JP6913295B2 - Glass plate and manufacturing method of glass plate - Google Patents

Glass plate and manufacturing method of glass plate Download PDF

Info

Publication number
JP6913295B2
JP6913295B2 JP2016253145A JP2016253145A JP6913295B2 JP 6913295 B2 JP6913295 B2 JP 6913295B2 JP 2016253145 A JP2016253145 A JP 2016253145A JP 2016253145 A JP2016253145 A JP 2016253145A JP 6913295 B2 JP6913295 B2 JP 6913295B2
Authority
JP
Japan
Prior art keywords
face
glass plate
grindstone
glass
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016253145A
Other languages
Japanese (ja)
Other versions
JP2018104238A (en
Inventor
隼人 奥
隼人 奥
晃 粟津
晃 粟津
久博 竹内
久博 竹内
佑 太和田
佑 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016253145A priority Critical patent/JP6913295B2/en
Priority to CN201780077340.6A priority patent/CN110088058B/en
Priority to PCT/JP2017/042971 priority patent/WO2018123416A1/en
Priority to KR1020197020007A priority patent/KR102403487B1/en
Priority to TW106143088A priority patent/TWI735719B/en
Publication of JP2018104238A publication Critical patent/JP2018104238A/en
Application granted granted Critical
Publication of JP6913295B2 publication Critical patent/JP6913295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Description

本発明は、ガラス板、及びガラス板の製造方法に関する。 The present invention relates to a glass plate and a method for manufacturing the glass plate.

近年、液晶ディスプレイ等の生産効率に対する改善要請に応じるべく、当該ディスプレイ等に使用されるガラス基板の製造効率に対する改善要求が高まっている。ここで、ガラス基板の製造では、大型のガラス原板(成形原板)から一枚又は複数枚のガラス基板を切り出すことが行われている。これにより、所望の寸法のガラス基板を取得可能としている。 In recent years, in order to meet the demand for improvement in the production efficiency of liquid crystal displays and the like, the demand for improvement in the manufacturing efficiency of the glass substrate used for the display and the like has been increasing. Here, in the manufacture of a glass substrate, one or a plurality of glass substrates are cut out from a large glass original plate (molded original plate). This makes it possible to obtain a glass substrate having desired dimensions.

一方で、ガラス原板から切り出されたガラス基板の端面は、通常、切断面又は折割面となるため、微小な傷(欠陥)が存在することが多い。ガラス基板の端面に傷があると、その傷から割れ等が発生するため、これを防止するためにガラス基板の端面に対して研削加工(粗研磨加工)と研磨加工(仕上げ研磨加工)が施される(例えば、特許文献1を参照)。 On the other hand, since the end surface of the glass substrate cut out from the glass original plate is usually a cut surface or a folded surface, there are often minute scratches (defects). If there is a scratch on the end face of the glass substrate, cracks will occur from the scratch. To prevent this, grinding (rough polishing) and polishing (finish polishing) are applied to the end face of the glass substrate. (See, for example, Patent Document 1).

国際公開WO2013/187400号International release WO2013 / 187400

ところで、液晶ディスプレイの生産工程においては、成膜工程や露光工程、エッチング工程などガラス基板に対して行われる各種工程が存在する。この際、ガラス基板は、例えば位置決めピンを端面に当接させることにより位置決めされる。しかしながら、端面と位置決めピンとの接触により、端面からガラス粉が発生することがあり、これによりガラス板の主表面(最も面積の大きい平坦な表面)に付着するおそれが生じる。ガラス粉の付着は、成膜不良ひいては断線不良を招くため、この種のガラス粉の発生は極力避ける必要がある。 By the way, in the production process of a liquid crystal display, there are various processes performed on a glass substrate such as a film forming process, an exposure process, and an etching process. At this time, the glass substrate is positioned by, for example, bringing the positioning pin into contact with the end face. However, the contact between the end face and the positioning pin may generate glass powder from the end face, which may cause adhesion to the main surface of the glass plate (the flat surface having the largest area). Since the adhesion of glass powder causes poor film formation and thus disconnection, it is necessary to avoid the generation of this type of glass powder as much as possible.

端面に対して例えば上述の砥石を用いた研削加工を施した場合、加工後の端面は平坦化される。しかしながら、位置決めピンが硬度60度程度のゴムやプラスチックからなり、位置決めピンが弾性変形するような場合には、加工後の端面があまりに平坦化されることで、位置決めピンと端面との接触面積が増加する。その結果、ガラス粉が発生し易くなるといった問題があった。 When the end face is subjected to, for example, grinding using the above-mentioned grindstone, the finished end face is flattened. However, if the positioning pin is made of rubber or plastic with a hardness of about 60 degrees and the positioning pin is elastically deformed, the end face after processing becomes too flat, and the contact area between the positioning pin and the end face increases. do. As a result, there is a problem that glass powder is likely to be generated.

以上の事情に鑑み、ガラス板の端面に所定の微小うねりを形成することによって、端面からのガラス粉の発生を可及的に防止することを、本発明により解決すべき技術課題とする。 In view of the above circumstances, it is a technical problem to be solved by the present invention to prevent the generation of glass powder from the end face as much as possible by forming a predetermined minute waviness on the end face of the glass plate.

前記課題の解決は、本発明に係るガラス板により達成される。すなわち、このガラス板は、端面に対して所定の加工が施された状態にあるガラス板であって、端面の算術平均うねりWaが2.7μm以上である点をもって特徴付けられる。 The solution to the above problems is achieved by the glass plate according to the present invention. That is, this glass plate is a glass plate in which the end face has been subjected to a predetermined process, and is characterized in that the arithmetic mean waviness Wa of the end face is 2.7 μm or more.

このように、本発明では、端面の算術平均うねりWaに着目し、この算術平均うねりWaの値が満たすべき最小限の値を規定した。このような形態をなす端面であれば、例えばガラス板又はガラス板を要素とする製品の各製造工程時や工程間搬送時にピンなどの位置決め部材がガラス板の端面に接触する場合に、端面が有する微小うねり(詳細は後述する)の山部と主に接触するので、位置決め部材との接触面積を減らすことができる。これにより、ガラス粉の発生を抑制することが可能となる。 As described above, in the present invention, attention is paid to the arithmetic mean swell Wa of the end face, and the minimum value that the value of the arithmetic mean swell Wa should satisfy is defined. If the end face has such a shape, for example, when a positioning member such as a pin comes into contact with the end face of the glass plate during each manufacturing process of a glass plate or a product having a glass plate as an element or during interprocess transportation, the end face becomes Since it mainly comes into contact with the peak portion of the minute undulation (details will be described later), the contact area with the positioning member can be reduced. This makes it possible to suppress the generation of glass powder.

また、本発明に係るガラス板においては、端面の平均高さWcが5.0μm以上であってもよい。 Further, in the glass plate according to the present invention, the average height Wc of the end face may be 5.0 μm or more.

