and indium tin oxide ( Hereinafter, it is referred to as ITO.), Indium tin oxide, indium tin oxide to which silicon oxide is added, and other conductive conductive films having translucency can be used.

また、陰極7013は様々な材料を用いることができるが、仕事関数が小さい材料、例え
ば、具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土
類金属、およびこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の
希土類金属等が好ましい。図15(A)では、陰極7013の膜厚は、光を透過する程度
(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニ
ウム膜を、陰極7013として用いる。
Although various materials can be used for the cathode 7013, materials having a small work function, for example, alkali metals such as Li and Cs, and alkaline earth metals such as Mg, Ca, and Sr, and In addition to alloys containing these (Mg: Ag, Al: Li, etc.), rare earth metals such as Yb and Er are preferable. In FIG. 15A, the film thickness of the cathode 7013 is such that light is transmitted (preferably about 5 nm to 30 nm). For example, an aluminum film having a film thickness of 20 nm is used as the cathode 7013.

なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7017と陰極7013を形成してもよく、この場合、同じマス
クを用いてエッチングすることができ、好ましい。
After laminating and forming a translucent conductive film and an aluminum film, the conductive film 7017 and the cathode 7013 may be selectively etched to form the translucent conductive film 7017 and the cathode 7013. In this case, the same mask is used. Can be etched, which is preferable.

また、陰極7013の周縁部は、隔壁7019で覆う。隔壁7019は、ポリイミド、ア
クリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを
用いて形成する。隔壁7019は、特に感光性の樹脂材料を用い、陰極7013上に開口
部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形
成することが好ましい。隔壁7019として感光性の樹脂材料を用いる場合、レジストマ
スクを形成する工程を省略することができる。
The peripheral edge of the cathode 7013 is covered with a partition wall 7019. The partition wall 7019 is formed by using an organic resin film such as polyimide, acrylic, polyamide, or epoxy, an inorganic insulating film, or an organic polysiloxane. It is preferable that the partition wall 7019 is formed by using a photosensitive resin material in particular, forming an opening on the cathode 7013, and forming the side wall of the opening so as an inclined surface formed with a continuous curvature. When a photosensitive resin material is used as the partition wall 7019, the step of forming the resist mask can be omitted.

また、陰極7013及び隔壁7019上に形成するEL層7014は、単数の層で構成さ
れていても、複数の層が積層されるように構成されていてもどちらでも良い。EL層70
14が複数の層で構成されている場合、陰極7013上に電子注入層、電子輸送層、発光
層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はな
い。
Further, the EL layer 7014 formed on the cathode 7013 and the partition wall 7019 may be composed of a single layer or may be configured such that a plurality of layers are laminated. EL layer 70
When 14 is composed of a plurality of layers, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, and the hole injection layer are laminated in this order on the cathode 7013. It is not necessary to provide all of these layers.

また、上記積層順に限定されず、陰極7013上にホール注入層、ホール輸送層、発光層
、電子輸送層、電子注入層の順に積層してもよい。ただし、消費電力を比較する場合、陰
極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積
層するほうが消費電力が少ないため好ましい。
Further, the stacking order is not limited, and the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be laminated in this order on the cathode 7013. However, when comparing the power consumption, it is preferable to stack the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, and the hole injection layer in this order on the cathode 7013 because the power consumption is low.

また、EL層7014上に形成する陽極7015としては、様々な材料を用いることがで
きるが、仕事関数が大きい材料、例えば、窒化チタン、ZrN、Ti、W、Ni、Pt、
Cr等や、ITO、IZO(酸化インジウム酸化亜鉛)、ZnOなどの透明導電性材料が
好ましい。また、陽極7015上に遮蔽膜7016、例えば光を遮光する金属、光を反射
する金属等を形成する。本実施の形態では、陽極7015としてITO膜を用い、遮蔽膜
7016としてTi膜を用いる。
Further, as the anode 7015 formed on the EL layer 7014, various materials can be used, but materials having a large work function such as titanium nitride, ZrN, Ti, W, Ni, Pt, and the like can be used.
Transparent conductive materials such as Cr and the like, ITO, IZO (indium oxide zinc oxide), and ZnO are preferable. Further, a shielding film 7016, for example, a metal that blocks light, a metal that reflects light, or the like is formed on the anode 7015. In this embodiment, an ITO film is used as the anode 7015, and a Ti film is used as the shielding film 7016.

陰極7013及び陽極7015で、少なくともEL層7014を挟んでいる領域が発光素
子7012に相当する。図15(A)に示した素子構造の場合、発光素子7012から発
せられる光は、矢印で示すように陰極7013側に射出する。
At least the region of the cathode 7013 and the anode 7015 sandwiching the EL layer 7014 corresponds to the light emitting element 7012. In the case of the element structure shown in FIG. 15A, the light emitted from the light emitting element 7012 is emitted to the cathode 7013 side as shown by an arrow.

なお、図15(A)ではゲート電極層として透光性を有する導電膜を用いる例を示してお
り、発光素子7012から発せられる光は、カラーフィルタ層7033を通過し、駆動用
TFTであるTFT7011のゲート電極層やソース電極層を通過して射出させる。TF
T7011のゲート電極層やソース電極層として透光性を有する導電膜を用い、開口率を
向上することができる。
Note that FIG. 15A shows an example in which a conductive film having translucency is used as the gate electrode layer, and the light emitted from the light emitting element 7012 passes through the color filter layer 7033 and is a driving TFT 7011. It is injected through the gate electrode layer and the source electrode layer of. TF
A light-transmitting conductive film can be used as the gate electrode layer and the source electrode layer of T7011, and the aperture ratio can be improved.

カラーフィルタ層7033はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
The color filter layer 7033 is formed by a droplet ejection method such as an inkjet method, a printing method, an etching method using a photolithography technique, or the like.

また、カラーフィルタ層7033はオーバーコート層7034で覆われ、さらに絶縁層7
035によって覆う。なお、図15(A)ではオーバーコート層7034は薄い膜厚で図
示したが、オーバーコート層7034は、カラーフィルタ層7033に起因する凹凸を平
坦化する機能を有している。
Further, the color filter layer 7033 is covered with the overcoat layer 7034, and the insulating layer 7 is further covered.
Cover with 035. Although the overcoat layer 7034 is shown with a thin film thickness in FIG. 15A, the overcoat layer 7034 has a function of flattening the unevenness caused by the color filter layer 7033.

また、絶縁層7035に形成され、且つ、ドレイン電極層に達するコンタクトホールは、
隔壁7019と重なる位置に配置する。図15(A)では、ドレイン電極層に達するコン
タクトホールと、隔壁7019と、を重ねるレイアウトとすることで開口率の向上を図る
ことができる。
Further, the contact holes formed in the insulating layer 7035 and reaching the drain electrode layer are
It is arranged at a position overlapping the partition wall 7019. In FIG. 15A, the aperture ratio can be improved by arranging the layout in which the contact hole reaching the drain electrode layer and the partition wall 7019 are overlapped.

次に、両面射出構造の発光素子について、図15(B)を用いて説明する。 Next, a light emitting element having a double-sided injection structure will be described with reference to FIG. 15 (B).

図15(B)では、駆動用TFTであるTFT7021と電気的に接続された透光性を有
する導電膜7027上に、発光素子7022の陰極7023が形成されており、陰極70
23上にEL層7024、陽極7025が順に積層されている。なお、透光性を有する導
電膜7027は酸化物絶縁層7041に形成されたコンタクトホールを介してTFT70
21のドレイン電極層と電気的に接続されている。
In FIG. 15B, the cathode 7023 of the light emitting element 7022 is formed on the translucent conductive film 7027 electrically connected to the driving TFT 7021, and the cathode 70
The EL layer 7024 and the anode 7025 are laminated on the 23 in this order. The translucent conductive film 7027 is the TFT 70 via a contact hole formed in the oxide insulating layer 7041.
It is electrically connected to the drain electrode layer of 21.

透光性を有する導電膜7027としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、イン
ジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電
膜を用いることができる。
Examples of the translucent conductive film 7027 include indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, and indium tin oxide ( Hereinafter, it is referred to as ITO.), Indium tin oxide, indium tin oxide to which silicon oxide is added, and other conductive conductive films having translucency can be used.

また、陰極7023は様々な材料を用いることができるが、仕事関数が小さい材料、例え
ば、具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土
類金属、およびこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の
希土類金属等が好ましい。本実施の形態では、陰極7023の膜厚は、光を透過する程度
(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニ
ウム膜を、陰極7023として用いる。
Although various materials can be used for the cathode 7023, materials having a small work function, for example, alkali metals such as Li and Cs, and alkaline earth metals such as Mg, Ca, and Sr, and In addition to alloys containing these (Mg: Ag, Al: Li, etc.), rare earth metals such as Yb and Er are preferable. In the present embodiment, the film thickness of the cathode 7023 is such that light is transmitted (preferably about 5 nm to 30 nm). For example, an aluminum film having a film thickness of 20 nm is used as the cathode 7023.

なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7027と陰極7023を形成してもよく、この場合、同じマス
クを用いてエッチングすることができ、好ましい。
After laminating and forming a translucent conductive film and an aluminum film, the conductive film 7027 and the cathode 7023 may be selectively etched to form the translucent conductive film 7027 and the cathode 7023. In this case, the same mask is used. Can be etched, which is preferable.

また、陰極7023の周縁部は、隔壁7029で覆う。隔壁7029は、ポリイミド、ア
クリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを
用いて形成する。隔壁7029は、特に感光性の樹脂材料を用い、陰極7023上に開口
部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形
成することが好ましい。隔壁7029として感光性の樹脂材料を用いる場合、レジストマ
スクを形成する工程を省略することができる。
The peripheral edge of the cathode 7023 is covered with a partition wall 7029. The partition wall 7029 is formed by using an organic resin film such as polyimide, acrylic, polyamide, or epoxy, an inorganic insulating film, or an organic polysiloxane. It is preferable that the partition wall 7029 is formed by using a photosensitive resin material in particular, forming an opening on the cathode 7023 so that the side wall of the opening is an inclined surface formed with a continuous curvature. When a photosensitive resin material is used as the partition wall 7029, the step of forming the resist mask can be omitted.

また、陰極7023及び隔壁7029上に形成するEL層7024は、単数の層で構成さ
れていても、複数の層が積層されるように構成されていてもどちらでも良い。EL層70
24が複数の層で構成されている場合、陰極7023上に電子注入層、電子輸送層、発光
層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はな
い。
Further, the EL layer 7024 formed on the cathode 7023 and the partition wall 7029 may be composed of a single layer or may be configured such that a plurality of layers are laminated. EL layer 70
When 24 is composed of a plurality of layers, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, and the hole injection layer are laminated in this order on the cathode 7023. It is not necessary to provide all of these layers.

また、上記積層順に限定されず、陰極7023上にホール注入層、ホール輸送層、発光層
、電子輸送層、電子注入層の順に積層してもよい。ただし、消費電力を比較した場合、陰
極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積
層するほうが消費電力が少ないため好ましい。
Further, the stacking order is not limited, and the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be laminated in this order on the cathode 7023. However, when comparing the power consumption, it is preferable to stack the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, and the hole injection layer on the cathode 7023 in this order because the power consumption is low.

また、EL層7024上に形成する陽極7025としては、様々な材料を用いることがで
きるが、仕事関数が大きい材料、例えば、ITO、IZO、ZnOなどの透明導電性材料
が好ましい。本実施の形態では、陽極7026として酸化珪素を含むITO膜を用いる。
Although various materials can be used as the anode 7025 formed on the EL layer 7024, a material having a large work function, for example, a transparent conductive material such as ITO, IZO, and ZnO is preferable. In this embodiment, an ITO film containing silicon oxide is used as the anode 7026.

陰極7023及び陽極7025で、EL層7024を挟んでいる領域が発光素子7022
に相当する。図15(B)に示した素子構造の場合、発光素子7022から発せられる光
は、矢印で示すように陽極7025側と陰極7023側の両方に射出する。
The region of the cathode 7023 and the anode 7025 sandwiching the EL layer 7024 is the light emitting element 7022.
Corresponds to. In the case of the element structure shown in FIG. 15B, the light emitted from the light emitting element 7022 is emitted to both the anode 7025 side and the cathode 7023 side as shown by the arrows.

