JP6918233B2 - Thin-film deposition source for vacuum-film deposition equipment - Google Patents

Thin-film deposition source for vacuum-film deposition equipment Download PDF

Info

Publication number
JP6918233B2
JP6918233B2 JP2020523574A JP2020523574A JP6918233B2 JP 6918233 B2 JP6918233 B2 JP 6918233B2 JP 2020523574 A JP2020523574 A JP 2020523574A JP 2020523574 A JP2020523574 A JP 2020523574A JP 6918233 B2 JP6918233 B2 JP 6918233B2
Authority
JP
Japan
Prior art keywords
container
vapor deposition
crucible
outer container
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020523574A
Other languages
Japanese (ja)
Other versions
JPWO2019235118A1 (en
Inventor
寿充 中村
寿充 中村
健介 清
健介 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of JPWO2019235118A1 publication Critical patent/JPWO2019235118A1/en
Application granted granted Critical
Publication of JP6918233B2 publication Critical patent/JP6918233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Description

本発明は、真空チャンバ内に配置されて、昇華性の材料を昇華させて被蒸着物に対して蒸着するための真空蒸着装置用の蒸着源に関する。 The present invention relates to a vapor deposition source for a vacuum vapor deposition apparatus that is placed in a vacuum chamber to sublimate a sublimable material and deposit it on an object to be deposited.

例えば有機EL素子の製造工程においては、真空雰囲気中で基板などの被蒸着物にアルミキノリノール錯体(Alq)や芳香族ジアミンなどの昇華性の材料(有機材料)を蒸着する工程があり、この蒸着工程には真空蒸着装置が広く利用されている。このような真空蒸着装置に用いられる蒸着源は例えば特許文献1で知られている。このものは、鉛直方向上面を開口した坩堝と、坩堝を加熱する誘導コイルなどの加熱手段とを備える(従来技術の欄、参照)。For example, in the manufacturing process of an organic EL element, there is a step of depositing a sublimable material (organic material) such as an aluminum quinolinol complex (Alq 3 ) or an aromatic diamine on an object to be deposited such as a substrate in a vacuum atmosphere. Vacuum vapor deposition equipment is widely used in the vapor deposition process. A vapor deposition source used in such a vacuum vapor deposition apparatus is known, for example, in Patent Document 1. This includes a crucible with an open upper surface in the vertical direction and a heating means such as an induction coil for heating the crucible (see the column of prior art).

ここで、上記種の材料は一般に熱伝導率が悪く、その上、液相を経て気化する材料と異なり、加熱時、坩堝内での材料の対流が発生しない。このため、上記従来例の蒸発源にて、坩堝内に例えば粉末状の材料を充填し、真空雰囲気中で加熱手段により坩堝を加熱すると、直接伝熱する坩堝の壁面に接触した材料から昇華していく。このとき、坩堝の上面開口を臨む、充填した材料の上層部分からは、昇華した材料が坩堝の上面開口を通って被蒸着物に向けて飛散するが、それより下方に位置する下層部分で昇華した材料は、その周囲に存在する比較的低温(言い換えると、未だ昇華温度まで加熱されていない)材料と衝突して固体に戻ってしまう。結果として、限られた範囲からしか昇華した材料が飛散しないことで、同一の圧力下での単位時間当たりの昇華量が少なくて被蒸着物に対する蒸着レートが低い(つまり、生産性が低い)という問題がある。このような場合、坩堝の加熱温度を高くすることが考えられるが、アルミキノリノール錯体や芳香族ジアミンといった(有機)材料の場合、加熱温度を高くすると、蒸着源にて材料が分解してしまい、素子の性能を決める所望の膜質を持つ薄膜を蒸着できない。このことから、上記種の昇華性の材料を蒸着する真空蒸着装置の蒸着源として、比較的低い温度で高い蒸着レートが得られるものの開発が近年求められるようになっている。 Here, the above-mentioned materials generally have poor thermal conductivity, and unlike materials that vaporize through the liquid phase, convection of the materials does not occur in the crucible during heating. Therefore, when, for example, a powdery material is filled in the crucible with the evaporation source of the above-mentioned conventional example and the crucible is heated by a heating means in a vacuum atmosphere, the material that comes into contact with the wall surface of the crucible that directly transfers heat is sublimated. To go. At this time, the sublimated material is scattered from the upper layer portion of the filled material facing the upper surface opening of the crucible toward the vapor-deposited material through the upper surface opening of the crucible, but is sublimated in the lower layer portion located below it. The resulting material collides with the relatively cold (in other words, not yet heated to the sublimation temperature) material around it and returns to a solid. As a result, the sublimated material scatters only from a limited range, so that the amount of sublimation per unit time under the same pressure is small and the deposition rate for the material to be deposited is low (that is, the productivity is low). There's a problem. In such a case, it is conceivable to raise the heating temperature of the pit, but in the case of (organic) materials such as aluminum quinolinol complex and aromatic diamine, if the heating temperature is raised, the material will be decomposed by the vapor deposition source. It is not possible to deposit a thin film with the desired film quality that determines the performance of the device. For this reason, in recent years, there has been a demand for the development of a vapor deposition source of a vacuum vapor deposition apparatus for vapor deposition of the above-mentioned sublimable materials, which can obtain a high vapor deposition rate at a relatively low temperature.

