WO2012090655A1 - Method for producing glass substrate - Google Patents

Method for producing glass substrate Download PDF

Info

Publication number
WO2012090655A1
WO2012090655A1 PCT/JP2011/078156 JP2011078156W WO2012090655A1 WO 2012090655 A1 WO2012090655 A1 WO 2012090655A1 JP 2011078156 W JP2011078156 W JP 2011078156W WO 2012090655 A1 WO2012090655 A1 WO 2012090655A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass substrate
openings
polishing surface
average
Prior art date
Application number
PCT/JP2011/078156
Other languages
French (fr)
Japanese (ja)
Inventor
河合 秀樹
達久 加藤
遠藤 毅
小松 隆史
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012550795A priority Critical patent/JPWO2012090655A1/en
Publication of WO2012090655A1 publication Critical patent/WO2012090655A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a method for manufacturing a glass substrate, and more particularly to a method for manufacturing a glass substrate used for manufacturing an information recording medium.
  • Information recording devices such as HDD (Hard Disk Drive) incorporate a disk-shaped information recording medium such as a magnetic disk or a magneto-optical disk.
  • the information recording medium is manufactured from a glass substrate for information recording medium (hereinafter also referred to as a glass substrate).
  • a magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism is formed on the main surface of the glass substrate.
  • the recording layer is magnetized by the magnetic head, predetermined information is recorded on an information recording medium such as a magnetic disk.
  • the polishing process is performed on the main surface of the glass substrate using a polishing pad before the chemical strengthening process is performed on the main surface of the glass substrate.
  • a polishing pad for the main surface of the glass substrate using a polishing pad before the chemical strengthening process is performed on the main surface of the glass substrate.
  • cerium oxide is supplied as a slurry (polishing liquid) to the main surface of the glass substrate.
  • the main surface of the glass substrate is relatively rough polished using a hard urethane pad or the like.
  • the parallelism, flatness, thickness, etc. of the main surface of the glass substrate are adjusted.
  • colloidal silica is supplied as a slurry to the main surface of the glass substrate.
  • the main surface of the glass substrate is polished relatively accurately using a soft foamed urethane pad or the like.
  • a polishing pad 20 for polishing both main surfaces of a glass substrate includes a polishing layer 22 fixed on a predetermined surface plate (not shown).
  • the polishing layer 22 is made of, for example, a foamed resin.
  • the polishing layer 22 has a polishing surface 24 and a plurality of foam pores 26. An opening 27 is exposed from the upper end of the foaming pore 26 toward the polishing surface 24.
  • the polishing surface 24 of the polishing pad 20 is pressed against the main surface of the glass substrate.
  • the main surface of the glass substrate is polished by the polishing surface 24 while colloidal silica or the like is supplied between the glass substrate and the polishing surface 24.
  • colloidal silica or the like is supplied between the glass substrate and the polishing surface 24.
  • an information recording medium such as a magnetic disk rotates at high speed inside an information recording apparatus such as an HDD.
  • a magnetic head flies over a magnetic recording layer formed on the surface of the information recording medium.
  • the distance (DFH: Dynamic Flying Height) between the magnetic head and the information recording medium (magnetic thin film layer) tends to decrease.
  • head crush phenomenon In order to suppress contact between the magnetic thin film layer formed on the main surface of the glass substrate and the magnetic head (so-called head crush phenomenon), the demand for smoothness and flatness of the main surface of the glass substrate is increasing. .
  • the polishing surface 24 of the polishing pad 20 is gradually worn down by being repeatedly used to polish the main surface of the glass substrate.
  • the position of the polishing surface 24 gradually recedes (towards the upper side in FIG. 14).
  • the polishing surface 24 is dressed each time it is used for polishing a predetermined number of glass substrates. For example, after the polishing surface 24 is worn down and the polishing surface 24 reaches (retracts) slightly from the state shown in FIG. 14 to the position indicated by the dotted line R1, the dressing process is performed on the polishing surface 24. By the dressing process, the polished surface 24 exhibits a flat surface along the dotted line R1.
  • the polished surface 24 is regenerated to a good surface roughness and is again used for polishing the glass substrate. After the polishing surface 24 is worn down and the polishing surface 24 reaches a position just before the position indicated by the dotted line R2, the dressing process is performed on the polishing surface 24 again. By the dressing process, the polishing surface 24 exhibits a flat surface along the dotted line R2. Thereafter, the polishing surface 24 is again subjected to polishing of the glass substrate.
  • the polishing surface 24 After the polishing surface 24 is worn down and the polishing surface 24 reaches a position just before the position indicated by the dotted line R3, the polishing surface 24 is dressed again.
  • the polishing surface 24 presents a flat surface along the dotted line R3, and the polishing surface 24 is again used for polishing the glass substrate.
  • the surface roughness of the polishing surface 24 is maintained in a good state.
  • the interval between the dotted line R1 and the dotted line R2 and the interval between the dotted line R2 and the dotted line R3 are illustrated widely, but in actuality, these intervals are several ⁇ m.
  • Patent Document 2 discloses an invention relating to a polishing surface in an initial state (at the start of use of the polishing pad), but does not mention changes in the state of the polishing surface. Absent. Japanese Patent Laying-Open No. 2010-082721 (Patent Document 1) does not mention a change in the opening diameter. Japanese Patent Laying-Open No. 2009-101504 (Patent Document 3) describes the effect of changing the aperture diameter, but does not refer to the minute waviness of the substrate. In the conventional method for manufacturing a glass substrate, the area of the opening of the foam pore, the area occupation ratio of the opening with respect to the polished surface, or the like greatly varies depending on the state change of the polished surface. Irregularities such as micro swells occurred on the main surface of the glass substrate, and the quality of the glass substrate varied.
  • the present invention has been made in view of the above circumstances, and provides a method for manufacturing a glass substrate capable of reducing quality variations such as a microwaviness shape on the main surface of the glass substrate for information recording media. For the purpose.
  • the manufacturing method of the glass substrate based on this invention uses the polishing pad in which the several opening part was formed in the grinding
  • a polishing step of performing a polishing process on each of the plurality of glass substrates and dressing the polishing surface every time the polishing surface is used a predetermined number of times, and at the start of use of the polishing surface Based on the area of each of the plurality of openings at the start of use of the polishing surface, a first average area of the plurality of openings at the start of use of the polishing surface is defined, and the dress on the polishing surface
  • Each time processing is performed, the second of the plurality of openings each time the dressing is performed is based on the area of each of the plurality of openings when the dressing is performed.
  • An average area is defined, and based on the first average area and the second average area through the polishing process, an average value of the first average area and the second average area through the polishing process is defined,
  • the first average area and the second average area through the polishing step are within a range of 64% to 144% with respect to the average value of the first average area and the second average area through the polishing step. It is.
  • the polishing pad prepared in the preparation step includes a resin layer constituting the polishing surface, and in the preparation step, a plurality of the above-described molds are used by using a molding die having a plurality of uneven patterns.
  • the polishing pad having the plurality of openings formed in the polishing surface is prepared.
  • the polishing pad prepared in the preparation step includes a resin layer constituting the polishing surface, and in the preparation step, a portion of the resin layer corresponding to the opening is subjected to thermal processing.
  • the polishing pad having the plurality of openings formed in the polishing surface is prepared.
  • the polishing pad prepared in the preparation step includes a resin layer constituting the polishing surface, and in the preparation step, machining is performed on a portion of the resin layer corresponding to the opening.
  • the polishing pad having the plurality of openings formed in the polishing surface is prepared.
  • an average between adjacent openings among the plurality of openings formed in the polishing surface is defined, and the average interval value is in the range of 5 ⁇ m to 100 ⁇ m.
  • the total area of the plurality of openings formed in the polishing surface is defined at the start of use of the polishing surface and each time the dressing is performed on the polishing surface, and the use of the polishing surface
  • the total area at the start and every time the dressing is performed on the polished surface is in the range of 20% to 60% with respect to the area of the polished surface.
  • the average value of the first average area and the second average area through the polishing step is not less than 0.25 ⁇ ⁇ 10 ⁇ 12 (m 2 ) and not more than 1.00 ⁇ ⁇ 10 ⁇ 8 (m 2 ). Within range.
  • the present invention it is possible to obtain a glass substrate manufacturing method capable of reducing quality variations such as a fine waviness shape on the main surface of a glass substrate for an information recording medium.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a bottom view of the polishing pad for demonstrating the space
  • FIG. 1 is a perspective view showing a glass substrate 1 used for a magnetic disk 10 (see FIG. 2).
  • FIG. 2 is a perspective view showing a magnetic disk 10 as an information recording medium provided with the glass substrate 1.
  • a glass substrate 1 (glass substrate for information recording medium) used for a magnetic disk 10 has an annular disk shape with a hole 1H formed in the center.
  • the glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D.
  • a chemical strengthening layer (not shown) is formed on the front main surface 1A, the back main surface 1B, the inner peripheral end surface 1C, and the outer peripheral end surface 1D.
  • the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
  • the thickness of the glass substrate is, for example, 0.30 to 2.2 mm from the viewpoint of preventing breakage.
  • the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate.
  • the magnetic disk 10 is configured by forming a magnetic thin film layer 2 on the front main surface 1A of the glass substrate 1 described above.
  • the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
  • the surface of the magnetic thin film layer 2 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • an underlayer or a protective layer may be provided.
  • the underlayer in the magnetic disk 10 is selected according to the magnetic film.
  • the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
  • Another protective layer may be formed on the protective layer or instead of the protective layer.
  • tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
  • Glass substrate manufacturing method Next, the manufacturing method of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG.
  • the manufacturing method of the glass substrate in the present embodiment includes a rough lapping step (step S10), a shape processing step (step S20), a roughening step (step S30), a fine lapping step (step S40), and an end surface polishing step (step). S50), a main surface polishing step (step S60), and a chemical strengthening step (step S70).
  • a magnetic thin film forming step (step S80) is performed on the glass substrate (corresponding to the glass substrate 1 in FIG. 1) obtained through the chemical strengthening treatment step (step S70). can get.
  • a glass substrate having a diameter of 66 mm ⁇ and a thickness of 1.2 mm is prepared.
  • the glass substrate is manufactured by directly pressing a molten glass using an upper mold, a lower mold, and a copper mold.
  • the material of the glass substrate is, for example, aluminosilicate glass.
  • the glass substrate may be manufactured by cutting out from a sheet-like glass formed by a downdraw method or a float method using a grinding wheel.
  • Rough lapping is applied to the prepared glass substrate.
  • This rough lapping process improves the dimensional accuracy and shape accuracy of the glass substrate.
  • This rough lapping process is performed using a double-sided lapping apparatus.
  • the abrasive used is, for example, alumina having a particle size of # 400 (particle size of about 40 ⁇ m to 60 ⁇ m).
  • the load of the upper surface plate is set to about 100 kg with respect to the glass substrate accommodated in the carrier of the double-side wrapping apparatus.
  • both main surfaces of the glass substrate are finished with a surface accuracy of 0 ⁇ m to 1 ⁇ m and a surface roughness Rmax of about 6 ⁇ m.
  • the outer peripheral end surface and the inner peripheral end surface of the glass substrate are ground.
  • the outer diameter of the glass substrate is 65 mm
  • the inner diameter (the diameter of the hole 1H in the central portion) is 20 mm.
  • the surface roughness Rmax of the outer peripheral end face and the inner peripheral end face of the glass substrate is finished to about 2 ⁇ m, for example. At this time, chamfering may be performed on the outer peripheral end surface and the inner peripheral end surface of the glass substrate.
  • a flat polishing machine is used.
  • a plane polishing machine mechanically polishes a glass substrate using loose abrasive grains.
  • the surface roughness set in the roughening step may be determined in relation to the particle size of the fixed abrasive used in the fine lapping step described below.
  • a wrapping apparatus is used.
  • the lapping apparatus grinds both main surfaces of the roughened glass substrate using a fixed abrasive polishing pad such as a diamond sheet. Both main surfaces of the glass substrate are finished to have a surface roughness Ra of 0.1 ⁇ m or less and a flatness of 7 ⁇ m or less.
  • step S30 Since both main surfaces of the glass substrate are roughened in advance in the above-described roughening step (step S30), the fine fixed abrasive grains are caught by both main surfaces of the glass substrate through the fine lapping step. Formed. Generation
  • a brush is used. With the glass substrate rotated, the outer peripheral end surface and the inner peripheral end surface of the glass substrate are polished with a brush. The glass substrate is finished to have a surface roughness Rmax of about 0.4 ⁇ m and a surface roughness Ra of about 0.1 ⁇ m on the outer peripheral end surface and the inner peripheral end surface. After the end face polishing process is completed, the glass substrate is washed with water.
  • the main surface polishing step (step S60) includes a rough polishing step (step S61) and a fine polishing step (step S62).
  • a rough polishing process step S61 is performed.
  • the scratches and distortion remaining in the fine lapping process step S40
  • a double-side polishing apparatus using a suede pad polishes both main surfaces of the glass substrate.
  • cerium oxide having CeO 2 / TREO of 99 mass% or more and a total mass of the alkaline earth metal content of 10 mass ppm or less is used as the slurry (abrasive).
  • step S62 a precision polishing step
  • both main surfaces of the glass substrate are polished with high accuracy using a soft polishing pad 20A described later.
  • a soft polishing pad 20A As the slurry (polishing agent), silica abrasive grains having a particle diameter smaller than that of cerium oxide used in the above-described rough polishing step (step S61) are used. Details of the polishing pad 20A will be described later with reference to FIGS.
  • step S70 the chemical strengthening process is performed on the glass substrate on which the main surface polishing process (step S60) is completed.
  • Ions that are present on the surface (surface layer) of the glass substrate are ions having a larger ion radius (Na + and K + ) Is ion exchanged.
  • Compressive stress is generated on the surface of the glass substrate (from both main surfaces of the glass substrate to a depth of about 5 ⁇ m, for example) by the ion exchange.
  • the surface of the glass substrate is strengthened by the generation of the compressive stress, and the rigidity as the glass substrate is improved.
  • the manufacturing method of the glass substrate in the present embodiment is configured as described above.
  • the magnetic thin film layer is formed on both main surfaces (or one of the main surfaces) of the glass substrate (corresponding to the glass substrate 1 shown in FIG. 1) on which the chemical strengthening process has been completed. It is formed.
  • the magnetic thin film layer includes an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and a lubrication made of an F system. It is formed by sequentially depositing layers. By forming the magnetic thin film layer, a perpendicular magnetic recording disk corresponding to the magnetic disk 10 shown in FIG. 2 can be obtained.
  • the magnetic disk in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer.
  • the magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
  • FIG. 4 is a bottom view showing the polishing pad 20A (the polishing surface 24 thereof).
  • 5 is a cross-sectional view taken along line VV in FIG.
  • the polishing pad 20A is used for polishing both main surfaces of the glass substrate in the above-described precision polishing step (step S62).
  • the polishing pad 20A includes a polishing layer 22 fixed on a predetermined surface plate (not shown).
  • the polishing layer 22 is made of, for example, a resin.
  • a plurality of openings 27 are formed in the polishing surface 24.
  • the polishing surface 24 of the polishing pad 20A is used repeatedly in order to perform the polishing process on each of the plurality of glass substrates.
  • the polishing surface 24 gradually wears down, and the position of the polishing surface 24 gradually recedes (toward the upper side in FIG. 5). Each time the polishing surface 24 is used a predetermined number of times, the polishing surface 24 is dressed.
  • the dressing process is performed on the polishing surface 24.
  • the polished surface 24 exhibits a flat surface along the dotted line R1.
  • the polished surface 24 is regenerated to have a good surface roughness and is again used for polishing the glass substrate.
  • the polishing surface 24 is scraped off by, for example, about several ⁇ m by one dressing process.
  • polishing surface 24 reaches slightly before the position indicated by the dotted line R2, the polishing surface 24 is dressed.
  • the polishing surface 24 presents a flat surface along the dotted line R2, and the polishing surface 24 is again used for polishing the glass substrate.
  • the polishing surface 24 reaches a position just before the position indicated by the dotted line R3, the polishing surface 24 is dressed.
  • the polishing surface 24 presents a flat surface along the dotted line R3, and the polishing surface 24 is again used for polishing the glass substrate.
  • the surface roughness of the polishing surface 24 is maintained in a good state.
  • this dressing is repeated, for example, about 100 times while the polishing surface 24 is used for polishing the glass substrate.
  • the interval between the dotted line R1 and the dotted line R2 and the interval between the dotted line R2 and the dotted line R3 are illustrated widely, but in actuality, these intervals are several ⁇ m.
  • the polishing pad 20 ⁇ / b> A at the start of use of the polishing surface 24 starts using the polishing surface 24 based on the area of each of the plurality of openings 27 at the start of use of the polishing surface 24. It has an average area A 1 (first average area) of the plurality of openings 27 at the time.
  • the average and the area A 1 a value obtained by averaging all the area of the opening 27 in the polishing surface 24 at the start of use time (the state shown in FIG. 5) of the polishing surface 24.
  • the polishing pad 20A in this case is based on the area of each of the plurality of openings 27 in the polishing surface 24 along the dotted line R1, and the average area B 1 (the plurality of openings 27 in the polishing surface 24 along the dotted line R1). Second average area). The average and the area B 1, a value obtained by averaging all the area of the opening 27 in the polishing surface 24 along the dotted line R1.
  • the polishing surface 24 exhibits a flat surface along the dotted line R2 by dressing.
  • the polishing pad 20A is based on the area of each of the plurality of openings 27 in the polishing surface 24 along the dotted line R2, and the average area B 2 of the plurality of openings 27 in the polishing surface 24 along the dotted line R2 ( Other second average area).
  • the average and the area B 2 a value obtained by averaging all the area of the opening 27 in the polishing surface 24 along the dotted line R2.
  • the polishing surface 24 exhibits a flat surface along the dotted line R3 by dressing.
  • the polishing pad 20A is based on the area of each of the plurality of openings 27 in the polishing surface 24 along the dotted line R3, and the average area B 3 of the plurality of openings 27 in the polishing surface 24 along the dotted line R3 ( Furthermore, it has another second average area).
  • the average area B 3 a value obtained by averaging all the area of the opening 27 in the polishing surface 24 along the dotted line R3.
  • the polishing pad 20A is used (polishing step is performed), every time dressing is performed on the polishing surface 24, an average area (like the above average areas B 1 , B 2 , B 3 ) The second average area) is obtained sequentially. Based on the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process, the average value D is calculated by averaging these. The average value D is a value obtained by averaging the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 .
  • Each value is in the range of 64% to 144% with respect to the averaged value (average value D).
  • the plurality of openings 27 formed in the polishing pad 20A used in the glass substrate manufacturing method in the present embodiment are formed so as to satisfy the conditions.
  • each of the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process is averaged with respect to the average value (average value D). It is good that it is in the range of 72% or more and 132% or less. More preferably, each of the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process is compared with the average value (average value D). It is good to be in the range of 81% or more and 121% or less.
  • the openings 27 are formed.
  • the elasticity of the polishing layer 22 in the vertical direction changes greatly each time dressing is performed on the polishing surface 24.
  • irregularities of the shape such as micro-waviness occur on the main surface of the glass substrate to be polished, and the quality of the glass substrate after the precision polishing process varies. Arise.
  • the polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate become substantially uniform at the start of use and whenever dressing is performed. Even if the polishing surface 24 of the polishing pad 20A is repeatedly subjected to dressing processing, irregularities such as micro swell are hardly generated on the main surface of the glass substrate to be polished, and the precision polishing step (step S62) is performed. Variations in the quality of the passed glass substrate are also suppressed.
  • the opening 27 When the opening 27 is circular, the above condition can be converted into a radius. That is, the average value D calculated from the average area is converted into a radius to obtain the average value r. With respect to this average value r, the plurality of openings 27 are arranged such that the average radius of the plurality of openings 27 at the start of use and every time dressing is performed is in the range of 80% to 120%. It may be formed.
  • the plurality of openings 27 have an average radius within the range of 85% or more and 115% or less at the start of use and every time dressing is performed with respect to the average value r.
  • An opening 27 may be formed. More preferably, with respect to the average value r, the plurality of openings are arranged such that the average radius of the plurality of openings 27 at the start of use and every time dressing is performed is in the range of 90% to 110%. A portion 27 may be formed.
  • the average value D which is an average value of the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process, is 0.25 ⁇ ⁇ 10 ⁇ 12 (m 2 ). It is preferable to be within the range of 1.00 ⁇ ⁇ 10 ⁇ 8 (m 2 ) or less. Preferably, the average value D is in the range of 6.25 ⁇ ⁇ 10 ⁇ 12 (m 2 ) or more and 0.25 ⁇ ⁇ 10 ⁇ 8 (m 2 ) or less. More preferably, the average value D is in the range of 0.25 ⁇ ⁇ 10 ⁇ 10 (m 2 ) to 0.04 ⁇ ⁇ 10 ⁇ 8 (m 2 ).
  • the average value D is less than 0.25 ⁇ ⁇ 10 ⁇ 12 (m 2 )
  • the agglomerated slurry is clogged in the opening 27, and the abrasion of the polishing surface 24 is difficult to be performed in an equilibrium (uniform) manner.
  • the average value D is larger than 1.00 ⁇ ⁇ 10 ⁇ 8 (m 2 )
  • there is a risk that the fine waviness on the surface of the glass substrate to be polished increases.
  • the above area condition can be converted into a diameter. That is, the average value D calculated from the above average area is converted into a diameter to obtain the average value d.
  • the plurality of openings 27 may be formed so that the average value d is in the range of 1 ⁇ m to 200 ⁇ m.
  • a plurality of openings 27 are formed so that the average value d is in the range of 5 ⁇ m to 100 ⁇ m. More preferably, the plurality of openings 27 may be formed so that the average value d is in the range of 10 ⁇ m to 40 ⁇ m.
  • intervals E1, E2, E3,... Defined between adjacent openings 27 (values at the start of use and every dressing)
  • the average value is preferably in the range of 5 ⁇ m to 100 ⁇ m.
  • the intervals E1, E2, E3,... Are the wall thicknesses of the polishing layer 22 positioned between the adjacent openings 27.
  • the “interval between adjacent openings 27” referred to here is the polishing surface 24 (polishing) by a line segment connecting the area centroids 27 ⁇ / b> G in the cross-sectional shape of each opening 27, 27.
  • Layer 22) is the length of the cut (shown by line segments E10, E11, E12 in FIG. 6).
  • the average value (average interval value) is less than 5 ⁇ m, the wall thickness of the polishing layer 22 that forms the opening 27 becomes thin, and the polishing layer 22 that forms the opening 27 easily falls during the precision polishing step. Become.
  • the average value (average interval value) is larger than 100 ⁇ m, the frictional force generated between the polishing surface 24 and the main surface of the glass substrate is increased, and the main surface of the glass substrate is not easily polished.
  • the total area of the plurality of openings 27 in the polishing surface 24 is obtained at the start of use of the polishing surface 24 and each time dressing is performed on the polishing surface 24.
  • the total area is preferably in the range of 20% to 60% with respect to the area of the polishing surface 24 at the start of use of the polishing surface 24 and each time dressing is performed on the polishing surface 24.
  • the area occupancy ratio of the plurality of openings 27 to the polishing surface 24 is in the range of 20% or more and 60% or less. Good.
  • the said area occupation rate is good in the range of 25% or more and 40% or less.
  • the polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate at the start of use and every time dressing is performed are as follows. It becomes almost uniform. Even if the dressing process is repeatedly performed on the polishing pad 20A, irregularities of the shape such as microwaviness hardly occur on the main surface of the glass substrate to be polished, and the glass substrate that has undergone the precision polishing step (step S62) Variations in quality are also suppressed.
  • a polishing pad 20A in which a plurality of openings 27 having substantially the same area are regularly arranged in the polishing surface 24 is prepared.
  • the planar shape of the plurality of openings 27 is a perfect circle.
  • the shape of the plurality of openings 27 may be an isosceles triangle as in the polishing pad 20B.
  • the shape of the plurality of openings 27 is not limited to an isosceles triangle, and may be any shape (such as an ellipse, a polygon, and an array).
  • the shape of the plurality of openings 27 may be non-uniform.
  • the polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate at the start of use and every time dressing is performed are: It becomes almost uniform. As a result, even when the dressing process is repeatedly performed on the polishing pad 20B, irregularities such as microwaviness are hardly generated on the main surface of the glass substrate to be polished, and the precision polishing process (step S62) is performed. Variations in the quality of the glass substrate are also suppressed.
  • the size of the plurality of openings 27 may be different from each other as in the polishing pad 20C. Even if the sizes of the plurality of openings 27 are not uniform, the plurality of openings 27 satisfy the conditions described in the above embodiment, so that at the start of use and every time dressing is performed.
  • the polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate are substantially uniform. As a result, even when the dressing process is repeatedly performed on the polishing pad 20C, irregularities such as micro waviness are hardly generated on the main surface of the glass substrate to be polished, and the precision polishing process (step S62) is performed. Variations in the quality of the glass substrate are also suppressed.
  • FIG. 9 is a bottom view showing the stamper 30 used for manufacturing the polishing pad 20A.
  • FIG. 10 is a cross-sectional view showing how the polishing pad 20A is manufactured using the stamper 30.
  • a stamper 30 molding die
  • the stamper 30 is made of stainless steel, for example.
  • the uneven pattern shape of the plurality of protrusions 37 corresponds to the shape of the plurality of openings 27 formed in the polishing pad 20A.
  • a resin material constituting the polishing layer 22
  • a resin material constituting the polishing layer 22
  • the molten resin is cured by heat removal between the mold 39 and the stamper 30.
  • a polishing pad 20A see FIG. 5 in which a plurality of openings 27 are transferred from a plurality of protrusions 37 of the stamper 30 is manufactured.
  • thermal processing using laser oscillator 40 or the like may be performed on polishing layer 22.
  • the thermal processing electric discharge processing using an electrode having a predetermined electrode shape may be performed.
  • the polishing layer 22 is composed of a resin layer such as urethane.
  • the thermal processing a part of the polishing layer 22 is melted, and a plurality of openings 27 are formed.
  • the shape of the plurality of openings 27 is not limited to a circle as in the above-described polishing pad 20B (see FIG. 7), and can be formed into an arbitrary shape by thermal processing.
  • the size of the plurality of openings 27 is not limited to the same as the above-described polishing pad 20C (see FIG. 8), and can be formed in any size by thermal processing.
  • polishing layer 22 is composed of a resin layer such as urethane.
  • a part of the polishing layer 22 is scraped off, and a plurality of openings 27 are formed.
  • the shape of the plurality of openings 27 is not limited to a circle like the above-described polishing pad 20B (see FIG. 7), and can be formed into an arbitrary shape by machining.
  • the size of the plurality of openings 27 is not limited to the same as the above-described polishing pad 20C (see FIG. 8), and can be formed to an arbitrary size by machining.
  • Examples and Comparative Examples Hereafter, with reference to FIG. 13, the Example performed based on this invention and the comparative example regarding the said Example are each demonstrated.
  • 13 types of polishing pads as Examples 1 to 13 and 1 type of polishing pad as Comparative Example 1 were prepared in order to perform a precise polishing process on a glass substrate.
  • the polishing pad in Comparative Example 1 corresponds to the polishing pad 20 described with reference to FIG. 14 at the beginning.
  • the polishing surface of each polishing pad in Examples 1 to 10, 13 and Comparative Example 1 was a circular one having an outer diameter of 1200 mm ⁇ .
  • the polishing surface of each polishing pad in Examples 11 and 12 was a square type having four sides of 20 mm and 15 mm, respectively.
  • a polishing layer having a thickness in the range of 540 ⁇ m to 650 ⁇ m was used in each of the polishing pads in Examples 1 to 13 and Comparative Example 1, a polishing layer having a thickness in the range of 540 ⁇ m to 650 ⁇ m was used.
  • the depth of the plurality of openings formed in the polished surface is greater than 200 ⁇ m in the direction perpendicular to the polished surface. Note that the outer diameter, the thickness of the polishing layer, and the depth of the opening are not limited to the above values in the present invention.
  • polishing pads in Examples 1 to 13 and Comparative Example 1 precision polishing was performed on the main surface of the glass substrate. At this time, each polishing pad was attached to a general 16B double-side polishing apparatus. The polishing time for the glass substrate was 20 minutes. In one polishing process, 100 glass substrates were collectively subjected to precision polishing treatment one by one. Each time the two main surfaces of one glass substrate were subjected to precision polishing, dressing was performed once on the polishing surface of the polishing pad. Various processing conditions in the precision polishing treatment were fixed.
  • the apparatus used for polishing may be a smaller apparatus than the present embodiment, such as 9B type.
  • a grinding stone made of diamond pellets was placed on the polishing surface of the polishing pad, and a load was applied to uniformly polish the polishing surface.
  • the polishing surface was polished so that the polishing surface was retracted by about 2 ⁇ m.
  • the dressing process is performed 100 times, so that the polished surface after the precision polishing process for the 100 glass substrates is retracted by 200 ⁇ m as compared with the start of use.
  • each of the polishing pads in Examples 1 to 13 has an average radius r of a plurality of openings defined at the start of use and each time dressing is performed. Is set to be in the range of 80% to 120%. Specifically, in Examples 1 to 9, the average radius is in the range of 82% to 118%, and in Example 10, the average radius is in the range of 97% to 106%. In Example 11, the average radius is in the range of 96% to 116%, and in Example 12, the average radius is in the range of 97% to 105%. In Example 13, those having an average radius in the range of 89% to 118% were used.
  • the plurality of openings formed in the polishing pads in Examples 1 to 13 are the same as the conditions described in the above-described embodiment (the average value r is a plurality of openings at the start of use and each time dressing is performed.
  • the average radius of the openings 27 is in the range of 80% to 120%.
  • the average radius of the opening defined at the start of use and every time dressing is performed is in the range of 57% to 167% with respect to the average value r. It is set to become.
  • the plurality of openings formed in the polishing pad in Comparative Example 1 are the same as the conditions described in the above-described embodiment (the plurality of openings 27 at the start of use and each time dressing is performed on the average value r). In the range of 80% or more and 120% or less).
  • the glide test yield (also referred to as the glide test pass rate) is a test in which a projection having a predetermined height or more existing on the surface of the magnetic film is detected over the entire circumference with a magnetic head that floats at a constant height. The probability of passing the glide test is shown.
  • the glide test yield before using the polishing pad was 93%, and the glide test yield after using the polishing pad was 91%.
  • the difference in glide test yield before use and after use is 2%.
  • Example 2 to 10 and 13 the difference in the glide inspection yield before use and after use is 13% of Example 7 at the maximum. Also in the polishing pads of Examples 2 to 10 and 13, it can be seen that the quality on the main surface of the glass substrate is maintained within a certain range both before and after use.
  • the glide inspection yield before use of the polishing pad was 96%
  • the glide inspection yield after use of the polishing pad was 72%.
  • the difference in the glide test yield before use and after use is 24%.
  • the quality on the main surface of the glass substrate is not maintained within a certain range, and it can be seen that there is a variation in the quality of the microwaviness component and the like on the main surface of the glass substrate. .
  • the glass substrates that failed the glide test were inspected from 100 glass substrates that had been subjected to precision polishing using the polishing pad in Comparative Example 1.
  • An optical surface analyzer (OSA (Optical Surface Analyzer), KLA-TENCOL, OSA6100) was used for the inspection, and the spatial frequency used for the analysis was set to 200 ⁇ m or more and 1000 ⁇ m or less.
  • OSA Optical Surface Analyzer
  • the average radius of the opening defined respectively at the start of use and every time dressing is performed, It can be seen that the average value r is preferably set to be in the range of 80% to 120%.
  • the polishing pads in Examples 10 and 13 were produced using the stamper 30 shown in FIGS.
  • the stamper 30 is made of stainless steel, and the outer shapes of the plurality of protrusions 37 as the concavo-convex pattern are each cylindrical.
  • the protruding heights of the plurality of protrusions 37 from the flat surface 34 are each about 250 ⁇ m.
  • Each of the plurality of protrusions 37 has a diameter of about 80 ⁇ m, and has a shape with a minute taper corresponding to the shape of the opening formed in the polishing pad.
  • the interval (pitch) between the plurality of protrusions 37 is 180 ⁇ m.
  • the polishing pad in Example 11 was produced by the method shown in FIG. Specifically, a 20 mm square non-foamed urethane sheet is produced by a known method, and a laser processing with an excimer laser is performed so that the depth from the polished surface is 300 ⁇ m, the diameter is 90 ⁇ m, and the interval (pitch) is 200 ⁇ m. A cylindrical recess was formed (both designed values). The recess forms an opening in the polishing surface.
  • the concave portion may be formed by other means such as electric discharge machining using an electrode having a predetermined electrode shape.
  • the polishing pad in Example 12 was produced by the method shown in FIG. Specifically, a 15 mm square non-foamed urethane sheet is produced by a known method, and a depth of 300 ⁇ m from the polished surface, a diameter of 90 ⁇ m, and an interval (pitch) of 200 ⁇ m are obtained by machining with a drilling machine. A cylindrical recess was formed (both designed values). The recess forms an opening in the polishing surface.
  • the polishing pad in Comparative Example 1 was prepared by buffing the pad surface using a known method (for example, Japanese Patent Application Laid-Open No. 2010-082721) so that the foamed pore has an opening in the polishing surface. .
  • the interval between adjacent openings (the wall thickness of the polishing layer positioned between adjacent openings) is set at the start of use and dressing. was measured every 10 times, and the average value (average interval value) was calculated. In addition, the space
  • the area occupation ratio of the plurality of openings to the polishing surface was measured at the start of use and every time dressing was performed 10 times, and the average of these was measured. The value was calculated. This area occupancy was measured as an average value in a 500 ⁇ m square plane. As a result, the average value of the area occupancy ratio of the openings was 35% to 38% in Examples 10 to 13 and 35% in Comparative Example 1.
  • the average diameter of the plurality of openings was measured at the start of use and every time dressing was performed 10 times, and the average value was calculated. .
  • the average diameter of the plurality of openings was measured as an average value in a 500 ⁇ m square plane. As a result, the average value of the diameters of the plurality of openings was 81 to 95 ⁇ m in Examples 10 to 13 and 18 ⁇ m in Comparative Example 1.
  • 1 glass substrate 1A front main surface, 1B back main surface, 1C inner peripheral end surface, 1D outer peripheral end surface, 1H hole, 2 magnetic thin film layer, 10 magnetic disk, 20, 20A-20C polishing pad, 22 polishing layer (resin layer) , 24 polished surface, 26 foam pores, 27 openings, 30 stamper (molding die), 34 flat surface, 37 protrusions, 39 frame, 40 laser oscillator, 50 drill, E1-E3 spacing, R1-R3 dotted line .