なお、図15(B)ではゲート電極層として透光性を有する導電膜を用いる例を示してお
り、発光素子7022から陰極7023側に発せられる光は、カラーフィルタ層7043
を通過し、TFT7021のゲート電極層やソース電極層を通過して射出させる。TFT
7021のゲート電極層やソース電極層として透光性を有する導電膜を用いることで、陽
極7025側の開口率と陰極7023側の開口率をほぼ同一とすることができる。
Note that FIG. 15B shows an example in which a light-transmitting conductive film is used as the gate electrode layer, and the light emitted from the light emitting element 7022 toward the cathode 7023 is the color filter layer 7043.
And passes through the gate electrode layer and the source electrode layer of the TFT 7021 to inject. TFT
By using a translucent conductive film as the gate electrode layer and the source electrode layer of the 7021, the aperture ratio on the anode 7025 side and the aperture ratio on the cathode 7023 side can be made substantially the same.

カラーフィルタ層7043はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
The color filter layer 7043 is formed by a droplet ejection method such as an inkjet method, a printing method, an etching method using a photolithography technique, or the like.

また、カラーフィルタ層7043はオーバーコート層7044で覆われ、さらに絶縁層7
045によって覆う。
Further, the color filter layer 7043 is covered with the overcoat layer 7044, and the insulating layer 7 is further covered.
Cover with 045.

また、絶縁層7045に形成され、且つ、ドレイン電極層に達するコンタクトホールは、
隔壁7029と重なる位置に配置する。ドレイン電極層に達するコンタクトホールと、隔
壁7029とを重ねるレイアウトとすることで陽極7025側の開口率と陰極7023側
の開口率をほぼ同一とすることができる。
Further, the contact holes formed in the insulating layer 7045 and reaching the drain electrode layer are
It is arranged at a position overlapping with the partition wall 7029. By arranging the layout in which the contact hole reaching the drain electrode layer and the partition wall 7029 are overlapped, the aperture ratio on the anode 7025 side and the aperture ratio on the cathode 7023 side can be made substantially the same.

また、絶縁層7045に形成され、且つ、透光性を有する導電膜7027に達するコンタ
クトホールは、隔壁7029と重なる位置に配置する。
Further, the contact hole formed in the insulating layer 7045 and reaching the conductive film 7027 having translucency is arranged at a position overlapping with the partition wall 7029.

ただし、両面射出構造の発光素子を用い、どちらの表示面もフルカラー表示とする場合、
陽極7025側からの光はカラーフィルタ層7043を通過しないため、別途カラーフィ
ルタ層を備えた封止基板を陽極7025上方に設けることが好ましい。
However, when using a light emitting element with a double-sided injection structure and displaying both display surfaces in full color,
Since the light from the anode 7025 side does not pass through the color filter layer 7043, it is preferable to provide a sealing substrate separately provided with the color filter layer above the anode 7025.

次に、上面射出構造の発光素子について、図15(C)を用いて説明する。 Next, a light emitting element having a top injection structure will be described with reference to FIG. 15 (C).

図15(C)に、駆動用TFTであるTFT7001がn型で、発光素子7002から発
せられる光が陽極7005側に抜ける場合の、画素の断面図を示す。図15(C)では、
TFT7001と接続電極層を介して電気的に接続された発光素子7002の陰極700
3が形成されており、陰極7003上にEL層7004、陽極7005が順に積層されて
いる。
FIG. 15C shows a cross-sectional view of pixels when the driving TFT 7001 is n-type and the light emitted from the light emitting element 7002 escapes to the anode 7005 side. In FIG. 15 (C),
Cathode 700 of light emitting element 7002 electrically connected to TFT 7001 via a connection electrode layer
3 is formed, and the EL layer 7004 and the anode 7005 are laminated in this order on the cathode 7003.

また、陰極7003は様々な材料を用いることができるが、仕事関数が小さい材料、例え
ば、具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土
類金属、およびこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の
希土類金属等が好ましい。
Although various materials can be used for the cathode 7003, materials having a small work function, for example, alkali metals such as Li and Cs, and alkaline earth metals such as Mg, Ca, and Sr, and In addition to alloys containing these (Mg: Ag, Al: Li, etc.), rare earth metals such as Yb and Er are preferable.

また、陰極7003の周縁部は、隔壁7009で覆う。隔壁7009は、ポリイミド、ア
クリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを
用いて形成する。隔壁7009は、特に感光性の樹脂材料を用い、陰極7003上に開口
部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形
成することが好ましい。隔壁7009として感光性の樹脂材料を用いる場合、レジストマ
スクを形成する工程を省略することができる。
The peripheral edge of the cathode 7003 is covered with a partition wall 7009. The partition wall 7009 is formed by using an organic resin film such as polyimide, acrylic, polyamide, or epoxy, an inorganic insulating film, or an organic polysiloxane. It is preferable that the partition wall 7009 is formed by using a photosensitive resin material in particular, forming an opening on the cathode 7003, and forming the side wall of the opening so as an inclined surface formed with a continuous curvature. When a photosensitive resin material is used as the partition wall 7009, the step of forming the resist mask can be omitted.

また、陰極7003及び隔壁7009上に形成するEL層7004は、単数の層で構成さ
れていても、複数の層が積層されるように構成されていてもどちらでも良い。EL層70
04が複数の層で構成されている場合、陰極7003上に電子注入層、電子輸送層、発光
層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はな
い。
Further, the EL layer 7004 formed on the cathode 7003 and the partition wall 7009 may be composed of a single layer or may be configured such that a plurality of layers are laminated. EL layer 70
When 04 is composed of a plurality of layers, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, and the hole injection layer are laminated in this order on the cathode 7003. It is not necessary to provide all of these layers.

また、上記積層順に限定されず、陰極7003上にホール注入層、ホール輸送層、発光層
、電子輸送層、電子注入層の順に積層してもよい。この順に積層する場合は、陰極700
3は陽極として機能することとなる。
Further, the stacking order is not limited, and the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be laminated in this order on the cathode 7003. When stacking in this order, cathode 700
3 will function as an anode.

図15(C)ではTi膜、アルミニウム膜、Ti膜の順に積層した積層膜上に、ホール注
入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層し、その上にMg:A
g合金薄膜とITOとの積層を形成する。
In FIG. 15C, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are laminated in this order on a laminated film in which a Ti film, an aluminum film, and a Ti film are laminated in this order, and Mg is formed therein. : A
A laminate of a g-alloy thin film and ITO is formed.

ただし、消費電力を比較した場合、陰極7003上に電子注入層、電子輸送層、発光層、
ホール輸送層、ホール注入層の順に積層するほうが消費電力が少ないため好ましい。
However, when comparing the power consumption, the electron injection layer, the electron transport layer, and the light emitting layer are on the cathode 7003.
It is preferable to stack the hole transport layer and the hole injection layer in this order because the power consumption is low.

陽極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸化タン
グステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化
チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸
化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を
有する導電膜を用いても良い。
The anode 7005 is formed by using a translucent conductive material that transmits light, and for example, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, and titanium oxide. A translucent conductive film such as indium tin oxide, indium tin oxide, indium zinc oxide, and indium tin oxide to which silicon oxide is added may be used.

陰極7003及び陽極7005でEL層7004を挟んでいる領域が発光素子7002に
相当する。図15(C)に示した画素の場合、発光素子7002から発せられる光は、矢
印で示すように陽極7005側に射出する。
The region sandwiching the EL layer 7004 between the cathode 7003 and the anode 7005 corresponds to the light emitting element 7002. In the case of the pixel shown in FIG. 15C, the light emitted from the light emitting element 7002 is emitted to the anode 7005 side as shown by an arrow.

また、図15(C)において、TFT7001は薄膜トランジスタ150を用いる例を示
しているが、特に限定されず、薄膜トランジスタ160、170、180を用いることが
できる。
Further, in FIG. 15C, the TFT 7001 shows an example in which the thin film transistor 150 is used, but the thin film transistor 160, 170, 180 can be used without particular limitation.

また、図15(C)において、TFT7001のドレイン電極層は、接続電極層と酸化物
絶縁層7051を介して電気的に接続し、接続電極層は、絶縁層7052及び絶縁層70
55を介して陰極7003と電気的に接続する。平坦化絶縁層7053は、ポリイミド、
アクリル、ベンゾシクロブテン、ポリアミド、エポキシ等の樹脂材料を用いることができ
る。また上記樹脂材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、P
SG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、こ
れらの材料で形成される絶縁膜を複数積層させることで、平坦化絶縁層7053を形成し
てもよい。平坦化絶縁層7053の形成法は、特に限定されず、その材料に応じて、スパ
ッタリング法、SOG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インク
ジェット法、スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、
カーテンコーター、ナイフコーター等を用いることができる。
Further, in FIG. 15C, the drain electrode layer of the TFT 7001 is electrically connected to the connection electrode layer via the oxide insulating layer 7051, and the connection electrode layers are the insulating layer 7052 and the insulating layer 70.
It is electrically connected to the cathode 7003 via 55. The flattening insulating layer 7053 is made of polyimide,
Resin materials such as acrylic, benzocyclobutene, polyamide, and epoxy can be used. In addition to the above resin materials, low dielectric constant materials (low-k materials), siloxane-based resins, and P.
SG (phosphorus glass), BPSG (phosphorus glass) and the like can be used. The flattening insulating layer 7053 may be formed by laminating a plurality of insulating films formed of these materials. The method for forming the flattening insulating layer 7053 is not particularly limited, and depending on the material, a sputtering method, an SOG method, a spin coating, a dip, a spray coating, a droplet ejection method (inkjet method, screen printing, offset printing, etc.) , Doctor knife, roll coater,
A curtain coater, a knife coater, or the like can be used.

また、陰極7003と、隣り合う画素の陰極とを絶縁するために隔壁7009を設ける。
隔壁7009は、ポリイミド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶
縁膜または有機ポリシロキサンを用いて形成する。隔壁7009は、特に感光性の樹脂材
料を用い、陰極7003上に開口部を形成し、その開口部の側壁が連続した曲率を持って
形成される傾斜面となるように形成することが好ましい。
Further, a partition wall 7009 is provided to insulate the cathode 7003 and the cathodes of adjacent pixels.
The partition wall 7009 is formed by using an organic resin film such as polyimide, acrylic, polyamide, or epoxy, an inorganic insulating film, or an organic polysiloxane. It is preferable that the partition wall 7009 is formed by using a photosensitive resin material in particular, forming an opening on the cathode 7003, and forming the side wall of the opening so as an inclined surface formed with a continuous curvature.

また、図15(C)の構造においては、フルカラー表示を行う場合、例えば発光素子70
02として緑色発光素子とし、隣り合う一方の発光素子を赤色発光素子とし、もう一方の
発光素子を青色発光素子とする。また、3種類の発光素子だけでなく白色素子を加えた4
種類の発光素子でフルカラー表示ができる発光表示装置を作製してもよい。
Further, in the structure of FIG. 15C, when performing full-color display, for example, the light emitting element 70
As 02, a green light emitting element is used, one adjacent light emitting element is a red light emitting element, and the other light emitting element is a blue light emitting element. In addition, not only 3 types of light emitting elements but also white elements are added 4
A light emitting display device capable of full-color display with various types of light emitting elements may be manufactured.

また、図15(C)の構造においては、配置する複数の発光素子を全て白色発光素子とし
て、発光素子7002上方にカラーフィルタなどを有する封止基板を配置する構成とし、
フルカラー表示ができる発光表示装置を作製してもよい。白色などの単色の発光を示す材
料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行う
ことができる。
Further, in the structure of FIG. 15C, the plurality of light emitting elements to be arranged are all white light emitting elements, and a sealing substrate having a color filter or the like is arranged above the light emitting element 7002.
A light emitting display device capable of full-color display may be manufactured. Full-color display can be performed by forming a material that emits a single color such as white and combining it with a color filter and a color conversion layer.

