JP6920035B2 - 調芯方法および調芯装置 - Google Patents

調芯方法および調芯装置 Download PDF

Info

Publication number
JP6920035B2
JP6920035B2 JP2016166688A JP2016166688A JP6920035B2 JP 6920035 B2 JP6920035 B2 JP 6920035B2 JP 2016166688 A JP2016166688 A JP 2016166688A JP 2016166688 A JP2016166688 A JP 2016166688A JP 6920035 B2 JP6920035 B2 JP 6920035B2
Authority
JP
Japan
Prior art keywords
lens
stage
emitting element
light emitting
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166688A
Other languages
English (en)
Other versions
JP2018037438A (ja
Inventor
公亮 植村
公亮 植村
一貴 池田
一貴 池田
祐輝 蘆田
祐輝 蘆田
智也 手塚
智也 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016166688A priority Critical patent/JP6920035B2/ja
Publication of JP2018037438A publication Critical patent/JP2018037438A/ja
Application granted granted Critical
Publication of JP6920035B2 publication Critical patent/JP6920035B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、調芯方法および調芯装置に関し、特にレーザーモジュールの製造に用いる調芯方法および調芯装置に関する。
光通信機器、レーザー加工機、レーザープロジェクタに代表されるレーザー機器に搭載される半導体レーザーモジュールでは、内蔵されるレーザー光源から放出されるレーザー光の放射方向、放射形状、および放射特性をコリメートレンズなどの光学素子によって最適化している。
レーザー光源と光学素子との位置を調整する方法は、パッシブアライメントとアクティブアライメントに大別される。前者は、光学素子の外形やターゲットマークを基準に調整したり、部材の嵌め合いにより機械的に位置決めする方法である。一方、後者は、レーザー光源の出射光を光学素子に入射させ、この状態での出射レーザー光の出射光量をパワーメータ等で検出し、その光量が最大となるようにレーザー光源または光学素子の位置を3次元方向に移動させて調整する方法である。例えば、従来の方法では、レーザー光源と光学素子とに設けた特徴点に基づいてそれらの相対位置を機械的に決定するパッシブアライメントを行った後に、YAG溶接などにより固定することで短時間での調芯組立を実現している(例えば、特許文献1参照)。
特許第5373578号公報
しかしながら、従来の方法では、アクティブアライメントを行わないため、短時間で調芯組立を実現できるが、一方で、パッシブアライメントの機械的位置決めに影響を与える特徴点の加工精度や、レーザー発光に伴う発熱による部品の変形、光学素子特性の個体差による位置精度のバラツキにより、高精度の調芯が出来ないという問題があった。一方、アクティブアライメントは、レーザー光源または光学素子の位置を3次元方向に移動と停止を繰り返すことで調整するため、調芯に時間がかかるという問題があった。
そこで、本発明は、高精度で、かつ短時間でレーザー光源と光学素子との調芯が可能な調芯方法および調芯装置の提供を目的とする。
本発明は、発光素子から出射したレーザー光がレンズを通ってコリメートされるレーザーモジュールの調芯方法であって、
発光素子から出射したレーザー光が、レンズを通ってスクリーン上に投影されるように発光素子、レンズ、およびスクリーンを配置する配置工程と、
発光素子の光軸方向に、発光素子またはレンズを移動させると共に、発光素子とレンズとの間の相対距離を測定する測定工程と、
相対距離に対応して、スクリーンの上に投影されたレーザー光の投影像を取得する撮像工程と、
投影像の形状および強度を解析して、スクリーン上でコリメータ光が得られる相対距離を特定する解析工程と、を含むことを特徴とする調芯方法である。
また、本発明は、発光素子から出射したレーザー光がレンズを通ってコリメートされるレーザーモジュールの調芯装置であって、
発光素子を固定する第1ステージと、レンズを固定する第2ステージと、スクリーンとが、発光素子から出射したレーザー光が、レンズを通ってスクリーン上で投影像となるように配置され、
更に、撮像装置は、第1ステージまたは第2ステージを測定開始から終了までステージを停止させずに移動させ、発光素子とレンズとの相対距離を変えながら投影像を取得し、
投影像の形状および強度を解析して、スクリーン上でコリメータ光が得られる相対距離を特定することを特徴とする調芯装置である。
このように、本発明にかかる調芯方法および調芯装置では、レンズを通ったレーザー出力光をスクリーンやパワーメータに投影し、その投影像を取得して解析することにより、レーザー光源とレンズとのアクティブアライメントを、高精度かつ短時間で行うことが可能となる。
本発明の実施の形態1にかかる調芯装置の構成の概略図である。 本発明の実施の形態1にかかる調芯装置に用いる直動ステージの概略図である。 本発明の実施の形態1にかかる調芯装置に用いる撮像信号発生装置の概略図である。 本発明の実施の形態1にかかるレーザーモジュールの製造方法のフローチャートである。 図4の製造方法の光軸調芯工程(工程3)を詳細に示したフローチャートである。 本発明の実施の形態2にかかる調芯装置の構成の概略図である。 本発明の実施の形態2にかかる光軸調芯工程のフローチャートである。
実施の形態1.