Abstract

Provided is a method for producing a glass substrate comprising a polishing step which repeatedly uses a polished surface (24) of a polishing pad (20A) in which a plurality of openings (27) are formed on the polished surface (24) to perform a polishing process to each of a plurality of glass substrates, and which performs a dressing process to the polished surface (24) every time the polished surface (24) has been used for a predetermined number of times, wherein at the start of use of the polished surface (24), a first average area of the plurality of openings (27) is defined based on the area of each of the plurality of openings (27), and every time a dressing process is performed on the polished surface (24), a second average area of the plurality of openings (27) is defined based on the area of each of the plurality of openings (27), thereby an average value is defined based on the first average area and the second average area after the polishing process. The first average area and the second average area after the polishing process are within the range of 64% to 144% with respect to the above average value.

Description

ガラス基板の製造方法Manufacturing method of glass substrate
 本発明は、ガラス基板の製造方法に関し、特に、情報記録媒体の製造に用いられるガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate, and more particularly to a method for manufacturing a glass substrate used for manufacturing an information recording medium.
 HDD(Hard Disk Drive)などの情報記録装置には、磁気ディスクまたは光磁気ディスクなどの円板状の情報記録媒体が内蔵される。情報記録媒体は、情報記録媒体用ガラス基板(以下、ガラス基板ともいう)から製造される。ガラス基板の主表面上に、磁気、光、または光磁気等の性質を利用した記録層を含む磁気薄膜層が形成される。記録層が磁気ヘッドによって磁化されることによって、所定の情報が磁気ディスク等の情報記録媒体に記録される。 Information recording devices such as HDD (Hard Disk Drive) incorporate a disk-shaped information recording medium such as a magnetic disk or a magneto-optical disk. The information recording medium is manufactured from a glass substrate for information recording medium (hereinafter also referred to as a glass substrate). A magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism is formed on the main surface of the glass substrate. When the recording layer is magnetized by the magnetic head, predetermined information is recorded on an information recording medium such as a magnetic disk.
 情報記録媒体用ガラス基板の製造方法においては、ガラス基板の主表面に対して化学強化処理が施される前に、研磨パッドを使用してガラス基板の主表面に対して研磨処理が施される(特開2010-082721号公報(特許文献1)、特開2005-149668号公報(特許文献2)、および特開2009-101504号公報(特許文献3)などを参照)。一般的に、主表面に対する上記の研磨処理においては、粗研磨工程および精密研磨工程がこの順番で実施される。 In the manufacturing method of the glass substrate for information recording media, the polishing process is performed on the main surface of the glass substrate using a polishing pad before the chemical strengthening process is performed on the main surface of the glass substrate. (See JP 2010-082721 (Patent Document 1), JP 2005-149668 (Patent Document 2), and JP 2009-101504 (Patent Document 3)). Generally, in the above-described polishing treatment for the main surface, the rough polishing step and the precision polishing step are performed in this order.
 まず、粗研磨工程においては、ガラス基板の主表面にスラリー(研磨液)として酸化セリウムが供給される。ガラス基板の主表面は、硬質のウレタンバッド等を使用して、比較的粗く研磨される。粗研磨工程を経ることによって、ガラス基板の主表面の平行度、平坦度、および厚さなどが調整される。 First, in the rough polishing step, cerium oxide is supplied as a slurry (polishing liquid) to the main surface of the glass substrate. The main surface of the glass substrate is relatively rough polished using a hard urethane pad or the like. Through the rough polishing step, the parallelism, flatness, thickness, etc. of the main surface of the glass substrate are adjusted.
 次に、精密研磨工程においては、ガラス基板の主表面にスラリーとしてコロイダルシリカが供給される。ガラス基板の主表面は、軟質の発泡ウレタンパッド等を使用して、比較的精密に研磨される。精密研磨工程を経ることによって、主表面の凹凸が均一になり、ガラス基板の主表面の平行度および平坦度がより一層高くなる。 Next, in the precision polishing step, colloidal silica is supplied as a slurry to the main surface of the glass substrate. The main surface of the glass substrate is polished relatively accurately using a soft foamed urethane pad or the like. By passing through the precision polishing step, the unevenness of the main surface becomes uniform, and the parallelism and flatness of the main surface of the glass substrate are further increased.
 図14を参照して、精密研磨工程に使用される一般的な研磨パッド20について説明する。ガラス基板(図示せず)の両主表面を研磨する研磨パッド20は、所定の定盤(図示せず)上に固定される研磨層22を備える。研磨層22は、たとえば発泡樹脂から構成される。研磨層22は、研磨面24と、複数の発泡ポア26とを有している。発泡ポア26の上端から研磨面24内に向けて、開口部27が露出している。 Referring to FIG. 14, a general polishing pad 20 used in the precision polishing process will be described. A polishing pad 20 for polishing both main surfaces of a glass substrate (not shown) includes a polishing layer 22 fixed on a predetermined surface plate (not shown). The polishing layer 22 is made of, for example, a foamed resin. The polishing layer 22 has a polishing surface 24 and a plurality of foam pores 26. An opening 27 is exposed from the upper end of the foaming pore 26 toward the polishing surface 24.
 一般的な精密研磨工程においては、研磨パッド20の研磨面24が、ガラス基板の主表面に対して押圧される。ガラス基板と研磨面24との間にコロイダルシリカ等が供給された状態で、研磨面24によってガラス基板の主表面が研磨される。精密研磨工程を経ることによって、ガラス基板の主表面の平滑度および平坦度が調整される。 In a general precision polishing process, the polishing surface 24 of the polishing pad 20 is pressed against the main surface of the glass substrate. The main surface of the glass substrate is polished by the polishing surface 24 while colloidal silica or the like is supplied between the glass substrate and the polishing surface 24. By passing through the precision polishing step, the smoothness and flatness of the main surface of the glass substrate are adjusted.
 ここで、磁気ディスク等の情報記録媒体は、HDDなどの情報記録装置の内部において高速で回転する。情報の記録および再生のために、情報記録媒体の表面に形成された磁気記録層上を磁気ヘッドが飛行する。近年、記録密度の増加に伴って、磁気ヘッドと情報記録媒体(磁気薄膜層)との間の距離(DFH:Dynamic Flying Height)が小さくなる傾向にある。ガラス基板の主表面に形成された磁気薄膜層と磁気ヘッドとの接触(いわゆるヘッドクラッシュ現象)を抑制するために、ガラス基板の主表面の平滑度および平坦度に対する要求はますます高くなっている。 Here, an information recording medium such as a magnetic disk rotates at high speed inside an information recording apparatus such as an HDD. For recording and reproducing information, a magnetic head flies over a magnetic recording layer formed on the surface of the information recording medium. In recent years, as the recording density increases, the distance (DFH: Dynamic Flying Height) between the magnetic head and the information recording medium (magnetic thin film layer) tends to decrease. In order to suppress contact between the magnetic thin film layer formed on the main surface of the glass substrate and the magnetic head (so-called head crush phenomenon), the demand for smoothness and flatness of the main surface of the glass substrate is increasing. .
特開2010-082721号公報JP 2010-082721 A 特開2005-149668号公報JP 2005-149668 A 特開2009-101504号公報JP 2009-101504 A
 図14を参照して、研磨パッド20の研磨面24は、ガラス基板の主表面を研磨するために繰り返し使用されることによって、徐々に磨り減る。研磨面24の位置は、徐々に(図14紙面上方に向かって)後退する。研磨面24は、所定の枚数のガラス基板の研磨に使用される毎に、ドレス加工が施される。たとえば、研磨面24が磨り減って、図14に示す状態から点線R1に示す位置のやや手前にまで研磨面24が到達(後退)した後、研磨面24にドレス加工が施される。ドレス加工によって、研磨面24は点線R1に沿った平坦な面を呈する。 Referring to FIG. 14, the polishing surface 24 of the polishing pad 20 is gradually worn down by being repeatedly used to polish the main surface of the glass substrate. The position of the polishing surface 24 gradually recedes (towards the upper side in FIG. 14). The polishing surface 24 is dressed each time it is used for polishing a predetermined number of glass substrates. For example, after the polishing surface 24 is worn down and the polishing surface 24 reaches (retracts) slightly from the state shown in FIG. 14 to the position indicated by the dotted line R1, the dressing process is performed on the polishing surface 24. By the dressing process, the polished surface 24 exhibits a flat surface along the dotted line R1.
 研磨面24は表面粗さが良好な状態に再生され、再びガラス基板の研磨に供される。研磨面24が磨り減って、研磨面24が点線R2に示す位置のやや手前にまで到達した後、研磨面24に再びドレス加工が施される。ドレス加工によって、研磨面24は点線R2に沿った平坦な面を呈する。その後、研磨面24は再びガラス基板の研磨に供される。 The polished surface 24 is regenerated to a good surface roughness and is again used for polishing the glass substrate. After the polishing surface 24 is worn down and the polishing surface 24 reaches a position just before the position indicated by the dotted line R2, the dressing process is performed on the polishing surface 24 again. By the dressing process, the polishing surface 24 exhibits a flat surface along the dotted line R2. Thereafter, the polishing surface 24 is again subjected to polishing of the glass substrate.
 研磨面24が磨り減って、研磨面24が点線R3に示す位置のやや手前にまで到達した後、研磨面24に再びドレス加工が施される。研磨面24は、点線R3に沿った平坦な面を呈し、研磨面24は再びガラス基板の研磨に供される。定期的に研磨面24にドレス加工が施されることによって、研磨面24の表面粗さは良好な状態が保たれる。便宜上、点線R1と点線R2との間隔、および点線R2と点線R3との間隔を広く図示しているが、実際にはこれらの間隔は数μmである。 After the polishing surface 24 is worn down and the polishing surface 24 reaches a position just before the position indicated by the dotted line R3, the polishing surface 24 is dressed again. The polishing surface 24 presents a flat surface along the dotted line R3, and the polishing surface 24 is again used for polishing the glass substrate. By periodically dressing the polishing surface 24, the surface roughness of the polishing surface 24 is maintained in a good state. For convenience, the interval between the dotted line R1 and the dotted line R2 and the interval between the dotted line R2 and the dotted line R3 are illustrated widely, but in actuality, these intervals are several μm.
 ここで、特開2005-149668号公報(特許文献2)は、初期状態(研磨パッドの使用開始時)における研磨面に関する発明を開示しているが、研磨面の状態変化にまでは言及していない。特開2010-082721号公報(特許文献1)は、開口径の変化については言及していない。特開2009-101504号公報(特許文献3)は、開口径が変化する事による影響について述べているが、基板の微小うねり形状については言及していない。ガラス基板の従来の製造方法においては、研磨面の状態変化によって、発泡ポアの開口部の面積、または開口部の研磨面に対する面積占有率等が大きく変化している。ガラス基板の主表面に微小うねり等の形状の不規則性が発生し、ガラス基板の品質にばらつきが生じていた。 Here, Japanese Patent Laid-Open No. 2005-149668 (Patent Document 2) discloses an invention relating to a polishing surface in an initial state (at the start of use of the polishing pad), but does not mention changes in the state of the polishing surface. Absent. Japanese Patent Laying-Open No. 2010-082721 (Patent Document 1) does not mention a change in the opening diameter. Japanese Patent Laying-Open No. 2009-101504 (Patent Document 3) describes the effect of changing the aperture diameter, but does not refer to the minute waviness of the substrate. In the conventional method for manufacturing a glass substrate, the area of the opening of the foam pore, the area occupation ratio of the opening with respect to the polished surface, or the like greatly varies depending on the state change of the polished surface. Irregularities such as micro swells occurred on the main surface of the glass substrate, and the quality of the glass substrate varied.
 本発明は、上記の実情に鑑みて為されたものであって、情報記録媒体用ガラス基板の主表面における微小うねり形状等の品質ばらつきを低減することが可能なガラス基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a method for manufacturing a glass substrate capable of reducing quality variations such as a microwaviness shape on the main surface of the glass substrate for information recording media. For the purpose.
 本発明に基づくガラス基板の製造方法は、研磨面内に複数の開口部が形成された研磨パッド、および複数のガラス基板を準備する準備工程と、上記研磨パッドの上記研磨面を繰り返し使用して複数の上記ガラス基板の各々に対して研磨処理を施すとともに、上記研磨面が所定の回数使用される毎に上記研磨面にドレス加工を施す研磨工程と、を備え、上記研磨面の使用開始時には、上記研磨面の使用開始時における複数の上記開口部の各々の面積に基づいて、上記研磨面の使用開始時における複数の上記開口部の第1平均面積が規定され、上記研磨面に上記ドレス加工が実施される毎には、上記ドレス加工が実施される毎における複数の上記開口部の各々の面積に基づいて、上記ドレス加工が実施される毎における複数の上記開口部の第2平均面積が規定され、上記第1平均面積および上記研磨工程を通しての上記第2平均面積に基づいて、上記第1平均面積および上記研磨工程を通しての上記第2平均面積の平均値が規定され、上記第1平均面積および上記研磨工程を通しての上記第2平均面積は、上記第1平均面積および上記研磨工程を通しての上記第2平均面積の上記平均値に対して、64%以上144%以下の範囲内である。 The manufacturing method of the glass substrate based on this invention uses the polishing pad in which the several opening part was formed in the grinding | polishing surface, the preparatory process which prepares several glass substrate, and the said grinding | polishing surface of the said polishing pad repeatedly. A polishing step of performing a polishing process on each of the plurality of glass substrates and dressing the polishing surface every time the polishing surface is used a predetermined number of times, and at the start of use of the polishing surface Based on the area of each of the plurality of openings at the start of use of the polishing surface, a first average area of the plurality of openings at the start of use of the polishing surface is defined, and the dress on the polishing surface Each time processing is performed, the second of the plurality of openings each time the dressing is performed is based on the area of each of the plurality of openings when the dressing is performed. An average area is defined, and based on the first average area and the second average area through the polishing process, an average value of the first average area and the second average area through the polishing process is defined, The first average area and the second average area through the polishing step are within a range of 64% to 144% with respect to the average value of the first average area and the second average area through the polishing step. It is.
 好ましくは、上記準備工程において準備される上記研磨パッドは、上記研磨面を構成する樹脂層を含み、上記準備工程においては、複数の凹凸パターンを有する成形用金型を使用して、複数の上記凹凸パターンを上記樹脂層に転写することによって、上記研磨面内に複数の上記開口部が形成された上記研磨パッドが準備される。 Preferably, the polishing pad prepared in the preparation step includes a resin layer constituting the polishing surface, and in the preparation step, a plurality of the above-described molds are used by using a molding die having a plurality of uneven patterns. By transferring the concavo-convex pattern to the resin layer, the polishing pad having the plurality of openings formed in the polishing surface is prepared.
 好ましくは、上記準備工程において準備される上記研磨パッドは、上記研磨面を構成する樹脂層を含み、上記準備工程においては、上記樹脂層のうち上記開口部に対応する部分に熱加工を施すことによって、上記研磨面内に複数の上記開口部が形成された上記研磨パッドが準備される。 Preferably, the polishing pad prepared in the preparation step includes a resin layer constituting the polishing surface, and in the preparation step, a portion of the resin layer corresponding to the opening is subjected to thermal processing. Thus, the polishing pad having the plurality of openings formed in the polishing surface is prepared.
 好ましくは、上記準備工程において準備される上記研磨パッドは、上記研磨面を構成する樹脂層を含み、上記準備工程においては、上記樹脂層のうち上記開口部に対応する部分に機械加工を施すことによって、上記研磨面内に複数の上記開口部が形成された上記研磨パッドが準備される。 Preferably, the polishing pad prepared in the preparation step includes a resin layer constituting the polishing surface, and in the preparation step, machining is performed on a portion of the resin layer corresponding to the opening. Thus, the polishing pad having the plurality of openings formed in the polishing surface is prepared.
 好ましくは、上記研磨面の使用開始時および上記研磨面に上記ドレス加工が実施される毎において、上記研磨面内に形成される複数の上記開口部のうち隣り合う上記開口部同士の間の平均間隔値が規定され、上記平均間隔値は、5μm以上100μm以下の範囲内である。 Preferably, at the start of use of the polishing surface and each time the dressing is performed on the polishing surface, an average between adjacent openings among the plurality of openings formed in the polishing surface An interval value is defined, and the average interval value is in the range of 5 μm to 100 μm.