もちろん単色発光の表示を行ってもよい。例えば、白色発光を用いて照明装置を形成して
もよいし、単色発光を用いてエリアカラータイプの発光装置を形成してもよい。
Of course, monochromatic light emission may be displayed. For example, a white light emitting device may be used to form an illumination device, or a single color light emitting device may be used to form an area color type light emitting device.

また、必要があれば、円偏光板などの偏光フィルムなどの光学フィルムを設けてもよい。 Further, if necessary, an optical film such as a polarizing film such as a circular polarizing plate may be provided.

なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。
Although the organic EL element has been described here as the light emitting element, the inorganic E as the light emitting element has been described.
It is also possible to provide an L element.

なお、発光素子の駆動を制御する薄膜トランジスタ(駆動用TFT)と発光素子が電気的
に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接
続されている構成であってもよい。
Although an example is shown in which the thin film transistor (driving TFT) that controls the driving of the light emitting element and the light emitting element are electrically connected, the current control TFT is connected between the driving TFT and the light emitting element. It may have a configuration that is present.

次に、半導体装置の一形態に相当する発光表示パネル(発光パネルともいう)の外観及び
断面について、図16を用いて説明する。図16(A)は、第1の基板上に形成された薄
膜トランジスタ及び発光素子を、第2の基板との間にシール材によって封止した、パネル
の平面図であり、図16(B)は、図16(A)のH−Iにおける断面図に相当する。
Next, the appearance and cross section of the light emitting display panel (also referred to as the light emitting panel) corresponding to one form of the semiconductor device will be described with reference to FIG. 16 (A) is a plan view of a panel in which a thin film transistor and a light emitting element formed on the first substrate are sealed between the thin film transistor and the light emitting element with a sealing material, and FIG. 16 (B) is a plan view of the panel. , Corresponds to the cross-sectional view in HI of FIG. 16 (A).

第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。このように外気に曝されないように気
密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィル
ム等)やカバー材でパッケージング(封入)することが好ましい。
Pixel unit 4502 provided on the first substrate 4501, signal line drive circuits 4503a, 450
Sealing material 4505 so as to surround 3b and scanning line drive circuits 4504a and 4504b.
Is provided. A second substrate 4506 is provided on the pixel unit 4502, the signal line drive circuits 4503a and 4503b, and the scanning line drive circuits 4504a and 4504b. Therefore, the pixel unit 4502, the signal line drive circuits 4503a and 4503b, and the scanning line drive circuit 45
04a and 4504b are sealed together with the filler 4507 by the first substrate 4501, the sealing material 4505, and the second substrate 4506. As described above, it is preferable to package (enclose) with a protective film (bonded film, ultraviolet curable resin film, etc.) or a cover material having high airtightness and little degassing so as not to be exposed to the outside air.

また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有し
ており、図15(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信
号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
Further, a pixel portion 4502 provided on the first substrate 4501 and a signal line drive circuit 4503a, 4
The 503b and the scanning line drive circuits 4504a and 4504b have a plurality of thin film transistors, and in FIG. 15B, the thin film transistor 4510 included in the pixel unit 4502 and the thin film transistor 4509 included in the signal line drive circuit 4503a are exemplified. doing.

薄膜トランジスタ4509、4510は、実施の形態1で示した酸化物半導体層を含む信
頼性の高い薄膜トランジスタを適用することができる。本実施の形態において、薄膜トラ
ンジスタ4509、4510はnチャネル型薄膜トランジスタである。
As the thin film transistors 4509 and 4510, highly reliable thin film transistors including the oxide semiconductor layer shown in the first embodiment can be applied. In the present embodiment, the thin film transistors 4509 and 4510 are n-channel thin film transistors.

絶縁層4544上において駆動回路用の薄膜トランジスタ4509の酸化物半導体層のチ
ャネル形成領域と重なる位置に導電層4540が設けられている。導電層4540を酸化
物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後におけ
る薄膜トランジスタ4509のしきい値電圧の変化量を低減することができる。また、導
電層4540は、薄膜トランジスタ4509のゲート電極層と同じ電位でもよいし、異な
る電位でも良く、第2のゲート電極層として機能させることもできる。また、導電層45
40の電位がGND、0V、或いはフローティング状態であってもよい。
The conductive layer 4540 is provided on the insulating layer 4544 at a position overlapping the channel forming region of the oxide semiconductor layer of the thin film transistor 4509 for the drive circuit. By providing the conductive layer 4540 at a position overlapping the channel forming region of the oxide semiconductor layer, it is possible to reduce the amount of change in the threshold voltage of the thin film transistor 4509 before and after the BT test. Further, the conductive layer 4540 may have the same potential as the gate electrode layer of the thin film transistor 4509 or may have a different potential, and may function as a second gate electrode layer. In addition, the conductive layer 45
The potential of 40 may be GND, 0V, or a floating state.

薄膜トランジスタ4509には、絶縁膜としてチャネル形成領域を含む半導体層に接して
絶縁層4541が形成されている。絶縁層4541は実施の形態1で示した絶縁層107
と同様な材料及び方法で形成すればよい。また、薄膜トランジスタの表面凹凸を低減する
ため平坦化絶縁膜として機能する絶縁層4544で覆う構成となっている。ここでは、絶
縁層4541として、実施の形態1に示す絶縁層107と同様に、スパッタリング法によ
り酸化珪素膜を形成する。
In the thin film transistor 4509, an insulating layer 4541 is formed as an insulating film in contact with the semiconductor layer including the channel forming region. The insulating layer 4541 is the insulating layer 107 shown in the first embodiment.
It may be formed by the same material and method as above. Further, in order to reduce the surface unevenness of the thin film transistor, it is covered with an insulating layer 4544 that functions as a flattening insulating film. Here, as the insulating layer 4541, a silicon oxide film is formed by a sputtering method in the same manner as the insulating layer 107 shown in the first embodiment.

また、平坦化絶縁膜として絶縁層4544を形成する。絶縁層4544としては、実施の
形態2で示した絶縁層4021と同様な材料及び方法で形成すればよい。ここでは、絶縁
層4544としてアクリルを用いる。
Further, an insulating layer 4544 is formed as a flattening insulating film. The insulating layer 4544 may be formed by the same material and method as the insulating layer 4021 shown in the second embodiment. Here, acrylic is used as the insulating layer 4544.

また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極
層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的
に接続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層
4512、第2の電極層4513の積層構造であるが、示した構成に限定されない。発光
素子4511から取り出す光の方向などに合わせて、発光素子4511の構成は適宜変え
ることができる。
Further, 4511 corresponds to a light emitting element, and the first electrode layer 4517, which is a pixel electrode of the light emitting element 4511, is electrically connected to the source electrode layer or the drain electrode layer of the thin film transistor 4510. The configuration of the light emitting element 4511 is a laminated structure of the first electrode layer 4517, the electroluminescent layer 4512, and the second electrode layer 4513, but is not limited to the configuration shown. The configuration of the light emitting element 4511 can be appropriately changed according to the direction of the light extracted from the light emitting element 4511 and the like.

隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。
特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁
が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
The partition wall 4520 is formed by using an organic resin film, an inorganic insulating film, or an organic polysiloxane.
In particular, it is preferable to use a photosensitive material to form an opening on the first electrode layer 4517 so that the side wall of the opening becomes an inclined surface formed with a continuous curvature.

電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成
されていてもどちらでも良い。
The electroluminescent layer 4512 may be composed of a single layer or may be configured such that a plurality of layers are laminated.

発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層
4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化珪素膜、
窒化酸化珪素膜、DLC膜等を形成することができる。
A protective film may be formed on the second electrode layer 4513 and the partition wall 4520 so that oxygen, hydrogen, water, carbon dioxide, etc. do not enter the light emitting element 4511. As a protective film, a silicon nitride film,
A silicon nitride film, a DLC film, or the like can be formed.

また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518
bから供給されている。
Further, the signal line drive circuits 4503a and 4503b and the scanning line drive circuits 4504a and 4504b
, Or various signals and potentials given to the pixel unit 4502 are FPC4518a, 4518.
It is supplied from b.

接続端子電極4515が、発光素子4511が有する第1の電極層4517と同じ導電膜
から形成され、端子電極4516は、薄膜トランジスタ4509、4510が有するソー
ス電極層及びドレイン電極層と同じ導電膜から形成されている。
The connection terminal electrode 4515 is formed of the same conductive film as the first electrode layer 4517 of the light emitting element 4511, and the terminal electrode 4516 is formed of the same conductive film as the source electrode layer and drain electrode layer of the thin film transistors 4509 and 4510. ing.

接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介
して電気的に接続されている。
The connection terminal electrode 4515 is electrically connected to the terminal of the FPC 4518a via an anisotropic conductive film 4519.

発光素子4511からの光の取り出し方向に位置する基板は、透光性でなければならない
。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィ
ルムのような透光性を有する材料を用いる。
The substrate located in the direction of extracting light from the light emitting element 4511 must be translucent. In that case, a translucent material such as a glass plate, a plastic plate, a polyester film or an acrylic film is used.

また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、
ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEV
A(エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用い
ればよい。
Further, as the filler 4507, in addition to an inert gas such as nitrogen or argon, an ultraviolet curable resin or a thermosetting resin can be used, and PVC (polyvinyl chloride), acrylic, etc. can be used.
Polyimide, epoxy resin, silicone resin, PVB (polyvinyl butyral) or EV
A (ethylene vinyl acetate) can be used. For example, nitrogen may be used as the filler.

また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により
反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
If necessary, a polarizing plate or a circular polarizing plate (including an elliptical polarizing plate) is provided on the injection surface of the light emitting element.
An optical film such as a retardation plate (λ / 4 plate, λ / 2 plate) or a color filter may be appropriately provided. Further, an antireflection film may be provided on the polarizing plate or the circular polarizing plate. For example, an anti-glare treatment that can diffuse the reflected light due to the unevenness of the surface and reduce the reflection can be applied.

信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは
、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回
路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回
路のみ、或いは一部のみを別途形成して実装しても良く、図16の構成に限定されない。
The signal line drive circuits 4503a and 4503b and the scanning line drive circuits 4504a and 4504b may be mounted by a drive circuit formed of a single crystal semiconductor film or a polycrystalline semiconductor film on a separately prepared substrate. Further, only the signal line drive circuit, or a part of the signal line drive circuit, or only the scan line drive circuit, or only a part of the scan line drive circuit may be separately formed and mounted, and the configuration is not limited to that shown in FIG.

以上の工程により、半導体装置として信頼性の高い発光表示装置(表示パネル)を作製す
ることができる。
Through the above steps, a highly reliable light emitting display device (display panel) can be manufactured as a semiconductor device.

実施の形態1に示す薄膜トランジスタの作製方法を用いて発光表示装置の画素部の薄膜ト
ランジスタを作製することにより、各画素の薄膜トランジスタのオフ電流の変動に起因す
る消費電力を低減することができる。
By manufacturing the thin film transistor of the pixel portion of the light emitting display device by using the method for manufacturing the thin film transistor shown in the first embodiment, it is possible to reduce the power consumption caused by the fluctuation of the off current of the thin film transistor of each pixel.

また、実施の形態1に示す薄膜トランジスタの作製方法を用いて発光表示装置の駆動回路
の薄膜トランジスタを作製することにより、駆動回路部の薄膜トランジスタの高速動作を
実現し、省電力化を図ることができる。
Further, by manufacturing the thin film transistor of the drive circuit of the light emitting display device by using the method of manufacturing the thin film transistor shown in the first embodiment, high-speed operation of the thin film transistor of the drive circuit unit can be realized and power saving can be achieved.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
This embodiment can be implemented in combination with the configurations described in other embodiments as appropriate.