図1は、全体が100で表される、本発明の実施の形態1にかかる調芯装置の構成の概略図である。調芯装置100は、レーザー光源ASSY(以下、単に「レーザー光源」という。)3に対してレンズ7を調芯して固定することを目的とする装置であり、調芯した状態でレーザー光源3にレンズ7が接着剤で接合されて半導体レーザーモジュールが作製される。
ここで調芯とは、レーザー光源3に含まれるレーザー発光素子1から放出されるレーザー光線の光軸と、レンズ7の光軸とを一致させると共に、レーザー発光素子1に対してレンズ7の光軸方向の相対的な位置を最適化(アライメント)することをいう。これにより、所望の光学特性を有する半導体レーザーモジュールを作製することができる。
図1において、レーザー光源3は、レーザー半導体素子等のレーザー発光素子1、レーザー発光素子1や他の構成部品を組み込むステム2、および他の電極や配線等の通電回路(図示せず)等からなる。レーザー光源3に含まれるレーザー発光素子1は、単一の素子でも、均一な間隔で配置された複数の素子でもよい。レーザー光源3の通電回路に電源装置6から電力を供給されることでレーザー光を放出できる状態になる。図1では、レーザー発光素子1がレーザー光50を放出する方向を+Z軸方向、Z軸方向に互いに垂直な2つの方向をX軸方向、Y軸方向としている。
なお、ここでは、レーザーモジュールの光源として半導体レーザー素子1を用いて説明するが、例えばレーザー結晶からなる固体レーザー素子や、光ファイバーに代表される導波路により周期配列化された液体や気体レーザー光源などを用いてもよい。
図1に記載の調芯装置100は、レーザー光源3を固定するレーザー駆動ステージ4、および温調手段5を含む。温調手段5は、レーザー駆動ステージ4に固定されたレーザー光源3の温度調整を行い、温度上昇による特性劣化を防止する。温調手段5としては、例えば、放熱フィン、ヒートパイプ、ペルチェ素子等が用いられる。レーザー駆動ステージ4は、レーザー光源3の温度を測定するために、熱電対やサーミスタ等の温度センサ(図示せず)を有し、温調手段5のフィードバック制御を行うことが好ましい。
調芯装置100は、また、レーザー光源3に電力を供給するための電源装置6を含む。電源装置6からレーザー光源3の通電回路に、ソケットやプローブ等のコンタクト部品を介して電力が供給される。電源装置6は、制御装置14やインターロック装置等の外部制御装置により、電力の供給、停止を制御しても良い。
調芯装置100は、更に、レンズ7を固定するため搬送ステージ8を含む。レンズ7は、レーザー発光素子1から出射したレーザー光50をコリメートするような幾何学的形状を有するコリメートレンズであり、例えばシリンドリカルレンズ、1次元に配列したマイクロレンズアレイなどである。また、レンズ7は、樹脂、ガラスなどで形成されており、表面に反射防止コーティングが行われても良い。
搬送ステージ8は、レンズ7を固定するための把持部を有し、把持部はエアチャックやバネからなる。搬送ステージ8は、把持部を6軸(X、Y、Z、θX、θY、θZ)方向に動かすための直動ステージおよび回転ステージで構成される。搬送ステージ8を構成する直動ステージおよび回転ステージは、例えばステッピングモータにより駆動されるが、ステッピングモータに代えて、サーボモータや圧電アクチュエータを用いてもよい。
調芯装置100は、更に、ステージ制御部13、制御装置14を含み、制御装置14から送信される命令に従って、搬送ステージ8を構成する直動ステージまたは回転ステージを、各軸方向へ移動させるとともに、各ステージが有する原点に対する相対的なステージの移動位置を制御装置14に出力できる。
なお、制御装置14は、調芯装置100の全体動作を制御するものであり、具体的には、ステージ制御部13へのステージ動作命令の送信および動作状態の取得、撮像信号発生装置10への信号発生条件設定の書き込みおよび動作命令の出力、更には、後述する撮像素子12から出力されるデジタルデータ画像の取得、およびレーザー光の形状、強度から調芯位置を決定する画像処理等を行う。また、制御装置14は、電源装置6からレーザー光源3への電力の供給開始および供給停止を制御する機能を有してもよい。更に、制御装置14は、ステージ制御部13と一体化してもよい。制御装置14には一般的なパーソナルコンピューターやシーケンサが用いられる。
また、制御装置14は、制御装置14が決定した最適な調芯位置情報を組立対象の情報と併せて内部データベースに登録することもできる。制御装置14は、データベースに蓄積された情報を分析することで、組立対象に応じて、最適な調芯初期位置(パッシブアライメント条件)と、最適な調芯走査範囲とを決定することもできる。ここで、撮像信号発生装置10が内部に撮像命令の出力条件を保持するメモリ31を有している場合、制御装置14は、内部データベースの分析結果に基づいて、メモリ31に記憶された組立対象や生産ロット毎に、撮像信号出力条件の切り替え、および書き換えを行うことができる。
