WO2015002152A1 - Carrier, method for producing substrate for magnetic disks, and method for producing magnetic disk - Google Patents

Carrier, method for producing substrate for magnetic disks, and method for producing magnetic disk Download PDF

Info

Publication number
WO2015002152A1
WO2015002152A1 PCT/JP2014/067448 JP2014067448W WO2015002152A1 WO 2015002152 A1 WO2015002152 A1 WO 2015002152A1 JP 2014067448 W JP2014067448 W JP 2014067448W WO 2015002152 A1 WO2015002152 A1 WO 2015002152A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
substrate
polishing
glass substrate
resin
Prior art date
Application number
PCT/JP2014/067448
Other languages
French (fr)
Japanese (ja)
Inventor
将徳 玉置
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to SG11201509844VA priority Critical patent/SG11201509844VA/en
Priority to JP2015525212A priority patent/JP6063044B2/en
Priority to CN201480024723.3A priority patent/CN105163908B/en
Publication of WO2015002152A1 publication Critical patent/WO2015002152A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces

Definitions

  • the present invention relates to a glass substrate for a magnetic disk mounted on a magnetic recording device such as a hard disk drive (hereinafter abbreviated as “HDD”) or a carrier used for manufacturing an aluminum alloy substrate having a NiP film formed on the surface.
  • the present invention also relates to a method for manufacturing a magnetic disk substrate using the carrier, and a method for manufacturing a magnetic disk.
  • a magnetic disk as one of information recording media mounted on a magnetic recording apparatus such as an HDD.
  • a magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate.
  • the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing.
  • the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible.
  • HDDs high recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.
  • a glass substrate for a magnetic disk is usually manufactured through a rough grinding process, a shape processing process, a fine grinding process, an end surface polishing process, a main surface polishing process (first polishing process, second polishing process), a chemical strengthening process, and the like.
  • the glass substrate and the polishing pad are brought into contact with each other, and the polishing pad and the glass substrate are relatively moved while supplying the polishing liquid containing the polishing abrasive grains. Polish in a mirror shape.
  • a planetary gear type double-side polishing apparatus as shown in FIG. 5 is generally used.
  • the double-side polishing apparatus shown in FIG. 5 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outer side, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3.
  • a polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between 5 and the lower surface plate 6.
  • the workpiece 1 held on the carrier 10 that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6 during polishing, and the upper and lower surface plates 5 and 6 are polished.
  • the carrier 10 revolves and rotates according to the rotation of the sun gear 2 and the internal gear 3, and the upper and lower surfaces of the workpiece 1 are moved. Polished. Also in the grinding step, processing is performed using a double-side grinding apparatus having the same configuration as the double-side polishing apparatus.
  • the carrier holds the glass substrate when grinding or polishing the glass substrate, which is a workpiece, and is formed of, for example, a resin material.
  • a whole holding member 11 having a plurality of holding holes 12 for holding the substrate is a disc-shaped holding member 11.
  • This carrier is used while being rotated by the sun gear and the internal gear in a state of being sandwiched between the upper and lower surface plates in the apparatus in the same manner as the processing object while being a non-processing object. Therefore, when the glass substrate is ground or polished, the holding hole of the carrier is always in contact with or away from the outer peripheral end surface of the glass substrate. At this time, the inner wall of the holding hole and the glass substrate rub against each other, so that scratches may occur on the end surface (particularly the side wall surface) of the glass substrate. If there is such a scratch, it becomes a dust generation source not only during the manufacture of the magnetic disk glass substrate but also during the subsequent manufacture of the magnetic disk or HDD.
  • the carrier material is insufficient for the carrier base material alone, the composite material such as glass fiber and epoxy resin is usually used to increase the strength.
  • the glass fiber is used on the inner wall of the holding hole. If it protrudes or is exposed, it will be scratched or damaged when it comes into contact with the glass substrate end face.
  • Patent Document 1 for example, by etching a polishing carrier with hydrofluoric acid or the like, the glass fiber on the inner wall of the holding hole of the carrier is dissolved and removed to a certain depth, and a resin material having a plurality of recesses on the surface layer portion of the inner wall
  • Patent Document 2 provides damage to the glass substrate end face by providing a resin contact portion formed thicker than the fiber protruding from the inner wall surface on the inner wall surface of the holding hole of the polishing carrier. Techniques for reducing are disclosed.
  • the glass substrate for magnetic disks is normally processed into the thickness of 2 mm or less also including the thing in the middle of a process, the thing with an extremely thin board thickness of 2 mm or less is used also about the carrier holding this glass substrate.
  • a contact portion can be provided on the inner wall surface of the holding hole by, for example, resin coating, but the inner wall surface of the holding hole becomes a very narrow region because the plate thickness is thin. The adhesion of the abutting portion to the inner wall surface of the holding hole is low, and the abutting portion breaks or falls off due to contact with the glass substrate during processing, and the problem of damage due to exposure of the glass fiber is fundamental. It is difficult to solve.