 好ましくは、上記研磨面の使用開始時および上記研磨面に上記ドレス加工が実施される毎において、上記研磨面内に形成された複数の上記開口部の総面積が規定され、上記研磨面の使用開始時および上記研磨面に上記ドレス加工が実施される毎における上記総面積は、上記研磨面の面積に対して20%以上60%以下の範囲内である。 Preferably, the total area of the plurality of openings formed in the polishing surface is defined at the start of use of the polishing surface and each time the dressing is performed on the polishing surface, and the use of the polishing surface The total area at the start and every time the dressing is performed on the polished surface is in the range of 20% to 60% with respect to the area of the polished surface.
 好ましくは、上記第1平均面積および上記研磨工程を通しての上記第2平均面積の上記平均値は、0.25π×10-12(m)以上1.00π×10-8(m)以下の範囲内である。 Preferably, the average value of the first average area and the second average area through the polishing step is not less than 0.25π × 10 −12 (m 2 ) and not more than 1.00π × 10 −8 (m 2 ). Within range.
 本発明によれば、情報記録媒体用ガラス基板の主表面における微小うねり形状等の品質ばらつきを低減することが可能なガラス基板の製造方法を得ることができる。 According to the present invention, it is possible to obtain a glass substrate manufacturing method capable of reducing quality variations such as a fine waviness shape on the main surface of a glass substrate for an information recording medium.
実施の形態におけるガラス基板の製造方法によって製造されるガラス基板を示す斜視図である。It is a perspective view which shows the glass substrate manufactured by the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法によって製造されたガラス基板の主表面に、磁気薄膜層が形成されることによって製造された磁気ディスクを示す斜視図である。It is a perspective view which shows the magnetic disc manufactured by forming a magnetic thin film layer in the main surface of the glass substrate manufactured by the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法の各工程を示す図である。It is a figure which shows each process of the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法に使用される研磨パッドを示す底面図である。It is a bottom view which shows the polishing pad used for the manufacturing method of the glass substrate in embodiment. 図4中のV-V線矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 隣り合う開口部同士の間隔を説明するための研磨パッドの底面図である。It is a bottom view of the polishing pad for demonstrating the space | interval of adjacent opening parts. 実施の形態におけるガラス基板の製造方法に使用され得る研磨パッドの第1変形例を示す底面図である。It is a bottom view which shows the 1st modification of the polishing pad which can be used for the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法に使用され得る研磨パッドの第2変形例を示す底面図である。It is a bottom view which shows the 2nd modification of the polishing pad which can be used for the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法に用いられる研磨パッドの製造方法に使用されるスタンパを示す平面図である。It is a top view which shows the stamper used for the manufacturing method of the polishing pad used for the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法に用いられる研磨パッドの製造方法に使用されるスタンパを使用して、上記研磨パッドを作製する様子を示す断面図である。It is sectional drawing which shows a mode that the said polishing pad is produced using the stamper used for the manufacturing method of the polishing pad used for the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法に使用され得る研磨パッドの製造方法の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the manufacturing method of the polishing pad which can be used for the manufacturing method of the glass substrate in embodiment. 実施の形態におけるガラス基板の製造方法に使用され得る研磨パッドの製造方法の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the manufacturing method of the polishing pad which can be used for the manufacturing method of the glass substrate in embodiment. 実施例および比較例に関する研磨パッドの各特性を示す図である。It is a figure which shows each characteristic of the polishing pad regarding an Example and a comparative example. ガラス基板の製造方法の精密研磨工程に使用される一般的な研磨パッドを示す断面図である。It is sectional drawing which shows the general polishing pad used for the precision grinding | polishing process of the manufacturing method of a glass substrate.
 本発明に基づいた各実施の形態および各実施例について、以下、図面を参照しながら説明する。各実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。各実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments and examples based on the present invention will be described below with reference to the drawings. In the description of each embodiment and each example, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the description of each embodiment and each example, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態]
 (ガラス基板1・磁気ディスク10)
 図1および図2を参照して、まず、実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって得られるガラス基板1、およびガラス基板1を備えた磁気ディスク10について説明する。図1は、磁気ディスク10(図2参照)に用いられるガラス基板1を示す斜視図である。図2は、ガラス基板1を備えた情報記録媒体としての磁気ディスク10を示す斜視図である。
[Embodiment]
(Glass substrate 1 / magnetic disk 10)
With reference to FIG. 1 and FIG. 2, the glass substrate 1 obtained by the manufacturing method of the glass substrate for information recording media based on Embodiment and the magnetic disk 10 provided with the glass substrate 1 are demonstrated first. FIG. 1 is a perspective view showing a glass substrate 1 used for a magnetic disk 10 (see FIG. 2). FIG. 2 is a perspective view showing a magnetic disk 10 as an information recording medium provided with the glass substrate 1.
 図1に示すように、磁気ディスク10に用いられるガラス基板1(情報記録媒体用ガラス基板)は、中心に孔1Hが形成された環状の円板形状を呈している。ガラス基板1は、表主表面1A、裏主表面1B、内周端面1C、および外周端面1Dを有している。表主表面1A、裏主表面1B、内周端面1C、および外周端面1Dには、化学強化層(図示せず)が形成されている。 As shown in FIG. 1, a glass substrate 1 (glass substrate for information recording medium) used for a magnetic disk 10 has an annular disk shape with a hole 1H formed in the center. The glass substrate 1 has a front main surface 1A, a back main surface 1B, an inner peripheral end surface 1C, and an outer peripheral end surface 1D. A chemical strengthening layer (not shown) is formed on the front main surface 1A, the back main surface 1B, the inner peripheral end surface 1C, and the outer peripheral end surface 1D.
 ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。ガラス基板の厚さは、破損防止の観点から、たとえば0.30~2.2mmである。本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。 The size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the glass substrate is, for example, 0.30 to 2.2 mm from the viewpoint of preventing breakage. In the present embodiment, the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. The thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate.
 図2に示すように、磁気ディスク10は、上記したガラス基板1の表主表面1A上に磁気薄膜層2が形成されることによって構成される。図2中では、表主表面1A上にのみ磁気薄膜層2が形成されているが、裏主表面1B上にも磁気薄膜層2が形成されていてもよい。 As shown in FIG. 2, the magnetic disk 10 is configured by forming a magnetic thin film layer 2 on the front main surface 1A of the glass substrate 1 described above. In FIG. 2, the magnetic thin film layer 2 is formed only on the front main surface 1A, but the magnetic thin film layer 2 may also be formed on the back main surface 1B.
 磁気ヘッドの滑りをよくするために、磁気薄膜層2の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。 In order to improve the sliding of the magnetic head, the surface of the magnetic thin film layer 2 may be thinly coated with a lubricant. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
 必要により下地層や保護層を設けてもよい。磁気ディスク10における下地層は磁性膜に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。 If necessary, an underlayer or a protective layer may be provided. The underlayer in the magnetic disk 10 is selected according to the magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
 下地層は単層とは限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。 The underlayer is not limited to a single layer, and may have a multi-layer structure in which the same or different layers are stacked. For example, a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
 磁気薄膜層2の摩耗や腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一または異種の層からなる多層構成としてもよい。 Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layer 2 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. In addition, these protective layers may be a single layer, or may have a multilayer structure including the same or different layers.
 上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。たとえば、上記保護層に替えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO)層を形成してもよい。 Another protective layer may be formed on the protective layer or instead of the protective layer. For example, in place of the protective layer, tetraalkoxylane is diluted with an alcohol-based solvent on a Cr layer, and then colloidal silica fine particles are dispersed and applied, followed by baking to form a silicon oxide (SiO 2 ) layer. It may be formed.
 (ガラス基板の製造方法)
 次に、図3に示すフローチャート図を用いて、本実施の形態におけるガラス基板(情報記録媒体用ガラス基板)の製造方法について説明する。
(Glass substrate manufacturing method)
Next, the manufacturing method of the glass substrate (glass substrate for information recording media) in this Embodiment is demonstrated using the flowchart figure shown in FIG.
 本実施の形態におけるガラス基板の製造方法は、粗ラッピング工程(ステップS10)、形状加工工程(ステップS20)、粗面化工程(ステップS30)、精ラッピング工程(ステップS40)、端面研磨工程(ステップS50)、主表面研磨工程(ステップS60)、および化学強化工程(ステップS70)を備える。化学強化処理工程(ステップS70)を経ることによって得られたガラス基板(図1におけるガラス基板1に相当)に対して、磁気薄膜形成工程(ステップS80)が実施されることによって、磁気ディスク10が得られる。 The manufacturing method of the glass substrate in the present embodiment includes a rough lapping step (step S10), a shape processing step (step S20), a roughening step (step S30), a fine lapping step (step S40), and an end surface polishing step (step). S50), a main surface polishing step (step S60), and a chemical strengthening step (step S70). A magnetic thin film forming step (step S80) is performed on the glass substrate (corresponding to the glass substrate 1 in FIG. 1) obtained through the chemical strengthening treatment step (step S70). can get.
 以下、これらの各ステップS10~S80の詳細について順に説明する、以下には、各ステップS10~S80間に適宜行なわれる簡易的な洗浄については記載していない。 Hereinafter, the details of each of these steps S10 to S80 will be described in order. In the following, simple cleaning appropriately performed between each of steps S10 to S80 will not be described.
 粗ラッピング工程(ステップS10)においては、たとえば直径が66mmφ、厚さが1.2mmのガラス基板が準備される。ガラス基板は、溶融ガラスが、上型、下型、および銅型を用いてダイレクトプレスされることによって製造される。ガラス基板の素材は、たとえばアルミノシリケートガラスである。ガラス基板は、ダウンドロー法またはフロート法などによって形成されたシート状のガラスから、研削砥石を用いて切り出されることによって製造されてもよい。 In the rough lapping process (step S10), for example, a glass substrate having a diameter of 66 mmφ and a thickness of 1.2 mm is prepared. The glass substrate is manufactured by directly pressing a molten glass using an upper mold, a lower mold, and a copper mold. The material of the glass substrate is, for example, aluminosilicate glass. The glass substrate may be manufactured by cutting out from a sheet-like glass formed by a downdraw method or a float method using a grinding wheel.
 準備されたガラス基板に対して、粗ラッピング加工が施される。この粗ラッピング加工によって、ガラス基板の寸法精度および形状精度が向上する。この粗ラッピング加工は、両面ラッピング装置を用いて行なわれる。使用される砥粒は、たとえば、粒度が#400(粒径約40μm~60μm)のアルミナである。両面ラッピング装置のキャリア内に収納されたガラス基板に対して、上定盤の荷重が約100kgに設定される。両面ラッピング装置による研磨によって、ガラス基板の両主表面は、面精度が0μm~1μm、表面粗さRmaxが約6μmに仕上げられる。 * Rough lapping is applied to the prepared glass substrate. This rough lapping process improves the dimensional accuracy and shape accuracy of the glass substrate. This rough lapping process is performed using a double-sided lapping apparatus. The abrasive used is, for example, alumina having a particle size of # 400 (particle size of about 40 μm to 60 μm). The load of the upper surface plate is set to about 100 kg with respect to the glass substrate accommodated in the carrier of the double-side wrapping apparatus. By polishing with a double-sided lapping device, both main surfaces of the glass substrate are finished with a surface accuracy of 0 μm to 1 μm and a surface roughness Rmax of about 6 μm.
 形状加工工程(ステップS20)においては、ガラス基板の外周端面および内周端面が研削される。ガラス基板の外径は65mm、内径(中心部の孔1Hの直径)は20mmとなる。ガラス基板の外周端面および内周端面の表面粗さRmaxは、たとえば約2μmに仕上げられる。このとき、ガラス基板の外周端面および内周端面に面取り加工が施されてもよい。 In the shape processing step (step S20), the outer peripheral end surface and the inner peripheral end surface of the glass substrate are ground. The outer diameter of the glass substrate is 65 mm, and the inner diameter (the diameter of the hole 1H in the central portion) is 20 mm. The surface roughness Rmax of the outer peripheral end face and the inner peripheral end face of the glass substrate is finished to about 2 μm, for example. At this time, chamfering may be performed on the outer peripheral end surface and the inner peripheral end surface of the glass substrate.
 粗面化工程(ステップS30)においては、平面研磨機が使用される。平面研磨機は、遊離砥粒を用いてガラス基板を機械的に研磨する。ガラス基板の表面全体が、略均一の表面粗さ(Ra=約0.01μm~0.4μm)に仕上げられる。粗面化工程において設定される表面粗さは、次述する精ラッピング工程で使用される固定砥粒の粒度との関係で決定されるとよい。 In the roughening step (step S30), a flat polishing machine is used. A plane polishing machine mechanically polishes a glass substrate using loose abrasive grains. The entire surface of the glass substrate is finished to a substantially uniform surface roughness (Ra = about 0.01 μm to 0.4 μm). The surface roughness set in the roughening step may be determined in relation to the particle size of the fixed abrasive used in the fine lapping step described below.
 精ラッピング工程(ステップS40)においては、ラッピング装置が使用される。ラッピング装置は、粗面化されたガラス基板の両主表面を、ダイヤモンドシートなどの固定砥粒研磨パッドを使用して研削する。ガラス基板の両主表面は、表面粗さRaが0.1μm以下、平坦度が7μm以下に仕上げられる。 In the fine wrapping process (step S40), a wrapping apparatus is used. The lapping apparatus grinds both main surfaces of the roughened glass substrate using a fixed abrasive polishing pad such as a diamond sheet. Both main surfaces of the glass substrate are finished to have a surface roughness Ra of 0.1 μm or less and a flatness of 7 μm or less.
 ガラス基板の両主表面は、上述の粗面化工程(ステップS30)において予め粗面化されているため、精ラッピング工程を経ることによって、微細な固定砥粒の引っ掛かりがガラス基板の両主表面に形成される。固定砥粒がガラス基板の主表面を滑るという不具合の発生が抑制されている。このため、精ラッピング工程における加工レートは、ガラス基板の両主表面に対する研磨開始時から高い値に設定されることが可能となっている。 Since both main surfaces of the glass substrate are roughened in advance in the above-described roughening step (step S30), the fine fixed abrasive grains are caught by both main surfaces of the glass substrate through the fine lapping step. Formed. Generation | occurrence | production of the malfunction that a fixed abrasive grain slips on the main surface of a glass substrate is suppressed. For this reason, the processing rate in the fine lapping process can be set to a high value from the start of polishing on both main surfaces of the glass substrate.
 端面研磨工程(ステップS50)においては、ブラシが使用される。ガラス基板を回転させた状態で、ガラス基板の外周端面および内周端面がブラシによって研磨される。ガラス基板は、外周端面および内周端面の表面粗さRmaxが約0.4μm、表面粗さRaが約0.1μmに仕上げられる。端面研磨工程が完了した後、ガラス基板は水洗浄される。 In the end surface polishing step (step S50), a brush is used. With the glass substrate rotated, the outer peripheral end surface and the inner peripheral end surface of the glass substrate are polished with a brush. The glass substrate is finished to have a surface roughness Rmax of about 0.4 μm and a surface roughness Ra of about 0.1 μm on the outer peripheral end surface and the inner peripheral end surface. After the end face polishing process is completed, the glass substrate is washed with water.
 主表面研磨工程(ステップS60)は、粗研磨工程(ステップS61)および精密研磨工程(ステップS62)を含む。まず、粗研磨工程(ステップS61)が実施される。粗研磨工程(ステップS61)においては、精ラッピング工程(ステップS40)の際に残留した傷および歪が除去される。スウェードパッドを使用する両面研磨装置が、ガラス基板の両主表面を研磨する。スラリー(研磨剤)としては、CeO/TREOが99質量%以上、かつアルカリ土類金属の含有量の総質量が10質量ppm以下の酸化セリウムが使用される。 The main surface polishing step (step S60) includes a rough polishing step (step S61) and a fine polishing step (step S62). First, a rough polishing process (step S61) is performed. In the rough polishing process (step S61), the scratches and distortion remaining in the fine lapping process (step S40) are removed. A double-side polishing apparatus using a suede pad polishes both main surfaces of the glass substrate. As the slurry (abrasive), cerium oxide having CeO 2 / TREO of 99 mass% or more and a total mass of the alkaline earth metal content of 10 mass ppm or less is used.