図1に示すように、搬送ステージ8にレンズ7を固定する場合、レーザー駆動ステージ4に固定されたレーザー光源3の光軸と、レンズ7の光軸とが、略一致するように固定する。ただし、レンズ7は、搬送ステージ8からレーザー光源3側(図1では−Z方向)に、若干はみ出した状態で固定することが好ましい。これにより、レーザー光源3に対してレンズ7を調芯する際に、搬送ステージ8とレーザー光源3との干渉を抑制することができる。また、レーザー光源3とレンズ7との接合に接着剤を用いる場合は、接合部から接着剤がはみ出して搬送ステージ8へ付着しないようにすることが好ましい。
なお、レーザー光源3から放出されるレーザー光は、レンズ7を通って空間に出射するため、把持部によりこのレーザー光が遮光されないようにする必要がある。
搬送ステージ8には、移動量検出装置9が、搬送ステージ8を構成する直動ステージおよび回転ステージのそれぞれに搭載され、移動量を取得する。
図2は、調芯装置100の搬送ステージ8に含まれる直動ステージ25をより詳しく示した概略図(側面図)である。直動ステージ25は、ステージレール21の上にステージ22が載置され、ステージ22は、モーター24によりステージレール21の上を(図2では、左右方向に)直動する。ステージレール21とステージ22には、それぞれ移動量検出装置9が設けられており、これにより、ステージ22の移動量を電気信号として検出する。
ここで、移動量検出装置9には、例えばリニアスケール、リニアエンコーダ等の、物体の移動量を検出し、検出した移動量をデジタルまたはアナログの電気信号に変換できる一般的な変位センサを用いることができる。
調芯装置100は、更に、撮像信号発生装置10および撮像素子12を含む。撮像信号発生装置10では、移動量検出装置9から出力された搬送ステージ8の移動量を表す電気信号に対応して、所定のステージ移動量毎に、撮像信号を撮像素子12に出力する。
図3は、調芯装置100に用いられる撮像信号発生装置10の構成の概略図である。図3に示すように、撮像信号発生装置10は、メモリ31、信号処理部32、および電源部33を含む。
信号処理部32に書き換え可能な信号処理デバイスを用いることで、移動量検出装置9から受信した情報に対して、遅滞なく信号処理を行い、受信した移動量情報に対して所定の信号発生条件に従って、撮像素子12に撮像信号を出力できる。信号処理部32には、CPLD(Complex Programmable Logic Device)やFPGA(Field-Programmable Gate Array)などの信号処理デバイスを用いることができる。
なお、撮像信号発生装置10から出力される撮像信号は、制御装置14に搭載されるキャプチャボード等を介して撮像素子12へ出力されてもよい。
撮像信号発生装置10は、内部に撮像命令の出力条件を保持するメモリ31を有するため、組立対象や生産ロット毎に最適な撮像信号出力条件を記憶しておき、組立対象等に応じて、最適な条件を呼び出すことができる。
電源部33により、撮像信号発生装置10に電力が供給される。
調芯装置100は、また、レーザー光源3から放出されレンズ7を通って出射されたレーザー光50が投影される位置にスクリーン11を有する。スクリーン11は、例えばすりガラス、セラミック、布、紙などからなる。
撮像素子12は、撮像信号発生装置10から出力される撮像命令に従って、スクリーン11に投影されたレーザー光の投影像を撮像し、これをデジタルデータとして制御装置14に出力する。ここで、撮像方向は、スクリーン11の表面(−Z方向面)または裏面(+Z方向面)のどちらでもよい。撮像素子12にはCCDやCMOS等のトリガ信号に対応した一般的なデジタルカメラを用いることができる。ここでトリガ信号とは撮像タイミングをカメラへ通知する電気信号である。
次に、図4を用いて、本発明の実施の形態1にかかるレーザーモジュールの製造方法について説明する。図4は、調芯装置100を用いたレーザーモジュールの製造方法のフローチャートであり、以下の工程S1〜S8を含む。
工程S1:前工程などで組み立てられたレーザー光源3を、レーザー駆動ステージ4に固定する。同様にレンズ7を搬送ステージ8が有する把持部に固定する。これらの作業は、専用の搬送装置を準備して、制御装置14によってシーケンス制御することで、自動化してもよい。レーザー光源3およびレンズ7をそれぞれ固定することにより、レーザー光源3とレンズ7との相対位置が決定される。
工程S2:レーザー光源3に対して、搬送ステージ8を動かして、レンズ7を調芯開始位置へ移動させてレンズ位置の粗調整を行う。ここで、調芯開始位置は、レーザー駆動ステージ4と搬送ステージ8の相対距離等から事前に決定することができる。なお、この工程は、省略することができる。