このように、端面の平均高さWcを規定することによって、端面が有する微小うねりの山部と谷部の高低差が大きくなり、位置決め部材と微小うねりの谷部とが接触しにくくなる。これにより、位置決め部材との接触面積をさらに減らすことができ、ガラス粉の発生をより効果的に抑制することが可能となる。 By defining the average height Wc of the end face in this way, the height difference between the peak and the valley of the minute undulations of the end face becomes large, and it becomes difficult for the positioning member and the valley of the minute undulations to come into contact with each other. As a result, the contact area with the positioning member can be further reduced, and the generation of glass powder can be suppressed more effectively.

また、本発明に係るガラス板においては、端面の平均長さWsmが2000μm以上であってもよい。 Further, in the glass plate according to the present invention, the average length Wsm of the end face may be 2000 μm or more.

このように、端面の平均長さWsmを規定することによって、微小うねりの周期が長くなる。このため、位置決め部材と接触する微小うねりの山部の数が減少するので、位置決め部材との接触面積をさらに減らすことができ、ガラス粉の発生をより効果的に抑制することが可能となる。 By defining the average length Wsm of the end face in this way, the period of minute undulations becomes long. Therefore, since the number of ridges of minute undulations that come into contact with the positioning member is reduced, the contact area with the positioning member can be further reduced, and the generation of glass powder can be suppressed more effectively.

また、本発明に係るガラス板においては、端面のスキューネスWskが0より大きくてもよい。 Further, in the glass plate according to the present invention, the skewness Wsk of the end face may be larger than 0.

このように、端面のスキューネスWskを規定することによって、微小うねりの形状を間接的に規定できる。すなわちスキューネスWskが正の値をとる場合には、微小うねりの山部は尖った形状をなす傾向にある。よって、スキューネスWskを0以上に規定することで、位置決め部材と端面が有する微小うねりの山部との接触面積を減らすことができる。これにより、位置決め部材との接触面積をさらに減らすことができ、ガラス粉の発生をより効果的に抑制することが可能となる。 By defining the skewness Wsk of the end face in this way, the shape of the minute undulation can be indirectly defined. That is, when the skewness Wsk takes a positive value, the mountainous portion of the minute swell tends to have a sharp shape. Therefore, by defining the skewness Wsk to 0 or more, it is possible to reduce the contact area between the positioning member and the peak portion of the minute waviness of the end face. As a result, the contact area with the positioning member can be further reduced, and the generation of glass powder can be suppressed more effectively.

また、本発明に係るガラス板は、端面に現れる微小うねりにおける一周期をA[mm]、山部と谷部との高低差をB[mm]とした場合、下記数式1の関係を満たすものであってもよい。

Figure 0006913295
Further, the glass plate according to the present invention satisfies the relationship of the following formula 1 when one cycle of minute waviness appearing on the end face is A [mm] and the height difference between the peak and the valley is B [mm]. It may be.
Figure 0006913295

上記規定は、ガラス板の端面に現れる微小うねりの形状と位置決め用のピンとの当接状態との関係に着目してなされたものである。すなわち、ガラス板の端面を軸回転可能な砥石で加工した場合、図3に示すように、表面粗さRa等の粗さ曲線よりも凹凸の周期が長い微小うねり3が端面2に現れることがある。この微小うねり3は、例えば算術平均うねりWaのうねり曲線と同等のオーダーで現れるもので、かつ凹凸形状(山部4と谷部5の形状)は砥石の外形形状に倣って略円弧状をなすことが多い。よって、例えば半径r[mm]の位置決めピン6が、略円弧状をなす微小うねり3の隣り合う山部4,4と当接する状態を考えた場合、下記数式2に規定の関係を満たす限りにおいて、位置決めピン6は微小うねり3の谷部5と接することはない。なお、数式2における変数Bは、山部4と谷部5との高低差[mm]、変数Cは、位置決めピン6と山部4との接点P1,P1間の中点P2から位置決めピン6の中心点P3までの距離[mm]である。

Figure 0006913295
ここで、位置決めピン6の半径rと周期A、及び距離Cとの間には数式3に示す関係が成り立つ。なお、数式3における変数Aは、微小うねり3の隣り合う山部4,4間の距離[mm]である。
Figure 0006913295
数式3を変形すると、距離Cは、数式4の如く半径rと周期Aの関数として表される。
Figure 0006913295
数式4を数式2に代入して整理すると、数式5が得られる。
Figure 0006913295
ここで、位置決めピン6の外径寸法(半径rの二倍)の代表的な大きさを例えば400mmとした場合、数式1が得られる。 The above specification is made by paying attention to the relationship between the shape of the minute waviness appearing on the end face of the glass plate and the contact state with the positioning pin. That is, when the end face of the glass plate is processed with an axially rotatable grindstone, as shown in FIG. 3, minute waviness 3 having a period of unevenness longer than the roughness curve such as surface roughness Ra may appear on the end face 2. be. The minute waviness 3 appears in the same order as the waviness curve of the arithmetic mean waviness Wa, and the uneven shape (the shape of the peak 4 and the valley 5) forms a substantially arc shape following the outer shape of the grindstone. Often. Therefore, for example, when considering a state in which the positioning pin 6 having a radius r [mm] is in contact with the adjacent peaks 4 and 4 of the minute undulations 3 forming a substantially arc shape, as long as the relationship specified in the following mathematical formula 2 is satisfied. , The positioning pin 6 does not come into contact with the valley portion 5 of the minute swell 3. The variable B in Equation 2 is the height difference [mm] between the peak 4 and the valley 5, and the variable C is the midpoint P2 to the positioning pin 6 between the contact points P1 and P1 between the positioning pin 6 and the peak 4. The distance [mm] to the center point P3 of.
Figure 0006913295
Here, the relationship shown in Equation 3 holds between the radius r of the positioning pin 6, the period A, and the distance C. The variable A in the mathematical formula 3 is the distance [mm] between the adjacent peaks 4 and 4 of the minute swell 3.
Figure 0006913295
When the equation 3 is transformed, the distance C is expressed as a function of the radius r and the period A as in the equation 4.
Figure 0006913295
By substituting the formula 4 into the formula 2 and rearranging it, the formula 5 is obtained.
Figure 0006913295
Here, when the typical size of the outer diameter dimension (twice the radius r) of the positioning pin 6 is set to, for example, 400 mm, Equation 1 can be obtained.

このように、位置決めピンとの具体的な接触態様を考慮して、微小うねりを最適な形状にすることで、位置決めピンが微小うねりの谷部と接触する事態を可及的に防止できる。従って、ガラス粉の発生をより効果的に抑制することが可能となる。 In this way, by considering the specific contact mode with the positioning pin and shaping the minute undulation into an optimum shape, it is possible to prevent the positioning pin from coming into contact with the valley portion of the minute undulation as much as possible. Therefore, it is possible to more effectively suppress the generation of glass powder.