(実施の形態6)
本実施の形態では、半導体装置の一形態として、実施の形態1で示す薄膜トランジスタを
有する液晶素子を用いた液晶表示装置の例を図17乃至図20を用いて説明する。図17
乃至図20の液晶表示装置に用いられるTFT628、TFT629は、実施の形態1で
示す薄膜トランジスタを適用することができ、実施の形態1で示す工程と同様に作製でき
る電気特性及び信頼性の高い薄膜トランジスタである。TFT628及びTFT629は
、酸化物半導体層をチャネル形成領域とする薄膜トランジスタである。図17乃至図20
では、薄膜トランジスタの一例として図2(C)に示す薄膜トランジスタを用いる場合に
ついて説明するが、これに限定されるものではない。
(Embodiment 6)
In the present embodiment, as one embodiment of the semiconductor device, an example of a liquid crystal display device using a liquid crystal element having a thin film transistor shown in the first embodiment will be described with reference to FIGS. 17 to 20. FIG. 17
To the TFT 628 and TFT 629 used in the liquid crystal display device of FIG. 20, the thin film transistor shown in the first embodiment can be applied, and the thin film transistor having high electrical characteristics and reliability can be manufactured in the same manner as the step shown in the first embodiment. be. The TFT 628 and TFT 629 are thin film transistors having an oxide semiconductor layer as a channel forming region. 17 to 20
Then, the case where the thin film transistor shown in FIG. 2C is used as an example of the thin film transistor will be described, but the present invention is not limited to this.

以下、VA(Vertical Alignment)型の液晶表示装置について示す。
VA型の液晶表示装置とは、液晶表示パネルの液晶分子の配列を制御する方式の一種であ
る。VA型の液晶表示装置は、電圧が印加されていないときにパネル面に対して液晶分子
が垂直方向を向く方式である。本実施の形態では、特に画素(ピクセル)をいくつかの領
域(サブピクセル)に分け、それぞれ別の方向に分子を倒すよう工夫されている。これを
マルチドメイン化あるいはマルチドメイン設計という。以下の説明では、マルチドメイン
設計が考慮された液晶表示装置について説明する。
Hereinafter, a VA (Vertical Alignment) type liquid crystal display device will be described.
The VA type liquid crystal display device is a kind of method for controlling the arrangement of liquid crystal molecules on a liquid crystal display panel. The VA type liquid crystal display device is a system in which liquid crystal molecules are oriented in the direction perpendicular to the panel surface when no voltage is applied. In this embodiment, the pixels are particularly divided into several regions (sub-pixels), and the molecules are devised to be tilted in different directions. This is called multi-domain or multi-domain design. In the following description, a liquid crystal display device in which a multi-domain design is taken into consideration will be described.

図18及び図19は、それぞれ画素電極及び対向電極を示している。なお、図18は画素
電極が形成される基板側の平面図であり、図中に示す切断線E−Fに対応する断面構造を
図17に表している。また、図19は対向電極が形成される基板側の平面図である。以下
の説明ではこれらの図を参照して説明する。
18 and 19 show pixel electrodes and counter electrodes, respectively. Note that FIG. 18 is a plan view of the substrate side on which the pixel electrodes are formed, and FIG. 17 shows a cross-sectional structure corresponding to the cutting lines EF shown in the drawing. Further, FIG. 19 is a plan view of the substrate side on which the counter electrode is formed. In the following description, these figures will be referred to.

図17は、TFT628とそれに接続する画素電極624、及び保持容量部630が形成
された基板600と、対向電極640等が形成される対向基板601とが重ね合わせられ
、液晶が注入された状態を示している。
FIG. 17 shows a state in which the substrate 600 on which the TFT 628, the pixel electrode 624 connected to the TFT 628, and the holding capacitance portion 630 are formed, and the counter substrate 601 on which the counter electrode 640 and the like are formed are superposed, and the liquid crystal is injected. Shown.

対向基板601において柱状スペーサが形成される位置には、第1の着色膜636、第2
の着色膜(図示せず)、第3着色膜(図示せず)、対向電極640が形成されている。こ
の構造により、液晶の配向を制御するための突起644とスペーサの高さを異ならせてい
る。画素電極624上には配向膜648が形成され、同様に対向電極640上にも配向膜
646が形成されている。この間に液晶層650が形成されている。
At the position where the columnar spacer is formed on the opposed substrate 601, the first colored film 636 and the second
A colored film (not shown), a third colored film (not shown), and a counter electrode 640 are formed. Due to this structure, the heights of the protrusions 644 and the spacers for controlling the orientation of the liquid crystal are different. An alignment film 648 is formed on the pixel electrode 624, and similarly, an alignment film 646 is formed on the counter electrode 640. During this time, the liquid crystal layer 650 is formed.

スペーサはここでは柱状スペーサを用いて示したがビーズスペーサを散布してもよい。な
お、ここで柱状スペーサとは、一方の基板上に形成した有機膜又は無機膜をフォトリソグ
ラフィ工程で所定のサイズにパターニング、エッチングしたものや、ポジ型又はネガ型の
パターング可能な有機膜などで作製されたものなどをいい、柱状スペーサは液晶層の厚さ
を制御できる。さらには、スペーサを基板600上に形成される画素電極624上に形成
してもよい。
Although the spacer is shown here using a columnar spacer, a bead spacer may be sprayed. Here, the columnar spacer is an organic film or an inorganic film formed on one of the substrates, which is patterned and etched to a predetermined size by a photolithography process, or a positive or negative patternable organic film. The columnar spacer can control the thickness of the liquid crystal layer. Further, the spacer may be formed on the pixel electrode 624 formed on the substrate 600.

基板600上には、TFT628とそれに接続する画素電極624、及び保持容量部63
0が形成される。画素電極624は、TFT628、配線616、及び保持容量部630
を覆う絶縁膜620、絶縁膜620を覆う第3絶縁膜622をそれぞれ貫通するコンタク
トホール623で、配線618と接続する。TFT628は実施の形態1で示す薄膜トラ
ンジスタを適宜用いることができる。また、保持容量部630は、TFT628のゲート
配線602と同時に形成した第1の容量配線である容量配線604と、ゲート絶縁膜60
6と、配線616、618と同時に形成した第2の容量配線である容量配線617で構成
される。
On the substrate 600, the TFT 628, the pixel electrode 624 connected to the TFT 628, and the holding capacitance unit 63
0 is formed. The pixel electrode 624 includes a TFT 628, wiring 616, and a holding capacitance portion 630.
The contact hole 623 penetrates the insulating film 620 that covers the insulating film 620 and the third insulating film 622 that covers the insulating film 620, respectively, and is connected to the wiring 618. As the TFT 628, the thin film transistor shown in the first embodiment can be appropriately used. Further, the holding capacitance portion 630 includes a capacitance wiring 604, which is the first capacitance wiring formed at the same time as the gate wiring 602 of the TFT 628, and a gate insulating film 60.
It is composed of 6 and the capacitance wiring 617 which is the second capacitance wiring formed at the same time as the wirings 616 and 618.

画素電極624と液晶層650と対向電極640が重なり合うことで、液晶素子が形成さ
れている。
A liquid crystal element is formed by overlapping the pixel electrode 624, the liquid crystal layer 650, and the counter electrode 640.

図18に基板600上の構造を示す。画素電極624は、酸化タングステンを含むインジ
ウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウ
ム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと
示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光
性を有する導電性材料を用いることができる。
FIG. 18 shows the structure on the substrate 600. The pixel electrode 624 includes an indium oxide containing tungsten oxide, an indium zinc oxide containing tungsten oxide, an indium oxide containing titanium oxide, an indium tin oxide containing titanium oxide, and an indium tin oxide (hereinafter referred to as ITO. ), Indium zinc oxide, indium tin oxide to which silicon oxide is added, and other conductive materials having translucency can be used.

また、画素電極624として、導電性高分子(導電性ポリマーともいう)を含む導電性組
成物を用いて形成することができる。導電性組成物を用いて形成した画素電極は、シート
抵抗が10000Ω/□以下、波長550nmにおける透光率が70%以上であることが
好ましい。また、導電性組成物に含まれる導電性高分子の抵抗率が0.1Ω・cm以下で
あることが好ましい。
Further, the pixel electrode 624 can be formed by using a conductive composition containing a conductive polymer (also referred to as a conductive polymer). The pixel electrode formed by using the conductive composition preferably has a sheet resistance of 10000 Ω / □ or less and a light transmittance of 70% or more at a wavelength of 550 nm. Further, the resistivity of the conductive polymer contained in the conductive composition is preferably 0.1 Ω · cm or less.

導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
As the conductive polymer, a so-called π-electron conjugated conductive polymer can be used. For example, polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, or a copolymer of two or more kinds thereof can be mentioned.

画素電極624にはスリット625を設ける。スリット625は液晶の配向を制御するた
めのものである。
The pixel electrode 624 is provided with a slit 625. The slit 625 is for controlling the orientation of the liquid crystal display.

図18に示すTFT628とそれに接続する画素電極626及び保持容量部631は、そ
れぞれTFT628、画素電極624及び保持容量部630と同様に形成することができ
る。TFT628とTFT629は共に配線616と接続している。この液晶表示パネル
の画素(ピクセル)は、画素電極624と画素電極626により構成されている。画素電
極624と画素電極626はサブピクセルを構成する。
The TFT 628 shown in FIG. 18, the pixel electrode 626 connected to the TFT 628, and the holding capacity portion 631 can be formed in the same manner as the TFT 628, the pixel electrode 624, and the holding capacity portion 630, respectively. Both TFT 628 and TFT 629 are connected to wiring 616. The pixels of the liquid crystal display panel are composed of a pixel electrode 624 and a pixel electrode 626. The pixel electrode 624 and the pixel electrode 626 constitute a sub-pixel.

図19に対向基板側の構造を示す。対向電極640は、画素電極624と同様の材料を用
いて形成することが好ましい。対向電極640上には液晶の配向を制御する突起644が
形成されている。
FIG. 19 shows the structure on the opposite substrate side. The counter electrode 640 is preferably formed by using the same material as the pixel electrode 624. A protrusion 644 that controls the orientation of the liquid crystal is formed on the counter electrode 640.

この画素構造の等価回路を図20に示す。TFT628とTFT629は、共にゲート配
線602、配線616と接続している。この場合、容量配線604と容量配線605の電
位を異ならせることで、液晶素子651と液晶素子652の動作を異ならせることができ
る。すなわち、容量配線604と容量配線605の電位を個別に制御することにより液晶
の配向を精密に制御して視野角を広げている。
The equivalent circuit of this pixel structure is shown in FIG. Both TFT 628 and TFT 629 are connected to the gate wiring 602 and the wiring 616. In this case, by making the potentials of the capacitance wiring 604 and the capacitance wiring 605 different, the operations of the liquid crystal element 651 and the liquid crystal element 652 can be made different. That is, by individually controlling the potentials of the capacitive wiring 604 and the capacitive wiring 605, the orientation of the liquid crystal is precisely controlled to widen the viewing angle.

スリット625を設けた画素電極624に電圧を印加すると、スリット625の近傍には
電界の歪み(斜め電界)が発生する。このスリット625と、対向基板601側の突起6
44とを交互に咬み合うように配置することで、斜め電界が効果的に発生させて液晶の配
向を制御することで、液晶が配向する方向を場所によって異ならせている。すなわち、マ
ルチドメイン化して液晶表示パネルの視野角を広げている。
When a voltage is applied to the pixel electrode 624 provided with the slit 625, electric field distortion (oblique electric field) is generated in the vicinity of the slit 625. The slit 625 and the protrusion 6 on the facing substrate 601 side.
By arranging the 44s so as to alternately mesh with each other, an oblique electric field is effectively generated to control the orientation of the liquid crystal, so that the direction in which the liquid crystal is oriented is different depending on the location. That is, the viewing angle of the liquid crystal display panel is widened by making it multi-domain.

次に、上記とは異なるVA型の液晶表示装置について、図21乃至図24を用いて説明す
る。
Next, a VA type liquid crystal display device different from the above will be described with reference to FIGS. 21 to 24.

図21と図22は、VA型液晶表示パネルの画素構造を示している。図22は基板600
の平面図であり、図中に示す切断線Y−Zに対応する断面構造を図21に表している。以
下の説明ではこの両図を参照して説明する。
21 and 22 show the pixel structure of the VA type liquid crystal display panel. FIG. 22 shows the substrate 600.
21 is a plan view of the above, and the cross-sectional structure corresponding to the cutting line YZ shown in the drawing is shown in FIG. In the following description, both figures will be referred to.