 次に、精密研磨工程(ステップS62)が実施される。ここでは、後述する軟質の研磨パッド20Aを使用して、ガラス基板の両主表面が高い精度で研磨される。スラリー(研磨剤)としては、上述の粗研磨工程(ステップS61)で使用された酸化セリウムよりも粒径の細かいシリカ砥粒が使用される。研磨パッド20Aの詳細については、図4および図5を参照して後述する。 Next, a precision polishing step (step S62) is performed. Here, both main surfaces of the glass substrate are polished with high accuracy using a soft polishing pad 20A described later. As the slurry (polishing agent), silica abrasive grains having a particle diameter smaller than that of cerium oxide used in the above-described rough polishing step (step S61) are used. Details of the polishing pad 20A will be described later with reference to FIGS.
 化学強化工程(ステップS70)においては、上述の主表面研磨工程(ステップS60)が完了したガラス基板に対して、化学強化処理が施される。ガラス基板の表面(表層)に存在するイオン(ガラス基板がアルミノシリケートガラスの場合、LiおよびNa)が、ガラス基板の表面に存在するイオンよりもイオン半径の大きなイオン(NaおよびK)にイオン交換される。 In the chemical strengthening process (step S70), the chemical strengthening process is performed on the glass substrate on which the main surface polishing process (step S60) is completed. Ions that are present on the surface (surface layer) of the glass substrate (when the glass substrate is an aluminosilicate glass, Li + and Na + ) are ions having a larger ion radius (Na + and K + ) Is ion exchanged.
 当該イオン交換によって、ガラス基板の表面(ガラス基板の両主表面からたとえば約5μmの深さまで)に、圧縮応力が発生する。圧縮応力の発生によって、ガラス基板の表面が強化され、ガラス基板としての剛性が向上する。本実施の形態におけるガラス基板の製造方法としては、以上のように構成される。 Compressive stress is generated on the surface of the glass substrate (from both main surfaces of the glass substrate to a depth of about 5 μm, for example) by the ion exchange. The surface of the glass substrate is strengthened by the generation of the compressive stress, and the rigidity as the glass substrate is improved. The manufacturing method of the glass substrate in the present embodiment is configured as described above.
 磁気薄膜形成工程(ステップS80)においては、化学強化処理が完了したガラス基板(図1に示すガラス基板1に相当)の両主表面(またはいずれか一方の主表面)に対し、磁気薄膜層が形成される。磁気薄膜層は、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系からなる保護層、およびF系からなる潤滑層が順次成膜されることによって形成される。磁気薄膜層の形成によって、図2に示す磁気ディスク10に相当する垂直磁気記録ディスクを得ることができる。 In the magnetic thin film forming step (step S80), the magnetic thin film layer is formed on both main surfaces (or one of the main surfaces) of the glass substrate (corresponding to the glass substrate 1 shown in FIG. 1) on which the chemical strengthening process has been completed. It is formed. The magnetic thin film layer includes an adhesion layer made of a Cr alloy, a soft magnetic layer made of a CoFeZr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer made of a C system, and a lubrication made of an F system. It is formed by sequentially depositing layers. By forming the magnetic thin film layer, a perpendicular magnetic recording disk corresponding to the magnetic disk 10 shown in FIG. 2 can be obtained.
 本実施の形態における磁気ディスクは、磁気薄膜層から構成される垂直磁気ディスクの一例である。磁気ディスクは、いわゆる面内磁気ディスクとして磁性層等から構成されてもよい。 The magnetic disk in the present embodiment is an example of a perpendicular magnetic disk composed of a magnetic thin film layer. The magnetic disk may be composed of a magnetic layer or the like as a so-called in-plane magnetic disk.
 (研磨パッド20A)
 図4および図5を参照して、本実施の形態におけるガラス基板の製造方法に使用される研磨パッド20Aについて説明する。図4は、研磨パッド20A(の研磨面24)を示す底面図である。図5は、図4におけるV-V線矢視断面図である。研磨パッド20Aは、上述の精密研磨工程(ステップS62)において、ガラス基板の両主表面を研磨するために使用される。
(Polishing pad 20A)
With reference to FIG. 4 and FIG. 5, the polishing pad 20A used for the manufacturing method of the glass substrate in this Embodiment is demonstrated. FIG. 4 is a bottom view showing the polishing pad 20A (the polishing surface 24 thereof). 5 is a cross-sectional view taken along line VV in FIG. The polishing pad 20A is used for polishing both main surfaces of the glass substrate in the above-described precision polishing step (step S62).
 研磨パッド20Aは、所定の定盤(図示せず)上に固定される研磨層22を備える。研磨層22は、たとえば樹脂から構成される。研磨面24内に複数の開口部27が形成されている。複数のガラス基板の各々に対して研磨処理を施すために、研磨パッド20Aの研磨面24は繰り返し使用される。研磨面24は徐々に磨り減り、研磨面24の位置は徐々に(図5紙面上方に向かって)後退する。研磨面24が所定の回数使用される毎に、研磨面24にはドレス加工が施される。 The polishing pad 20A includes a polishing layer 22 fixed on a predetermined surface plate (not shown). The polishing layer 22 is made of, for example, a resin. A plurality of openings 27 are formed in the polishing surface 24. The polishing surface 24 of the polishing pad 20A is used repeatedly in order to perform the polishing process on each of the plurality of glass substrates. The polishing surface 24 gradually wears down, and the position of the polishing surface 24 gradually recedes (toward the upper side in FIG. 5). Each time the polishing surface 24 is used a predetermined number of times, the polishing surface 24 is dressed.
 たとえば、研磨面24が磨り減って、図5に示す状態から点線R1に示す位置のやや手前にまで研磨面24が到達(後退)した後、研磨面24にドレス加工が施される。ドレス加工によって、研磨面24は点線R1に沿った平坦な面を呈する。研磨面24は表面粗さが良好な状態に再生され、再びガラス基板の研磨に供される。研磨パッド20Aにおいては、1回のドレス加工によって、たとえば数μm程度だけ研磨面24が削り取られる。 For example, after the polishing surface 24 is worn down and the polishing surface 24 reaches (retreats) slightly from the state shown in FIG. 5 to the position indicated by the dotted line R1, the dressing process is performed on the polishing surface 24. By the dressing process, the polished surface 24 exhibits a flat surface along the dotted line R1. The polished surface 24 is regenerated to have a good surface roughness and is again used for polishing the glass substrate. In the polishing pad 20A, the polishing surface 24 is scraped off by, for example, about several μm by one dressing process.
 同様に、研磨面24が点線R2に示す位置のやや手前にまで到達した後、研磨面24にドレス加工が施される。研磨面24は、点線R2に沿った平坦な面を呈し、研磨面24は再びガラス基板の研磨に供される。さらに、研磨面24が点線R3に示す位置のやや手前にまで到達した後、研磨面24にドレス加工が施される。研磨面24は、点線R3に沿った平坦な面を呈し、研磨面24は再びガラス基板の研磨に供される。 Similarly, after the polishing surface 24 reaches slightly before the position indicated by the dotted line R2, the polishing surface 24 is dressed. The polishing surface 24 presents a flat surface along the dotted line R2, and the polishing surface 24 is again used for polishing the glass substrate. Further, after the polishing surface 24 reaches a position just before the position indicated by the dotted line R3, the polishing surface 24 is dressed. The polishing surface 24 presents a flat surface along the dotted line R3, and the polishing surface 24 is again used for polishing the glass substrate.
 定期的に研磨面24にドレス加工が施されることによって、研磨面24の表面粗さは良好な状態が保たれる。研磨パッド20Aにおいては、研磨面24がガラス基板の研磨に供されつつ、このドレス加工がたとえば百回程度繰り返される。便宜上、点線R1と点線R2との間隔、および点線R2と点線R3との間隔を広く図示しているが、実際にはこれらの間隔は数μmである。 By periodically dressing the polishing surface 24, the surface roughness of the polishing surface 24 is maintained in a good state. In the polishing pad 20A, this dressing is repeated, for example, about 100 times while the polishing surface 24 is used for polishing the glass substrate. For convenience, the interval between the dotted line R1 and the dotted line R2 and the interval between the dotted line R2 and the dotted line R3 are illustrated widely, but in actuality, these intervals are several μm.
 ここで、研磨面24の使用開始時(図5に示す状態)における研磨パッド20Aは、研磨面24の使用開始時における複数の開口部27の各々の面積に基づいて、研磨面24の使用開始時における複数の開口部27の平均面積A(第1平均面積)を有している。換言すると、平均面積Aとは、研磨面24の使用開始時(図5に示す状態)における研磨面24内におけるすべての開口部27の面積を平均した値である。 Here, the polishing pad 20 </ b> A at the start of use of the polishing surface 24 (state shown in FIG. 5) starts using the polishing surface 24 based on the area of each of the plurality of openings 27 at the start of use of the polishing surface 24. It has an average area A 1 (first average area) of the plurality of openings 27 at the time. In other words, the average and the area A 1, a value obtained by averaging all the area of the opening 27 in the polishing surface 24 at the start of use time (the state shown in FIG. 5) of the polishing surface 24.
 研磨面24の使用(すなわち、研磨工程)が開始され、その後に行なわれたドレス加工によって研磨面24が点線R1に沿った平坦な面を呈したとする。この場合における研磨パッド20Aは、点線R1に沿った研磨面24における複数の開口部27の各々の面積に基づいて、点線R1に沿った研磨面24における複数の開口部27の平均面積B(第2平均面積)を有している。平均面積Bとは、点線R1に沿った研磨面24内におけるすべての開口部27の面積を平均した値である。 It is assumed that the use of the polishing surface 24 (that is, the polishing process) is started, and that the polishing surface 24 exhibits a flat surface along the dotted line R1 by dressing performed thereafter. The polishing pad 20A in this case is based on the area of each of the plurality of openings 27 in the polishing surface 24 along the dotted line R1, and the average area B 1 (the plurality of openings 27 in the polishing surface 24 along the dotted line R1). Second average area). The average and the area B 1, a value obtained by averaging all the area of the opening 27 in the polishing surface 24 along the dotted line R1.
 その後、ドレス加工によって研磨面24が点線R2に沿った平坦な面を呈したとする。この場合における研磨パッド20Aは、点線R2に沿った研磨面24における複数の開口部27の各々の面積に基づいて、点線R2に沿った研磨面24における複数の開口部27の平均面積B(他の第2平均面積)を有している。平均面積Bとは、点線R2に沿った研磨面24内におけるすべての開口部27の面積を平均した値である。 Thereafter, it is assumed that the polishing surface 24 exhibits a flat surface along the dotted line R2 by dressing. In this case, the polishing pad 20A is based on the area of each of the plurality of openings 27 in the polishing surface 24 along the dotted line R2, and the average area B 2 of the plurality of openings 27 in the polishing surface 24 along the dotted line R2 ( Other second average area). The average and the area B 2, a value obtained by averaging all the area of the opening 27 in the polishing surface 24 along the dotted line R2.
 さらにその後、ドレス加工によって研磨面24が点線R3に沿った平坦な面を呈したとする。この場合における研磨パッド20Aは、点線R3に沿った研磨面24における複数の開口部27の各々の面積に基づいて、点線R3に沿った研磨面24における複数の開口部27の平均面積B(さらに他の第2平均面積)を有している。平均面積Bとは、点線R3に沿った研磨面24内におけるすべての開口部27の面積を平均した値である。 Further, after that, it is assumed that the polishing surface 24 exhibits a flat surface along the dotted line R3 by dressing. In this case, the polishing pad 20A is based on the area of each of the plurality of openings 27 in the polishing surface 24 along the dotted line R3, and the average area B 3 of the plurality of openings 27 in the polishing surface 24 along the dotted line R3 ( Furthermore, it has another second average area). The average area B 3, a value obtained by averaging all the area of the opening 27 in the polishing surface 24 along the dotted line R3.
 研磨パッド20Aが使用される(研磨工程が実施される)間において、研磨面24にドレス加工が施される毎に、上記の平均面積B,B,Bのように、平均面積(第2平均面積)が順次得られる。使用開始時における平均面積Aおよび研磨工程を通しての平均面積B,B,B・・・に基づいて、これら全体を平均することによって平均値Dが算出される。平均値Dとは、使用開始時における平均面積Aおよび研磨工程を通しての平均面積B,B,B・・・を平均した値である。 While the polishing pad 20A is used (polishing step is performed), every time dressing is performed on the polishing surface 24, an average area (like the above average areas B 1 , B 2 , B 3 ) The second average area) is obtained sequentially. Based on the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process, the average value D is calculated by averaging these. The average value D is a value obtained by averaging the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 .
 ここで、本実施の形態におけるガラス基板の製造方法に使用される研磨パッド20Aにおいては、使用開始時における平均面積Aおよび研磨工程を通しての平均面積B,B,B・・・の各値が、いずれも、それら平均した値(平均値D)に対して64%以上144%以下の範囲内となっている。本実施の形態におけるガラス基板の製造方法に使用される研磨パッド20Aに形成された複数の開口部27は、当該条件を満足するように形成されている。 Here, in polishing pad 20A used in the glass substrate manufacturing method of the present embodiment, average area A 1 at the start of use and average areas B 1 , B 2 , B 3 . Each value is in the range of 64% to 144% with respect to the averaged value (average value D). The plurality of openings 27 formed in the polishing pad 20A used in the glass substrate manufacturing method in the present embodiment are formed so as to satisfy the conditions.
 なお、好ましくは、使用開始時における平均面積Aおよび研磨工程を通しての平均面積B,B,B・・・の各値が、いずれも、それら平均した値(平均値D)に対して72%以上132%以下の範囲内であるとよい。さらに好しくは、使用開始時における平均面積Aおよび研磨工程を通しての平均面積B,B,B・・・の各値が、いずれも、それら平均した値(平均値D)に対して81%以上121%以下の範囲内であるとよい。 Preferably, each of the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process is averaged with respect to the average value (average value D). It is good that it is in the range of 72% or more and 132% or less. More preferably, each of the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process is compared with the average value (average value D). It is good to be in the range of 81% or more and 121% or less.
 複数の開口部27がこれらの条件を満足していない場合(つまり、研磨面24にドレス加工が実施される毎の複数の開口部27の断面積の変化が大きい場合)、開口部27を形成する研磨層22の鉛直方向における弾性が、研磨面24にドレス加工が実施される毎に大きく変化する。研磨層22の鉛直方向における弾性の大きな変化に伴って、研磨対象であるガラス基板の主表面に微小うねり等の形状の不規則性が発生し、精密研磨工程を経たガラス基板の品質にばらつきが生じる。 When the plurality of openings 27 do not satisfy these conditions (that is, when the change in the cross-sectional area of the plurality of openings 27 each time dressing is performed on the polishing surface 24 is large), the openings 27 are formed. The elasticity of the polishing layer 22 in the vertical direction changes greatly each time dressing is performed on the polishing surface 24. Along with a large change in the elasticity of the polishing layer 22 in the vertical direction, irregularities of the shape such as micro-waviness occur on the main surface of the glass substrate to be polished, and the quality of the glass substrate after the precision polishing process varies. Arise.
 複数の開口部27が上記の条件を満足していることによって、使用開始時およびドレス加工が施される毎において、ガラス基板の主表面に対する研磨面24の研磨特性は、略均一となる。研磨パッド20Aの研磨面24に繰り返しドレス加工が施されたとしても、研磨対象であるガラス基板の主表面に微小うねり等の形状の不規則性が発生しにくく、精密研磨工程(ステップS62)を経たガラス基板の品質にばらつきが生じることも抑制される。 Because the plurality of openings 27 satisfy the above conditions, the polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate become substantially uniform at the start of use and whenever dressing is performed. Even if the polishing surface 24 of the polishing pad 20A is repeatedly subjected to dressing processing, irregularities such as micro swell are hardly generated on the main surface of the glass substrate to be polished, and the precision polishing step (step S62) is performed. Variations in the quality of the passed glass substrate are also suppressed.
 開口部27が円形である場合には、上記の条件を半径に換算することもできる。すなわち、上記の平均面積から算出される平均値Dを、半径に換算して平均値rを得る。この平均値rに対して、使用開始時およびドレス加工が施される毎における複数の開口部27の平均半径が、80%以上120%以下の範囲内となるように、複数の開口部27が形成されればよい。 When the opening 27 is circular, the above condition can be converted into a radius. That is, the average value D calculated from the average area is converted into a radius to obtain the average value r. With respect to this average value r, the plurality of openings 27 are arranged such that the average radius of the plurality of openings 27 at the start of use and every time dressing is performed is in the range of 80% to 120%. It may be formed.