また、前記課題の解決は、本発明に係るガラス板の製造方法によっても達成される。すなわち、この製造方法は、回転している加工具をガラス板の端面に接触させつつ端面に沿って相対移動させていくことにより、端面に所定の加工を施す端面加工工程を備えるガラス板の製造方法であって、端面の算術平均うねりWaが2.7μm以上となるように、端面に対して砥石による所定の加工を施す点をもって特徴付けられる。 Further, the solution of the above problems is also achieved by the method for manufacturing a glass plate according to the present invention. That is, in this manufacturing method, a glass plate is manufactured including an end face processing step of performing a predetermined processing on the end face by moving a rotating processing tool relative to the end face while making contact with the end face of the glass plate. The method is characterized in that the end face is subjected to a predetermined process with a grindstone so that the arithmetic mean waviness Wa of the end face is 2.7 μm or more.

本発明では、端面の算術平均うねりWaに着目し、この算術平均うねりWaの値が満たすべき値となるように、端面に対して、回転する加工具による所定の加工を施すようにした。この方法によれば、本発明に係るガラス板と同様、ガラス板又はガラス板を要素とする製品の各製造工程時や工程間搬送時にピンなどの位置決め部材がガラス板の端面に接触する場合に、端面が有する微小うねりの山部が主に接触するので、位置決め部材との接触面積を減らすことができる。これにより、ガラス粉の発生を抑制することが可能となる。 In the present invention, attention is paid to the arithmetic mean swell Wa of the end face, and the end face is subjected to predetermined processing by a rotating processing tool so that the value of the arithmetic mean swell Wa is a value to be satisfied. According to this method, as in the case of the glass plate according to the present invention, when the positioning member such as a pin comes into contact with the end face of the glass plate during each manufacturing process or during interprocess transportation of the glass plate or the product having the glass plate as an element. Since the peaks of the minute waviness of the end face mainly come into contact with each other, the contact area with the positioning member can be reduced. This makes it possible to suppress the generation of glass powder.

以上に述べたように、本発明によれば、ガラス板の端面に所定の微小うねりを形成することによって、端面からのガラス粉の発生を可及的に防止することが可能となる。 As described above, according to the present invention, it is possible to prevent the generation of glass powder from the end face as much as possible by forming a predetermined minute waviness on the end face of the glass plate.

本発明の一実施形態に係るガラス板の端面加工装置の概略平面図である。It is a schematic plan view of the end face processing apparatus of the glass plate which concerns on one Embodiment of this invention. 図1に示す砥石回転系の要部側面図である。It is a side view of the main part of the grindstone rotating system shown in FIG. ガラス板の端面と位置決めピンとのうねり曲線オーダーにおける接触態様を説明するための図である。It is a figure for demonstrating the contact mode in the swell curve order of an end face of a glass plate and a positioning pin. 他の形態に係るガラス板の端面と位置決めピンとのうねり曲線オーダーにおける接触態様を示す図である。It is a figure which shows the contact mode in the waviness curve order between the end face of a glass plate which concerns on another form, and a positioning pin. 本発明に係るガラス板の端面と位置決めピンとのうねり曲線オーダーにおける接触態様を示す図である。It is a figure which shows the contact mode in the waviness curve order between the end face of the glass plate which concerns on this invention, and a positioning pin.

以下、本発明の一実施形態を図1〜図5を参照して説明する。まず本実施形態に係る製造方法に使用する端面加工装置の概要について、図1及び図2に基づき説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5. First, an outline of the end face processing apparatus used in the manufacturing method according to the present embodiment will be described with reference to FIGS. 1 and 2.

図1及び図2に示すように、端面加工装置10は、ガラス板1の端面2に所定の加工を施すものであって、端面加工部としての砥石11,12を回転駆動するモータ13と、スピンドル14とを主に備える。スピンドル14はモータ13に連結されている。本実施形態では、モータ13とスピンドル14は共通の回転軸Yを有する。なお、スピンドル14は、ベルト等を介してモータ13の主軸と連結してもよい。 As shown in FIGS. 1 and 2, the end face processing apparatus 10 performs predetermined processing on the end surface 2 of the glass plate 1, and includes a motor 13 for rotationally driving the grindstones 11 and 12 as end face processing portions. Mainly includes a spindle 14. The spindle 14 is connected to the motor 13. In this embodiment, the motor 13 and the spindle 14 have a common rotation axis Y. The spindle 14 may be connected to the spindle of the motor 13 via a belt or the like.

このような構成の端面加工装置10は、特許文献1に記載されるような砥石11(12)の押圧力を制御する装置を備えてもよい。あるいは、端面加工装置10は、加工時の砥石11(12)の位置を一定にする方式であってもよい。あるいは、これらの方式以外の端面加工装置10を用いてもよい。 The end face processing device 10 having such a configuration may include a device for controlling the pressing force of the grindstone 11 (12) as described in Patent Document 1. Alternatively, the end face processing device 10 may be of a method of fixing the position of the grindstone 11 (12) at the time of processing. Alternatively, an end face processing device 10 other than these methods may be used.

砥石11(12)は、図2に示すように、砥石取付け用フランジ20を介してスピンドル14に取り付けられている。詳述すると、砥石11(12)には嵌合穴21が設けられており、砥石取付け用フランジ20には嵌合凸部22が設けられている。砥石11(12)の嵌合穴21に砥石取付け用フランジ20の嵌合凸部22を嵌め合せることで、砥石11(12)が砥石取付け用フランジ20に連結されると共に、砥石取付け用フランジ20に対する砥石11(12)の芯出しを含む位置決めがなされるようになっている。 As shown in FIG. 2, the grindstone 11 (12) is attached to the spindle 14 via the grindstone mounting flange 20. More specifically, the grindstone 11 (12) is provided with a fitting hole 21, and the grindstone mounting flange 20 is provided with a fitting convex portion 22. By fitting the fitting convex portion 22 of the grindstone mounting flange 20 into the fitting hole 21 of the grindstone 11 (12), the grindstone 11 (12) is connected to the grindstone mounting flange 20 and the grindstone mounting flange 20. Positioning including centering of the grindstone 11 (12) with respect to the whetstone 11 (12) is performed.

また、砥石取付け用フランジ20には、嵌合凸部22と反対の側に嵌合凹部23が設けられている。この嵌合凹部23はテーパ状をなしており、同じくテーパ状をなすスピンドル14の先端部24とテーパ嵌合可能とされている。よって、例えば後述する砥石11(12)と砥石取付け用フランジ20とのサブアセンブリ25を準備した後、このサブアセンブリ25をスピンドル14の先端部24に取り付けることで、自動的に砥石11(12)のスピンドル14に対する芯出し及び位置決めがなされるようになっている。 Further, the grindstone mounting flange 20 is provided with a fitting recess 23 on the side opposite to the fitting convex portion 22. The fitting recess 23 has a tapered shape, and can be tapered and fitted to the tip portion 24 of the spindle 14 which also has a tapered shape. Therefore, for example, after preparing the sub-assembly 25 of the grindstone 11 (12) described later and the flange 20 for mounting the grindstone, the sub-assembly 25 is attached to the tip 24 of the spindle 14 to automatically mount the grindstone 11 (12). Centering and positioning with respect to the spindle 14 of the above.