工程S3:レーザー光源3とレンズ7の調芯を行う。図5は工程S3(光軸調芯工程)を更に詳細に示したフローチャートであり、図5を参照しながら工程3について説明する。
工程S3−a:レーザー光源3に対して、レンズ7の機械的な特徴点を検出することによる位置決め、所謂パッシブアライメントを実施する。パッシブアライメントの方法としては、レーザー光源3およびレンズ7の特徴点をカメラにより検出し、これらに応じて搬送ステージの各座標を決定する位置調整方法や、予め決められた座標に搬送ステージ8を移動させる方法のような、一般的な方法を用いることができる。また、このパッシブアライメントは必須ではなく、行わなくてもよい。
続いて、工程S3−bから工程S3−nにおいて、レーザー光源3から放出されたレーザー光50がレンズ7を通過して出射されるビームの形状および強度を測定することで、レーザー光源3に対するレンズ7の相対位置を調整する工程、所謂アクティブアライメントを実施する。本発明の実施の形態1では、1軸(Z)の動作についてのみ説明するが、必要に応じて搬送ステージ8が可動する6軸(X、Y、Z、θX、θY、θZ)に対して行ってもよい。
工程S3−b:電源装置6からレーザー光源3に電力が供給され、レーザー光源3のレーザー発光素子1から+Z軸方向にレーザー光50の放出が開始される。ここで、レーザー発光素子1の発光に伴いレーザー光源3の温度が上昇するが、レーザー駆動ステージ4に搭載された温調手段5により、レーザー光源3の温度は一定に保たれる。
工程S3−c:制御装置14からステージ制御部13に、ステージの動作条件と動作命令が送信され、ステージ制御部13は受信した命令に従って搬送ステージ8を移動させる。搬送ステージ8の移動に伴い、移動量検出装置9から搬送ステージ8の移動量が電気信号として撮像信号発生装置10に出力される。搬送ステージ8の動作条件として、移動速度、移動距離、移動加速度、停止加速度(減速度)などが挙げられるが、必要に応じて他の条件を設定してもよい。ただし、搬送ステージ8の動作条件における移動距離は、目的とする調芯の走査範囲と等しくなる。
ここでは、ステージ制御部13は、搬送ステージ8が、動作開始点から所定の移動距離だけ移動するまで、搬送ステージ8を停止させずに連続的に動作させる。
また、制御装置14からステージ制御部13に動作開始命令が送信されるのと同時に、制御装置14から撮像信号発生装置10に測定開始命令が送信される。撮像信号発生装置10は、測定開始命令を受信すると、撮像信号を撮像素子12に送信すると共に、移動量検出装置9から出力される移動量信号の監視を始める。撮像素子12は、撮像信号を受信したタイミングでスクリーン11に投射されたレーザー光のビーム形状およびビーム強度を撮影し、これをデジタル画像データとして制御装置14に送信する。
好ましくは、搬送ステージ8を用いてレンズ7をZ軸方向に一定の速度で移動させながら、所定のサンプリング間隔で、スクリーン11に写った像を撮像素子12で撮影する。
工程S3−d:制御装置14では、撮像素子12から送信されたデジタル画像データに対して画像処理を行い、画像の2次元方向への輝度値の広がりと大きさ(2次元方向への広がりと、コントラスト)を抽出する。ただし、後に行われる工程S3−jにおいて取得したデジタル画像データと共に、一括で画像処理を行う場合は、工程S3−dは省略してもよい。
工程S3−e:撮像信号発生装置10は、移動量検出装置9から出力される移動量信号に基づいて撮像信号を送信した時点から、搬送ステージ8が所定の距離だけ移動しているかについて判断を行う。所定の距離だけ移動するまで工程S3−eが繰り返される。ここでいう所定の距離とは、調芯走査範囲内においてスクリーン11に投射されるレーザー光のビーム形状および強度データを取得するサンプリング間隔をいい、制御装置14から任意に設定できる撮像信号出力条件である。
工程S3−f:撮像信号発生装置10は、撮像素子12に撮像信号を出力する。撮像素子12は、撮像信号を受信したタイミングでスクリーン11に投射されたレーザー光のビーム形状およびビーム強度を取得し、デジタル画像データとして制御装置14に送信する。
工程S3−g:制御装置14では、撮像素子12から送信されたデジタル画像データに対して画像処理を行い、画像の2次元方向への輝度値の広がりと大きさを抽出する。ただし、ステップS3−jにおいて取得したデジタル画像データと共に一括で画像処理を行う場合は、工程S3−gは省略してもよい。
工程S3−h:ステージ制御部13は、搬送ステージ8が動作開始から所定の動作距離の移動を完了しているか、即ち、サンプリング間隔の合計が所定の動作距離に達したか否かの判断を行う。条件を満たすまでステップS3−e以降のステップが繰り返される。
工程S3−i:工程S3−hで、条件を満たしたと判断した場合、即ち、搬送ステージ8の移動が調芯走査範囲に達した場合に、ステージ制御部13は搬送ステージ8の動作を停止させる。