特開2010−1529号公報Japanese Unexamined Patent Publication No. 2010-1529

本発明は、以上の点に鑑み、昇華性の材料を蒸着するときに、単位時間当たりの昇華量を多くできて被蒸着物に対する蒸着レートの高い真空蒸着装置用の蒸着源を提供することをその課題とするものである。 In view of the above points, the present invention provides a vapor deposition source for a vacuum vapor deposition apparatus, which can increase the amount of sublimation per unit time when vapor deposition a sublimable material and has a high vapor deposition rate on the material to be deposited. This is the subject.

上記課題を解決するために、真空チャンバ内に配置され、昇華性の有機材料を昇華させて被蒸着物に対して蒸着するための本発明の真空蒸着装置用の蒸着源は、被蒸着物に向けて昇華した有機材料を噴出する噴出口を有する外容器と、この外容器にその壁面から間隔を置いて内挿されて昇華性の有機材料を収容する内容器と、内容器内の有機材料の加熱を可能とする加熱手段とを備え、内容器は、網目の大きさが#10〜#50の範囲の金属メッシュを有底筒状の輪郭に成形した筒状体で構成されて、外容器の内側壁と対向する部分に昇華した有機材料の連通を許容する複数の透孔を有し、前記外容器は、前記噴出口を構成するように鉛直方向上面を開口したものであり、内容器の外側壁と外容器の内側壁との少なくとも一方に複数のスペーサ部材が設けられ、内容器をその底壁側から外容器内に挿入すると、スペーサ部材により外容器に対して内容器が位置決めされて内容器の外側壁と外容器の内側壁との間に1mm〜30mmの範囲の隙間が形成されることを特徴とする。
In order to solve the above problems, the vapor deposition source for the vacuum vapor deposition apparatus of the present invention, which is arranged in a vacuum chamber and for sublimating a sublimable organic material and vapor-depositing it on the vapor-deposited material, is a thin-film deposition material. an outer container having a spout for jetting the organic materials sublimated toward and inner container for housing the interpolated by sublimable organic material at a distance from the wall surface to the outer container, the organic material in the inner container The inner container is composed of a tubular body formed by forming a metal mesh having a mesh size in the range of # 10 to # 50 into a bottomed tubular contour, and is provided with a heating means capable of heating the outer container. The outer container has a plurality of through holes that allow the sublimated organic material to communicate with each other in the portion facing the inner side wall of the container, and the outer container has an upper surface opened in the vertical direction so as to form the spout. A plurality of spacer members are provided on at least one of the outer wall of the vessel and the inner side wall of the outer container, and when the inner container is inserted into the outer container from the bottom wall side thereof, the inner container is positioned with respect to the outer container by the spacer members. Therefore, a gap in the range of 1 mm to 30 mm is formed between the outer wall of the inner container and the inner side wall of the outer container .

本発明によれば、蒸着源の内容器内に、例えば粉末状とした昇華性の材料を充填し、真空雰囲気中で例えば外容器を加熱手段により加熱すると、外容器からの輻射熱により透孔を通して直接加熱される材料や、輻射熱で加熱される内容器から直接伝熱する材料から昇華する。この昇華した材料は、各透孔から、外容器の内壁面と内容器の外壁面との間の空間のコンダクタンスにより当該空間を経て外容器の噴出口へと導かれ、この噴出口から被蒸着物に向けて飛散される。このように本発明では、この昇華した材料の殆どが各透孔へと取り出され、比較的低温の材料(つまり、非加熱の材料)と衝突して固体に戻ることが可及的に抑制されるため(言い換えると、昇華した材料が飛散していく面積が増加するため)、限られた範囲からしか昇華した材料が飛散しない上記従来例のものと比較して飛躍的に昇華量が増加し、被蒸着物に対する蒸着レートを高くすることができる。その結果、本発明の真空蒸着装置用の蒸着源は、低い加熱温度でも高い蒸着レートが得られるため、アルミキノリノール錯体や芳香族ジアミンといった有機材料の蒸着に最適なものとなる。なお、内容器と外容器との間の隙間は、外容器からの輻射により効率よく加熱できる一方で、昇華した材料が各透孔から上記空間を経て外容器の噴出口へと効率よく取り出すことができるように、1mm〜30mmの範囲に設定される。 According to the present invention, when a sublimable material, for example, powdered, is filled in the inner container of the vapor deposition source and the outer container is heated by a heating means in a vacuum atmosphere, for example, when the outer container is heated by a heating means, radiant heat from the outer container passes through the through hole. It sublimates from a material that is directly heated or a material that transfers heat directly from an inner container that is heated by radiant heat. The sublimated material is guided from each through hole to the spout of the outer container through the space by the conductance of the space between the inner wall surface of the outer container and the outer wall surface of the inner container, and is vapor-deposited from this spout. It is scattered toward things. Thus, in the present invention, most of this sublimated material is taken out into each through hole, and it is suppressed as much as possible that it collides with a relatively low temperature material (that is, an unheated material) and returns to a solid. Therefore (in other words, the area where the sublimated material scatters increases), the amount of sublimation increases dramatically compared to the above-mentioned conventional example in which the sublimated material scatters only from a limited range. , The vapor deposition rate for the material to be deposited can be increased. As a result, the vapor deposition source for the vacuum vapor deposition apparatus of the present invention can obtain a high vapor deposition rate even at a low heating temperature, and is therefore most suitable for vapor deposition of organic materials such as aluminum quinolinol complexes and aromatic diamines. The gap between the inner container and the outer container can be efficiently heated by radiation from the outer container, while the sublimated material is efficiently taken out from each through hole to the spout of the outer container through the above space. It is set in the range of 1 mm to 30 mm so that