この画素構造は、一つの画素に複数の画素電極が有り、それぞれの画素電極にTFTが接
続されている。各TFTは、異なるゲート信号で駆動されるように構成されている。すな
わち、マルチドメイン設計された画素において、個々の画素電極に印加する信号を、独立
して制御する構成を有している。
In this pixel structure, one pixel has a plurality of pixel electrodes, and a TFT is connected to each pixel electrode. Each TFT is configured to be driven by a different gate signal. That is, the multi-domain designed pixel has a configuration in which the signal applied to each pixel electrode is independently controlled.

画素電極624はコンタクトホール623において、配線618でTFT628と接続し
ている。また、画素電極626はコンタクトホール627において、配線619でTFT
629と接続している。TFT628のゲート配線602と、TFT629のゲート配線
603には、異なるゲート信号を与えることができるように分離されている。一方、デー
タ線として機能する配線616は、TFT628とTFT629で共通に用いられている
。TFT628とTFT629は実施の形態1で示す薄膜トランジスタを適宜用いること
ができる。また、容量配線690が設けられている。
The pixel electrode 624 is connected to the TFT 628 by wiring 618 in the contact hole 623. Further, the pixel electrode 626 is a TFT in the contact hole 627 with the wiring 619.
It is connected to 629. The gate wiring 602 of the TFT 628 and the gate wiring 603 of the TFT 629 are separated so that different gate signals can be given. On the other hand, the wiring 616 that functions as a data line is commonly used in the TFT 628 and the TFT 629. As the TFT 628 and the TFT 629, the thin film transistor shown in the first embodiment can be appropriately used. Further, a capacitance wiring 690 is provided.

画素電極624と画素電極626の形状は異なっており、スリット625によって分離さ
れている。V字型に広がる画素電極624の外側を囲むように画素電極626が形成され
ている。画素電極624と画素電極626に印加する電圧のタイミングを、TFT628
及びTFT629により異ならせることで、液晶の配向を制御している。この画素構造の
等価回路を図24に示す。TFT628はゲート配線602と接続し、TFT629はゲ
ート配線603と接続している。ゲート配線602とゲート配線603には異なるゲート
信号を与えることで、TFT628とTFT629の動作タイミングを異ならせることが
できる。
The shapes of the pixel electrode 624 and the pixel electrode 626 are different, and they are separated by a slit 625. The pixel electrode 626 is formed so as to surround the outside of the pixel electrode 624 that spreads in a V shape. The timing of the voltage applied to the pixel electrode 624 and the pixel electrode 626 is set to TFT 628.
The orientation of the liquid crystal is controlled by making the difference with the TFT 629. An equivalent circuit of this pixel structure is shown in FIG. The TFT 628 is connected to the gate wiring 602, and the TFT 629 is connected to the gate wiring 603. By giving different gate signals to the gate wiring 602 and the gate wiring 603, the operation timings of the TFT 628 and the TFT 629 can be made different.

対向基板601には、着色膜636、対向電極640が形成されている。また、着色膜6
36と対向電極640の間には平坦化膜637が形成され、液晶の配向乱れを防いでいる
。図23に対向基板側の構造を示す。対向電極640は異なる画素間で共通化されている
電極であるが、スリット641が形成されている。このスリット641と、画素電極62
4及び画素電極626側のスリット625とを交互に咬み合うように配置することで、斜
め電界を効果的に発生させて液晶の配向を制御することができる。これにより、液晶が配
向する方向を場所によって異ならせることができ、視野角を広げている。
A colored film 636 and a counter electrode 640 are formed on the facing substrate 601. In addition, the colored film 6
A flattening film 637 is formed between the 36 and the counter electrode 640 to prevent the liquid crystal display from being disturbed in orientation. FIG. 23 shows the structure on the opposite substrate side. The counter electrode 640 is an electrode that is common among different pixels, but a slit 641 is formed. The slit 641 and the pixel electrode 62
By arranging the 4 and the slit 625 on the pixel electrode 626 side so as to alternately mesh with each other, it is possible to effectively generate an oblique electric field and control the orientation of the liquid crystal display. As a result, the direction in which the liquid crystal is oriented can be changed depending on the location, and the viewing angle is widened.

画素電極624と液晶層650と対向電極640が重なり合うことで、第1の液晶素子が
形成されている。また、画素電極626と液晶層650と対向電極640が重なり合うこ
とで、第2の液晶素子が形成されている。また、一画素に第1の液晶素子と第2の液晶素
子が設けられたマルチドメイン構造である。
The first liquid crystal element is formed by overlapping the pixel electrode 624, the liquid crystal layer 650, and the counter electrode 640. Further, a second liquid crystal element is formed by overlapping the pixel electrode 626, the liquid crystal layer 650, and the counter electrode 640. Further, it has a multi-domain structure in which a first liquid crystal element and a second liquid crystal element are provided in one pixel.

本実施の形態では、実施の形態1で示す薄膜トランジスタを有する液晶表示装置としてV
A型の液晶表示装置について説明したが、IPS型の液晶表示装置や、TN型の液晶表示
装置などについても適用可能である。
In the present embodiment, the liquid crystal display device having the thin film transistor shown in the first embodiment is V.
Although the A-type liquid crystal display device has been described, it can also be applied to an IPS-type liquid crystal display device, a TN-type liquid crystal display device, and the like.

実施の形態1に示す薄膜トランジスタの作製方法を用いて発光表示装置の画素部の薄膜ト
ランジスタを作製することにより、各画素の薄膜トランジスタのオフ電流の変動に起因す
る消費電力を低減することができる。
By manufacturing the thin film transistor of the pixel portion of the light emitting display device by using the method for manufacturing the thin film transistor shown in the first embodiment, it is possible to reduce the power consumption caused by the fluctuation of the off current of the thin film transistor of each pixel.

(実施の形態7)
本明細書に開示する半導体装置は、電子ペーパーとして適用することができる。電子ペー
パーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である
。例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り
物の車内広告、クレジットカード等の各種カードにおける表示等に適用することができる
。電子機器の一例を図25に示す。
(Embodiment 7)
The semiconductor device disclosed in the present specification can be applied as an electronic paper. Electronic paper can be used for electronic devices in all fields as long as it displays information. For example, electronic paper can be used for electronic books (electronic books), posters, in-car advertisements for vehicles such as trains, and display on various cards such as credit cards. An example of an electronic device is shown in FIG.

図25は、電子書籍2700の一例を示している。例えば、電子書籍2700は、筐体2
701および筐体2703の2つの筐体で構成されている。筐体2701および筐体27
03は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行
うことができる。このような構成により、紙の書籍のような動作を行うことが可能となる
FIG. 25 shows an example of the electronic book 2700. For example, the electronic book 2700 has a housing 2
It is composed of two housings, 701 and 2703. Housing 2701 and housing 27
03 is integrated by a shaft portion 2711, and can perform an opening / closing operation with the shaft portion 2711 as an axis. With such a configuration, it is possible to perform an operation like a paper book.

筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み
込まれている。表示部2705および表示部2707は、続き画面を表示する構成として
もよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とするこ
とで、例えば右側の表示部(図25では表示部2705)に文章を表示し、左側の表示部
(図25では表示部2707)に画像を表示することができる。
A display unit 2705 is incorporated in the housing 2701, and a display unit 2707 is incorporated in the housing 2703. The display unit 2705 and the display unit 2707 may be configured to display a continuous screen or may be configured to display different screens. By displaying different screens, for example, a sentence can be displayed on the right display unit (display unit 2705 in FIG. 25) and an image can be displayed on the left display unit (display unit 2707 in FIG. 25). ..

また、図25では、筐体2701に操作部などを備えた例を示している。例えば、筐体2
701において、電源2721、操作キー2723、スピーカ2725などを備えている
。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキー
ボードやポインティングデバイスなどを備える構成としてもよい。また、筐体の裏面や側
面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSBケ
ーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成と
してもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成として
もよい。
Further, FIG. 25 shows an example in which the housing 2701 is provided with an operation unit and the like. For example, housing 2
The 701 includes a power supply 2721, operation keys 2723, a speaker 2725, and the like. The page can be fed by the operation key 2723. A keyboard, a pointing device, or the like may be provided on the same surface as the display unit of the housing. Further, the back or side surface of the housing may be provided with an external connection terminal (earphone terminal, USB terminal, or a terminal that can be connected to various cables such as an AC adapter and a USB cable), a recording medium insertion portion, and the like. .. Further, the electronic book 2700 may be configured to have a function as an electronic dictionary.

また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、
電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすること
も可能である。
Further, the electronic book 2700 may be configured to be able to transmit and receive information wirelessly. By radio
It is also possible to purchase desired book data or the like from an electronic book server and download it.

(実施の形態8)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用すること
ができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン
受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメ
ラなどのカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともい
う)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機な
どが挙げられる。
(Embodiment 8)
The semiconductor device disclosed in the present specification can be applied to various electronic devices (including gaming machines). Examples of electronic devices include television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, cameras such as digital video cameras, digital photo frames, and mobile phones (mobile phones, mobile phones). (Also referred to as a device), a portable game machine, a mobile information terminal, a sound reproduction device, a large game machine such as a pachinko machine, and the like.

図26(A)は、テレビジョン装置9600の一例を示している。テレビジョン装置96
00は、筐体9601に表示部9603が組み込まれている。表示部9603により、映
像を表示することが可能である。また、ここでは、スタンド9605により筐体9601
を支持した構成を示している。
FIG. 26A shows an example of the television device 9600. Television device 96
For 00, the display unit 9603 is incorporated in the housing 9601. The display unit 9603 makes it possible to display an image. Further, here, the housing 9601 is provided by the stand 9605.
Shows the configuration that supports.

テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
The operation of the television device 9600 can be performed by the operation switch provided in the housing 9601 or the remote control operation device 9610 separately provided. The operation keys 9609 included in the remote controller 9610 can be used to control the channel and volume, and the image displayed on the display unit 9603 can be operated. Further, the remote controller 9610 may be provided with a display unit 9607 for displaying information output from the remote controller 9610.

なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
The television device 9600 is configured to include a receiver, a modem, and the like. The receiver can receive general television broadcasts, and by connecting to a wired or wireless communication network via a modem, it can be unidirectional (sender to receiver) or bidirectional (sender and receiver). It is also possible to perform information communication between (or between recipients, etc.).

図26(B)は、デジタルフォトフレーム9700の一例を示している。例えば、デジタ
ルフォトフレーム9700は、筐体9701に表示部9703が組み込まれている。表示
部9703は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影
した画像データを表示させることで、通常の写真立てと同様に機能させることができる。
FIG. 26B shows an example of the digital photo frame 9700. For example, in the digital photo frame 9700, the display unit 9703 is incorporated in the housing 9701. The display unit 9703 can display various images, and by displaying image data taken by, for example, a digital camera, the display unit 9703 can function in the same manner as a normal photo frame.

なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、US
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構
成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に
備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒
体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像デー
タを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
The digital photo frame 9700 has an operation unit and an external connection terminal (USB terminal, US).
A terminal that can be connected to various cables such as a B cable), a recording medium insertion part, and the like are provided. These configurations may be incorporated on the same surface as the display unit, but it is preferable to provide them on the side surface or the back surface because the design is improved. For example, a memory that stores image data taken by a digital camera can be inserted into a recording medium insertion unit of a digital photo frame to capture the image data, and the captured image data can be displayed on the display unit 9703.

また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
Further, the digital photo frame 9700 may be configured to be able to transmit and receive information wirelessly. It is also possible to adopt a configuration in which desired image data is captured and displayed wirelessly.