工程S3−j:制御装置14は、撮像素子12から送信されたデジタル画像データに対して画像処理を行い、画像の2次元方向への輝度値の広がりと大きさを抽出する。ただし、工程S3−dおよび工程S3−gにおいて取得したすべてのデジタル画像データに対して既に画像処理が行われている場合は、ステップS3−jは省略してもよい。
工程S3−k:撮像素子12による画像取得枚数と、撮像信号発生装置10の撮像信号発生間隔(サンプリング距離)から、各取得画像と、その取得位置情報の関連付けを行う。また、工程S3−dと工程S3−g、または工程S3−jの画像処理結果から、最適な調芯位置を決定する。具体的には、画像処理の結果として、2次元方向への輝度値の広がり(面積)が最も小さく、かつ画像の明部と暗部の輝度値の差(コントラスト)が最も大きいものが、最もコリメートされたレーザー光の状態となる。ただし、レーザー光源3、またはレンズ7の光学特性によって、輝度値の広がりが最も小さい条件、またはコントラストが最も大きな条件を選択したり、他の条件を選択することも可能である。
工程S3−kの最適な調芯位置の決定プロセスにおいて、工程S3−eにおけるデータのサンプリング間隔が粗い場合、取得したデータを分析して補間することで最適な調芯位置を決定してもよい。ただし、データ補間による調芯位置の決定は、搬送ステージ8を構成するステージの繰り返し位置決め精度より高精度に算出して決定する必要はない。
工程S3−l:前の工程S3−kで決定された最適な調芯位置に基づいて、移動命令をステージ制御部13に送信する。ステージ制御部13は受信した命令に従って搬送ステージ8を動作させる。
工程S3−m:最適な調芯位置へ移動させた搬送ステージ8に固定されたレンズ7からスクリーン11に投射されるビーム形状およびビーム強度の撮像信号を、制御装置14から撮像信号発生装置10を介して撮像素子12に送信することで、最適な調芯位置と判断した画像との差異について比較し、検証することができる。ただし、この工程S3−mは省略しても構わない。
工程S3−n:電源装置6から供給されている電力を停止し、レーザー光源3の発光を停止する。以上の工程で、光軸の調芯工程(図4の工程3)が完了する。
再び、レーザーモジュールの製造方法に関するフローチャートを示す図4を参照する。
工程S4:レーザー光源3またはレンズ7に接着剤を塗布するために、レンズ7が固定された搬送ステージ8を退避位置まで移動させる。制御装置14は、ステージ制御部13に退避位置座標への動作命令を送信し、ステージ制御部13は、受信した動作命令に従って搬送ステージ8を退避位置の指定座標に移動させる。
工程S5:レーザー光源3またはレンズ7に接着剤を塗布する。ここで接着剤を塗布する工程は、専用の塗布装置を設けて、この塗布装置を制御装置14によりシーケンス制御することで自動化してもよい。
工程S6:レーザー光源3とレンズ7とを接着するために、レンズ7を固定した搬送ステージ8を、工程S3で決定した最適な調芯位置に再度移動させる。制御装置14は、ステージ制御部13に工程S3で決定した最適な調芯位置への移動命令を送信し、ステージ制御部13は、搬送ステージ8を受信命令に従って指定座標に移動させる。
工程S7:塗布した接着剤を硬化させて、レーザー光源3とレンズ7とを接着する。接着剤が紫外線硬化性樹脂である場合は、紫外線を照射し、接着剤が熱硬化性樹脂の場合は、加熱して接着剤を硬化させる。ここで、接着剤が十分に硬化し、レーザー光源3とレンズ7が互いに固定されるまでレーザー駆動ステージ4と搬送ステージ8によってそれらを保持し続ける。接着剤の硬化完了後、レンズ7を把持している搬送ステージ8の把持部を開放して、搬送ステージ8からレンズ7を放す。
工程S8:レーザー光源3にレンズ7を接着したレーザーモジュールを取り外す。以上の工程で、レーザーモジュールの製造工程が完了する。
このように、本発明の実施の形態1にかかるレーザーモジュールの製造方法では、調芯工程で、レンズ7を通ったレーザー光50をスクリーン11に投影され、その投影像を取得して解析することにより、レーザー光源3とレンズ7との高精度なアクティブアライメント動作を、短時間で行うことが可能となる。
特に、搬送ステージ8は、データサンプリング(撮像)毎に停止することなく移動すると共に、取得した画像を一括で処理することで、移動間隔および撮像画像から相対距離の最適値が決定できる。この結果、高精度かつ高速なアクティブアライメントが可能となる。
更に、撮像信号発生装置10が出力する撮像信号の間隔が、取得した画像の処理時間より大きい場合、それらを並列処理することで更なる高速化が可能となる。
また、本発明の実施の形態1にかかる調芯装置100を用いることにより、レーザー光源3とレンズ7とのアクティブアライメントにおいて、調芯速度および調芯精度を向上させることができる。
実施の形態2.