本発明において、前記外容器が鉛直方向上面を開口した坩堝で構成されるような場合、前記内容器は、上面を開口した有底の筒状体で構成され、この筒状体の外底壁に脚片が設けられる構成を採用してもよい。これによれば、脚片側を下にして内容器を坩堝内に挿入し、その脚片を坩堝の内底壁に当接させるだけで、坩堝内に内容器を簡単にセットでき、この状態では、坩堝の内側壁と内容器の外測壁との間の空間(第1空間)に加えて、坩堝の内底壁と内容器の外底壁との間にも、昇華した材料が通過する空間(第2空間)を画成する一定の隙間が形成されることで、より一層、昇華量を増加させることができ、有利である。この場合、坩堝の内側壁または内容器の外側壁の少なくとも一方に複数のスペーサ部材を設けておけば、内容器を設置するだけで、上記第1空間を画成する一定の隙間が形成されるように坩堝内に内容器を同心に位置決めでき、有利である。 In the present invention, when the outer container is composed of a crucible having an open upper surface in the vertical direction, the inner container is composed of a bottomed tubular body having an open upper surface, and the outer bottom wall of the tubular body. A configuration in which a leg piece is provided may be adopted. According to this, the inner container can be easily set in the crucible simply by inserting the inner container into the crucible with one leg side down and bringing the leg piece into contact with the inner bottom wall of the crucible. In addition to the space between the inner wall of the crucible and the outer measuring wall of the inner container (first space), the sublimated material also passes between the inner bottom wall of the crucible and the outer bottom wall of the inner container. By forming a certain gap that defines the space (second space), the amount of sublimation can be further increased, which is advantageous. In this case, if a plurality of spacer members are provided on at least one of the inner wall surface of the crucible and the outer wall of the inner container, a certain gap defining the first space is formed only by installing the inner container. It is advantageous because the inner containers can be positioned concentrically in the crucible.

なお、本発明において、上記筒状体としては、金属メッシュのように所定径の金属製線材を格子状に組み付けてなるもの、パンチングメタルのように金属製板材に蒸気が通過する円形またはスリット状の開口(透孔)を開設したものや、エキスパンドメタルを筒状に成形したものを用いることができ、他方で、上記筒状体を多孔質のセラミックスのように蒸気が通過する多数の細孔を有する多孔質体で構成することもできる。また、蒸気が通過する透孔を有するものであれば、複数の金属メッシュを重ねて厚みを持たせたものや、金属製線材を絡ませて不織布状に形成したもので上記筒状体を構成することもできる。例えば、上記筒状体を金属メッシュで構成する場合、その線径が、Φ0.2〜1.0mmの範囲で、昇華した材料の連通を許容する透孔となる網目の大きさが、#10〜#50の範囲とすることが好ましい。このような金属メッシュであれば、粉状の材料を充填しても、一般にアルミキノリノール錯体や芳香族ジアミンなどの昇華性の材料(有機材料)は凝集性があるため、各網目から殆ど漏れ出ることなく積み上げられ、また、その一部が漏れ出たとして、外容器の内底壁に積もるだけで、その後に外容器が加熱されたときに昇華するので、特段の問題は生じない。 In the present invention, the tubular body is formed by assembling metal wire rods having a predetermined diameter in a grid pattern such as a metal mesh, or a circular or slit shape through which steam passes through a metal plate material such as punching metal. It is possible to use an expanded metal having an opening (through hole) or an expanded metal formed into a tubular shape, and on the other hand, a large number of pores through which steam passes through the tubular body like porous ceramics. It can also be composed of a porous body having. Further, if it has a through hole through which steam passes, the tubular body is formed by stacking a plurality of metal meshes to increase the thickness or entwining metal wire rods to form a non-woven fabric. You can also do it. For example, when the tubular body is made of a metal mesh, the wire diameter is in the range of Φ0.2 to 1.0 mm, and the size of the mesh that is a through hole that allows the sublimated material to communicate is # 10. The range is preferably in the range of ~ # 50. With such a metal mesh, even if a powdery material is filled, the sublimable material (organic material) such as an aluminum quinolinol complex or an aromatic diamine is generally cohesive, so that most of the material leaks from each mesh. It is piled up without any problem, and if a part of it leaks out, it is simply piled up on the inner bottom wall of the outer container and sublimated when the outer container is heated thereafter, so that no particular problem occurs.

(a)は、本発明の実施形態の蒸着源を備える真空蒸着装置を模式的に示す断面図。(b)は、蒸着源を分解して説明する断面図。(A) is a cross-sectional view schematically showing a vacuum vapor deposition apparatus including the vapor deposition source according to the embodiment of the present invention. (B) is a cross-sectional view for explaining the vapor deposition source by disassembling it. (a)は、本発明の蒸着源からの昇華した材料の飛散の様子を示す部分拡大断面図。(b)は、従来例の蒸着源からの昇華した材料の飛散の様子を示す部分拡大断面図。(A) is a partially enlarged cross-sectional view showing a state of scattering of the sublimated material from the vapor deposition source of the present invention. (B) is a partially enlarged cross-sectional view showing a state of scattering of the sublimated material from the vapor deposition source of the conventional example. 加熱温度に対する蒸着レートの変化を説明するグラフ。The graph explaining the change of the vapor deposition rate with respect to a heating temperature.