  • the above-mentioned problem occurs not only in the glass substrate but also in the manufacture of an aluminum alloy substrate having a NiP film formed on the surface.
  • the main surface of the aluminum alloy substrate on which the NiP film is formed is polished using a double-side polishing apparatus while the substrate is held by a carrier.
  • the NiP film has a lower hardness than the glass substrate, the outer peripheral end face is easily scratched. Also, NiP sludge is generated by polishing.
  • the present invention has been made to solve such a conventional problem.
  • the purpose of the present invention is, first, to reduce the occurrence of scratches during processing, and for a magnetic disk having good durability. It is to provide a carrier used for processing a substrate.
  • a second object of the present invention is to provide a method for manufacturing a magnetic disk substrate and a method for manufacturing a magnetic disk, including processing for grinding or polishing the magnetic disk substrate using such a carrier.
  • the present inventor has found that the above-described problems can be solved by the invention having the following configuration, and has completed the present invention. That is, the present invention has the following configuration in order to achieve the above object.
  • a carrier that is formed using a composite material including fibers and a resin material and has a holding hole for holding the substrate when the main surface of the disk-shaped substrate is polished or ground, and the holding hole
  • the inner peripheral wall surface of the carrier has a plurality of recesses extending in the in-plane direction of the carrier and free of fibers, and the plurality of recesses are filled with a resin.
  • (Configuration 4) 4. The carrier according to claim 1, wherein Ra of the inner peripheral wall surface of the holding hole has a Ra of 1.0 ⁇ m or less.
  • (Configuration 5) The carrier according to any one of configurations 1 to 4, wherein a distance in a carrier in-plane direction of a region including the plurality of concave portions filled with the resin is 100 ⁇ m or less.
  • (Configuration 8) The processing is performed by supplying a polishing liquid containing abrasive grains between a polishing pad affixed to the surface of a surface plate and a main surface of the disk-shaped substrate, and the main surface of the disk-shaped substrate A method for manufacturing a magnetic disk substrate according to Configuration 7, wherein the magnetic disk substrate is polished. (Configuration 9) 8. The method for manufacturing a magnetic disk substrate according to Configuration 7, wherein the processing is a grinding process in which a main surface of the disk-shaped substrate is ground with a surface plate to which fixed abrasive grains are attached.
  • a magnetic disk manufacturing method comprising: forming at least a magnetic recording layer on a magnetic disk substrate obtained by the manufacturing method according to any one of Structures 7 to 11.
  • the carrier according to the present invention has the above-described configuration, so that the agglomerates in which abrasive grains and glass sludge during processing are accumulated in the recesses from which the glass fibers existing on the inner walls of the holding holes of the carrier are removed, It is possible to provide a carrier used for processing a magnetic disk substrate having excellent durability, which can reduce the occurrence of debris due to the destruction of the surroundings, or scratches caused by glass fibers exposed on the inner wall of the holding hole. . In addition, by grinding or polishing a magnetic disk substrate using such a carrier, it is possible to reduce scratches on the substrate main surface and end surface, which are obstructive factors in realizing high recording density of the medium. It is possible to manufacture a high-quality magnetic disk substrate that can be used. Furthermore, by using this substrate, it is possible to obtain a highly reliable magnetic disk that can obtain stable characteristics without failure.
  • FIG. 2 It is a whole perspective view of the glass substrate for magnetic discs. It is a top view of the carrier concerning the present invention. It is a longitudinal cross-sectional view of the carrier of FIG. 2 which shows one Embodiment of the carrier based on this invention. It is a longitudinal cross-sectional view of the carrier of FIG. 2 which shows other embodiment of the carrier which concerns on this invention. It is a longitudinal cross-sectional view which shows schematic structure of a double-side polish apparatus.
  • a glass substrate for a magnetic disk is usually manufactured through a rough grinding process, a shape processing process, a fine grinding process, an end surface polishing process, a main surface polishing process (first polishing process, second polishing process), a chemical strengthening process, and the like.
  • a disk-shaped glass substrate (glass disk) is molded from molten glass by direct pressing.
  • a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
  • rough grinding is performed on the main surface of the molded glass substrate to improve dimensional accuracy and shape accuracy.
  • a double-side grinding apparatus is usually used to grind the main surface of the glass substrate using loose abrasive grains or fixed abrasive grains.
  • a shape processing (chamfering) step is performed. Thereafter, a precision grinding process is performed as appropriate.
  • a grinding method using fixed abrasive grains using a diamond pad is suitable.
  • a diamond pad is an agglomerate in which diamond particles or some diamond particles are hardened with a binder such as glass, ceramic, metal, resin, etc., and fixed using a support material such as resin (for example, acrylic resin).
  • a pellet is pasted on a sheet.
  • the diamond pad is not necessarily a general name, but is referred to as “diamond pad” here for convenience.
  • the main surface is mirror-polished to obtain a highly accurate plane.
  • a polishing pad such as polyurethane foam while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. .