図6は、全体が200で表される、本発明の実施の形態2にかかる調芯装置の構成の概略図である。図6中、図1と同一符号は、同一または相当箇所を示す。調芯装置200では、調芯装置100がスクリーン11に投影された投影像を撮影するのに対し、レーザー光源3からレンズ7を介して出力されるレーザー光50を直接パワーメータ40に投影し、その強度をパワーメータ40により取得して、最適な調芯位置を決定して調芯する。調芯装置200の他の構成は、実施の形態1にかかる調芯装置100と同一である。
パワーメータ40では、搬送ステージ8がZ軸方向に移動するのに伴って、移動量検出装置9から出力される移動量信号に基づいて、撮像信号発生装置10が出力するサンプリングのタイミング信号に従い、レーザー発光素子1から放出され、レンズ7を通過したレーザー光の強度を検出する。
本発明の実施の形態2にかかるレーザーモジュールの製造方法は、実施の形態1にかかる調芯方法のフローチャート(図4)において、工程S3を、図7に示すフローチャートの工程に置き換えたものである。
図7に示すフローチャートを参照しながら、本発明の実施の形態2にかかるレーザーモジュールの製造方法、特に調芯方法について述べる。
工程S3−p:ステージ制御部13へ制御装置14からステージの動作条件と動作命令が送信され、ステージ制御部13は受信した命令に従って搬送ステージ8を動作させる。搬送ステージ8の移動に伴い、移動量検出装置9から搬送ステージ8の移動量が電気信号として撮像信号発生装置10に出力される。ただし、ここでは撮像信号は、パワーメータでの検出信号となる。ステージの動作条件として動作速度、動作距離、動作加速度、停止加速度(減速度)などが挙げられるが、必要に応じて任意に設定してもよい。ただし、ステージの動作条件における動作距離は目的とする調芯の走査範囲と等しくなる。
ステージ制御部13は、搬送ステージ8が動作開始点から所定の動作距離だけ移動するまで、搬送ステージ8を停止させずに連続的に動作させる。
また、制御装置14からステージ制御部13に、動作開始命令が送信されるのと同時に、制御装置14から撮像信号発生装置10に、測定開始命令が送信される。撮像信号発生装置10は、測定開始命令を受信すると、サンプリングのタイミング信号をパワーメータ40に送信すると共に、移動量検出装置9から出力される移動量信号の監視を始める。パワーメータ40は、サンプリングのタイミング信号を受信したタイミングで、レーザー光のビーム強度を取得し、制御装置14に送信する。
工程S3−q:撮像信号発生装置10は、パワーメータ40にサンプリングタイミング信号を出力する。パワーメータ40は、サンプリングタイミング信号を受信したタイミングでレーザー光のビーム強度を取得し、制御装置14に送信する。
工程S3−r:制御装置14は、パワーメータ40によるレーザー光強度取得データ数と撮像信号発生装置10のサンプリングタイミング信号発生間隔から、各取得データへ位置情報の関連付けを行う。ここで、パワーメータ40で検出したレーザー光強度が最大となる位置を、最適な調芯位置と決定する。
工程S3−s:最適な調芯位置へ移動させた搬送ステージ8に把持されたレンズ7から出射されるレーザー光強度を、制御装置14から撮像信号発生装置10を介してパワーメータ40に対してサンプリングタイミング信号を送信することで、最適な調芯位置と判断した位置におけるレーザー光強度と調芯位置決定時におけるレーザー光強度を比較することができる。ただし、必ずしもステップS3−sは必要ではない。
工程S3−n:電源装置6から供給されている電力を停止し、レーザー光源3の発光を停止する。以上の工程で、光軸の調芯工程(図4の工程3)が完了する。
本発明の実施の形態2では、1つのレーザー発光素子1を有するレーザー光源3に対して、1つのパワーメータ40によりレーザー光強度を取得する調芯方法について説明したが、複数のパワーメータ40を用いることで、複数のレーザー発光素子1を有するレーザー光源3にレンズ7を調芯することもできる。
このように、本発明の実施の形態2にかかるレーザーモジュールの製造方法では、調芯工程で、レンズ7を通ったレーザー光50をパワーメータ40で取得して解析することにより、レーザー光源3とレンズ7との高精度かつ高速なアクティブアライメントが可能となる。
また、本発明の実施の形態2にかかる調芯装置200を用いることにより、レーザー光源3とレンズ7との高精度なアクティブアライメントにおいて、調芯速度および調芯精度を向上できる。
なお、本発明の実施の形態1、2にかかる調芯方法では、レーザー光源3を固定し、レンズ7を移動することにより、レーザー光源3とレンズ7との調芯を行ったが、レンズ7を固定し、レーザー光源3を移動させてもよい。
また、調芯走査範囲で、搬送ステージ8を連続的に高速で移動させ、調芯位置の粗調整を実施した後、調芯走査範囲を再設定し、搬送ステージを連続的に低速で移動させて調芯位置の再調整を実施してもよい。
また、工程S1と工程2の間で工程S5を実施することで、接着剤を塗布した状態でレンズ7の位置決めを行うことができる。この場合、工程S4および工程S6は省略できる。
また、移動量検出装置9の移動量情報検出精度で決定される最小のサンプリング間隔により工程S3を実施することで、従来のステージ制御部より出力される情報に基づいた調芯工程と比較して、より高精度な調芯位置を決定できる。
1 レーザー発光素子、2 ステム、3 レーザー光源、4 レーザー駆動ステージ、5 温調手段、6 電源装置、7 レンズ、8 搬送ステージ、9 移動量検出装置、10 撮像信号発生装置、11 スクリーン、12 撮像素子、13 ステージ制御部、14 制御装置、21 ステージレール、22 ステージ、24 モーター、25 直動ステージ、31 メモリ、32 信号処理部、33 電源部、40 パワーメータ、50 レーザー光、100、200 調芯装置。