以下、図面を参照して、被蒸着物を矩形の輪郭を持つ所定厚さのガラス基板(以下、「基板Sw」という)、蒸着物質を昇華性の有機材料とし、基板Swの一方の面に所定の薄膜を蒸着する場合を例に本発明の真空蒸着装置用の蒸着源の実施形態を説明する。以下において、「上」、「下」といった方向を示す用語は、真空蒸着装置の設置姿勢を示す図1を基準にする。 Hereinafter, referring to the drawings, a glass substrate having a predetermined thickness having a rectangular outline (hereinafter referred to as “sublimation Sw”) and a vapor-deposited substance as a sublimable organic material are used as the vapor-deposited material on one surface of the substrate Sw. An embodiment of a vapor deposition source for a vacuum vapor deposition apparatus of the present invention will be described by taking the case of vapor deposition of a predetermined thin film as an example. In the following, the terms indicating the directions such as "up" and "down" are based on FIG. 1, which indicates the installation posture of the vacuum vapor deposition apparatus.

図1を参照して、Dmは、本実施形態の蒸着源DSを備える真空蒸着装置である。真空蒸着装置Dmは、真空チャンバ1を備え、真空チャンバ1には、特に図示して説明しないが、排気管を介して真空ポンプが接続され、所定圧力(真空度)に真空引きして真空雰囲気を形成できるようになっている。また、真空チャンバ1の上部には基板搬送装置2が設けられている。基板搬送装置2は、成膜面としての下面を開放した状態で基板Swを保持するキャリア21を有し、図外の駆動装置によってキャリア21、ひいては基板Swを真空チャンバ1内の一方向に所定速度で移動するようになっている。基板搬送装置2としては公知のものが利用できるため、これ以上の説明は省略する。 With reference to FIG. 1, Dm is a vacuum vapor deposition apparatus including the vapor deposition source DS of the present embodiment. The vacuum vapor deposition apparatus Dm includes a vacuum chamber 1, and although not particularly illustrated, a vacuum pump is connected to the vacuum chamber 1 and a vacuum is drawn to a predetermined pressure (vacuum degree) to create a vacuum atmosphere. Can be formed. Further, a substrate transfer device 2 is provided above the vacuum chamber 1. The substrate transfer device 2 has a carrier 21 that holds the substrate Sw in a state where the lower surface as a film forming surface is open, and the carrier 21 and thus the substrate Sw are predetermined in one direction in the vacuum chamber 1 by a drive device (not shown). It is designed to move at speed. Since a known substrate transfer device 2 can be used, further description thereof will be omitted.

基板搬送装置2によって搬送される基板Swと蒸着源DSとの間には、板状のマスクプレート3が設けられている。本実施形態では、マスクプレート3は、基板Swと一体に取り付けられて基板Swと共に基板搬送装置2によって搬送されるようになっている。なお、マスクプレート3は、真空チャンバ1に予め固定配置しておくこともできる。マスクプレート3には、板厚方向に貫通する複数の開口31が形成され、これら開口31がない位置にて昇華した材料の基板Swに対する蒸着範囲が制限されることで所定のパターンで基板Swに成膜(蒸着)されるようになっている。マスクプレート3としては、インバー、アルミ、アルミナやステンレス等の金属製の他、ポリイミド等の樹脂製のものが用いられる。そして、真空チャンバ1の底面には、基板Swに対向させて本実施形態の蒸着源DSが設けられている。 A plate-shaped mask plate 3 is provided between the substrate Sw transported by the substrate transport device 2 and the vapor deposition source DS. In the present embodiment, the mask plate 3 is integrally attached to the substrate Sw and is conveyed together with the substrate Sw by the substrate transfer device 2. The mask plate 3 may be fixedly arranged in the vacuum chamber 1 in advance. The mask plate 3 is formed with a plurality of openings 31 penetrating in the plate thickness direction, and the vapor deposition range of the sublimated material on the substrate Sw is limited at a position where these openings 31 are absent, so that the substrate Sw has a predetermined pattern. It is designed to be filmed (deposited). As the mask plate 3, a metal such as Invar, aluminum, alumina or stainless steel, or a resin such as polyimide is used. The vapor deposition source DS of the present embodiment is provided on the bottom surface of the vacuum chamber 1 so as to face the substrate Sw.