 なお、好ましくは、平均値rに対して、使用開始時およびドレス加工が施される毎における複数の開口部27の平均半径が、85%以上115%以下の範囲内となるように、複数の開口部27が形成されるとよい。さらに好ましくは、平均値rに対して、使用開始時およびドレス加工が施される毎における複数の開口部27の平均半径が、90%以上110%以下の範囲内となるように、複数の開口部27が形成されるとよい。 Preferably, the plurality of openings 27 have an average radius within the range of 85% or more and 115% or less at the start of use and every time dressing is performed with respect to the average value r. An opening 27 may be formed. More preferably, with respect to the average value r, the plurality of openings are arranged such that the average radius of the plurality of openings 27 at the start of use and every time dressing is performed is in the range of 90% to 110%. A portion 27 may be formed.
 また、使用開始時における平均面積Aおよび研磨工程を通しての平均面積B,B,B・・・を平均した値である平均値Dは、0.25π×10-12(m)以上1.00π×10-8(m)以下の範囲内であるとよい。好ましくは、上記の平均値Dは、6.25π×10-12(m)以上0.25π×10-8(m)以下の範囲内であるとよい。さらに好ましくは、上記の平均値Dは、0.25π×10-10(m)以上0.04π×10-8(m)以下の範囲内であるとよい。 Further, the average value D, which is an average value of the average area A 1 at the start of use and the average areas B 1 , B 2 , B 3 ... Through the polishing process, is 0.25π × 10 −12 (m 2 ). It is preferable to be within the range of 1.00π × 10 −8 (m 2 ) or less. Preferably, the average value D is in the range of 6.25π × 10 −12 (m 2 ) or more and 0.25π × 10 −8 (m 2 ) or less. More preferably, the average value D is in the range of 0.25π × 10 −10 (m 2 ) to 0.04π × 10 −8 (m 2 ).
 平均値Dが0.25π×10-12(m)未満の場合、凝集したスラリーが開口部27に詰まり、研磨面24の磨耗が平衡(均一)に行なわれにくくなる。平均値Dが1.00π×10-8(m)より大きい場合、研磨するガラス基板表面の微小うねりが増大する恐れがある。 When the average value D is less than 0.25π × 10 −12 (m 2 ), the agglomerated slurry is clogged in the opening 27, and the abrasion of the polishing surface 24 is difficult to be performed in an equilibrium (uniform) manner. When the average value D is larger than 1.00π × 10 −8 (m 2 ), there is a risk that the fine waviness on the surface of the glass substrate to be polished increases.
 開口部27が円形である場合には、上記の面積条件を直径に換算することもできる。すなわち、上記の平均面積から算出される平均値Dを、直径に換算して平均値dを得る。この平均値dが、1μm以上200μm以下の範囲内となるように、複数の開口部27が形成されればよい。なお、好ましくは、上記の平均値dが5μm以上100μm以下の範囲内となるように複数の開口部27が形成されるとよい。より好ましくは、上記の平均値dが10μm以上40μm以下の範囲となるように、複数の開口部27が形成されるとよい。 When the opening 27 is circular, the above area condition can be converted into a diameter. That is, the average value D calculated from the above average area is converted into a diameter to obtain the average value d. The plurality of openings 27 may be formed so that the average value d is in the range of 1 μm to 200 μm. Preferably, a plurality of openings 27 are formed so that the average value d is in the range of 5 μm to 100 μm. More preferably, the plurality of openings 27 may be formed so that the average value d is in the range of 10 μm to 40 μm.
 ここで、図5を参照して、複数の開口部27のうち、隣り合う開口部27同士の間に規定される間隔E1,E2,E3,・・・(使用開始時の値およびドレス加工毎の値を含む)の平均値(平均間隔値)は、5μm以上100μm以下の範囲内であるとよい。間隔E1,E2,E3,・・・とは、換言すると、隣り合う開口部27同士の間に位置する研磨層22の壁厚さである。なお、図6を参照して、ここで言う「隣り合う開口部27同士の間隔」とは、各開口部27,27の断面形状における面積重心27G同士を結ぶ線分によって、研磨面24(研磨層22)が切り取られた(図6中の線分E10,E11,E12によって示される)長さのことである。図5を再び参照して、好ましくは、複数の開口部27のうち、隣り合う開口部27同士の間に規定される間隔E1,E2,E3,・・・の平均値(平均間隔値)は、10μm以上50μm以下の範囲内であるとよい。 Here, referring to FIG. 5, among the plurality of openings 27, intervals E1, E2, E3,... Defined between adjacent openings 27 (values at the start of use and every dressing) The average value (average interval value) is preferably in the range of 5 μm to 100 μm. In other words, the intervals E1, E2, E3,... Are the wall thicknesses of the polishing layer 22 positioned between the adjacent openings 27. Referring to FIG. 6, the “interval between adjacent openings 27” referred to here is the polishing surface 24 (polishing) by a line segment connecting the area centroids 27 </ b> G in the cross-sectional shape of each opening 27, 27. Layer 22) is the length of the cut (shown by line segments E10, E11, E12 in FIG. 6). Referring to FIG. 5 again, preferably, among the plurality of openings 27, the average value (average interval value) of the intervals E1, E2, E3,. It is good in the range of 10 micrometers or more and 50 micrometers or less.
 当該平均値(平均間隔値)が5μm未満である場合、開口部27を形成する研磨層22の壁厚さが薄くなり、開口部27を形成する研磨層22が精密研磨工程の際に倒れやすくなる。当該平均値(平均間隔値)が100μmより大きくなると、研磨面24とガラス基板の主表面との間に発生する摩擦力が大きくなり、ガラス基板の主表面が良好に研磨されにくくなる。 When the average value (average interval value) is less than 5 μm, the wall thickness of the polishing layer 22 that forms the opening 27 becomes thin, and the polishing layer 22 that forms the opening 27 easily falls during the precision polishing step. Become. When the average value (average interval value) is larger than 100 μm, the frictional force generated between the polishing surface 24 and the main surface of the glass substrate is increased, and the main surface of the glass substrate is not easily polished.
 また、研磨面24の使用開始時および研磨面24にドレス加工が実施される毎において、研磨面24内における複数の開口部27の総面積が得られる。当該総面積は、研磨面24の使用開始時および研磨面24にドレス加工が実施される毎において、研磨面24の面積に対して、20%以上60%以下の範囲内であるとよい。 Further, the total area of the plurality of openings 27 in the polishing surface 24 is obtained at the start of use of the polishing surface 24 and each time dressing is performed on the polishing surface 24. The total area is preferably in the range of 20% to 60% with respect to the area of the polishing surface 24 at the start of use of the polishing surface 24 and each time dressing is performed on the polishing surface 24.
 換言すると、研磨面24の使用開始時および研磨面24にドレス加工が実施される毎において、複数の開口部27の研磨面24に対する面積占有率は、20%以上60%以下の範囲内であるとよい。なお、好ましくは、当該面積占有率は、25%以上40%以下の範囲内であるとよい。当該面積占有率が20%未満の場合、研磨面24とガラス基板の主表面との間に発生する摩擦力が大きくなり、円滑な研磨が困難となり、パッドやガラス基板の破損に繋がる可能性がある。当該面積占有率が60%より大きい場合、開口部27を形成する研磨層22の壁厚さが薄くなり、研磨面24の磨耗が平衡(均一)に行なわれにくくなる。 In other words, at the start of use of the polishing surface 24 and each time dressing is performed on the polishing surface 24, the area occupancy ratio of the plurality of openings 27 to the polishing surface 24 is in the range of 20% or more and 60% or less. Good. In addition, Preferably, the said area occupation rate is good in the range of 25% or more and 40% or less. When the area occupancy is less than 20%, the frictional force generated between the polishing surface 24 and the main surface of the glass substrate increases, and smooth polishing becomes difficult, which may lead to damage to the pad or the glass substrate. is there. When the area occupancy is larger than 60%, the wall thickness of the polishing layer 22 forming the opening 27 becomes thin, and the abrasion of the polishing surface 24 is hardly performed in a balanced (uniform) manner.
 以上説明したように、研磨パッド20Aが精密研磨工程(ステップS62)に使用されることによって、使用開始時およびドレス加工が施される毎において、ガラス基板の主表面に対する研磨面24の研磨特性は、略均一となる。研磨パッド20Aに繰り返しドレス加工が施されたとしても、研磨対象であるガラス基板の主表面に微小うねり等の形状の不規則性が発生しにくく、精密研磨工程(ステップS62)を経たガラス基板の品質にばらつきが生じることも抑制される。 As described above, when the polishing pad 20A is used in the precision polishing step (step S62), the polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate at the start of use and every time dressing is performed are as follows. It becomes almost uniform. Even if the dressing process is repeatedly performed on the polishing pad 20A, irregularities of the shape such as microwaviness hardly occur on the main surface of the glass substrate to be polished, and the glass substrate that has undergone the precision polishing step (step S62) Variations in quality are also suppressed.
 [実施の形態の変形例]
 上述の実施の形態におけるガラス基板の製造方法(図4参照)においては、略同一の面積を有する複数の開口部27が、研磨面24内に規則正しく並んで形成された研磨パッド20Aが準備された。複数の開口部27の平面形状は、正円形状である。
[Modification of Embodiment]
In the method for manufacturing a glass substrate in the above-described embodiment (see FIG. 4), a polishing pad 20A in which a plurality of openings 27 having substantially the same area are regularly arranged in the polishing surface 24 is prepared. . The planar shape of the plurality of openings 27 is a perfect circle.
 図7を参照して、研磨パッド20Bのように、複数の開口部27の形状は二等辺三角形状であってもよい。複数の開口部27の形状は、二等辺三角形状に限られず、任意の形状(楕円形、多角形、および配列形態など)とすることができる。複数の開口部27の形状は、不均一であってもよい。 Referring to FIG. 7, the shape of the plurality of openings 27 may be an isosceles triangle as in the polishing pad 20B. The shape of the plurality of openings 27 is not limited to an isosceles triangle, and may be any shape (such as an ellipse, a polygon, and an array). The shape of the plurality of openings 27 may be non-uniform.
 複数の開口部27が上記の実施の形態で説明した条件を満足していることによって、使用開始時およびドレス加工が施される毎において、ガラス基板の主表面に対する研磨面24の研磨特性は、略均一となる。結果として、研磨パッド20Bに繰り返しドレス加工が施されたとしても、研磨対象であるガラス基板の主表面に微小うねり等の形状の不規則性が発生しにくく、精密研磨工程(ステップS62)を経たガラス基板の品質にばらつきが生じることも抑制される。 Since the plurality of openings 27 satisfy the conditions described in the above embodiment, the polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate at the start of use and every time dressing is performed are: It becomes almost uniform. As a result, even when the dressing process is repeatedly performed on the polishing pad 20B, irregularities such as microwaviness are hardly generated on the main surface of the glass substrate to be polished, and the precision polishing process (step S62) is performed. Variations in the quality of the glass substrate are also suppressed.
 また、図8を参照して、研磨パッド20Cのように、複数の開口部27の大きさは相互に異なっていてもよい。複数の開口部27の大きさが不揃いであっても、複数の開口部27が上記の実施の形態で説明した条件を満足していることによって、使用開始時およびドレス加工が施される毎において、ガラス基板の主表面に対する研磨面24の研磨特性は、略均一となる。結果として、研磨パッド20Cに繰り返しドレス加工が施されたとしても、研磨対象であるガラス基板の主表面に微小うねり等の形状の不規則性が発生しにくく、精密研磨工程(ステップS62)を経たガラス基板の品質にばらつきが生じることも抑制される。 Referring to FIG. 8, the size of the plurality of openings 27 may be different from each other as in the polishing pad 20C. Even if the sizes of the plurality of openings 27 are not uniform, the plurality of openings 27 satisfy the conditions described in the above embodiment, so that at the start of use and every time dressing is performed. The polishing characteristics of the polishing surface 24 with respect to the main surface of the glass substrate are substantially uniform. As a result, even when the dressing process is repeatedly performed on the polishing pad 20C, irregularities such as micro waviness are hardly generated on the main surface of the glass substrate to be polished, and the precision polishing process (step S62) is performed. Variations in the quality of the glass substrate are also suppressed.
 (研磨パッド20Aの製造方法)
 図9は、研磨パッド20Aの製造に使用されるスタンパ30を示す底面図である。図10は、スタンパ30を使用して研磨パッド20Aを製造する様子を示す断面図である。研磨パッド20A(図示せず)を製造する際には、平坦面34に複数の突起部37が凸設されたスタンパ30(成形用金型)が準備される。スタンパ30は、たとえばステンレス製である。複数の突起部37の凹凸パターン形状は、研磨パッド20Aに形成される複数の開口部27の形状に対応している。
(Manufacturing method of polishing pad 20A)
FIG. 9 is a bottom view showing the stamper 30 used for manufacturing the polishing pad 20A. FIG. 10 is a cross-sectional view showing how the polishing pad 20A is manufactured using the stamper 30. As shown in FIG. When manufacturing the polishing pad 20A (not shown), a stamper 30 (molding die) in which a plurality of projections 37 are provided on the flat surface 34 is prepared. The stamper 30 is made of stainless steel, for example. The uneven pattern shape of the plurality of protrusions 37 corresponds to the shape of the plurality of openings 27 formed in the polishing pad 20A.
 図10に示すように、所定の温度に加熱されることによって変形可能に溶融した樹脂(研磨層22を構成する材料)が、型枠39内に流し込まれる。溶融樹脂は、型枠39とスタンパ30との間で脱熱されることによって硬化する。当該硬化によって、スタンパ30の複数の突起部37から複数の開口部27が転写形成された研磨パッド20A(図5参照)が製造される。 As shown in FIG. 10, a resin (material constituting the polishing layer 22) melted so as to be deformable by being heated to a predetermined temperature is poured into the mold 39. The molten resin is cured by heat removal between the mold 39 and the stamper 30. By the curing, a polishing pad 20A (see FIG. 5) in which a plurality of openings 27 are transferred from a plurality of protrusions 37 of the stamper 30 is manufactured.
 図11を参照して、研磨パッド20Aの製造方法としては、研磨層22に対してレーザー発振器40などを使用した熱加工が施されてもよい。熱加工としては、所定の電極形状を有する電極を用いた放電加工が行なわれてもよい。この場合も、研磨層22はウレタンなどの樹脂層から構成される。当該熱加工によって、研磨層22の一部が溶融し、複数の開口部27が形成される。複数の開口部27の形状は、上述の研磨パッド20B(図7参照)のように、円形に限られず、熱加工によって任意の形状に形成されることができる。複数の開口部27の大きさは、上述の研磨パッド20C(図8参照)のように、同一に限られず、熱加工によって任意の大きさに形成されることができる。 Referring to FIG. 11, as a manufacturing method of polishing pad 20A, thermal processing using laser oscillator 40 or the like may be performed on polishing layer 22. As the thermal processing, electric discharge processing using an electrode having a predetermined electrode shape may be performed. Also in this case, the polishing layer 22 is composed of a resin layer such as urethane. By the thermal processing, a part of the polishing layer 22 is melted, and a plurality of openings 27 are formed. The shape of the plurality of openings 27 is not limited to a circle as in the above-described polishing pad 20B (see FIG. 7), and can be formed into an arbitrary shape by thermal processing. The size of the plurality of openings 27 is not limited to the same as the above-described polishing pad 20C (see FIG. 8), and can be formed in any size by thermal processing.
 図12を参照して、研磨パッド20Aの製造方法としては、研磨層22に対してドリル50などを使用した機械加工(研削加工)が施されてもよい。この場合も、研磨層22はウレタンなどの樹脂層から構成される。当該機械加工によって、研磨層22の一部が削り取られ、複数の開口部27が形成される。複数の開口部27の形状は、上述の研磨パッド20B(図7参照)のように、円形に限られず、機械加工によって任意の形状に形成されることができる。複数の開口部27の大きさは、上述の研磨パッド20C(図8参照)のように、同一に限られず、機械加工によって任意の大きさに形成されることができる。 Referring to FIG. 12, as a method of manufacturing polishing pad 20A, machining (grinding) using a drill 50 or the like may be performed on polishing layer 22. Also in this case, the polishing layer 22 is composed of a resin layer such as urethane. By the machining, a part of the polishing layer 22 is scraped off, and a plurality of openings 27 are formed. The shape of the plurality of openings 27 is not limited to a circle like the above-described polishing pad 20B (see FIG. 7), and can be formed into an arbitrary shape by machining. The size of the plurality of openings 27 is not limited to the same as the above-described polishing pad 20C (see FIG. 8), and can be formed to an arbitrary size by machining.
 [実施例および比較例]
 以下、図13を参照して、本発明に基づいて行なった実施例と、当該実施例に関する比較例とついてそれぞれ説明する。ここでは、ガラス基板に対して精密研磨処理を行なうために、実施例1~13として13種類の研磨パッドと、比較例1として1種類の研磨パッドとを作製した。なお、比較例1における研磨パッドは、冒頭において図14を参照して説明した研磨パッド20に相当している。
[Examples and Comparative Examples]
Hereafter, with reference to FIG. 13, the Example performed based on this invention and the comparative example regarding the said Example are each demonstrated. Here, 13 types of polishing pads as Examples 1 to 13 and 1 type of polishing pad as Comparative Example 1 were prepared in order to perform a precise polishing process on a glass substrate. The polishing pad in Comparative Example 1 corresponds to the polishing pad 20 described with reference to FIG. 14 at the beginning.
 実施例1~10,13および比較例1における各研磨パッドの研磨面は、外径が1200mmφとなる円形のものを使用した。実施例11,12における各研磨パッドの研磨面は、それぞれ四辺が20mmおよび15mmとなる角型のものを使用した。実施例1~13および比較例1における各研磨パッドの研磨層の厚さは540μm~650μmの範囲内にあるものを使用した。研磨面に形成した複数の開口部の深さは、研磨面に対して垂直な方向において、200μmより大きい。なお、外径、研磨層の厚さ、および開口部の深さは、本発明においては上記の値に限られるものではない。 The polishing surface of each polishing pad in Examples 1 to 10, 13 and Comparative Example 1 was a circular one having an outer diameter of 1200 mmφ. The polishing surface of each polishing pad in Examples 11 and 12 was a square type having four sides of 20 mm and 15 mm, respectively. In each of the polishing pads in Examples 1 to 13 and Comparative Example 1, a polishing layer having a thickness in the range of 540 μm to 650 μm was used. The depth of the plurality of openings formed in the polished surface is greater than 200 μm in the direction perpendicular to the polished surface. Note that the outer diameter, the thickness of the polishing layer, and the depth of the opening are not limited to the above values in the present invention.