図27(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成さ
れており、連結部9893により、開閉可能に連結されている。筐体9881には表示部
9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図
27(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部988
6、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9
888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、
化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振
動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備え
ている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本明細書
に開示する半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成
とすることができる。図27(A)に示す携帯型遊技機は、記録媒体に記録されているプ
ログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信
を行って情報を共有する機能を有する。なお、図27(A)に示す携帯型遊技機が有する
機能はこれに限定されず、様々な機能を有することができる。
FIG. 27 (A) is a portable gaming machine, which is composed of two housings, a housing 9881 and a housing 9891, and is openably and closably connected by a connecting portion 9893. A display unit 9882 is incorporated in the housing 9881, and a display unit 9883 is incorporated in the housing 9891. In addition, the portable gaming machine shown in FIG. 27A has a speaker unit 9884 and a recording medium insertion unit 988.
6. LED lamp 9890, input means (operation key 9858, connection terminal 9887, sensor 9)
888 (force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature,
It is equipped with chemical substances, voice, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, vibration), microphone 9889), etc. Of course, the configuration of the portable gaming machine is not limited to the above, and at least the configuration including the semiconductor device disclosed in the present specification may be used, and other auxiliary equipment may be appropriately provided. The portable gaming machine shown in FIG. 27 (A) has a function of reading a program or data recorded on a recording medium and displaying it on a display unit, or wirelessly communicates with another portable gaming machine to share information. Has a function. The functions of the portable gaming machine shown in FIG. 27 (A) are not limited to this, and can have various functions.

図27(B)は大型遊技機であるスロットマシン9900の一例を示している。スロット
マシン9900は、筐体9901に表示部9903が組み込まれている。また、スロット
マシン9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン
投入口、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述の
ものに限定されず、少なくとも本明細書に開示する半導体装置を備えた構成であればよく
、その他付属設備が適宜設けられた構成とすることができる。
FIG. 27B shows an example of a slot machine 9900, which is a large-scale gaming machine. In the slot machine 9900, the display unit 9903 is incorporated in the housing 9901. In addition, the slot machine 9900 is provided with operating means such as a start lever and a stop switch, a coin slot, a speaker, and the like. Of course, the configuration of the slot machine 9900 is not limited to the above, and at least a configuration including the semiconductor device disclosed in the present specification may be used, and other auxiliary equipment may be appropriately provided.

図28(A)は携帯型のコンピュータの一例を示す斜視図である。 FIG. 28 (A) is a perspective view showing an example of a portable computer.

図28(A)の携帯型のコンピュータは、上部筐体9301と下部筐体9302とを接続
するヒンジユニットを閉状態として表示部9303を有する上部筐体9301と、キーボ
ード9304を有する下部筐体9302とを重ねた状態とすることができ、持ち運ぶこと
が便利であるとともに、使用者がキーボード入力する場合には、ヒンジユニットを開状態
として、表示部9303を見て入力操作を行うことができる。
In the portable computer of FIG. 28A, the upper housing 9301 having the display unit 9303 and the lower housing 9302 having the keyboard 9304 with the hinge unit connecting the upper housing 9301 and the lower housing 9302 in the closed state are closed. It is possible to put the above on top of each other, which is convenient to carry, and when the user inputs on the keyboard, the hinge unit can be opened and the input operation can be performed by looking at the display unit 9303.

また、下部筐体9302はキーボード9304の他に入力操作を行うポインティングデバ
イス9306を有する。また、表示部9303をタッチ入力パネルとすれば、表示部の一
部に触れることで入力操作を行うこともできる。また、下部筐体9302はCPUやハー
ドディスク等の演算機能部を有している。また、下部筐体9302は他の機器、例えばU
SBの通信規格に準拠した通信ケーブルが差し込まれる外部接続ポート9305を有して
いる。
Further, the lower housing 9302 has a pointing device 9306 for performing an input operation in addition to the keyboard 9304. Further, if the display unit 9303 is used as a touch input panel, an input operation can be performed by touching a part of the display unit. Further, the lower housing 9302 has a calculation function unit such as a CPU and a hard disk. Further, the lower housing 9302 is used for other devices such as U.
It has an external connection port 9305 into which a communication cable conforming to the SB communication standard is inserted.

上部筐体9301には更に上部筐体9301内部にスライドさせて収納可能な表示部93
07を有しており、広い表示画面を実現することができる。また、収納可能な表示部93
07の画面の向きを使用者は調節できる。また、収納可能な表示部9307をタッチ入力
パネルとすれば、収納可能な表示部の一部に触れることで入力操作を行うこともできる。
The upper housing 9301 has a display unit 93 that can be slid and stored inside the upper housing 9301.
It has 07, and a wide display screen can be realized. In addition, a display unit 93 that can be stored
The user can adjust the orientation of the screen of 07. Further, if the storable display unit 9307 is used as a touch input panel, the input operation can be performed by touching a part of the storable display unit.

表示部9303または収納可能な表示部9307は、液晶表示パネル、有機発光素子また
は無機発光素子などの発光表示パネルなどの映像表示装置を用いる。
The display unit 9303 or the storable display unit 9307 uses an image display device such as a liquid crystal display panel, a light emitting display panel such as an organic light emitting element or an inorganic light emitting element.

また、図28(A)の携帯型のコンピュータは、受信機などを備えた構成として、テレビ
放送を受信して映像を表示部または表示部に表示することができる。また、上部筐体93
01と下部筐体9302とを接続するヒンジユニットを閉状態としたまま、表示部930
7をスライドさせて画面全面を露出させ、画面角度を調節して使用者がテレビ放送を見る
こともできる。この場合には、ヒンジユニットを開状態として表示部9303を表示させ
ず、さらにテレビ放送を表示するだけの回路の起動のみを行うため、最小限の消費電力と
することができ、バッテリー容量の限られている携帯型のコンピュータにおいて有用であ
る。
Further, the portable computer of FIG. 28A can receive a television broadcast and display an image on a display unit or a display unit as a configuration including a receiver or the like. In addition, the upper housing 93
Display unit 930 with the hinge unit connecting 01 and the lower housing 9302 closed.
The user can also watch the television broadcast by sliding 7 to expose the entire screen and adjusting the screen angle. In this case, since the hinge unit is opened and the display unit 9303 is not displayed and only the circuit for displaying the TV broadcast is started, the minimum power consumption can be achieved and the battery capacity is limited. It is useful in portable computers that are used.

また、図28(B)は、腕時計のように使用者の腕に装着可能な形態を有している携帯電
話の一例を示す斜視図である。
Further, FIG. 28B is a perspective view showing an example of a mobile phone having a form that can be worn on the user's arm like a wristwatch.

この携帯電話は、少なくとも電話機能を有する通信装置及びバッテリーを有する本体、本
体を腕に装着するためのバンド部、腕に対するバンド部の固定状態を調節する調節部92
05、表示部9201、スピーカ9207、及びマイク9208から構成されている。
This mobile phone has at least a communication device having a telephone function, a main body having a battery, a band portion for attaching the main body to the arm, and an adjustment unit 92 for adjusting the fixed state of the band portion with respect to the arm.
It is composed of 05, a display unit 9201, a speaker 9207, and a microphone 9208.

また、本体は、操作スイッチ9203を有し、電源入力スイッチや、表示切り替えスイッ
チや、撮像開始指示スイッチの他、例えばボタンを押すとインタネット用のプログラムが
起動される。
Further, the main body has an operation switch 9203, and a power input switch, a display changeover switch, an image pickup start instruction switch, and for example, when a button is pressed, a program for the Internet is started.

この携帯電話の入力操作は、表示部9201に指や入力ペンなどで触れること、又は操作
スイッチ9203の操作、またはマイク9208への音声入力により行われる。なお、図
28(B)では、表示部9201に表示された表示ボタン9202を図示しており、指な
どで触れることにより入力を行うことができる。
The input operation of the mobile phone is performed by touching the display unit 9201 with a finger or an input pen, operating the operation switch 9203, or inputting voice to the microphone 9208. In addition, in FIG. 28B, the display button 9202 displayed on the display unit 9201 is illustrated, and input can be performed by touching it with a finger or the like.

また、本体は、撮影レンズを通して結像される被写体像を電子画像信号に変換する撮像手
段を有するカメラ部9206を有する。なお、特にカメラ部は設けなくともよい。
Further, the main body has a camera unit 9206 having an imaging means for converting a subject image imaged through a photographing lens into an electronic image signal. It is not necessary to provide a camera unit in particular.

また、図28(B)に示す携帯電話は、テレビ放送の受信機などを備えた構成として、テ
レビ放送を受信して映像を表示部9201に表示することができ、さらにメモリなどの記
憶装置などを備えた構成として、テレビ放送をメモリに録画できる。また、図28(B)
に示す携帯電話は、GPSなどの位置情報を収集できる機能を有していてもよい。
Further, the mobile phone shown in FIG. 28B is configured to include a receiver for television broadcasting and the like, so that it can receive television broadcasting and display an image on the display unit 9201, and further, a storage device such as a memory or the like. As a configuration equipped with, a television broadcast can be recorded in a memory. In addition, FIG. 28 (B)
The mobile phone shown in the above may have a function of collecting position information such as GPS.

表示部9201は、液晶表示パネル、有機発光素子または無機発光素子などの発光表示パ
ネルなどの映像表示装置を用いる。図28(B)に示す携帯電話は、小型、且つ、軽量で
あるため、バッテリー容量が限られており、表示部9201に用いる表示装置は低消費電
力で駆動できるパネルを用いることが好ましい。
The display unit 9201 uses an image display device such as a liquid crystal display panel, a light emitting display panel such as an organic light emitting element or an inorganic light emitting element. Since the mobile phone shown in FIG. 28B is small and lightweight, the battery capacity is limited, and it is preferable that the display device used for the display unit 9201 uses a panel that can be driven with low power consumption.

なお、図28(B)では”腕”に装着するタイプの電子機器を図示したが、特に限定され
ず、携行できる形状を有しているものであればよい。
Although FIG. 28 (B) shows an electronic device of the type to be worn on the "arm", the electronic device is not particularly limited as long as it has a shape that can be carried.

本実施例では、実施の形態1に示した作製方法を用いて薄膜トランジスタを作製し、−2
5℃乃至150℃の環境下における薄膜トランジスタ特性のオフ電流を評価した結果を示
す。
In this example, a thin film transistor is manufactured by using the manufacturing method shown in the first embodiment, and the number is -2.
The results of evaluating the off-current of the thin film transistor characteristics in an environment of 5 ° C. to 150 ° C. are shown.

本実施例では、ガラス基板上にチャネル長Lの長さを3μmとする複数の薄膜トランジス
タを作製し、−25℃以上150℃以下の環境下における薄膜トランジスタ特性のオフ電
流を評価した。なお、チャネル幅Wは20μmとした。まず、薄膜トランジスタの作製方
法について説明する。
In this example, a plurality of thin film transistors having a channel length L of 3 μm were prepared on a glass substrate, and the off-current of the thin film transistor characteristics in an environment of −25 ° C. or higher and 150 ° C. or lower was evaluated. The channel width W was set to 20 μm. First, a method for manufacturing a thin film transistor will be described.

まず、ガラス基板上に下地膜として、CVD法により膜厚100nmの酸化窒化珪素膜を
形成し、酸化窒化珪素膜上にゲート電極層としてスパッタリング法により膜厚100nm
のタングステン膜を形成した。ここで、タングステン膜を選択的にエッチングしてゲート
電極層を形成した。
First, a silicon oxide film having a film thickness of 100 nm is formed on a glass substrate as a base film by a CVD method, and a gate electrode layer having a film thickness of 100 nm is formed on the silicon oxide film by a sputtering method.
Tungsten film was formed. Here, the tungsten film was selectively etched to form a gate electrode layer.

次に、ゲート電極層上にゲート絶縁層としてCVD法により膜厚100nmの酸化窒化珪
素膜を形成した。
Next, a silicon oxide film having a film thickness of 100 nm was formed on the gate electrode layer as a gate insulating layer by a CVD method.