また、本実施形態では、ガラス板1の端面2に対して、二種類の加工(ここでは端面2の面取りを主たる目的とする研削加工と、端面2の微小な凹凸を均すことを主たる目的とする研磨加工)を施すため、それぞれに対応した砥石11,12が使用され得る。すなわち、研磨用の第二の砥石12における砥粒の粒度は、研削用の第一の砥石11における砥粒の粒度と同じか、それよりも大きい。研削用の第一の砥石11における砥粒の粒度は、例えば#100〜#1000とすることができ、研磨用の第二の砥石12における砥粒の粒度は、例えば#200〜#2000とすることができる。また、砥石11,12の直径は、例えば100〜200mmである。 Further, in the present embodiment, the end surface 2 of the glass plate 1 is subjected to two types of processing (here, a grinding process whose main purpose is chamfering the end surface 2 and a main purpose of smoothing the minute irregularities of the end surface 2). The grindstones 11 and 12 corresponding to each of the grindstones 11 and 12 can be used in order to perform the polishing process. That is, the particle size of the abrasive grains in the second grindstone 12 for polishing is the same as or larger than the particle size of the abrasive grains in the first grindstone 11 for grinding. The particle size of the abrasive grains in the first grindstone 11 for grinding can be, for example, # 100 to # 1000, and the particle size of the abrasive grains in the second grindstone 12 for polishing can be, for example, # 200 to # 2000. be able to. The diameters of the grindstones 11 and 12 are, for example, 100 to 200 mm.

ガラス板1は、例えば図1に示すように矩形の板形状を有している。ガラス板1の厚み寸法は例えば0.05mm〜10mmであることが好ましく、0.2mm〜0.7mmであることがより好ましい。もちろん、本発明を適用可能なガラス板1は上記形態には限定されない。例えば矩形以外の形状(例えば長方形以外の多角形)を有するガラス板や、厚み寸法が0.05mm〜10mmを外れるサイズのガラス板に対しても本発明を適用し得る。 The glass plate 1 has a rectangular plate shape, for example, as shown in FIG. The thickness dimension of the glass plate 1 is preferably, for example, 0.05 mm to 10 mm, more preferably 0.2 mm to 0.7 mm. Of course, the glass plate 1 to which the present invention can be applied is not limited to the above form. For example, the present invention can be applied to a glass plate having a shape other than a rectangle (for example, a polygon other than a rectangle) and a glass plate having a thickness dimension of more than 0.05 mm to 10 mm.

ガラス1の主表面(表面及び裏面)は、火造り面、すなわち、砥石等による加工が施されておらず、研磨痕を有さない成形したままの状態であることが好ましい。また、ガラス1の主表面の算術平均粗さRa(JIS R 1683:2014)は、10nm以下であることが好ましく、2nm以下であることがより好ましい。 It is preferable that the main surface (front surface and back surface) of the glass 1 is a fire-made surface, that is, a state in which the glass 1 is not processed by a grindstone or the like and has no polishing marks. The arithmetic average roughness Ra (JIS R 1683: 2014) of the main surface of the glass 1 is preferably 10 nm or less, and more preferably 2 nm or less.

ガラス板1は砥石11,12に対して所定の送り方向Xに沿って相対的に移動し得る。なお、図1では、ガラス板1が送り方向Xに移動し、砥石11,12は固定される場合を示しているが、もちろん、ガラス板1が固定され、砥石11,12が送り方向Xとは逆向きに移動してもよい。また、この際、ガラス板1と砥石11,12の何れか一方が移動し、他方が固定されていてもよく、双方が移動してもよい。 The glass plate 1 can move relative to the grindstones 11 and 12 along a predetermined feed direction X. Note that FIG. 1 shows a case where the glass plate 1 moves in the feed direction X and the grindstones 11 and 12 are fixed, but of course, the glass plate 1 is fixed and the grindstones 11 and 12 are in the feed direction X. May move in the opposite direction. Further, at this time, either one of the glass plate 1 and the grindstones 11 and 12 may move, the other may be fixed, or both may move.

また、砥石11,12の回転方向は任意であるが、例えばガラス板1の送り方向Xと対向する向きに回転するよう、各砥石11,12の回転方向を定めるのがよい。図1でいえば、上側の砥石11,12は反時計回り、下側の砥石11,12は時計回りとなるよう、各砥石11,12の回転方向を定めるのがよい。 The rotation direction of the grindstones 11 and 12 is arbitrary, but it is preferable to determine the rotation direction of the grindstones 11 and 12 so as to rotate in a direction facing the feed direction X of the glass plate 1, for example. In FIG. 1, it is preferable to determine the rotation direction of the grindstones 11 and 12 so that the upper grindstones 11 and 12 are counterclockwise and the lower grindstones 11 and 12 are clockwise.

続いて、上述した端面加工装置10を用いた場合のガラス委板の製造方法の一例を説明する。 Subsequently, an example of a method for manufacturing a glass sheet when the end face processing device 10 described above is used will be described.

すなわち、本実施形態に係る製造方法は、回転している砥石11,12をガラス板1の端面2に接触させつつ、その砥石11,12を端面2に沿って相対移動させていくことにより、端面2に所定の加工を施す端面加工工程を備える。この製造方法は、ガラス板1を準備する工程(ガラス板準備工程)をさらに備えてもよい。ガラス板1を準備する工程では、例えば、オーバーフローダウンドロー法といったダウンドロー法やフロート法等によって成形原板を得て、その成形原板からガラス板1を切り出す。必要に応じ、端面2の加工後には、ガラス板1の検査や梱包等が行われる。ガラス1の主表面(表面及び裏面)を火造り面とするとともにその算術平均粗さRaを10nm以下とする観点から、ガラス板1を準備する工程では、オーバーフローダウンドロー法を用いることが好ましい。 That is, in the manufacturing method according to the present embodiment, the rotating grindstones 11 and 12 are brought into contact with the end face 2 of the glass plate 1 and the grindstones 11 and 12 are relatively moved along the end face 2. The end face 2 is provided with an end face processing step of performing a predetermined process. This manufacturing method may further include a step of preparing the glass plate 1 (glass plate preparation step). In the step of preparing the glass plate 1, for example, a molded original plate is obtained by a down draw method such as an overflow down draw method, a float method, or the like, and the glass plate 1 is cut out from the molded original plate. If necessary, after the end face 2 is processed, the glass plate 1 is inspected, packed, and the like. From the viewpoint that the main surfaces (front surface and back surface) of the glass 1 are fire-made surfaces and the arithmetic average roughness Ra is 10 nm or less, it is preferable to use the overflow down draw method in the step of preparing the glass plate 1.