 実施例1~13および比較例1における各研磨パッドを使用して、ガラス基板の主表面に対して精密研磨加工を行なった。この際、各研磨パッドは、一般的な16B型の両面ポリッシュ装置に取り付けられた。ガラス基板の研磨時間は20分間とした。1回の研磨加工で100枚のガラス基板に対して一括して1枚ずつ精密研磨処理を施した。1枚のガラス基板の両主表面に精密研磨処理を行なう度に、研磨パッドの研磨面に対して1回のドレス加工を行なった。精密研磨処理における加工諸条件は一定とした。なお、研磨に用いる装置は9B型等のように、本実施例より小型の装置を用いてもよい。 Using the polishing pads in Examples 1 to 13 and Comparative Example 1, precision polishing was performed on the main surface of the glass substrate. At this time, each polishing pad was attached to a general 16B double-side polishing apparatus. The polishing time for the glass substrate was 20 minutes. In one polishing process, 100 glass substrates were collectively subjected to precision polishing treatment one by one. Each time the two main surfaces of one glass substrate were subjected to precision polishing, dressing was performed once on the polishing surface of the polishing pad. Various processing conditions in the precision polishing treatment were fixed. The apparatus used for polishing may be a smaller apparatus than the present embodiment, such as 9B type.
 ドレス加工においては、研磨パッドの研磨面上にダイヤモンドペレットからなる砥石を乗せて、荷重を加えて研磨面を均一に研磨した。1回のドレス加工においては、約2μmだけ研磨面が後退するように研磨面を研磨した。これにより、ドレス加工が100回行なわれることによって、使用開始時に比べて、100枚のガラス基板に対する精密研磨処理を終えた研磨面は200μmだけ後退することになる。 In dressing, a grinding stone made of diamond pellets was placed on the polishing surface of the polishing pad, and a load was applied to uniformly polish the polishing surface. In one dressing process, the polishing surface was polished so that the polishing surface was retracted by about 2 μm. As a result, the dressing process is performed 100 times, so that the polished surface after the precision polishing process for the 100 glass substrates is retracted by 200 μm as compared with the start of use.
 ここで、図13に示すように、実施例1~13における研磨パッドは、使用開始時およびドレス加工が実施される毎にそれぞれ規定される複数の開口部の平均半径が、それらの平均値rに対して80%以上120%以下の範囲内となるように設定されている。具体的には、実施例1~9においては上記平均半径が82%以上118%以下の範囲内となるものを使用し、実施例10においては上記平均半径が97%以上106%以下の範囲内となるものを使用し、実施例11においては上記平均半径が96%以上116%以下の範囲内となるものを使用し、実施例12においては上記平均半径が97%以上105%以下の範囲内となるものを使用し、そして、実施例13においては上記平均半径が89%以上118%以下の範囲となるものを使用した。 Here, as shown in FIG. 13, each of the polishing pads in Examples 1 to 13 has an average radius r of a plurality of openings defined at the start of use and each time dressing is performed. Is set to be in the range of 80% to 120%. Specifically, in Examples 1 to 9, the average radius is in the range of 82% to 118%, and in Example 10, the average radius is in the range of 97% to 106%. In Example 11, the average radius is in the range of 96% to 116%, and in Example 12, the average radius is in the range of 97% to 105%. In Example 13, those having an average radius in the range of 89% to 118% were used.
 すなわち、実施例1~13における研磨パッドに形成された複数の開口部は、上述の実施の形態で説明した条件(平均値rに対して、使用開始時およびドレス加工が施される毎における複数の開口部27の平均半径が80%以上120%以下の範囲内)を満足している。 That is, the plurality of openings formed in the polishing pads in Examples 1 to 13 are the same as the conditions described in the above-described embodiment (the average value r is a plurality of openings at the start of use and each time dressing is performed. The average radius of the openings 27 is in the range of 80% to 120%.
 一方、比較例1における研磨パッドは、使用開始時およびドレス加工が実施される毎にそれぞれ規定される開口部の平均半径が、それらの平均値rに対して57%以上167%以下の範囲内となるように設定されている。比較例1における研磨パッドに形成された複数の開口部は、上述の実施の形態で説明した条件(平均値rに対して、使用開始時およびドレス加工が施される毎における複数の開口部27の平均半径が80%以上120%以下の範囲内)を満足していない。 On the other hand, in the polishing pad in Comparative Example 1, the average radius of the opening defined at the start of use and every time dressing is performed is in the range of 57% to 167% with respect to the average value r. It is set to become. The plurality of openings formed in the polishing pad in Comparative Example 1 are the same as the conditions described in the above-described embodiment (the plurality of openings 27 at the start of use and each time dressing is performed on the average value r). In the range of 80% or more and 120% or less).
 (実施例1~10,13と比較例1との対比)
 実施例1~10,13および比較例1における各研磨パッドを使用して精密研磨処理を施した100枚のガラス基板のそれぞれに対して、磁性膜を成膜した。磁性膜が成膜された100枚のガラス基板のそれぞれに対してグライド検査を実施し、研磨パッドの使用開始時(以下、使用前ともいう)および研磨パッドに対してドレス加工を100回行なった後(以下、使用後ともいう)におけるガラス基板のグライド検査収率を測定した。
(Contrast with Examples 1 to 10, 13 and Comparative Example 1)
A magnetic film was formed on each of 100 glass substrates subjected to precision polishing using each of the polishing pads in Examples 1 to 10, 13 and Comparative Example 1. Glide inspection was performed on each of 100 glass substrates on which magnetic films were formed, and dressing was performed 100 times at the start of use of the polishing pad (hereinafter also referred to as before use) and on the polishing pad. The glide test yield of the glass substrate after (hereinafter also referred to as after use) was measured.
 ここで、グライド検査収率(グライド試験合格率ともいう)とは、磁性膜の表面に存在する所定の高さ以上の突起を一定高さで浮上する磁気ヘッドで全周にわたって検知する検査において、グライド試験に合格する確率を示している。 Here, the glide test yield (also referred to as the glide test pass rate) is a test in which a projection having a predetermined height or more existing on the surface of the magnetic film is detected over the entire circumference with a magnetic head that floats at a constant height. The probability of passing the glide test is shown.
 実施例1の研磨パッドにおいては、研磨パッドの使用前におけるグライド検査収率が93%であり、研磨パッドの使用後におけるグライド検査収率が91%であった。使用前と使用後とのグライド検査収率の差は2%である。実施例1の研磨パッドにおいては、使用前および使用後の双方において、ガラス基板の主表面における品質が一定の範囲内に維持されていることがわかる。 In the polishing pad of Example 1, the glide test yield before using the polishing pad was 93%, and the glide test yield after using the polishing pad was 91%. The difference in glide test yield before use and after use is 2%. In the polishing pad of Example 1, it turns out that the quality in the main surface of a glass substrate is maintained in the fixed range both before and after use.
 同様に、実施例2~10,13においても、使用前と使用後とのグライド検査収率の差は最大で実施例7の13%である。実施例2~10,13の研磨パッドにおいても、使用前および使用後の双方において、ガラス基板の主表面における品質が一定の範囲内に維持されていることがわかる。 Similarly, in Examples 2 to 10 and 13, the difference in the glide inspection yield before use and after use is 13% of Example 7 at the maximum. Also in the polishing pads of Examples 2 to 10 and 13, it can be seen that the quality on the main surface of the glass substrate is maintained within a certain range both before and after use.
 一方、比較例1の研磨パッドにおいては、研磨パッドの使用前におけるグライド検査収率が96%であり、研磨パッドの使用後におけるグライド検査収率が72%であった。使用前と使用後とのグライド検査収率の差は24%である。比較例1の研磨パッドにおいては、ガラス基板の主表面における品質が一定の範囲内に維持されておらず、ガラス基板の主表面において微小うねり成分などの品質にばらつきが存在していることがわかる。 On the other hand, in the polishing pad of Comparative Example 1, the glide inspection yield before use of the polishing pad was 96%, and the glide inspection yield after use of the polishing pad was 72%. The difference in the glide test yield before use and after use is 24%. In the polishing pad of Comparative Example 1, the quality on the main surface of the glass substrate is not maintained within a certain range, and it can be seen that there is a variation in the quality of the microwaviness component and the like on the main surface of the glass substrate. .
 比較例1における研磨パッドを使用して精密研磨処理を施した100枚のガラス基板の中から、グライド検査の不合格品となったガラス基板について検査した。検査には光学表面アナライザ(OSA(Optical Surface Analyzer)KLA-TENCOL社製、OSA6100)を用い、解析に用いる空間周波数は200μm以上1000μm以下に設定した。その結果、これらの不合格品となったガラス基板においては微小うねり成分が所定の基準値を超えていた。このことから、ガラス基板の主表面における微小うねり成分などの品質のばらつきを低減するためには、使用開始時およびドレス加工が実施される毎にそれぞれ規定される開口部の平均半径が、それらの平均値rに対して80%以上120%以下の範囲内となるように設定されるとよいことがわかる。 The glass substrates that failed the glide test were inspected from 100 glass substrates that had been subjected to precision polishing using the polishing pad in Comparative Example 1. An optical surface analyzer (OSA (Optical Surface Analyzer), KLA-TENCOL, OSA6100) was used for the inspection, and the spatial frequency used for the analysis was set to 200 μm or more and 1000 μm or less. As a result, in these glass substrates that were rejected, the minute waviness component exceeded a predetermined reference value. From this, in order to reduce the quality variation such as the micro-waviness component on the main surface of the glass substrate, the average radius of the opening defined respectively at the start of use and every time dressing is performed, It can be seen that the average value r is preferably set to be in the range of 80% to 120%.
 (実施例10~13と比較例1との対比)
 ここで、実施例10,13における研磨パッドは、図9および図10に示すスタンパ30を用いて作製された。スタンパ30は、ステンレス製であり、凹凸パターンとしての複数の突起部37の外形形状はそれぞれ円柱状である。複数の突起部37の平坦面34からの突出高さはそれぞれ約250μmである。複数の突起部37の直径はそれぞれ約80μmであり、研磨パッドに作成する開口部の形状に応じて微小なテーパーを持つ形状とした。複数の突起部37の間隔(ピッチ)は180μmである。
(Comparison between Examples 10 to 13 and Comparative Example 1)
Here, the polishing pads in Examples 10 and 13 were produced using the stamper 30 shown in FIGS. The stamper 30 is made of stainless steel, and the outer shapes of the plurality of protrusions 37 as the concavo-convex pattern are each cylindrical. The protruding heights of the plurality of protrusions 37 from the flat surface 34 are each about 250 μm. Each of the plurality of protrusions 37 has a diameter of about 80 μm, and has a shape with a minute taper corresponding to the shape of the opening formed in the polishing pad. The interval (pitch) between the plurality of protrusions 37 is 180 μm.
 実施例11における研磨パッドは、図11に示す方法によって作製された。具体的には、20mm四方の無発泡のウレタンシートを公知の方法によって作製し、エキシマレーザーによるレーザー加工により、研磨面からの深さが300μm、直径が90μm、間隔(ピッチ)が200μmとなる複数の円柱状の凹部を形成した(いずれも設計値)。当該凹部は、研磨面内に開口部を形成している。当該凹部は、所定の電極形状を有する電極を使用する放電加工などの他の手段によって形成されてもよい。 The polishing pad in Example 11 was produced by the method shown in FIG. Specifically, a 20 mm square non-foamed urethane sheet is produced by a known method, and a laser processing with an excimer laser is performed so that the depth from the polished surface is 300 μm, the diameter is 90 μm, and the interval (pitch) is 200 μm. A cylindrical recess was formed (both designed values). The recess forms an opening in the polishing surface. The concave portion may be formed by other means such as electric discharge machining using an electrode having a predetermined electrode shape.
 実施例12における研磨パッドは、図12に示す方法によって作製された。具体的には、15mm四方の無発泡のウレタンシートを公知の方法によって作製し、ボール盤による機械加工などによって、研磨面からの深さが300μm、直径が90μm、間隔(ピッチ)が200μmとなる複数の円柱状の凹部を形成した(いずれも設計値)。当該凹部は、研磨面内に開口部を形成している。 The polishing pad in Example 12 was produced by the method shown in FIG. Specifically, a 15 mm square non-foamed urethane sheet is produced by a known method, and a depth of 300 μm from the polished surface, a diameter of 90 μm, and an interval (pitch) of 200 μm are obtained by machining with a drilling machine. A cylindrical recess was formed (both designed values). The recess forms an opening in the polishing surface.
 一方、比較例1における研磨パッドは、公知(たとえば特開2010-082721号公報)の方法を使用して、パッド表面をバフ加工し、発泡ポアが研磨面内に開口部を有するように作製した。 On the other hand, the polishing pad in Comparative Example 1 was prepared by buffing the pad surface using a known method (for example, Japanese Patent Application Laid-Open No. 2010-082721) so that the foamed pore has an opening in the polishing surface. .
 実施例10~13および比較例1における研磨パッドのそれぞれに対し、隣り合う開口部同士の間隔(隣り合う開口部同士の間に位置する研磨層の壁厚さ)を、使用開始時およびドレス加工が10回実施される毎に測定し、これらの平均値(平均間隔値)を算出した。なお、隣り合う開口部同士の間隔は、500μm四方の面内での平均値として測定したものである。その結果、平均値(平均間隔値)は、実施例10~13では100μm~106μm、比較例1では22μmであった。 For each of the polishing pads in Examples 10 to 13 and Comparative Example 1, the interval between adjacent openings (the wall thickness of the polishing layer positioned between adjacent openings) is set at the start of use and dressing. Was measured every 10 times, and the average value (average interval value) was calculated. In addition, the space | interval of adjacent opening parts is measured as an average value in a 500 micrometers square surface. As a result, the average value (average interval value) was 100 μm to 106 μm in Examples 10 to 13 and 22 μm in Comparative Example 1.
 実施例10~13および比較例1における研磨パッドのそれぞれに対し、複数の開口部の研磨面に対する面積占有率を、使用開始時およびドレス加工が10回実施される毎に測定し、これらの平均値を算出した。なお、この面積占有率は、500μm四方の面内での平均値として測定したものである。その結果、開口部の面積占有率の平均値は、実施例10~13では35%~38%、比較例1では35%であった。 For each of the polishing pads in Examples 10 to 13 and Comparative Example 1, the area occupation ratio of the plurality of openings to the polishing surface was measured at the start of use and every time dressing was performed 10 times, and the average of these was measured. The value was calculated. This area occupancy was measured as an average value in a 500 μm square plane. As a result, the average value of the area occupancy ratio of the openings was 35% to 38% in Examples 10 to 13 and 35% in Comparative Example 1.
 実施例10~13および比較例1における研磨パッドのそれぞれに対し、複数の開口部の平均直径を、使用開始時およびドレス加工が10回実施される毎に測定し、これらの平均値を算出した。なお、複数の開口部の平均直径は、500μm四方の面内での平均値として測定したものである。その結果、複数の開口部の直径の平均値は、実施例10~13では81~95μm、比較例1では18μmであった。 For each of the polishing pads in Examples 10 to 13 and Comparative Example 1, the average diameter of the plurality of openings was measured at the start of use and every time dressing was performed 10 times, and the average value was calculated. . The average diameter of the plurality of openings was measured as an average value in a 500 μm square plane. As a result, the average value of the diameters of the plurality of openings was 81 to 95 μm in Examples 10 to 13 and 18 μm in Comparative Example 1.
 実施例10~13と比較例1との対比から、上述の実施の形態において説明した研磨パッドの製造方法によれば、使用開始時およびドレス加工が実施される毎にそれぞれ規定される複数の開口部の平均半径が、それらの平均値rに対して80%以上120%以下の範囲内となるように設定可能であることがわかる。 According to the comparison between Examples 10 to 13 and Comparative Example 1, according to the polishing pad manufacturing method described in the above embodiment, a plurality of openings respectively defined at the start of use and each time dressing is performed. It can be seen that the average radius of the portion can be set to be in the range of 80% to 120% with respect to the average value r.
 以上、本発明に基づいた実施の形態および各実施例について説明したが、今回開示された各実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment and each Example based on this invention were described, each embodiment and each Example disclosed this time are illustrations in all points, and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ガラス基板、1A 表主表面、1B 裏主表面、1C 内周端面、1D 外周端面、1H 孔、2 磁気薄膜層、10 磁気ディスク、20,20A~20C 研磨パッド、22 研磨層(樹脂層)、24 研磨面、26 発泡ポア、27 開口部、30 スタンパ(成形用金型)、34 平坦面、37 突起部、39 枠体、40 レーザー発振器、50 ドリル、E1~E3 間隔、R1~R3 点線。 1 glass substrate, 1A front main surface, 1B back main surface, 1C inner peripheral end surface, 1D outer peripheral end surface, 1H hole, 2 magnetic thin film layer, 10 magnetic disk, 20, 20A-20C polishing pad, 22 polishing layer (resin layer) , 24 polished surface, 26 foam pores, 27 openings, 30 stamper (molding die), 34 flat surface, 37 protrusions, 39 frame, 40 laser oscillator, 50 drill, E1-E3 spacing, R1-R3 dotted line .