蒸着源DSは、本実施形態の外容器を構成する坩堝4を有する。坩堝4は、鉛直方向上面を開口した有底筒状の輪郭を有し、モリブデン、チタン、ステンレスやカーボンなどの熱伝導が良く、高融点の材料から形成されている。この場合、坩堝4の上面開口41が本実施形態における昇華した材料の噴出口を構成する。坩堝4の周囲には、シースヒータやランプヒータ等の公知のものからなる加熱手段Htが設けられている。そして、坩堝4に、本実施形態の内容器を構成する筒状体5が内挿される。筒状体5は、坩堝4と同様、モリブデン、チタンやステンレスなどの熱伝導が良く、高融点の材料で構成され、本実施形態では、線材51を格子状に組み付けてなる金属メッシュを有底筒状の輪郭を持つように成形したものであり、金属メッシュの各網目52の部分が本実施形態の透孔を構成するようになっている。この場合、線材51の線径は、Φ0.2〜1.0mmの範囲で、また、網目52の大きさは、#10〜#50の範囲とすることが好ましい。網目(開口)52が大きすぎると、材料を保持できないといった不具合が生じる一方で、網目52が小さすぎると、昇華した材料の通過が阻害されるといった不具合が生じる。 The vapor deposition source DS has a crucible 4 that constitutes the outer container of the present embodiment. The crucible 4 has a bottomed tubular contour with an open upper surface in the vertical direction, and is formed of a material having good heat conduction such as molybdenum, titanium, stainless steel, and carbon, and having a high melting point. In this case, the upper surface opening 41 of the crucible 4 constitutes the spout of the sublimated material in the present embodiment. Around the crucible 4, a heating means Ht made of a known material such as a sheath heater or a lamp heater is provided. Then, the tubular body 5 constituting the inner container of the present embodiment is inserted into the crucible 4. Like the crucible 4, the tubular body 5 is made of a material having good thermal conductivity, such as molybdenum, titanium, and stainless steel, and has a high melting point. It is formed so as to have a tubular contour, and each mesh 52 portion of the metal mesh constitutes the through hole of the present embodiment. In this case, the wire diameter of the wire rod 51 is preferably in the range of Φ0.2 to 1.0 mm, and the size of the mesh 52 is preferably in the range of # 10 to # 50. If the mesh (opening) 52 is too large, there will be a problem that the material cannot be held, while if the mesh 52 is too small, there will be a problem that the passage of the sublimated material will be hindered.

筒状体5の外底壁53には、棒状の脚片54が間隔を存して複数立設されている。また、本実施形態の外側壁を構成する筒状体5の外周壁55には、棒状のスペーサ部材56が坩堝4の内底壁42から同一の高さ位置でかつ周方向に間隔を存して複数立設されている。大気圧下の真空チャンバ1内で坩堝4に筒状体5を設置する場合、坩堝4の上面開口41に、筒状体5をその脚片54側から挿入し、各スペーサ部材56を、本実施形態の内側壁を構成する坩堝4の内周面43に沿って摺動させながら筒状体5を下方に移動させる。そして、各脚片54が坩堝4の内底面42に当接すると、坩堝4に筒状体5が同心に位置決め設置される。この状態では、坩堝4の内周面43と筒状体5の外周壁55との間に、スペーサ部材56の長さに相当する隙間W1からなる第1空間6aが画成され、これに加えて、坩堝4の内底面42と筒状体5の外底壁53との間に、スペーサ部材56の長さに相当する隙間W2からなる第2空間6bが画成される。 A plurality of rod-shaped leg pieces 54 are erected on the outer bottom wall 53 of the tubular body 5 at intervals. Further, on the outer peripheral wall 55 of the tubular body 5 constituting the outer wall of the present embodiment, rod-shaped spacer members 56 are provided at the same height position from the inner bottom wall 42 of the crucible 4 and at intervals in the circumferential direction. There are multiple erections. When the tubular body 5 is installed in the crucible 4 in the vacuum chamber 1 under atmospheric pressure, the tubular body 5 is inserted into the upper surface opening 41 of the crucible 4 from the leg piece 54 side, and each spacer member 56 is inserted into the crucible 4. The tubular body 5 is moved downward while sliding along the inner peripheral surface 43 of the crucible 4 constituting the inner side wall of the embodiment. Then, when each leg piece 54 comes into contact with the inner bottom surface 42 of the crucible 4, the tubular body 5 is concentrically positioned and installed in the crucible 4. In this state, a first space 6a composed of a gap W1 corresponding to the length of the spacer member 56 is defined between the inner peripheral surface 43 of the crucible 4 and the outer peripheral wall 55 of the tubular body 5, and in addition to this. A second space 6b composed of a gap W2 corresponding to the length of the spacer member 56 is defined between the inner bottom surface 42 of the crucible 4 and the outer bottom wall 53 of the tubular body 5.

脚片54やスペーサ部材56の長さは、真空チャンバ1を真空雰囲気とした状態で加熱手段Htにより坩堝4を加熱したとき、この坩堝4からの輻射により効率よく加熱できる一方で、第1空間6a及び第2空間6bのコンダクタンスにより、昇華した有機材料が金属メッシュの各網目52から第1空間6a及び第2空間6bを経て坩堝4の上面開口41へと効率よく導くことができるように、1mm〜30mmの範囲に設定される。坩堝4に筒状体5を内挿した後、筒状体5に昇華性の有機材料7が充填される。 The length of the leg piece 54 and the spacer member 56 can be efficiently heated by radiation from the crucible 4 when the crucible 4 is heated by the heating means Ht in a state where the vacuum chamber 1 is in a vacuum atmosphere, while the first space. Due to the conductance of 6a and the second space 6b, the sublimated organic material can be efficiently guided from each mesh 52 of the metal mesh through the first space 6a and the second space 6b to the upper surface opening 41 of the crucible 4. It is set in the range of 1 mm to 30 mm. After inserting the tubular body 5 into the crucible 4, the tubular body 5 is filled with the sublimable organic material 7.