ガラス板1の端面2に所定の加工を施す工程(端面加工工程)は、砥石11(12)と砥石取付け用フランジ20とのサブアセンブリ25が所定の静的振れ及び動バランスとなるように準備するサブアセンブリ準備工程S1と、準備したサブアセンブリ25を使用して上述した端面加工を実施する端面加工工程S2とを備える。また、ガラス板1の端面2に所定の加工を施す工程では、端面加工後における端面2の算術平均うねりWaが2.7μm以上となるように端面加工を実施する。 In the step of performing a predetermined process on the end face 2 of the glass plate 1 (end face machining step), the subassembly 25 of the grindstone 11 (12) and the flange for mounting the grindstone 20 is prepared so as to have a predetermined static runout and dynamic balance. The subassembly preparation step S1 to be performed and the end face processing step S2 for carrying out the above-mentioned end face processing using the prepared subassembly 25 are provided. Further, in the step of performing the predetermined processing on the end face 2 of the glass plate 1, the end face processing is performed so that the arithmetic mean waviness Wa of the end face 2 after the end face processing is 2.7 μm or more.

(S1)サブアセンブリ準備工程
この工程では、砥石11(12)と砥石取付け用フランジ20とのサブアセンブリ25を、動バランスが所定の値以上、例えば60g・mm以上となるように準備する。なお、動バランスは所定の動的釣合測定装置を使用して測定することができる。
(S1) Subassembly preparation step In this step, the subassembly 25 of the grindstone 11 (12) and the grindstone mounting flange 20 is prepared so that the dynamic balance is equal to or more than a predetermined value, for example, 60 g · mm or more. The dynamic balance can be measured using a predetermined dynamic balance measuring device.

なお、この際、砥石11(12)と砥石取付け用フランジ20の個々の動バランスは、特に問わない。サブアセンブリ25の動バランスが60g・mm以上となる限りにおいて、任意の動バランスを示す砥石11(12)と、砥石取付け用フランジ20を使用することが可能である。 At this time, the individual dynamic balances of the grindstone 11 (12) and the grindstone mounting flange 20 are not particularly limited. As long as the dynamic balance of the subassembly 25 is 60 g · mm or more, it is possible to use the grindstone 11 (12) showing an arbitrary dynamic balance and the grindstone mounting flange 20.

(S2)端面加工工程
この工程では、準備工程S1で準備したサブアセンブリ25を例えば図1に示す端面加工装置10のスピンドル14(図2を参照)に取り付けて、ガラス板1の端面2に上記所定の端面加工(研削加工と研磨加工)を施す。
(S2) End Face Processing Step In this step, the subassembly 25 prepared in the preparation step S1 is attached to, for example, the spindle 14 (see FIG. 2) of the end face processing apparatus 10 shown in FIG. Perform predetermined end face processing (grinding and polishing).

ここで、図4に、動バランスが10g・mmであるサブアセンブリ25を用いた場合に得られたガラス板1’の端面2’のうねり曲線の一例、図5に、動バランスが80g・mmであるサブアセンブリ25を用いた場合に得られたガラス板1の端面2のうねり曲線の一例をそれぞれ示す。これらガラス板1,1’はともに、2250mm×2500mmの矩形状をなし、0.5mmの厚みを有する。端面加工は、ガラス板1,1’の長辺の端面に対して図1に示す端面加工装置10を用いて行った。端面加工では、研削用の第一の砥石11を1組配置し、研磨用の第二の砥石12を1組配置した。砥石11(12)と砥石取付け用フランジ20とのサブアセンブリ25の動バランスは、全て(研削用の第一の砥石11及び研磨用の第二の砥石12)で同じであった。 Here, FIG. 4 shows an example of the waviness curve of the end face 2'of the glass plate 1'obtained when the subassembly 25 having the dynamic balance of 10 g · mm is used, and FIG. 5 shows the dynamic balance of 80 g · mm. An example of the waviness curve of the end face 2 of the glass plate 1 obtained when the subassembly 25 is used is shown. Both of these glass plates 1, 1'have a rectangular shape of 2250 mm × 2500 mm and have a thickness of 0.5 mm. The end face processing was performed on the end faces of the long sides of the glass plates 1, 1'using the end face processing device 10 shown in FIG. In the end face processing, one set of the first grindstone 11 for grinding was arranged, and one set of the second grindstone 12 for polishing was arranged. The dynamic balance of the subassembly 25 between the grindstone 11 (12) and the flange for mounting the grindstone 20 was the same for all (the first grindstone 11 for grinding and the second grindstone 12 for polishing).

図4に示すように、動バランスが10g・mmであるサブアセンブリ25を用いた場合、得られた端面2’のうねり曲線には、山部4’と谷部5’との高低差が非常に小さい微小うねり3’が現れていた。この場合、端面2’の算術平均うねりWaは2.5μm、平均高さWcは5μm、平均長さWsmは2500μmであった。 As shown in FIG. 4, when the subassembly 25 having a dynamic balance of 10 g · mm is used, the height difference between the mountain portion 4'and the valley portion 5'is very large in the undulation curve of the obtained end face 2'. A small swell 3'appeared in. In this case, the arithmetic mean waviness Wa of the end face 2'was 2.5 μm, the average height Wc was 5 μm, and the average length Wsm was 2500 μm.

これに対して、動バランスが80g・mmであるサブアセンブリ25を用いた場合、得られた端面2のうねり曲線には、図5に示すように、砥石11(12)の外形形状に倣った略円弧状が明確に反映された微小うねり3が現れていた。この場合、端面2の算術平均うねりWaは2.8μm、平均高さWcは10μm、平均長さWsmは4000μmであった。また、端面2のスキューネスWskは、0より大きかった。 On the other hand, when the subassembly 25 having a dynamic balance of 80 g · mm was used, the undulation curve of the obtained end face 2 followed the outer shape of the grindstone 11 (12) as shown in FIG. A minute swell 3 that clearly reflected the substantially arc shape appeared. In this case, the arithmetic mean waviness Wa of the end face 2 was 2.8 μm, the average height Wc was 10 μm, and the average length Wsm was 4000 μm. The skewness Wsk of the end face 2 was larger than 0.

従って、これら端面2,2’と例えば断面真円状の位置決めピン6との接触状態を考えた場合、例えば図4に示す微小うねり3’はその谷部5’で位置決めピン6と接触する確率が高いのに対し、図5に示す微小うねり3、すなわち本発明に係る微小うねり3の場合、その山部4で位置決めピン6と高確率で接触する。 Therefore, when considering the contact state between these end faces 2 and 2'and the positioning pin 6 having a perfect circular cross section, for example, the probability that the minute waviness 3'shown in FIG. 4 comes into contact with the positioning pin 6 at the valley portion 5'. However, in the case of the minute undulation 3 shown in FIG. 5, that is, the minute undulation 3 according to the present invention, the peak portion 4 comes into contact with the positioning pin 6 with high probability.