Claims (7)

  1.  研磨面(24)内に複数の開口部(27)が形成された研磨パッド(20A)、および複数のガラス基板(1)を準備する準備工程と、
     前記研磨パッド(20A)の前記研磨面(24)を繰り返し使用して複数の前記ガラス基板(1)の各々に対して研磨処理を施すとともに、前記研磨面(24)が所定の回数使用される毎に前記研磨面(24)にドレス加工を施す研磨工程と、を備え、
     前記研磨面(24)の使用開始時には、前記研磨面(24)の使用開始時における複数の前記開口部(27)の各々の面積に基づいて、前記研磨面(24)の使用開始時における複数の前記開口部(27)の第1平均面積が規定され、
     前記研磨面(24)に前記ドレス加工が実施される毎には、前記ドレス加工が実施される毎における複数の前記開口部(27)の各々の面積に基づいて、前記ドレス加工が実施される毎における複数の前記開口部(27)の第2平均面積が規定され、
     前記第1平均面積および前記研磨工程を通しての前記第2平均面積に基づいて、前記第1平均面積および前記研磨工程を通しての前記第2平均面積の平均値が規定され、
     前記第1平均面積および前記研磨工程を通しての前記第2平均面積は、前記第1平均面積および前記研磨工程を通しての前記第2平均面積の前記平均値に対して、64%以上144%以下の範囲内である、
    ガラス基板の製造方法。
    A preparation step of preparing a polishing pad (20A) having a plurality of openings (27) formed in a polishing surface (24), and a plurality of glass substrates (1);
    The polishing surface (24) of the polishing pad (20A) is repeatedly used to polish each of the plurality of glass substrates (1), and the polishing surface (24) is used a predetermined number of times. A polishing step for dressing the polishing surface (24) every time,
    At the start of use of the polishing surface (24), the plurality of at the start of use of the polishing surface (24) based on the area of each of the plurality of openings (27) at the start of use of the polishing surface (24). A first average area of the opening (27) of
    Each time the dressing is performed on the polished surface (24), the dressing is performed based on the area of each of the plurality of openings (27) each time the dressing is performed. A second average area of the plurality of openings (27) in each is defined;
    Based on the first average area and the second average area through the polishing process, an average value of the first average area and the second average area through the polishing process is defined,
    The first average area and the second average area through the polishing step are in the range of 64% to 144% with respect to the average value of the first average area and the second average area through the polishing step. Is within,
    A method for producing a glass substrate.
  2.  前記準備工程において準備される前記研磨パッド(20A)は、前記研磨面(24)を構成する樹脂層(22)を含み、
     前記準備工程においては、複数の凹凸パターンを有する成形用金型(30)を使用して、複数の前記凹凸パターンを前記樹脂層(22)に転写することによって、前記研磨面(24)内に複数の前記開口部(27)が形成された前記研磨パッド(20A)が準備される、
    請求項1に記載のガラス基板の製造方法。
    The polishing pad (20A) prepared in the preparation step includes a resin layer (22) constituting the polishing surface (24),
    In the preparation step, by using a molding die (30) having a plurality of concavo-convex patterns, a plurality of the concavo-convex patterns are transferred to the resin layer (22), whereby the polishing surface (24) is transferred. The polishing pad (20A) in which a plurality of the openings (27) are formed is prepared.
    The manufacturing method of the glass substrate of Claim 1.
  3.  前記準備工程において準備される前記研磨パッド(20A)は、前記研磨面(24)を構成する樹脂層(22)を含み、
     前記準備工程においては、前記樹脂層(22)のうち前記開口部(27)に対応する部分に熱加工を施すことによって、前記研磨面(24)内に複数の前記開口部(27)が形成された前記研磨パッド(20A)が準備される、
    請求項1に記載のガラス基板の製造方法。
    The polishing pad (20A) prepared in the preparation step includes a resin layer (22) constituting the polishing surface (24),
    In the preparatory step, a plurality of openings (27) are formed in the polishing surface (24) by subjecting a portion of the resin layer (22) corresponding to the openings (27) to thermal processing. The polished polishing pad (20A) is prepared,
    The manufacturing method of the glass substrate of Claim 1.
  4.  前記準備工程において準備される前記研磨パッド(20A)は、前記研磨面(24)を構成する樹脂層(22)を含み、
     前記準備工程においては、前記樹脂層(22)のうち前記開口部(27)に対応する部分に機械加工を施すことによって、前記研磨面(24)内に複数の前記開口部(27)が形成された前記研磨パッド(20A)が準備される、
    請求項1に記載のガラス基板の製造方法。
    The polishing pad (20A) prepared in the preparation step includes a resin layer (22) constituting the polishing surface (24),
    In the preparatory step, a plurality of openings (27) are formed in the polishing surface (24) by machining a portion of the resin layer (22) corresponding to the openings (27). The polished polishing pad (20A) is prepared,
    The manufacturing method of the glass substrate of Claim 1.
  5.  前記研磨面(24)の使用開始時および前記研磨面(24)に前記ドレス加工が実施される毎において、前記研磨面(24)内に形成される複数の前記開口部(27)のうち隣り合う前記開口部(27)同士の間の平均間隔値が規定され、
     前記平均間隔値は、5μm以上100μm以下の範囲内である、
    請求項1から4のいずれかに記載のガラス基板の製造方法。
    Next to the plurality of openings (27) formed in the polishing surface (24) at the start of use of the polishing surface (24) and each time the dressing is performed on the polishing surface (24). An average spacing value between the matching openings (27) is defined;
    The average interval value is in the range of 5 μm to 100 μm.
    The manufacturing method of the glass substrate in any one of Claim 1 to 4.
  6.  前記研磨面(24)の使用開始時および前記研磨面(24)に前記ドレス加工が実施される毎において、前記研磨面(24)内に形成された複数の前記開口部(27)の総面積が規定され、
     前記研磨面(24)の使用開始時および前記研磨面(24)に前記ドレス加工が実施される毎における前記総面積は、前記研磨面(24)の面積に対して20%以上60%以下の範囲内である、
    請求項1から5のいずれかに記載のガラス基板の製造方法。
    The total area of the plurality of openings (27) formed in the polishing surface (24) at the start of use of the polishing surface (24) and each time the dressing is performed on the polishing surface (24). Is defined,
    The total area at the start of use of the polishing surface (24) and each time the dressing is performed on the polishing surface (24) is 20% or more and 60% or less with respect to the area of the polishing surface (24). Is in range,
    The manufacturing method of the glass substrate in any one of Claim 1 to 5.
  7.  前記第1平均面積および前記研磨工程を通しての前記第2平均面積の前記平均値は、0.25π×10-12(m)以上1.00π×10-8(m)以下の範囲内である、
    請求項1から6のいずれかに記載のガラス基板の製造方法。
    The average value of the first average area and the second average area through the polishing step is within a range of 0.25π × 10 −12 (m 2 ) to 1.00π × 10 −8 (m 2 ). is there,
    The manufacturing method of the glass substrate in any one of Claim 1 to 6.
PCT/JP2011/078156 2010-12-28 2011-12-06 Method for producing glass substrate WO2012090655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550795A JPWO2012090655A1 (en) 2010-12-28 2011-12-06 Manufacturing method of glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293389 2010-12-28
JP2010293389 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090655A1 true WO2012090655A1 (en) 2012-07-05