  • the colloidal silica abrasive grains contained in the above polishing liquid are those having an average particle diameter in the range of 1 to 50 nm.
  • the abrasive grains contained in the polishing liquid used in the finishing mirror polishing process (second polishing process in the subsequent stage) should have an average particle diameter of 10 nm or more and less than 30 nm from the viewpoint of further reducing the surface roughness. It is preferred to use. More preferably, it is in the range of 10 to 20 nm.
  • the average particle size is a point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%. (Hereinafter referred to as “cumulative average particle diameter (50% diameter)”).
  • the cumulative average particle diameter (50% diameter) is specifically a value obtained by measurement using a particle diameter / particle size distribution measuring apparatus.
  • the glass substrate and the polishing pad are brought into contact with each other, and the polishing pad and the glass substrate are moved relative to each other while supplying a polishing liquid containing polishing abrasive grains, thereby polishing the surface of the glass substrate in a mirror shape. do it.
  • FIG. 5 is a longitudinal sectional view showing a schematic configuration of a planetary gear type double-side polishing apparatus that can be used in a mirror polishing process of a glass substrate, and the configuration thereof is as already described.
  • the double-side polishing apparatus shown in FIG. 5 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outside thereof, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3.
  • An upper surface plate 5 and a lower surface plate 6 each having a carrier 10 that revolves and rotates in accordance with the rotation of the substrate 10 and a polishing pad 7 that can hold the workpiece 1 held by the carrier 10.
  • a polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between the panel 5 and the lower surface plate 6.
  • the workpiece 1 held on the carrier 10 that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6 during polishing, and the upper and lower surface plates 5 and 6 are polished.
  • the carrier 10 revolves and rotates according to the rotation of the sun gear 2 and the internal gear 3, and the upper and lower surfaces of the workpiece 1 are moved. Polished.
  • the present invention relates to the carrier 10 used for holding a glass substrate which is an object to be processed in the above polishing process.
  • the carrier according to the present invention for example, presses the processing surface of the surface plate against the main surface of the glass substrate, relatively moves the processing surface of the surface plate and the glass substrate, and moves the main surface of the glass substrate. It is a carrier that is used when processing and holds the glass substrate horizontally.
  • FIG. 2 and 3 each show an embodiment of a carrier according to the present invention.
  • FIG. 2 is a plan view of the carrier according to the present invention.
  • FIG. 3 is a longitudinal sectional view of the carrier of FIG. 2 showing an embodiment of the carrier according to the present invention.
  • a carrier 10 is composed of a disk-shaped holding member 11 as a whole and includes a plurality of holding holes 12 for holding a glass substrate.
  • the plurality of holding holes 12 are all circular in order to uniformly grind and polish the main surface of the glass substrate, and to suppress generation of scratches due to local contact with the end surface of the glass substrate. Desirably, it is formed in a perfect circle as in this embodiment.
  • the roundness of the holding hole is preferably, for example, 20 ⁇ m or less.
  • the roundness of the holding hole can be measured by, for example, a roundness / cylindrical shape measuring machine.
  • the holding hole 12 can be formed, for example, by drilling a hole of a predetermined size in the base material of the disk-shaped holding member 11.
  • the difference between the hole diameter (diameter) of the holding hole 12 and the outer diameter of the glass substrate held in the holding hole 12 is usually 0.1 to 1.0 mm regardless of the size of the glass substrate. It is preferable. If it is larger than 1.0 mm, the followability to the carrier motion (planetary gear motion) of the glass substrate is deteriorated, and grinding or polishing unevenness may occur on the main surface. On the other hand, if the thickness is less than 0.1 mm, the degree of freedom of movement of the glass substrate in the holding hole becomes too low, and the force concentrates on the same portion of the end portion, which may easily cause scratches. Moreover, it becomes difficult to attach and detach the substrate from the carrier.
  • a plurality of gear teeth 13 that mesh with the sun gear 2 and the internal gear 3 of the double-side polishing apparatus are formed on the outer peripheral portion of the holding member 11.
  • the holding member 11 is formed of a composite material including glass fibers 30 and a resin material A (for example, epoxy resin) 31 except for a region A1 described later. Yes. Specifically, for example, it is formed of a base material in which glass fibers are laminated in an epoxy resin (or a laminate of a plurality of such base materials). In addition, for example, metal fibers can be used instead of glass fibers. In this case, the case where a holding member is formed with the composite material containing glass fiber and a resin material is illustrated as an example. In FIG. 3, for convenience of illustration, the internal cross-sectional structure of the holding member 11 (particularly, the region made of the composite material) is merely depicted as an image, and the actual internal structure is not necessarily accurately depicted. .
  • a resin material A for example, epoxy resin
  • the inner peripheral wall surface of the holding hole 12 includes a plurality of glass fibers extending in the in-plane direction of the carrier that are orthogonal to the inner peripheral wall surface and do not exist.