本実施形態の蒸着源での蒸着に用いられる有機材料7としては、アルミキノリノール錯体(Alq)や芳香族ジアミンなどが挙げられ、粉末状にしたものが筒状体5の上面開口から充填されるようになっている。このように筒状体5に粉末状の有機材料7を充填しても、これらの有機材料7は凝集性があるため、金属メッシュの各網目52からは殆ど漏れ出ることなく積み上げられる。なお、その一部が漏れ出たとして、坩堝4の内底面42上に積もるだけで、その後に坩堝4が加熱されたときに昇華し、第1空間6a及び第2空間6bを経て坩堝4の上面開口41へと導かれるので、特段の問題は生じない。Examples of the organic material 7 used for vapor deposition at the vapor deposition source of the present embodiment include aluminum quinolinol complex (Alq 3 ), aromatic diamine, and the like, and powdered ones are filled from the upper surface opening of the tubular body 5. It has become so. Even if the tubular body 5 is filled with the powdered organic material 7 in this way, since these organic materials 7 are cohesive, they are stacked with almost no leakage from each mesh 52 of the metal mesh. Assuming that a part of the leak leaks, it is only accumulated on the inner bottom surface 42 of the crucible 4, and then sublimates when the crucible 4 is heated, and the crucible 4 passes through the first space 6a and the second space 6b. Since it is guided to the upper surface opening 41, no particular problem occurs.

ここで、上記のような有機材料7は、一般に熱伝導率が悪く、その上、液相を経て気化する材料と異なり、加熱時、坩堝内での材料の対流は発生しない。このため、従来例の如く、有機材料7を坩堝Pc内に直接充填して蒸着する場合、図2(a)に示すように、図外の加熱手段により坩堝Pcを加熱すると、直接伝熱する坩堝Pcの壁面に接触した有機材料7から昇華していくが、坩堝Pcの上面開口Poを臨む、充填した有機材料7の上層部分Puからは、昇華した有機材料7aが坩堝Pcの上面開口Poを通って基板(図示せず)に向けて飛散するが、それより下方に位置する下層部分Pdで昇華した有機材料7bは、その周囲に存在する比較的低温(言い換えると、未だ昇華温度まで加熱されていない)有機材料7と衝突して固体に戻ってしまう。結果として、限られた範囲からしか昇華した有機材料7が飛散しないことで、同一の圧力下での単位時間当たりの昇華量が少なくて被蒸着物に対する蒸着レートが低い。 Here, the organic material 7 as described above generally has a poor thermal conductivity, and unlike a material that vaporizes through a liquid phase, convection of the material does not occur in the crucible during heating. Therefore, when the organic material 7 is directly filled in the pit Pc and vaporized as in the conventional example, as shown in FIG. 2A, when the pit Pc is heated by a heating means (not shown), heat is directly transferred. Sublimation starts from the organic material 7 in contact with the wall surface of the 坩 堝 Pc, but the sublimated organic material 7a faces the upper surface opening Po of the 坩 堝 Pc from the upper layer portion Pu of the filled organic material 7 facing the upper surface opening Po of the 坩 堝 Pc. The organic material 7b, which is scattered through and toward the substrate (not shown) but sublimated in the lower layer portion Pd located below it, is heated to a relatively low temperature (in other words, still sublimation temperature) existing around it. It collides with the organic material 7 (which has not been) and returns to a solid state. As a result, the sublimated organic material 7 scatters only from a limited range, so that the amount of sublimation per unit time under the same pressure is small and the vapor deposition rate for the object to be deposited is low.

それに対して、本実施形態の蒸着源DSでは、真空雰囲気中で基板Swに有機材料7を蒸着する場合、加熱手段Htにより坩堝4を加熱すると、坩堝4からの輻射熱により各網目52を通して直接加熱される有機材料7や、輻射熱で加熱される金属メッシュの線材51から直接伝熱する有機材料7から昇華する。この昇華した有機材料71のうち、充填した有機材料7の上層部分からは直接坩堝4の上面開口41を通って、また、充填した有機材料7の下層部分からは、第1空間6aと第2空間6bのコンダクタンスにより、第1空間6aから、及び第2空間6bから第1空間6aを経て坩堝4の上面開口41へと導かれ、この噴出口から基板Swに向けて飛散される。 On the other hand, in the vapor deposition source DS of the present embodiment, when the organic material 7 is vapor-deposited on the substrate Sw in a vacuum atmosphere, when the 坩 堝 4 is heated by the heating means Ht, it is directly heated through each mesh 52 by the radiant heat from the 坩 堝 4. It is sublimated from the organic material 7 to be heat-transferred and the organic material 7 which directly transfers heat from the wire rod 51 of the metal mesh heated by radiant heat. Of the sublimated organic material 71, the upper layer portion of the filled organic material 7 directly passes through the upper surface opening 41 of the crucible 4, and the lower layer portion of the filled organic material 7 passes through the first space 6a and the second space 6a. The conductance of the space 6b guides the crucible 4 from the first space 6a and from the second space 6b through the first space 6a to the upper surface opening 41 of the crucible 4, and is scattered from this spout toward the substrate Sw.