Family

ID=46382774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078156 WO2012090655A1 (en) 2010-12-28 2011-12-06 Method for producing glass substrate

Country Status (2)

Country Link
JP (1) JPWO2012090655A1 (en)
WO (1) WO2012090655A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069609A1 (en) * 2012-10-31 2014-05-08 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP5867653B2 (en) * 2013-12-25 2016-02-24 Dic株式会社 Porous body and polishing pad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329007A (en) * 1997-05-28 1998-12-15 Sony Corp Chemical machine polishing device
JP2002083790A (en) * 2000-09-06 2002-03-22 Toray Ind Inc Manufacturing method for polishing pad
JP2005149668A (en) * 2003-11-19 2005-06-09 Hoya Corp Manufacturing method for glass substrate for magnetic disk, and manufacturing method for magnetic disk
WO2009096294A1 (en) * 2008-01-30 2009-08-06 Asahi Glass Co., Ltd. Process for producing glass substrate for magnetic disk
JP2011218517A (en) * 2010-04-13 2011-11-04 Toray Coatex Co Ltd Polishing pad

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218533A (en) * 2008-03-13 2009-09-24 Jsr Corp Chemical-mechanical polishing pad, and chemical-mechanical polishing method
JP2009283538A (en) * 2008-05-20 2009-12-03 Jsr Corp Chemical mechanical polishing pad and chemical mechanical polishing method
JP5254729B2 (en) * 2008-09-30 2013-08-07 富士紡ホールディングス株式会社 Polishing pad

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329007A (en) * 1997-05-28 1998-12-15 Sony Corp Chemical machine polishing device
JP2002083790A (en) * 2000-09-06 2002-03-22 Toray Ind Inc Manufacturing method for polishing pad
JP2005149668A (en) * 2003-11-19 2005-06-09 Hoya Corp Manufacturing method for glass substrate for magnetic disk, and manufacturing method for magnetic disk
WO2009096294A1 (en) * 2008-01-30 2009-08-06 Asahi Glass Co., Ltd. Process for producing glass substrate for magnetic disk
JP2011218517A (en) * 2010-04-13 2011-11-04 Toray Coatex Co Ltd Polishing pad

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069609A1 (en) * 2012-10-31 2014-05-08 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JPWO2014069609A1 (en) * 2012-10-31 2016-09-08 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5867653B2 (en) * 2013-12-25 2016-02-24 Dic株式会社 Porous body and polishing pad

Also Published As

Publication number Publication date
JPWO2012090655A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
US8728638B2 (en) Magnetic disk substrate, method for manufacturing the same, and magnetic disk
JP5297549B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP6181325B2 (en) Magnetic disk substrate manufacturing method and magnetic disk manufacturing method
JP5768554B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP2012234604A (en) Method for manufacturing glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
WO2012090655A1 (en) Method for producing glass substrate
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6692006B2 (en) Polishing liquid, glass substrate manufacturing method, and magnetic disk manufacturing method
JP2018200743A (en) Method for manufacturing glass substrate as base of glass substrate for a magnetic disk, method for manufacturing glass substrate for magnetic disk and fixed abrasive grindstone
JP6637944B2 (en) Polishing pad material, polishing pad manufacturing method, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
WO2015002152A1 (en) Carrier, method for producing substrate for magnetic disks, and method for producing magnetic disk
JP6307407B2 (en) Manufacturing method of glass substrate
WO2014045653A1 (en) Method for manufacturing glass substrate for information recording medium
JP6138114B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for polishing
JP6193388B2 (en) Method of manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate, method of manufacturing magnetic disk, and fixed abrasive wheel
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk
JP5704777B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2010179395A (en) Manufacturing method for glass substrate
WO2013146134A1 (en) Manufacturing method for glass substrate for information recording medium, and information recording medium
JP2016071909A (en) Manufacturing method of magnetic disk substrate and manufacturing method of magnetic
JP2015011741A (en) Method of manufacturing glass substrate for magnetic recording medium
JP2014161989A (en) Rotary grind stone and method for production of glass substrate for magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853811

Country of ref document: EP

Kind code of ref document: A1