  • the plurality of recesses 20 are filled with a resin material B21 that is the same as or different from the resin material A31. Then, the resin material A31 including the plurality of recesses 20 and the resin material B21 are formed in the in-plane direction of the carrier main surface from the inner peripheral wall surface of the holding hole 12 toward the outside of the holding hole. A region A1 is provided.
  • the predetermined area A1 extending outward from the inner peripheral wall surface of the holding hole 12 is formed by the resin material A31 and a plurality of recesses 20 filled with the same or different resin material B21 as the resin material A31.
  • region A1 is formed with the composite material containing the glass fiber 30 and the resin material A31 as above-mentioned.
  • glass fibers stretched in a direction parallel to the inner peripheral wall surface of the holding hole 12 may exist.
  • the concave portion 20 included in the region A1 is exposed on the inner peripheral wall surface of the holding hole 12 formed by drilling a hole of a predetermined size in the base material of the holding member 11 made of the composite material, for example.
  • the glass fiber can be formed by dissolving and removing it to a certain depth (corresponding to the region A1). Examples of the method for dissolving and removing the glass fiber in this case include a method of etching the carrier in which the holding hole 12 is formed with hydrofluoric acid or the like. Then, the resin material B21 is filled in the recess formed by melting and removing the glass fiber to a certain depth in this way, so that the resin material A31 and the resin material B21 that is the same as or different from the resin material A31 are filled.
  • a region A1 composed of the plurality of recessed portions 20 is formed.
  • the resin material A31 contained in the glass fiber and resin composite material basically constituting the carrier 10 of the present invention is generally an epoxy resin, but in addition to this, for example, a phenol resin, Bismaleimide resin, silicone resin, diallyl phthalate resin, unsaturated polyester resin, polyphenylene sulfide resin, etc. may be used.
  • the resin material B21 filled in the recess 20 included in the region A1 of the carrier 10 of the present invention is, for example, an epoxy resin as long as it is the same resin material as the resin material A31. Further, any resin material different from the above resin material A31 can be used without any particular restriction, but from the viewpoint of the filling method described later, a thermoplastic resin is particularly preferable.
  • polycarbonate, polyoxymethylene, polypropylene At least selected from resins such as polyphenylene sulfide, polyamide, polyethylene, polystyrene, acrylic, polyethylene terephthalate, polyphenylene ether, polyacetal, polybutylene terephthalate, polyphephenylene sulfide, polyether ether ketone, fluororesin, urethane resin, liquid crystal polymer, and elastomer.
  • resins such as polyphenylene sulfide, polyamide, polyethylene, polystyrene, acrylic, polyethylene terephthalate, polyphenylene ether, polyacetal, polybutylene terephthalate, polyphephenylene sulfide, polyether ether ketone, fluororesin, urethane resin, liquid crystal polymer, and elastomer.
  • resins such as polyphenylene sulfide, polyamide, polyethylene, polystyrene, acrylic, polyethylene
  • thermosetting epoxy resin is generally used for the resin material of the carrier substrate for the convenience of the manufacturing process. Therefore, when the concave portion 20 is filled with the same thermosetting epoxy resin, strong friction is generated between the wall surface of the holding hole and the edge of the glass substrate during processing, and even when frictional heat is locally generated, Since it does not deform
  • the concave portion 20 is filled with, for example, a thermoplastic resin different from the resin material of the carrier base material, the glass substrate is not easily damaged because of a slight deformation due to frictional heat. Further, when a resin having a lower hardness than the epoxy resin of the carrier substrate is used, it plays a role of a cushion, so that the end face scratch is hardly generated on the glass substrate.
  • the resin filled in the recess 20 is a thermoplastic resin.
  • resin with which the said recessed part 20 is filled is resin whose hardness is lower than the resin material which comprises the composite material which is a carrier base material.
  • the resin to be filled has a Rockwell hardness of less than M80. By setting it within this range, it is possible to make the hardness lower than that of the epoxy resin of the base material, so that it is possible to make it difficult to cause scratches on the end face of the glass substrate.
  • the hardness of the epoxy resin is generally M80 to 100 in terms of Rockwell hardness.
  • Examples of the method for filling the recess 20 with the resin material B21 include the following methods. After the resin material B21 is applied to the inner peripheral wall surface of the holding hole 12, heating is performed to melt and fill the resin material B21. At this time, if the inside of the recessed portion of the filling portion can be depressurized, it is more preferable because the bottom of the recessed portion can be filled.
  • the coating may be performed in a reduced pressure environment and then heated to normal pressure.
  • a heating method it is preferable to apply a hot plate welding method, a vibration welding method, an ultrasonic welding method, a laser transmission welding method, or the like.
  • the above filling operation can be efficiently performed in a state where a large number of carrier holding members 11 are stacked.
  • a rotary blade can be used to remove the resin.
  • the resin material B21 may not be completely filled up to the bottom of the recess. As long as the entrance of the recess is blocked, it is possible to prevent abrasive grains and sludge from entering the recess.
  • the depth at which the resin material B21 is filled from the entrance of the recess is 1 ⁇ m or more because the resin material B21 is less likely to drop off and durability due to the thickness is increased.