また、この際、位置決めピン6との接触面積を極力小さくする観点から、微小うねり3の形状及びサイズを示す各パラメータ(周期A、山部4と谷部5との高低差B)は、上記数式1の関係を満たすことが望ましい。 At this time, from the viewpoint of minimizing the contact area with the positioning pin 6, each parameter (period A, height difference B between the peak portion 4 and the valley portion 5) indicating the shape and size of the minute undulation 3 is described above. It is desirable to satisfy the relationship of Equation 1.

また、端面2の算術平均うねりWaが2.7μm以上である場合、端面2の平均高さWcは5.0μm以上で、平均長さWsmは2000μm以上、スキューネスWskは0を超えた値であることが望ましい。 When the arithmetic mean waviness Wa of the end face 2 is 2.7 μm or more, the average height Wc of the end face 2 is 5.0 μm or more, the average length Wsm is 2000 μm or more, and the skewness Wsk is a value exceeding 0. Is desirable.

このように、本発明では、端面2の算術平均うねりWaに着目し、この算術平均うねりWaの値が2.7μm以上となるよう、ガラス板1の端面2に砥石11,12の回転接触による所定の端面加工(研削加工、研磨加工)を施すようにした。このような形態をなす端面2であれば、例えばガラス板1又はガラス板1を要素とする製品(液晶ディスプレイなど)の各製造工程時や工程間搬送時に位置決めピン6などの位置決め部材がガラス板1の端面2に接触する場合に、端面2が有する微小うねり3の山部4が主に接触する。このため、ガラス板1の端面2と位置決め部材との接触面積を減らすことができ、ガラス粉の発生を抑制することが可能となる。 As described above, in the present invention, attention is paid to the arithmetic mean swell Wa of the end face 2, and the end face 2 of the glass plate 1 is brought into rotational contact with the grindstones 11 and 12 so that the value of the arithmetic mean swell Wa is 2.7 μm or more. Predetermined end face processing (grinding processing, polishing processing) was performed. With the end face 2 having such a form, for example, the positioning member such as the positioning pin 6 is a glass plate during each manufacturing process or during inter-process transportation of a glass plate 1 or a product (liquid crystal display or the like) having the glass plate 1 as an element. When it comes into contact with the end face 2 of 1, the mountain portion 4 of the minute undulation 3 of the end face 2 mainly comes into contact. Therefore, the contact area between the end surface 2 of the glass plate 1 and the positioning member can be reduced, and the generation of glass powder can be suppressed.

また、位置決めピン6との具体的な接触態様を考慮して、端面2の微小うねり3を数式1の関係を満たす形状にすることで、位置決めピン6が微小うねり3の谷部5と接触する事態を可及的に防止できる。従って、ガラス粉の発生をより効果的に抑制することが可能となる。 Further, in consideration of a specific contact mode with the positioning pin 6, the minute waviness 3 of the end face 2 is formed into a shape satisfying the relationship of the mathematical formula 1, so that the positioning pin 6 comes into contact with the valley portion 5 of the minute waviness 3. The situation can be prevented as much as possible. Therefore, it is possible to more effectively suppress the generation of glass powder.

ガラス板1の端面2と位置決め部材との接触面積をさらに減らす観点から、端面2の算術平均うねりWaは、3.0μm以上であることが好ましい。同様の観点から、端面2の平均高さWcは、5.0μm以上であることが好ましく、15μm以上であることがより好ましい。また、端面2の平均長さWsmは、2000μm以上であることが好ましく、2500μm以上であることがより好ましい。 From the viewpoint of further reducing the contact area between the end face 2 of the glass plate 1 and the positioning member, the arithmetic mean waviness Wa of the end face 2 is preferably 3.0 μm or more. From the same viewpoint, the average height Wc of the end face 2 is preferably 5.0 μm or more, and more preferably 15 μm or more. The average length Wsm of the end face 2 is preferably 2000 μm or more, and more preferably 2500 μm or more.

一方、ガラス板1の端面2と位置決め部材との接触面積が減りすぎると、端面2が有する微小うねり3の山部4に過大な応力が発生し、ガラス板1が傷つくおそれがある。このため、端面2の算術平均うねりWaは4.0μm以下であることが好ましい。また、端面2の平均高さWcは、20μm以下であることが好ましい。端面2の平均長さWsmは、6000μm以下であることが好ましい。 On the other hand, if the contact area between the end surface 2 of the glass plate 1 and the positioning member is too small, excessive stress is generated in the mountain portion 4 of the minute waviness 3 of the end surface 2, and the glass plate 1 may be damaged. Therefore, the arithmetic mean waviness Wa of the end face 2 is preferably 4.0 μm or less. The average height Wc of the end face 2 is preferably 20 μm or less. The average length Wsm of the end face 2 is preferably 6000 μm or less.

本発明において、端面2の算術平均うねりWa、平均高さWc及び平均長さWsmは、JIS B 0601:2013に準拠して測定するものとする。また、算術平均うねりWa、平均高さWc及び平均長さWsmの測定では、ガラス板の端面について、ガラス板の一辺に沿って等間隔の10箇所で測定を行う。算術平均うねりWaは、10箇所の測定結果の平均値を用いるものとし、平均高さWc及び平均長さWsmは、10箇所の測定結果の最小値を用いるものとする。 In the present invention, the arithmetic mean waviness Wa, the average height Wc, and the average length Wsm of the end face 2 shall be measured in accordance with JIS B 0601: 2013. Further, in the measurement of the arithmetic mean swell Wa, the average height Wc, and the average length Wsm, the end faces of the glass plate are measured at 10 points at equal intervals along one side of the glass plate. For the arithmetic mean swell Wa, the average value of the measurement results at 10 points shall be used, and for the average height Wc and the average length Wsm, the minimum value of the measurement results at 10 points shall be used.

また、本発明において、微小うねりにおける一周期Aは、上述の方法で測定した平均長さWsmを用いるものとし、山部と谷部との高低差Bは、上述の方法で測定した平均高さWcを用いるものとする。 Further, in the present invention, the average length Wsm measured by the above method is used for one cycle A in the minute swell, and the height difference B between the peak and the valley is the average height measured by the above method. Wc shall be used.

以上、本発明の一実施形態を説明したが、もちろん本発明に係るガラス板及びその製造方法はこの形態に限定されることなく、本発明の範囲内で種々の形態をとることが可能である。 Although one embodiment of the present invention has been described above, of course, the glass plate and the method for producing the same according to the present invention are not limited to this form, and various forms can be taken within the scope of the present invention. ..