Claims (9)

  1. 発光素子から出射したレーザー光がレンズを通ってコリメートされるレーザーモジュールの調芯方法であって、
    該発光素子から出射した該レーザー光が、該レンズを通ってスクリーン上に投影されるように該発光素子、該レンズ、および該スクリーンを配置する配置工程と、
    該発光素子の光軸方向に、該発光素子または該レンズを移動させると共に、該発光素子と該レンズとの間の相対距離を移動量信号に基づいて測定する測定工程であって、上記発光素子を固定した第1ステージ、または上記レンズを固定した第2ステージのいずれか一方を、測定開始から終了までステージを停止させずに移動させる工程と、
    該相対距離に対応して、該スクリーンの上に投影された該レーザー光の投影像を取得する撮像工程と、
    該投影像の形状および強度を解析して、該スクリーン上でコリメータ光が得られる該相対距離を特定する解析工程と、を含むことを特徴とする調芯方法。
  2. 発光素子から出射したレーザー光がレンズを通ってコリメートされるレーザーモジュールの調芯方法であって、
    該発光素子から出射した該レーザー光が、該レンズを通ってパワーメータ上に投影されるように該発光素子、該レンズ、および該パワーメータを配置する配置工程と、
    該発光素子の光軸方向に、該発光素子または該レンズを移動させると共に、該発光素子と該レンズとの間の相対距離を移動量信号に基づいて測定する測定工程であって、上記発光素子を固定した第1ステージ、または上記レンズを固定した第2ステージのいずれか一方を、測定開始から終了までステージを停止させずに移動させる工程と、
    該相対距離に対応して、該パワーメータの上に投影された該レーザー光の投影像を取得する撮像工程と、
    該投影像の形状および強度を解析して、該パワーメータ上でコリメータ光が得られる該相対距離を特定する解析工程と、を含むことを特徴とする調芯方法。
  3. 上記撮像工程は、上記投影像を所定の間隔で取得する工程である請求項1または2に記載の調芯方法。
  4. 上記所定の間隔は、上記発光素子および/または上記レンズの特性に応じて選択される請求項3に記載の調芯方法。
  5. 上記解析工程は、2次元方向への広がりが最も小さく、かつコントラストが最も大きい上記投影像を選択し、該投影像に対応する上記相対距離を特定する工程である請求項1〜4のいずれかに記載の調芯方法。
  6. 上記測定工程の前に、上記発光素子または上記レンズを、上記光軸方向に第1速度で移動させて、上記撮像工程を行う上記相対距離の範囲を絞り込む工程を含み、
    上記測定工程は、該第1速度より遅い第2速度で該発光素子または該レンズを移動させる工程であることを特徴とする請求項1〜5のいずれかに記載の調芯方法。
  7. 上記配置工程は、上記発光素子の光軸と上記レンズの光軸とをあわせるパッシブアライメント工程である請求項1〜6のいずれかに記載の調芯方法。
  8. 発光素子から出射したレーザー光がレンズを通ってコリメートされるレーザーモジュールの調芯装置であって、
    該発光素子を固定する第1ステージと、該レンズを固定する第2ステージと、スクリーンとが、該発光素子から出射したレーザー光が、該レンズを通って該スクリーン上で投影像となるように配置され、
    前記第1ステージと前記第2ステージとの相対距離を移動量信号に基づいて測定する移動量検出装置を備え、
    更に、撮像装置は、該第1ステージまたは該第2ステージを動かした状態で、該発光素子と該レンズとの相対距離を変えながら該投影像を取得し、
    該投影像の形状および強度を解析して、該スクリーン上でコリメータ光が得られる該相対距離を特定することを特徴とする調芯装置。
  9. 発光素子から出射したレーザー光がレンズを通ってコリメートされるレーザーモジュールの調芯装置であって、
    該発光素子を固定する第1ステージと、該レンズを固定する第2ステージと、パワーメータとが、該発光素子から出射したレーザー光が、該レンズを通って該パワーメータ上で投影像となるように配置され、
    前記第1ステージと前記第2ステージとの相対距離を移動量信号に基づいて測定する移動量検出装置を備え、
    該パワーメータは、該第1ステージまたは該第2ステージを動かした状態で、該発光素子と該レンズとの相対距離を変えながら該投影像を取得し、
    該投影像の形状および強度を解析して、該パワーメータ上でコリメータ光が得られる該相対距離を特定することを特徴とする調芯装置。
JP2016166688A 2016-08-29 2016-08-29 調芯方法および調芯装置 Active JP6920035B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166688A JP6920035B2 (ja) 2016-08-29 2016-08-29 調芯方法および調芯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166688A JP6920035B2 (ja) 2016-08-29 2016-08-29 調芯方法および調芯装置

Publications (2)

Publication Number Publication Date
JP2018037438A JP2018037438A (ja) 2018-03-08
JP6920035B2 true JP6920035B2 (ja) 2021-08-18

Family