  • the depth is more preferably 2 ⁇ m or more, and further preferably 5 ⁇ m or more. Note that it is most preferable that the resin material B21 is completely filled in the concave portion because the adhesiveness with the carrier is maximized.
  • the distance between the resin material A31 and a region A1 (including) a plurality of recesses 20 filled with the same or different resin material B21 as the resin material A31 is 100 ⁇ m or less. Is preferred. When it exceeds 100 ⁇ m, the strength of the region near the inner wall of the holding hole is lowered, and the roundness of the holding hole may be deteriorated. On the other hand, if it is less than 1 ⁇ m, the effects of the present invention may not be sufficiently obtained.
  • the surface roughness of the inner peripheral wall surface of the holding hole is preferably an arithmetic average roughness Ra of 1.0 ⁇ m or less. If it is this range, the flaw generation
  • the carrier 10 of the present invention has a plurality of recesses 20 filled on the inner peripheral wall surface of the holding hole 12 with the resin material B21 that is the same as or different from the resin material A31. Since the region A1 including the recess 20 filled with resin is provided in the direction from the inner peripheral wall surface to the outside of the holding hole, the region A1 in the vicinity of the inner peripheral wall surface of the holding hole 12 is made of only the resin material. Since glass fibers formed and at least stretched in a direction perpendicular to the inner peripheral wall surface are not included, the glass substrate end face can be protected by elastic deformation of the resin material in the region A1, and a glass substrate due to conventional glass fiber protrusion or exposure There will be no scratches on the end face.
  • the plurality of recesses 20 in the inner wall of the holding hole 12 are filled with the resin material B21, abrasive grains and glass sludge do not stay in the recesses 20, and the abrasive grains and glass sludge collected in the recesses of the prior art. Can solve the problem of coarsening and coming out of the recess and causing scratches and surface contamination on the main surface of the glass substrate. Further, since the recess 20 is filled with the resin material B21, the strength reduction around the recess is suppressed, the periphery of the recess of the prior art is destroyed, and the fragments become contamination, and the glass substrate main surface is scratched. Problems that cause surface contamination can be solved.
  • the carrier 10 of the present invention can solve various problems of the prior art that are particularly prominent during mass production, it is excellent in durability when the carrier is used for a long period of time.
  • FIG. 4 is a longitudinal sectional view of the carrier of FIG. 2 showing another embodiment of the carrier according to the present invention.
  • the surface of the inner peripheral wall surface of the holding hole 12 is covered with the resin material B21 filled in the recess 20, and the recess 20 filled with the resin material B21.
  • the surface portion of the inner peripheral wall surface covered with the resin material B21 is continuous.
  • the thickness t in the carrier plane direction of the resin material B21 covering the inner peripheral wall surface of the holding hole 12 is not particularly limited, but is preferably in the range of about 1 ⁇ m to 2 mm.
  • the thickness and surface properties can be adjusted by forming the film thickly and then cutting it with a rotary blade.
  • the entire inner peripheral wall surface of the holding hole 12 is made of resin material.
  • the effect that the surface roughness of the inner peripheral wall surface of the holding hole 12 can be further improved can be obtained.
  • Ra can be 0.5 ⁇ m or less.
  • the inner wall surface of the holding hole is a very narrow region because the thickness of the carrier is thin, the surface portion of the inner peripheral wall surface of the holding hole covered with the resin material B21 is continuous with the concave portion 20 filled with the resin material B21. Therefore, it is possible to prevent the surface portion covering the inner peripheral wall surface of the holding hole from being damaged or dropped due to contact with the glass substrate during processing.
  • a carrier having a thin plate thickness of 2 mm or less such as for a magnetic disk glass substrate
  • a resin material for example, a coating method
  • the thickness could be increased only to about 50 microns in the in-plane direction. This is because the thickness of the carrier is small and the adhesive surface is small, and when the thickness is increased, the carrier is peeled off from the inner peripheral wall surface.
  • the adhesive force can be strengthened more than the conventional method.
  • the thickness t can be greatly increased.
  • the thickness t can be 100 ⁇ m or more, or 0.5 mm or more. Since the thickness can be increased in this way, the effect of preventing end face scratches can be stably obtained over a long period of time.
  • the applied load is preferably in the range of 10 gf / cm 2 or more and 300 gf / cm 2 or less.
  • the lower limit value is more preferably 50 gf / cm 2 or more.
  • the upper limit is more preferably 200 gf / cm 2 or less.
  • the mirror polishing process is performed in the first polishing process for removing scratches and distortions remaining in the lapping process, and the surface roughness of the main surface of the glass substrate while maintaining the flat surface obtained in the first polishing process.
  • it is performed through two stages of a second polishing process that finishes the surface to a smooth mirror surface (however, multistage polishing of three or more stages may be performed).
  • the first polishing and the second polishing Since it is preferable to carry out using the same polishing apparatus, it is preferable to apply the carrier of the present invention in both the first polishing and the second polishing.