例えば、上記実施形態では、動バランスが所定の値以上、例えば60g・mm以上となる砥石11(12)と砥石取付け用フランジ20とのサブアセンブリ25を使用して、図1及び図2に示す端面加工を施すことで、端面2の算術平均うねりWaが2.7μm以上となるガラス板1を得た場合を例示したが、もちろん、本発明に係る端面加工方法はこれには限られない。例えば動バランスの調整以外の手段で砥石11,12に所定の振動を加えた状態で上述した端面加工を施すことによっても、端面2の算術平均うねりWaが2.7μm以上となるガラス板1を得ることができる。あるいは、ガラス板1に所定の振動を加えた状態で上述した端面加工を施すことによっても、端面2の算術平均うねりWaが2.7μm以上となるガラス板1を得ることができる。 For example, in the above embodiment, the subassembly 25 of the grindstone 11 (12) and the grindstone mounting flange 20 having a dynamic balance of a predetermined value or more, for example, 60 g · mm or more is used, and is shown in FIGS. 1 and 2. An example is illustrated in which a glass plate 1 having an arithmetic mean waviness Wa of the end face 2 of 2.7 μm or more is obtained by performing the end face processing, but of course, the end face processing method according to the present invention is not limited to this. For example, by performing the above-mentioned end face processing on the grindstones 11 and 12 by means other than adjusting the dynamic balance, the glass plate 1 having an arithmetic mean waviness Wa of the end face 2 of 2.7 μm or more can be obtained. Obtainable. Alternatively, by performing the above-mentioned end face processing in a state where the glass plate 1 is subjected to a predetermined vibration, the glass plate 1 having an arithmetic mean waviness Wa of the end face 2 of 2.7 μm or more can be obtained.

また、上記実施形態では、2つで1組の砥石11(12)を、ガラス板1を挟んで対向する位置に配置するとともに、粒度の異なる二種類(2組)の砥石11,12を搬送方向に並べて配置する場合を例示したが、もちろんこれ以外の配置態様をとることも可能である。例えば研削用の砥石11及び研磨用の砥石12を、それぞれ二組又は三組以上配置することも可能である。また、端面加工後の端面2について形状を含む所要の品質が確保され得る限りにおいて、例えば形状一種類の砥石11(12)を、一組又は複数組配置することも可能である。 Further, in the above embodiment, two sets of grindstones 11 (12) are arranged at positions facing each other across the glass plate 1, and two types (two sets) of grindstones 11 and 12 having different particle sizes are conveyed. Although the case of arranging them side by side in the direction has been illustrated, it is of course possible to take other arrangement modes. For example, it is possible to arrange two or three or more sets of the grindstone 11 for grinding and the grindstone 12 for polishing, respectively. Further, as long as the required quality including the shape can be ensured for the end face 2 after the end face processing, for example, one set or a plurality of sets of grindstones 11 (12) having one type of shape can be arranged.

また、以上の説明では、砥石11(12)の回転接触により端面2に所定の端面加工を施す場合に本発明を適用する場合を例示したが、本発明に係る端面加工方法はこれには限定されない。回転している加工具をガラス板1の端面2に接触させつつ端面2に沿って相対移動させていくことにより、端面2に所定の加工を施す限りにおいて、任意の端面加工方法を採用することが可能である。 Further, in the above description, the case where the present invention is applied when the end face 2 is subjected to the predetermined end face processing by the rotational contact of the grindstone 11 (12) has been illustrated, but the end face processing method according to the present invention is limited to this. Not done. By moving the rotating processing tool relative to the end face 2 while contacting the end face 2 of the glass plate 1, an arbitrary end face machining method can be adopted as long as the end face 2 is subjected to a predetermined machining. Is possible.

また、さらにいえば、本発明に係るガラス板は上記端面加工方法によるものには限定されない。端面2の算術平均うねりWaが2.7μm以上となる限りにおいて、任意の端面加工方法を適用して、本発明に係るガラス板を得ることが可能である。 Furthermore, further, the glass plate according to the present invention is not limited to the one by the above-mentioned end face processing method. As long as the arithmetic mean waviness Wa of the end face 2 is 2.7 μm or more, any end face processing method can be applied to obtain the glass plate according to the present invention.

1 ガラス板
2,2’ 端面
3,3’ 微小うねり
4,4’ 山部
5,5’ 谷部
6 ピン
10 端面加工装置
11,12 砥石
13 モータ
14 スピンドル
20 砥石取付け用フランジ
21 嵌合穴
22 嵌合凸部
23 嵌合凹部
24 先端部
25 サブアセンブリ
X 送り方向
Y 回転軸
1 Glass plate 2, 2'End face 3, 3'Micro waviness 4, 4'Mountain part 5, 5'Tani part 6 Pin 10 End face processing device 11, 12 Grindstone 13 Motor 14 Spindle 20 Grindstone mounting flange 21 Fitting hole 22 Fitting convex part 23 Fitting concave part 24 Tip part 25 Subassembly X Feeding direction Y Rotating shaft

Claims (6)

端面に対して所定の加工が施された状態にあるガラス板であって、
前記端面の算術平均うねりWaが2.7μm以上でかつ4.0μm以下である、ガラス板。
A glass plate in which the end face has been subjected to a predetermined process.
A glass plate having an arithmetic mean waviness Wa of the end face of 2.7 μm or more and 4.0 μm or less.
前記端面の平均高さWcが5.0μm以上である請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the average height Wc of the end face is 5.0 μm or more. 前記端面の平均長さWsmが2000μm以上である請求項1又は2に記載のガラス板。 The glass plate according to claim 1 or 2, wherein the average length Wsm of the end face is 2000 μm or more. 前記端面のスキューネスWskが0より大きい請求項1〜3の何れか一項に記載のガラス板。 The glass plate according to any one of claims 1 to 3, wherein the skewness Wsk of the end face is larger than 0. 前記端面に現れる微小うねりにおける一周期をA[mm]、山部と谷部との高低差をB[mm]とした場合、下記数式1の関係を満たす請求項1〜4の何れか一項に記載のガラス板。
Figure 0006913295
Any one of claims 1 to 4 that satisfies the relationship of the following formula 1 when one cycle of the minute swell appearing on the end face is A [mm] and the height difference between the peak and the valley is B [mm]. The glass plate described in.
Figure 0006913295
回転している加工具をガラス板の端面に接触させつつ前記端面に沿って相対移動させていくことにより、前記端面に所定の加工を施す端面加工工程を備えるガラス板の製造方法であって、
前記端面加工工程において、前記端面の算術平均うねりWaが2.7μm以上でかつ4.0μm以下となるように、前記端面に対して前記加工具による前記所定の加工を施す、ガラス板の製造方法。
A method for manufacturing a glass plate, which comprises an end face processing step of performing a predetermined process on the end face by moving a rotating processing tool relative to the end face while making contact with the end face of the glass plate.
A method for manufacturing a glass plate, in which the end face is subjected to the predetermined processing by the processing tool so that the arithmetic mean waviness Wa of the end face is 2.7 μm or more and 4.0 μm or less in the end face processing step. ..
JP2016253145A 2016-12-27 2016-12-27 Glass plate and manufacturing method of glass plate Active JP6913295B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016253145A JP6913295B2 (en) 2016-12-27 2016-12-27 Glass plate and manufacturing method of glass plate
CN201780077340.6A CN110088058B (en) 2016-12-27 2017-11-30 Glass plate and method for manufacturing glass plate
PCT/JP2017/042971 WO2018123416A1 (en) 2016-12-27 2017-11-30 Glass plate, and method for producing glass plate
KR1020197020007A KR102403487B1 (en) 2016-12-27 2017-11-30 A glass plate and the manufacturing method of a glass plate
TW106143088A TWI735719B (en) 2016-12-27 2017-12-08 Glass plate and manufacturing method of glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253145A JP6913295B2 (en) 2016-12-27 2016-12-27 Glass plate and manufacturing method of glass plate