次に、ゲート絶縁層上に、In−Ga−Zn−O系酸化物半導体ターゲット(In
:Ga:ZnO=1:1:1)を用いて、基板とターゲットの間との距離を80m
m、圧力0.4Pa、直流(DC)電源5kW、アルゴン及び酸素(アルゴン:酸素=5
0sccm:50sccm)雰囲気下、200℃で成膜を行い、膜厚30nmの酸化物半
導体層を形成した。ここで、酸化物半導体層を選択的にエッチングし、島状の酸化物半導
体層を形成した。
Next, on the gate insulating layer, an In-Ga-Zn-O-based oxide semiconductor target (In 2 O 3)
: Ga 2 O 3 : ZnO = 1: 1: 1), and the distance between the substrate and the target is 80 m.
m, pressure 0.4 Pa, direct current (DC) power supply 5 kW, argon and oxygen (argon: oxygen = 5)
A film was formed at 200 ° C. under an atmosphere of 0 sccm: 50 sccm) to form an oxide semiconductor layer having a film thickness of 30 nm. Here, the oxide semiconductor layer was selectively etched to form an island-shaped oxide semiconductor layer.

次に、酸化物半導体層を窒素雰囲気下、650℃で6分の第1の熱処理を行ったあと、つ
づいて大気雰囲気下、450℃で1時間、第2の熱処理を行った。
Next, the oxide semiconductor layer was subjected to the first heat treatment at 650 ° C. for 1/6 under a nitrogen atmosphere, and then the second heat treatment was performed at 450 ° C. for 1 hour under an atmospheric atmosphere.

次に、酸化物半導体層上にソース電極層及びドレイン電極層としてチタン膜(膜厚100
nm)、アルミニウム膜(膜厚300nm)、及びチタン膜(膜厚100nm)の積層を
、スパッタリング法により100℃で形成した。ここで、ソース電極層及びドレイン電極
層を選択的にエッチングし、薄膜トランジスタのチャネル長Lの長さが3μm、チャネル
幅Wが20μmとなるようにした。
Next, a titanium film (thickness 100) is used as a source electrode layer and a drain electrode layer on the oxide semiconductor layer.
A laminate of an aluminum film (thickness 300 nm) and a titanium film (thickness 100 nm) was formed at 100 ° C. by a sputtering method. Here, the source electrode layer and the drain electrode layer were selectively etched so that the length of the channel length L of the thin film transistor was 3 μm and the channel width W was 20 μm.

次に、酸化物半導体層に接するように絶縁層としてスパッタリング法により膜厚300n
mの酸化珪素膜を200℃で形成した。ここで、保護層である酸化珪素膜を選択的にエッ
チングし、ゲート電極層、ソース電極層及びドレイン電極層上に開口部を形成した。その
後、窒素雰囲気下、250℃で1時間、第3の熱処理を行った。
Next, the film thickness is 300 n by the sputtering method as an insulating layer so as to be in contact with the oxide semiconductor layer.
A silicon oxide film of m was formed at 200 ° C. Here, the silicon oxide film as the protective layer was selectively etched to form openings on the gate electrode layer, the source electrode layer, and the drain electrode layer. Then, a third heat treatment was performed at 250 ° C. for 1 hour in a nitrogen atmosphere.

以上の工程により、チャネル長Lの長さを3μm、チャネル幅Wの長さを20μmとする
複数の薄膜トランジスタをガラス基板上に作製した。
Through the above steps, a plurality of thin film transistors having a channel length L of 3 μm and a channel width W of 20 μm were produced on a glass substrate.

つづいて、薄膜トランジスタのオフ電流を測定した。オフ電流特性の測定は、ソースとド
レインの間の電圧(以下、ドレイン電圧もしくはVdという)を10Vとし、ソースとゲ
ートの間の電圧(以下、ゲート電圧もしくはVgという)を−10Vにて行った。図4(
B)に測定時の基板温度を、−25℃、0℃、25℃、50℃、100℃、150℃と変
化させ、それぞれの基板温度(動作温度)における薄膜トランジスタのオフ電流を示す。
横軸の測定温度は、薄膜トランジスタのオフ電流測定時の基板温度(動作温度)をリニア
スケールで示してあり、縦軸は、各基板温度におけるオフ電流(Ioff)をログスケー
ルで示している。
Subsequently, the off-current of the thin film transistor was measured. The off-current characteristics were measured by setting the voltage between the source and drain (hereinafter referred to as drain voltage or Vd) to 10 V and the voltage between the source and gate (hereinafter referred to as gate voltage or Vg) at -10 V. .. Figure 4 (
In B), the substrate temperature at the time of measurement is changed to −25 ° C., 0 ° C., 25 ° C., 50 ° C., 100 ° C., and 150 ° C., and the off-current of the thin film transistor at each substrate temperature (operating temperature) is shown.
The horizontal axis shows the substrate temperature (operating temperature) at the time of measuring the off-current of the thin film transistor on a linear scale, and the vertical axis shows the off-current (Off) at each substrate temperature on a log scale.

本実施例で作製した薄膜トランジスタは、−25℃以上150℃以下の環境下において、
オフ電流の値が1×10−12A以下であることが確認できた。
The thin film transistor produced in this example is in an environment of -25 ° C or higher and 150 ° C or lower.
It was confirmed that the off-current value was 1 × 10 -12 A or less.

10 パルス出力回路
11 配線
12 配線
13 配線
14 配線
15 配線
21 入力端子
22 入力端子
23 入力端子
24 入力端子
25 入力端子
26 出力端子
27 出力端子
28 トランジスタ
31 トランジスタ
32 トランジスタ
33 トランジスタ
34 トランジスタ
35 トランジスタ
36 トランジスタ
37 トランジスタ
38 トランジスタ
39 トランジスタ
40 トランジスタ
41 トランジスタ
42 トランジスタ
43 トランジスタ
51 電源線
52 電源線
53 電源線
61 期間
62 期間
100 基板
101 ゲート電極層
102 ゲート絶縁層
103 酸化物半導体層
107 絶縁層
110 チャネル保護層
150 薄膜トランジスタ
160 薄膜トランジスタ
170 薄膜トランジスタ
180 薄膜トランジスタ
201 スペクトル
202 スペクトル
203 スペクトル
301 スペクトル
302 スペクトル
303 スペクトル
311 スペクトル
312 スペクトル
313 スペクトル
321 スペクトル
322 スペクトル
323 スペクトル
400 ガラス基板
401 酸化窒化絶縁層
402 In−Ga−Zn−O系酸化物半導体層
403 分析方向
411 酸素イオン強度プロファイル
412 水素濃度プロファイル
413 水素濃度プロファイル
451 スペクトル
452 スペクトル
453 スペクトル
461 スペクトル
462 スペクトル
463 スペクトル
581 薄膜トランジスタ
583 絶縁膜
585 絶縁層
587 電極層
588 電極層
589 球形粒子
594 キャビティ
595 充填材
600 基板
601 対向基板
602 ゲート配線
603 ゲート配線
604 容量配線
605 容量配線
606 ゲート絶縁膜
616 配線
617 容量配線
618 配線
619 配線
620 絶縁膜
622 絶縁膜
623 コンタクトホール
624 画素電極
625 スリット
626 画素電極
627 コンタクトホール
628 TFT
629 TFT
630 保持容量部
631 保持容量部
636 着色膜
637 平坦化膜
640 対向電極
641 スリット
644 突起
646 配向膜
648 配向膜
650 窒素雰囲気中
650 液晶層
651 液晶素子
652 液晶素子
690 容量配線
701 ゲート電極層
702 ゲート絶縁層
703 半導体層
704 ソース電極層
705 ドレイン電極層
801 ガラス基板
802 ゲート電極層
803 ゲート絶縁層
804 酸化物半導体層
805 ソース電極層
806 ドレイン電極層
105a ソース電極層
105b ドレイン電極層
2600 TFT基板
2601 対向基板
2602 シール材
2603 画素部
2604 表示素子
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカ
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 薄膜トランジスタ
4011 薄膜トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4020 絶縁層(絶縁層
4021 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4040 導電層
4501 基板
4502 画素部
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電界発光層
4513 電極層
4515 接続端子電極
4516 端子電極
4517 電極層
4519 異方性導電膜
4520 隔壁
4540 導電層
4541 絶縁層
4544 絶縁層
5300 基板上
5300 基板
5301 画素部
5302 走査線駆動回路
5303 走査線駆動回路
5304 信号線駆動回路
5305 タイミング制御回路
5601 シフトレジスタ
5602 スイッチング回路部
5602 スイッチング回路
5603 薄膜トランジスタ
5604 配線
5605 配線
590a 黒色領域
590b 白色領域
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
7001 TFT
7002 発光素子
7003 陰極
7004 EL層
7005 陽極
7009 隔壁
7011 TFT
7012 発光素子
7013 陰極
7014 EL層
7015 陽極
7016 遮蔽膜
7017 導電膜
7019 隔壁
7021 TFT
7022 発光素子
7023 陰極
7024 EL層
7025 陽極
7026 陽極
7027 導電膜
7029 隔壁
7031 酸化物絶縁層
7033 カラーフィルタ層
7034 オーバーコート層
7035 絶縁層
7041 酸化物絶縁層
7043 カラーフィルタ層
7044 オーバーコート層
7045 絶縁層
704a ドレイン電極層
704b ソース電極層
7051 酸化物絶縁層
7052 絶縁層
7053 平坦化絶縁層
7055 絶縁層
9201 表示部
9202 表示ボタン
9203 操作スイッチ
9205 調節部
9206 カメラ部
9207 スピーカ
9208 マイク
9301 上部筐体
9302 下部筐体
9303 表示部
9304 キーボード
9305 外部接続ポート
9306 ポインティングデバイス
9307 表示部
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 入力手段(操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部
9900 スロットマシン
9901 筐体
9903 表示部
4503a 信号線駆動回路
4504a 走査線駆動回路
4518a FPC
10 Pulse output circuit 11 Wiring 12 Wiring 13 Wiring 14 Wiring 15 Wiring 21 Input terminal 22 Input terminal 23 Input terminal 24 Input terminal 25 Input terminal 26 Output terminal 27 Output terminal 28 Transistor 31 Transistor 32 Transistor 33 Transistor 34 Transistor 35 Transistor 36 Transistor 37 Transistor 38 Transistor 39 Transistor 40 Transistor 41 Transistor 42 Transistor 43 Transistor 51 Power line 52 Power line 53 Power line 61 Period 62 Period 100 Substrate 101 Gate electrode layer 102 Gate insulating layer 103 Oxide semiconductor layer 107 Insulating layer 110 Channel protective layer 150 Thin film transistor 160 Thin film transistor 170 Thin film transistor 180 Thin film transistor 201 Specimen 202 Specimen 203 Specimen 301 Specimen 302 Spectra 303 Specimen 311 Specimen 312 Specimen 313 Specimen 321 Specimen 322 Specimen 323 Spectra 400 Glass substrate 401 In-Ga-Zn-O-based oxide semiconductor Layer 403 Analytical direction 411 Oxygen ion intensity profile 412 Hydrogen concentration profile 413 Hydrogen concentration profile 451 Spectra 452 Specimen 453 Specimen 461 Specimen 462 Specimen 463 Specimen 581 Thin film transistor 583 Insulating film 585 Insulating layer 587 Electrode layer 588 Electrode layer 589 Spherical particles 594 Cavity 595 Filling Material 600 Board 601 Opposite board 602 Gate wiring 603 Gate wiring 604 Capacitive wiring 605 Capacitive wiring 606 Gate insulating film 616 Wiring 617 Capacitive wiring 618 Wiring 619 Wiring 620 Insulating film 622 Insulating film 623 Contact hole 624 Pixel electrode 625 Slit 626 Pixel electrode 627 Contact Hall 628 TFT
629 TFT
630 Retaining capacity part 631 Retaining capacity part 636 Colored film 637 Flattening film 640 Opposite electrode 641 Slit 644 Protrusion 646 Alignment film 648 Alignment film 650 In a nitrogen atmosphere 650 Liquid crystal layer 651 Liquid crystal element 652 Liquid crystal element 690 Capacity wiring 701 Gate electrode layer 702 Gate Insulation layer 703 Semiconductor layer 704 Source electrode layer 705 Drain electrode layer 801 Glass substrate 802 Gate electrode layer 803 Gate insulation layer 804 Oxide semiconductor layer 805 Source electrode layer 806 Drain electrode layer 105a Source electrode layer 105b Drain electrode layer 2600 TFT substrate 2601 Opposite Board 2602 Sealing material 2603 Pixel part 2604 Display element 2605 Colored layer 2606 Plate plate 2607 Plate plate 2608 Wiring circuit part 2609 Flexible wiring board 2610 Cold cathode tube 2611 Reflector plate 2612 Circuit board 2613 Diffusion plate 2700 Electronic book 2701 Housing 2703 Housing 2705 Display 2707 Display 2711 Shaft 2721 Power supply 2723 Operation key 2725 Speaker 4001 Board 4002 Pixel 4003 Signal line drive circuit 4004 Scanning line drive circuit 4005 Sealing material 4006 Board 4008 Liquid crystal layer 4010 Thin film 4011 Thin film 4013 Liquid crystal element 4015 Connection terminal electrode 4016 Terminal electrode 4018 FPC
4019 Anisotropic conductive film 4020 Insulation layer 4020 Insulation layer (Insulation layer 4021 Insulation layer 4030 Pixel electrode layer 4031 Opposite electrode layer 4032 Insulation layer 4040 Conductive layer 4501 Substrate 4502 Pixel part 4505 Sealing material 4506 Substrate 4507 Filling material 4509 Thin film transistor 4510 Thin film transistor 4511 Light emitting element 4512 Electric light emitting layer 4513 Electrode layer 4515 Connection terminal electrode 4516 Terminal electrode 4517 Electrode layer 4519 Anisometric thin film transistor 4520 Partition 4540 Conductive layer 4541 Insulation layer 4544 Insulation layer 5300 On substrate 5300 Substrate 5301 Pixel part 5302 Scanning line drive circuit 5303 Scan line drive circuit 5304 Signal line drive circuit 5305 Timing control circuit 5601 Shift register 5602 Switching circuit section 5602 Switching circuit 5603 Thin film transistor 5604 Wiring 5605 Wiring 590a Black area 590b White area 6400 Pixels 6401 Switching transistor 6402 Driving transistor 6403 Capacitive element 6404 Light emission Element 6405 Signal line 6406 Scan line 6407 Power line 6408 Common electrode 7001 TFT
7002 Light emitting element 7003 Cathode 7004 EL layer 7005 Anode 7009 Partition wall 7011 TFT
7012 Light emitting element 7013 Cathode 7014 EL layer 7015 Anode 7016 Shielding film 7017 Conductive film 7019 Partition wall 7021 TFT
7022 Light emitting element 7023 Cone 7024 EL layer 7025 Ano 7026 Ano 7027 Conductive 7029 Partition 7031 Oxide insulation layer 7033 Color filter layer 7034 Overcoat layer 7035 Insulation layer 7041 Oxide insulation layer 7043 Color filter layer 7044 Overcoat layer 7045 Insulation layer 704a Drain electrode layer 704b Source electrode layer 7051 Oxide insulation layer 7052 Insulation layer 7053 Flattening insulation layer 7055 Insulation layer 9201 Display unit 9202 Display button 9203 Operation switch 9205 Adjustment unit 9206 Camera unit 9207 Speaker 9208 Microphone 9301 Upper housing 9302 Lower housing 9303 Display unit 9304 Keyboard 9305 External connection port 9306 Pointing device 9307 Display unit 9600 Television device 9601 Housing 9603 Display unit 9605 Stand 9607 Display unit 9609 Operation key 9610 Remote control operation machine 9700 Digital photo frame 9701 Housing 9703 Display 9881 Housing 9882 Display unit 9883 Display unit 9884 Speaker unit 9858 Input means (operation key 9886 Recording medium insertion unit 9878 Connection terminal 9888 Sensor 9889 Microphone 9890 LED lamp 9891 Housing 9893 Connection 9900 Slot machine 9901 Housing 9903 Display 4503a Signal line drive circuit 4504a Scan line drive circuit 4518a FPC