  • the double-side grinding apparatus having the same configuration as the above-described double-side polishing apparatus is also used in the grinding process of the glass substrate main surface. Therefore, it is preferable to apply the carrier according to the present invention described above also in the grinding processing of the glass substrate performed using this double-side grinding apparatus.
  • the carrier of the present invention is particularly suitable for grinding using fixed abrasive grains (for example, precision grinding using the aforementioned diamond pad). In precision grinding using fixed abrasive grains, only a large amount of glass sludge is generated, so that the purity of the glass sludge tends to be high. This is because a problem occurs remarkably.
  • an aluminosilicate glass containing SiO 2 as a main component and further containing alumina as the glass (glass type) constituting the glass substrate.
  • a glass substrate using such glass can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. Further, the strength can be further increased by chemical strengthening.
  • the glass may be crystallized glass or amorphous glass. By using amorphous glass, the surface roughness of the main surface when the glass substrate is used can be further reduced.
  • an aluminosilicate glass SiO 2 is 58 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 23 wt%, Li 2 O is 3 wt% to 10 wt%, Na 2
  • An aluminosilicate glass containing O as a main component in an amount of 4 wt% or more and 13 wt% or less can be used.
  • the alkaline earth metal oxide is 5% by weight or more
  • SiO 2 is 62% by weight or more and 75% by weight or less
  • Al 2 O 3 is 5% by weight or more and 15% by weight or less
  • Li 2 O is added.
  • amorphous aluminosilicate glass containing no phosphorus oxide having a weight ratio of 0.5 to 2.0 and a weight ratio of Al 2 O 3 / ZrO 2 of 0.4 to 2.5 can be obtained.
  • the surface of the glass substrate after the mirror polishing treatment has an arithmetic average surface roughness Ra of 0.20 nm or less when the AFM is used to measure a range of 1 ⁇ m ⁇ 1 ⁇ m with a resolution of 256 ⁇ 256 pixels.
  • Ra is a roughness calculated in accordance with Japanese Industrial Standard (JIS) B0601.
  • the glass substrate for a magnetic disk manufactured by the present invention is suitable for a glass substrate used for a magnetic disk mounted on an HDD having a DFH type magnetic head capable of realizing an ultra-low flying height.
  • the present invention is mainly applied to the manufacture of a glass substrate for a magnetic disk has been described.
  • the present invention forms not only such a glass substrate but also a NiP film on the surface.
  • the present invention can be applied in the same manner to the manufactured aluminum alloy substrate, and the same effect of the present invention can be obtained.
  • the present invention also provides a method of manufacturing a magnetic disk using, for example, a glass substrate for the above magnetic disk.
  • the magnetic disk is manufactured by forming at least a magnetic recording layer (magnetic layer) on the glass substrate for a magnetic disk according to the present invention. Further, a protective layer and a lubricating layer may be formed in this order on the magnetic recording layer.
  • the glass substrate obtained by the present invention By using the glass substrate obtained by the present invention, a highly reliable magnetic disk that can obtain stable characteristics without causing a head crash or the like even when recording / reproducing with a DFH head, for example, can be obtained. . Therefore, it is suitable for manufacturing a magnetic disk having a higher recording density than ever before, for example, exceeding 500 gigabytes.
  • Example 1 Comparative Example 1
  • a glass substrate for a magnetic disk was manufactured through a main surface polishing step (second polishing step).
  • a glass substrate made of disc-shaped aluminosilicate glass having a diameter of 66 mm ⁇ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper die, a lower die, and a barrel die.
  • a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method. This glass substrate was subjected to a rough grinding process in order to improve dimensional accuracy and shape accuracy. This rough grinding process was performed using a double-side grinding machine.
  • the carrier according to the embodiment of the present invention shown in FIG. 2 and FIG. 3 was applied as the carrier.
  • This carrier uses a composite material containing glass fiber and epoxy resin as a carrier base material, and the glass fiber on the inner wall of the holding hole is dissolved and removed to a depth of 10 ⁇ m by etching with hydrofluoric acid, and the formed recess is filled with polycarbonate resin.
  • a polycarbonate resin was applied under reduced pressure conditions, returned to normal pressure, and then heated to completely fill the recess, and the polycarbonate resin protruding from the recess after the treatment was removed with a rotary blade.
  • the polycarbonate resin has a Rockwell hardness of M78.
  • the diameter of the holding hole was set to 65.5 mm so as to be suitable for processing a 2.5-inch glass substrate.
  • the roundness of the holding hole was 15 ⁇ m.
  • the thickness of the carrier is 0.5 mm.
  • the polishing liquid was supplied between the polishing pad and the polishing surface of the glass substrate and rotated, whereby the glass substrate revolved while rotating on the surface plate, and both surfaces were polished simultaneously.
  • a hard polisher hard urethane foam
  • the polishing liquid was a dispersion of cerium oxide having an average particle size of 1.5 ⁇ m as an abrasive.