Publications (2)

Publication Number Publication Date
JP2018104238A JP2018104238A (en) 2018-07-05
JP6913295B2 true JP6913295B2 (en) 2021-08-04

Family

ID=62707385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253145A Active JP6913295B2 (en) 2016-12-27 2016-12-27 Glass plate and manufacturing method of glass plate

Country Status (5)

Country Link
JP (1) JP6913295B2 (en)
KR (1) KR102403487B1 (en)
CN (1) CN110088058B (en)
TW (1) TWI735719B (en)
WO (1) WO2018123416A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368248B (en) * 2018-07-04 2022-07-08 Agc株式会社 Glass plate, glass plate with antireflection layer, and method for producing glass plate
US11307458B2 (en) * 2020-09-23 2022-04-19 Luca HUNG Display device
CN114253022B (en) * 2020-09-23 2023-07-11 群创光电股份有限公司 Display device
JP2022115544A (en) * 2021-01-28 2022-08-09 日本電気硝子株式会社 Method for manufacturing glass film

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001003A (en) * 1998-05-11 1999-12-14 Park; Kyung Wave beveling machine
CN101356040B (en) * 2006-09-19 2012-05-30 Hoya株式会社 Process for producing glass substrate for magnetic disk and process for manufacturing magnetic disk
JP2009035461A (en) * 2007-08-03 2009-02-19 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic disk
JP4994213B2 (en) * 2007-12-21 2012-08-08 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
JP5365137B2 (en) * 2008-10-29 2013-12-11 東ソー株式会社 Photomask substrate and manufacturing method thereof
WO2011162163A1 (en) * 2010-06-21 2011-12-29 旭硝子株式会社 Glass substrate and method for manufacturing glass substrate
WO2012005019A1 (en) * 2010-07-08 2012-01-12 旭硝子株式会社 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate
CN102441828A (en) * 2010-09-30 2012-05-09 旭硝子株式会社 End edge grinding method for glass substrates
KR20120114700A (en) * 2011-04-07 2012-10-17 (주)미래컴퍼니 Apparatus and method for grinding edge of glass panel
US9387564B2 (en) 2012-06-13 2016-07-12 Nippon Electric Glass Co., Ltd. Glass sheet processing apparatus and glass sheet producing method
US9573843B2 (en) * 2013-08-05 2017-02-21 Corning Incorporated Polymer edge-covered glass articles and methods for making and using same
JP6484468B2 (en) * 2014-06-03 2019-03-13 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus
JP6383982B2 (en) * 2015-01-20 2018-09-05 Agc株式会社 Mask blank glass substrate and manufacturing method thereof
KR20180016374A (en) * 2015-06-09 2018-02-14 아사히 가라스 가부시키가이샤 Glass plate and manufacturing method of glass plate
JP6536806B2 (en) * 2015-07-31 2019-07-03 日本電気硝子株式会社 Flat glass processing equipment
JP2017218338A (en) * 2016-06-06 2017-12-14 株式会社ディスコ Glass substrate

Also Published As

Publication number Publication date
CN110088058A (en) 2019-08-02
CN110088058B (en) 2021-12-10
TWI735719B (en) 2021-08-11
KR102403487B1 (en) 2022-05-30
JP2018104238A (en) 2018-07-05
KR20190102208A (en) 2019-09-03
WO2018123416A1 (en) 2018-07-05
TW201831267A (en) 2018-09-01

Similar Documents

Publication Publication Date Title
JP6913295B2 (en) Glass plate and manufacturing method of glass plate
JP5719540B2 (en) Processing method for edge of glass plate
US8454852B2 (en) Chamfering apparatus for silicon wafer, method for producing silicon wafer, and etched silicon wafer
JP5817722B2 (en) Glass substrate and method for manufacturing glass substrate
JP4915146B2 (en) Wafer manufacturing method
JP6252098B2 (en) Square mold substrate
TW200809018A (en) Semiconductor wafers with highly precise edge profile and method for producing them
JP5998574B2 (en) Manufacturing method of scribing wheel
JP6280355B2 (en) Manufacturing method of magnetic disk substrate and carrier for polishing treatment
JP5858623B2 (en) Mold substrate
TW201600229A (en) Scribing wheel and method of manufacturing same
JP6948988B2 (en) Photomask substrate and its manufacturing method
JP2003231044A (en) Chamfering method and chamfering device for information recording medium glass substrate
US20200270174A1 (en) Method for manufacturing disk-shaped glass substrate, method for manufacturing thin glass substrate, method for manufacturing light-guiding plate, and disk-shaped glass substrate
JP2018103320A (en) End surface processing method for glass plate, manufacturing method and glass plate
WO2012090655A1 (en) Method for producing glass substrate
WO2023171824A1 (en) Discoidal glass substrate manufacturing method, annular glass substrate manufacturing method, magnetic disk-use glass substrate manufacturing method, discoidal glass substrate, annular glass substrate, and magnetic disk-use glass substrate
WO2022181715A1 (en) Magnetic disk substrate, magnetic disk, annular-shaped substrate, and method for manufacturing magnetic disk substrate
JP7397844B2 (en) Method for manufacturing a disc-shaped glass substrate, method for manufacturing a thin glass substrate, method for manufacturing a light guide plate, and disc-shaped glass substrate
US20240135970A1 (en) Magnetic disk substrate, magnetic disk, annular-shaped substrate, and method for manufacturing magnetic disk substrate
JP2013004114A (en) Support tool and manufacturing method for glass substrate for magnetic recording medium
JP2014180709A (en) Manufacturing method of grindstone, and glass substrate for magnetic disk
JP2019022994A (en) Scribing wheel and method for producing the same
JPH10319212A (en) Optical element and method for aligning optical element and production
JP2014161989A (en) Rotary grind stone and method for production of glass substrate for magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210624

R150 Certificate of patent or registration of utility model

Ref document number: 6913295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150