このように本実施形態では、この昇華した有機材料71の殆どが金属メッシュの各網目52から取り出され、比較的低温の材料(つまり、非加熱の材料)と衝突して固体に戻ることが可及的に抑制されるため(言い換えると、昇華した材料が飛散していく面積が増加するため)、限られた範囲からしか昇華した材料が飛散しない上記従来例のものと比較して飛躍的に昇華量が増加し、被蒸着物に対する蒸着レートを高くすることができる。つまり、図3に示すように、坩堝4,Pcの加熱温度に対する蒸着レートを測定すると、−〇−線で示す従来例のものと比較して、−●−線で示す本発明の実施形態のものでは、1.1〜2倍の蒸着レートが得られる。 Thus, in the present embodiment, most of the sublimated organic material 71 can be taken out from each mesh 52 of the metal mesh and collide with a relatively low temperature material (that is, unheated material) to return to a solid. Since it is suppressed (in other words, the area where the sublimated material scatters increases), the sublimated material scatters only from a limited range, which is dramatically compared with the above-mentioned conventional example. The amount of sublimation can be increased, and the vapor deposition rate for the material to be deposited can be increased. That is, as shown in FIG. 3, when the vapor deposition rate with respect to the heating temperature of the crucible 4 and Pc is measured, the embodiment of the present invention shown by the − ● − line is compared with that of the conventional example shown by the − ○ − line. With the crucible, a vapor deposition rate of 1.1 to 2 times can be obtained.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、内容器として、金属メッシュを筒状に成形したものを例に説明したが、これに限定されるものではなく、パンチングメタルのように金属製板材に円形またはスリット状の開口(透孔)を開設したものを筒状に成形したものや、エキスパンドメタルを筒状に成形したものを用いることができ、他方で、上記筒状体を多孔質のセラミックスで構成することもでき、また、内容器の底壁に、必ずしも透孔を必要としない。この場合、透孔の孔径は、昇華した有機材料の通過を許容できるものであれば特に制限はなく、また、筒状体の外表面積に対する全透孔を合計総面積の比は、蒸着レートを考慮して適宜設定される。 Although the embodiments of the present invention have been described above, various modifications are possible as long as they do not deviate from the scope of the technical idea of the present invention. In the above embodiment, as the inner container, a metal mesh formed into a tubular shape has been described as an example, but the present invention is not limited to this, and a circular or slit-shaped opening (a circular or slit-shaped opening) is formed in a metal plate material such as punching metal. It is possible to use a tubular body having a through hole) or a tubular molded expanded metal, and on the other hand, the tubular body can be made of porous ceramics. Further, the bottom wall of the inner container does not necessarily require a through hole. In this case, the pore diameter of the through hole is not particularly limited as long as it allows the passage of the sublimated organic material, and the ratio of the total through hole to the outer surface area of the tubular body to the total total area is the vapor deposition rate. It is set appropriately in consideration.

また、上記実施形態では、外容器として、上面を開口した坩堝4で構成するものを例に説明したが、第1空間6a及び第2空間6bのコンダクタンスを調整するために、坩堝4の上面に、少なくとも1本の噴射ノズルを設けた蓋体を装着するようにしてもよい。この場合、外容器としては、特に図示して説明しないが、収容箱の上面に噴射ノズルを列設したもの(所謂ラインソース)を用いることもできる。 Further, in the above embodiment, the outer container is described by using a crucible 4 having an open upper surface as an example, but in order to adjust the conductance of the first space 6a and the second space 6b, the upper surface of the crucible 4 is formed. , A lid provided with at least one injection nozzle may be attached. In this case, as the outer container, although not particularly illustrated and described, a container in which injection nozzles are arranged in a row on the upper surface of the storage box (so-called line source) can also be used.

Dm…真空蒸着装置、DS…真空蒸着装置用の蒸着源、Ht…加熱手段、Sw…基板(被蒸着物)、1…真空チャンバ、4…坩堝(外容器)、41…上面開口(噴出口)、5…筒状体(内容器)、52…網目(透孔)。 Dm ... Vacuum deposition equipment, DS ... Deposition source for vacuum deposition equipment, Ht ... Heating means, Sw ... Substrate (material to be deposited), 1 ... Vacuum chamber, 4 ... Crucible (outer container), 41 ... Top opening (spout) ), 5 ... Cylindrical body (inner container), 52 ... Mesh (through hole).

Claims (2)