  • the glass substrate after the first polishing step was washed and dried. In the first polishing step, when a plurality of carriers are used in one polishing, the same type is used, and 100 batches are processed without replacing the carriers. The number of processed sheets per batch is 50 sheets.
  • the glass substrate for magnetic disk was produced through the above steps.
  • the obtained glass substrate has a circular hole 103 in the center as shown in FIG. 1, and is a disk provided with both main surfaces 101, 102 and an inner peripheral end surface 104 and an outer peripheral end surface 105 between the two main surfaces.
  • a glass substrate 100 having an outer diameter of 65 mm, an inner diameter of 20 mm, a plate thickness of 0.635 mm, and a roundness of 1.5 ⁇ m.
  • the outer peripheral end face of the glass substrate was visually observed while applying a condenser lamp in a dark room, and the presence or absence of scratches due to contact with the carrier was confirmed. I could't see it. Further, when the main surface was measured with an optical surface analyzer, no particular scratch was found.
  • a composite material containing glass fibers and an epoxy resin is used as a carrier substrate, and the inner wall of the holding hole is etched by hydrofluoric acid.
  • a carrier in which glass fibers are dissolved and removed to a predetermined depth (10 ⁇ m) that is, nothing is filled in the recesses formed on the inner wall
  • a glass substrate was produced.
  • Example 2 comparative example 2
  • Example 2 Furthermore, in the fine grinding step of (3) above, similarly to the above, grinding is performed 100 batches using the same carrier as in Example 1 and Comparative Example 1, and the glass substrate of the 100th batch is washed and dried, The main surface and the outer peripheral end face were observed (Example 2 and Comparative Example 2). The main surface was observed by visual inspection.
  • the same carrier as in Comparative Example 1 was used in the fine grinding step, an average of 13 scratches at the outer peripheral edge and an average of 3 long scratches on the main surface were found.
  • the glass substrate of the 100th batch has surface defects such as scratches. It was observed on both the main surface and the outer peripheral end face. Moreover, when the carrier after 100 batches of glass substrate preparation was observed in detail, the damage of the inner wall of a holding hole was seen.
  • Example 3 the carrier according to the embodiment shown in FIG. 4 was applied.
  • This carrier uses a composite material containing glass fiber and epoxy resin as a carrier base material, and the glass fiber on the inner wall of the holding hole is dissolved and removed to a depth of 10 ⁇ m by etching with hydrofluoric acid, and the formed recess is filled with polycarbonate resin. Thereafter, the removal amount was adjusted with a cutting blade so that the thickness t in the carrier plane direction from the inner wall of the holding hole was 1 mm. In this state, the diameter of the holding hole was set to 65.5 mm.
  • 200 batches of glass substrates were processed using the carrier for the first and second polishing. When the glass substrate of the 200th batch was observed on the outer peripheral end face and the main surface of the glass substrate in the same manner as in Example 1, no scratches or scratches were found on the outer peripheral end face and the main surface.
  • the following film formation process was performed on the magnetic disk glass substrate obtained in Example 1 to obtain a magnetic disk for perpendicular magnetic recording. That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed.
  • the protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance.
  • the lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
  • the obtained magnetic disk was incorporated into an HDD together with a DFH head and subjected to a long-term operation test. As a result, no problems such as a head crash occurred and a good result was obtained.

Abstract

The present invention provides a carrier which is used for processing of a substrate for magnetic disks having good durability, and which is capable of reducing the occurrence of scratches or the like during the processing. A carrier according to the present invention is a carrier for holding a disk-shaped substrate in a horizontal position when a processing surface of a lapping plate is pressed against a main surface of the substrate and the main surface of the substrate is processed by relatively moving the substrate and the processing surface of the lapping plate. This carrier is formed using a composite material that contains glass fibers and a resin material, and is provided with a hold hole for holding the disk-shaped substrate. The inner circumferential wall surface of the hold hole is provided with a plurality of recesses in which no stretched glass fibers are present in the in-plane direction of the carrier, and the plurality of recesses are filled with a resin.

Description

キャリア、磁気ディスク用基板の製造方法及び磁気ディスクの製造方法Carrier, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
 本発明は、ハードディスクドライブ(以下、「HDD」と略称する。)等の磁気記録装置に搭載される磁気ディスク用のガラス基板や表面にNiP膜が形成されたアルミニウム合金基板の製造に用いられるキャリア、該キャリアを用いた磁気ディスク用基板の製造方法、及び磁気ディスクの製造方法に関する。 The present invention relates to a glass substrate for a magnetic disk mounted on a magnetic recording device such as a hard disk drive (hereinafter abbreviated as “HDD”) or a carrier used for manufacturing an aluminum alloy substrate having a NiP film formed on the surface. The present invention also relates to a method for manufacturing a magnetic disk substrate using the carrier, and a method for manufacturing a magnetic disk.