ID=61565978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166688A Active JP6920035B2 (ja) 2016-08-29 2016-08-29 調芯方法および調芯装置

Country Status (1)

Country Link
JP (1) JP6920035B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379570B (zh) * 2020-11-25 2022-05-03 东莞埃科思科技有限公司 一种投影机装调方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297229A (ja) * 1995-04-26 1996-11-12 Matsushita Electric Ind Co Ltd 光モジュール光軸調整装置
US5963577A (en) * 1997-04-11 1999-10-05 Blue Sky Research Multiple element laser diode assembly incorporating a cylindrical microlens
JP2003107308A (ja) * 2001-09-28 2003-04-09 Fujitsu Quantum Devices Ltd 発光素子と集光系光学部品の位置決め方法とその位置決め装置
JP2006337923A (ja) * 2005-06-06 2006-12-14 Sony Corp 光源、製造方法、光学装置、画像生成装置、および画像表示装置
JP5943657B2 (ja) * 2012-03-15 2016-07-05 株式会社日立情報通信エンジニアリング 光学部品の高精度調芯方法及び高精度調芯装置
JP5868335B2 (ja) * 2013-01-15 2016-02-24 三菱電機株式会社 調芯方法
JP6136315B2 (ja) * 2013-02-04 2017-05-31 住友電気工業株式会社 光送信モジュールの製造方法

Also Published As

Publication number Publication date
JP2018037438A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
US10095046B2 (en) Automated UV calibration, motorized optical target and automatic surface finder for optical alignment and assembly robot
US9156168B2 (en) Active alignment using continuous motion sweeps and temporal interpolation
US20100118157A1 (en) Method of manufacturing camera module
JP5868335B2 (ja) 調芯方法
US20180203119A1 (en) Method of operating a confocal white light sensor on a coordinate measuring machine
JP6262536B2 (ja) カメラモジュールの製造方法
KR101808388B1 (ko) 프로브 장치 및 프로브 방법
JP2005274925A (ja) ピント調整方法、ピント調整装置
JP6920035B2 (ja) 調芯方法および調芯装置
JP5432551B2 (ja) プローブ方法及びプローブ装置
JP6733895B1 (ja) カメラモジュール製造装置及びカメラモジュール製造方法
US20110025823A1 (en) Three-dimensional measuring apparatus
JP6348145B2 (ja) 半導体レーザ素子のハンダ付けシステム
TWI698953B (zh) 校正雷射打印方法
TWI650914B (zh) 雷射打標機及其校正方法
JP2020020990A (ja) 接合装置および接合方法
US20170328706A1 (en) Measuring apparatus, robot apparatus, robot system, measuring method, control method, and article manufacturing method
JP2010107355A (ja) 光学フィルタ調整方法およびムラ検査装置
JP2006292513A (ja) 屈折率分布型レンズの屈折率分布測定方法
JP2013217999A (ja) 光学部品の高精度調芯方法及び高精度調芯装置
KR20190114407A (ko) 변위 센서를 이용한 스크라이브 장치
JP4765588B2 (ja) Ffp測定装置及びffp測定方法
JP5780278B2 (ja) 光学式センサにおけるレンズ部の固定方法および発光部品の固定方法
JP3836479B2 (ja) ワイヤボンディング装置
JP2008283117A (ja) レーザダイオードの調整方法及び調整装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210608

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6920035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150