Claims (2)

複数の画素を有し、
前記画素は、トランジスタと、前記トランジスタ上の発光素子と、を有し、
前記トランジスタは、インジウムとガリウムと亜鉛とを有する酸化物半導体層と、前記酸化物半導体層の下に位置し、前記酸化物半導体層と絶縁層を介して重なる金属導電膜をと、有し、
前記トランジスタは、チャネル長が1.5μm以上100μm以下であり、
前記トランジスタは、測定温度が−25℃以上150℃以下の温度範囲において、チャネル幅が1μmあたりのオフ電流の値が1×10−12A以下である発光表示パネル。
Has multiple pixels,
The pixel has a transistor and a light emitting element on the transistor.
The transistor has an oxide semiconductor layer having indium, gallium, and zinc, and a metal conductive film located below the oxide semiconductor layer and overlapping the oxide semiconductor layer via an insulating layer.
The transistor has a channel length of 1.5 μm or more and 100 μm or less.
The transistor is a light emitting display panel having an off-current value of 1 × 10 -12 A or less per 1 μm of channel width in a temperature range of -25 ° C or higher and 150 ° C or lower as a measurement temperature.
複数の画素を有し、
前記画素は、トランジスタと、前記トランジスタ上の発光素子と、を有し、
前記トランジスタは、インジウムとガリウムと亜鉛とを有する酸化物半導体層と、前記酸化物半導体層の下に位置し、前記酸化物半導体層と絶縁層を介して重なる金属導電膜をと、有し、
前記トランジスタは、チャネル長が3μm以上10μm以下であり、
前記トランジスタは、測定温度が−25℃以上150℃以下の温度範囲において、チャネル幅が1μmあたりのオフ電流の値が1×10−12A以下である発光表示パネル。
Has multiple pixels,
The pixel has a transistor and a light emitting element on the transistor.
The transistor has an oxide semiconductor layer having indium, gallium, and zinc, and a metal conductive film located below the oxide semiconductor layer and overlapping the oxide semiconductor layer via an insulating layer.
The transistor has a channel length of 3 μm or more and 10 μm or less.
The transistor is a light emitting display panel having an off-current value of 1 × 10 -12 A or less per 1 μm of channel width in a temperature range of -25 ° C or higher and 150 ° C or lower as a measurement temperature.
JP2020087834A 2010-03-31 2020-05-20 Luminous display panel Active JP6924871B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021126433A JP7101852B2 (en) 2010-03-31 2021-08-02 Manufacturing method of semiconductor device
JP2022108235A JP7291275B2 (en) 2010-03-31 2022-07-05 Display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010083072 2010-03-31
JP2010083072 2010-03-31
JP2019041781A JP6707688B2 (en) 2010-03-31 2019-03-07 Luminous display panel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019041781A Division JP6707688B2 (en) 2010-03-31 2019-03-07 Luminous display panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021126433A Division JP7101852B2 (en) 2010-03-31 2021-08-02 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2020166278A JP2020166278A (en) 2020-10-08
JP6924871B2 true JP6924871B2 (en) 2021-08-25

Family

ID=45043624

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2011073911A Active JP5727832B2 (en) 2010-03-31 2011-03-30 Transistor
JP2015076725A Active JP6080888B2 (en) 2010-03-31 2015-04-03 Transistor
JP2017005615A Active JP6318272B2 (en) 2010-03-31 2017-01-17 Semiconductor device
JP2018070928A Active JP6496062B2 (en) 2010-03-31 2018-04-02 Liquid crystal display
JP2019041781A Active JP6707688B2 (en) 2010-03-31 2019-03-07 Luminous display panel
JP2020087834A Active JP6924871B2 (en) 2010-03-31 2020-05-20 Luminous display panel
JP2021126433A Active JP7101852B2 (en) 2010-03-31 2021-08-02 Manufacturing method of semiconductor device
JP2022108235A Active JP7291275B2 (en) 2010-03-31 2022-07-05 Display device

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2011073911A Active JP5727832B2 (en) 2010-03-31 2011-03-30 Transistor
JP2015076725A Active JP6080888B2 (en) 2010-03-31 2015-04-03 Transistor
JP2017005615A Active JP6318272B2 (en) 2010-03-31 2017-01-17 Semiconductor device
JP2018070928A Active JP6496062B2 (en) 2010-03-31 2018-04-02 Liquid crystal display
JP2019041781A Active JP6707688B2 (en) 2010-03-31 2019-03-07 Luminous display panel

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021126433A Active JP7101852B2 (en) 2010-03-31 2021-08-02 Manufacturing method of semiconductor device
JP2022108235A Active JP7291275B2 (en) 2010-03-31 2022-07-05 Display device

Country Status (1)

Country Link
JP (8) JP5727832B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647860B2 (en) * 2010-10-28 2015-01-07 富士フイルム株式会社 Thin film transistor and manufacturing method thereof
JP2013149953A (en) * 2011-12-20 2013-08-01 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
JP6088253B2 (en) * 2012-01-23 2017-03-01 株式会社半導体エネルギー研究所 Semiconductor device
KR102213518B1 (en) * 2012-06-29 2021-02-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2015068319A1 (en) * 2013-11-06 2015-05-14 株式会社Joled Thin-film transistor and method for manufacturing same
JP6393937B2 (en) 2014-09-05 2018-09-26 Dic株式会社 Thin film transistor manufacturing method, thin film transistor, and transistor array
US20180145096A1 (en) * 2016-11-23 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4090716B2 (en) * 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP5305630B2 (en) * 2006-12-05 2013-10-02 キヤノン株式会社 Manufacturing method of bottom gate type thin film transistor and manufacturing method of display device
WO2008105347A1 (en) 2007-02-20 2008-09-04 Canon Kabushiki Kaisha Thin-film transistor fabrication process and display device
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5406449B2 (en) * 2007-05-30 2014-02-05 キヤノン株式会社 Thin film transistor manufacturing method and display device using oxide semiconductor
US7935964B2 (en) * 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
JP5489445B2 (en) * 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
KR101518091B1 (en) * 2007-12-13 2015-05-06 이데미쓰 고산 가부시키가이샤 Field effect transistor using oxide semiconductor and method for manufacturing the same
JP5213458B2 (en) * 2008-01-08 2013-06-19 キヤノン株式会社 Amorphous oxide and field effect transistor
JP5305696B2 (en) * 2008-03-06 2013-10-02 キヤノン株式会社 Semiconductor device processing method
JP5305731B2 (en) * 2008-05-12 2013-10-02 キヤノン株式会社 Method for controlling threshold voltage of semiconductor device
KR101344594B1 (en) * 2008-05-22 2013-12-26 이데미쓰 고산 가부시키가이샤 Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
KR101468591B1 (en) * 2008-05-29 2014-12-04 삼성전자주식회사 Oxide semiconductor and thin film transistor comprising the same
KR100963027B1 (en) * 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
KR100963026B1 (en) * 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
JP2010040552A (en) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd Thin film transistor and manufacturing method thereof
JP2010045263A (en) * 2008-08-15 2010-02-25 Idemitsu Kosan Co Ltd Oxide semiconductor, sputtering target, and thin-film transistor
US10644163B2 (en) * 2008-08-27 2020-05-05 Idemitsu Kosan Co., Ltd. Semiconductor film comprising an oxide containing in atoms, Sn atoms and Zn atoms
JP4623179B2 (en) * 2008-09-18 2011-02-02 ソニー株式会社 Thin film transistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018113474A (en) 2018-07-19
JP2015164201A (en) 2015-09-10
JP2020166278A (en) 2020-10-08
JP2021184098A (en) 2021-12-02
JP6496062B2 (en) 2019-04-03
JP2022153409A (en) 2022-10-12
JP6707688B2 (en) 2020-06-10
JP7101852B2 (en) 2022-07-15
JP6318272B2 (en) 2018-04-25
JP7291275B2 (en) 2023-06-14
JP2017103472A (en) 2017-06-08
JP5727832B2 (en) 2015-06-03
JP2011228679A (en) 2011-11-10
JP6080888B2 (en) 2017-02-15
JP2019106547A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6805295B2 (en) How to make a liquid crystal display device
JP7132449B2 (en) semiconductor equipment
JP7170097B2 (en) light emitting device
JP7297955B2 (en) semiconductor equipment
JP6905020B2 (en) Manufacturing method of semiconductor device
JP6924871B2 (en) Luminous display panel
JP2022109267A (en) Transistor and method for manufacturing transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6924871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150