真空チャンバ内に配置され、昇華性の有機材料を昇華させて被蒸着物に対して蒸着するための真空蒸着装置用の蒸着源において、
被蒸着物に向けて昇華した有機材料を噴出する噴出口を有する外容器と、この外容器にその壁面から間隔を置いて内挿されて昇華性の有機材料を収容する内容器と、内容器内の有機材料の加熱を可能とする加熱手段とを備え、
内容器は、網目の大きさが#10〜#50の範囲の金属メッシュを有底筒状の輪郭に成形した筒状体で構成されて、外容器の内側壁と対向する部分に昇華した有機材料の連通を許容する複数の透孔を有し、
前記外容器は、前記噴出口を構成するように鉛直方向上面を開口したものであり、
内容器の外側壁と外容器の内側壁との少なくとも一方に複数のスペーサ部材が設けられ、内容器をその底壁側から外容器内に挿入すると、スペーサ部材により外容器に対して内容器が位置決めされて内容器の外側壁と外容器の内側壁との間に1mm〜30mmの範囲の隙間が形成されることを特徴とする真空蒸着装置用の蒸着源。
In a vapor deposition source for a vacuum vapor deposition apparatus, which is placed in a vacuum chamber to sublimate a sublimable organic material and deposit it on an object to be deposited.
An outer container having a spout that ejects the sublimated organic material toward the vapor-deposited material, an inner container that is interpolated into the outer container at intervals from the wall surface to contain the sublimable organic material, and an inner container. Equipped with a heating means that enables heating of the organic material inside,
The inner container is composed of a tubular body formed by forming a metal mesh having a mesh size in the range of # 10 to # 50 into a bottomed tubular contour, and is an organic sublimated portion facing the inner side wall of the outer container. Has multiple through-holes that allow material to communicate,
The outer container has an upper surface opened in the vertical direction so as to form the spout.
A plurality of spacer members are provided on at least one of the outer wall of the inner container and the inner side wall of the outer container, and when the inner container is inserted into the outer container from the bottom wall side thereof, the spacer member causes the inner container to be opposed to the outer container. A vapor deposition source for a vacuum deposition apparatus, characterized in that a gap in the range of 1 mm to 30 mm is formed between the outer wall of the inner container and the inner side wall of the outer container after being positioned.
記内容器は、その外底壁に脚片が設けられ、内容器の外底壁と外容器の内底壁との間に1mm〜30mmの範囲の隙間が形成されることを特徴とする請求項1記載の真空蒸着装置用の蒸着源。 Before Symbol inner container has its legs in the outer bottom wall is provided, wherein the gap in the range of 1mm~30mm is formed between the outer bottom wall and the outer container inner bottom wall of the inner container The vapor deposition source for the vacuum deposition apparatus according to claim 1.
JP2020523574A 2018-06-08 2019-05-08 Thin-film deposition source for vacuum-film deposition equipment Active JP6918233B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018110671 2018-06-08
JP2018110671 2018-06-08
PCT/JP2019/018352 WO2019235118A1 (en) 2018-06-08 2019-05-08 Vapor deposition source for vacuum vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JPWO2019235118A1 JPWO2019235118A1 (en) 2020-12-17
JP6918233B2 true JP6918233B2 (en) 2021-08-11

Family

ID=68770004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020523574A Active JP6918233B2 (en) 2018-06-08 2019-05-08 Thin-film deposition source for vacuum-film deposition equipment

Country Status (5)

Country Link
JP (1) JP6918233B2 (en)
KR (1) KR102453030B1 (en)
CN (1) CN111108230A (en)
TW (1) TW202000955A (en)
WO (1) WO2019235118A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444843B2 (en) 2021-12-02 2024-03-06 キヤノントッキ株式会社 Deposition crucible and deposition equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001529A (en) 2008-06-20 2010-01-07 Seiko Epson Corp Vapor deposition source, and vapor deposition apparatus
JP4468474B1 (en) * 2008-12-24 2010-05-26 三菱重工業株式会社 Vacuum deposition apparatus and temperature adjustment method
JP2013209696A (en) * 2012-03-30 2013-10-10 Samsung Display Co Ltd Vacuum deposition device and vapor deposition source of the same
KR20140103583A (en) * 2013-02-18 2014-08-27 (주)와이에스썸텍 Linear Evaporation Source
JP6851143B2 (en) * 2016-04-05 2021-03-31 株式会社アルバック Evaporation source, vacuum deposition equipment and vacuum deposition method
CN205662589U (en) * 2016-05-16 2016-10-26 鄂尔多斯市源盛光电有限责任公司 Coating by vaporization source and coating by vaporization device
KR20180047087A (en) * 2016-10-31 2018-05-10 한국표준과학연구원 Inductive Heating Evaporation Deposition Apparatus

Also Published As

Publication number Publication date
KR102453030B1 (en) 2022-10-11
CN111108230A (en) 2020-05-05
JPWO2019235118A1 (en) 2020-12-17
KR20210002607A (en) 2021-01-08
TW202000955A (en) 2020-01-01
WO2019235118A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP1382713B1 (en) Source for thermal physical vapour deposition of organic electroluminescent layers
KR101450339B1 (en) Evaporation source and vacuum evaporator using the same
US6830626B1 (en) Method and apparatus for coating a substrate in a vacuum
CN101041891B (en) Vapor deposition source and vapor deposition apparatus
JP2003160855A (en) Thin-film forming apparatus
JP2008261056A (en) Vapor deposition source of organic electroluminescent layer
US20080173241A1 (en) Vapor deposition sources and methods
JP6918233B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP2007119917A (en) Arrangement for the vapor deposition on substrate
JP2011099142A (en) Vapor deposition apparatus and vapor deposition method
KR20080013686A (en) Apparatus for depositing thin films over large-area substrates
KR101754802B1 (en) Evaporation Apparatus And Evaporation Deposition Apparatus
JP2020190012A (en) Vapor deposition source for vacuum evaporation apparatus
JP7078462B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP5741361B2 (en) Loop heat pipe and manufacturing method thereof
KR100358727B1 (en) Apparatus and method for depositing organic matter of vapor phase
JP4110966B2 (en) Vapor deposition apparatus and vapor deposition method
KR101772621B1 (en) Downward Evaporation Apparatus And Downward Evaporation Deposition Apparatus
JP7376426B2 (en) Deposition source for vacuum evaporation equipment
JP2021116433A (en) Vapor deposition source for vacuum deposition apparatus
KR100656820B1 (en) Source for depositing electroluminescent layer
JP2020190013A (en) Vacuum deposition method
KR20040078365A (en) Deposition source for a vapor depositing device
KR20210074343A (en) Evaporation apparatus for evaporating material and method for evaporating material using the evaporation apparatus
KR101416442B1 (en) Apparatus for making temperature uniform and equipment for fabricating semiconductor devices using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6918233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150