 HDD等の磁気記録装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板として従来はアルミ基板が用いられてきた。しかし、最近では、高記録密度化の追求に呼応して、アルミ基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。また、ガラス基板表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化、低価格化の要求は増すばかりであり、これを実現するためには、磁気ディスク用ガラス基板においても更なる高品質化、低コスト化が必要になってきている。 There is a magnetic disk as one of information recording media mounted on a magnetic recording apparatus such as an HDD. A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate. However, recently, in response to the pursuit of higher recording density, the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing. Further, the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible. In recent years, there has been an increasing demand for HDDs with higher recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.
 磁気ディスク用ガラス基板は、通常、粗研削工程、形状加工工程、精研削工程、端面研磨工程、主表面研磨工程(第1研磨工程、第2研磨工程)、化学強化工程、等を経て製造される。 A glass substrate for a magnetic disk is usually manufactured through a rough grinding process, a shape processing process, a fine grinding process, an end surface polishing process, a main surface polishing process (first polishing process, second polishing process), a chemical strengthening process, and the like. The
 上記主表面研磨工程では、例えば、ガラス基板と研磨パッドとを接触させ、研磨砥粒を含む研磨液を供給しながら、研磨パッドとガラス基板とを相対的に移動させて、ガラス基板の表面を鏡面状に研磨する。この研磨工程には、一般に、例えば図5に示すような遊星歯車方式の両面研磨装置が用いられる。図5に示す両面研磨装置は、太陽歯車2と、その外方に同心円状に配置される内歯歯車3と、太陽歯車2及び内歯歯車3に噛み合い、太陽歯車2や内歯歯車3の回転に応じて公転及び自転するキャリア10と、このキャリア10に保持された被研磨加工物1を挟持可能な研磨パッド7がそれぞれ貼着された上定盤5及び下定盤6と、上定盤5と下定盤6との間に研磨液を供給する研磨液供給部(図示せず)とを備えている。 In the main surface polishing step, for example, the glass substrate and the polishing pad are brought into contact with each other, and the polishing pad and the glass substrate are relatively moved while supplying the polishing liquid containing the polishing abrasive grains. Polish in a mirror shape. In this polishing step, for example, a planetary gear type double-side polishing apparatus as shown in FIG. 5 is generally used. The double-side polishing apparatus shown in FIG. 5 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outer side, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3. An upper surface plate 5 and a lower surface plate 6 on which a carrier 10 that revolves and rotates according to rotation, and a polishing pad 7 that can hold the workpiece 1 held on the carrier 10 are attached, and an upper surface plate A polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between 5 and the lower surface plate 6.
 このような両面研磨装置によって、研磨加工時には、キャリア10に保持された被研磨加工物1、即ちガラス基板を上定盤5及び下定盤6とで挟持するとともに、上下定盤5,6の研磨パッド7と被研磨加工物1との間に研磨液を供給しながら、太陽歯車2や内歯歯車3の回転に応じてキャリア10が公転及び自転しながら、被研磨加工物1の上下両面が研磨加工される。
 また、上記研削工程においても、上記両面研磨装置と同様の構成の両面研削装置を用いて加工が行われる。
With such a double-side polishing apparatus, the workpiece 1 held on the carrier 10, that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6 during polishing, and the upper and lower surface plates 5 and 6 are polished. While supplying the polishing liquid between the pad 7 and the workpiece 1, the carrier 10 revolves and rotates according to the rotation of the sun gear 2 and the internal gear 3, and the upper and lower surfaces of the workpiece 1 are moved. Polished.
Also in the grinding step, processing is performed using a double-side grinding apparatus having the same configuration as the double-side polishing apparatus.
 上記のように、キャリアは、加工対象物であるガラス基板を研削または研磨する際にガラス基板を保持するものであり、たとえば樹脂材料により形成され、図2に示すように、キャリア10は、ガラス基板を保持する複数の保持穴12を備えた全体が円板形状の保持部材11である。 As described above, the carrier holds the glass substrate when grinding or polishing the glass substrate, which is a workpiece, and is formed of, for example, a resin material. As shown in FIG. A whole holding member 11 having a plurality of holding holes 12 for holding the substrate is a disc-shaped holding member 11.
 このキャリアは、非加工対象物でありながら加工対象物と同様に、装置の中で上下定盤に挟まれた状態で太陽歯車及び内歯歯車にて回転しながら使用される。そのため、ガラス基板を研削または研磨する際、キャリアの上記保持穴は、常時ガラス基板の外周端面と接触したり離れたりしている。このとき、保持穴の内壁とガラス基板とが擦れることによって、ガラス基板の端面(特に側壁面)に傷が発生することがある。このような傷があると、磁気ディスク用ガラス基板の製造途中のみならず、その後の磁気ディスクやHDDの製造途中で発塵源となる。また、キャリアの基材には、樹脂材料のみではキャリアの強度が不足するので強度を上げるためにガラス繊維とエポキシ樹脂等の複合材料が通常使用されているが、上記保持穴の内壁にガラス繊維が飛び出したり、露出していると、ガラス基板端面と接触した時に傷やダメージを与えることになる。 This carrier is used while being rotated by the sun gear and the internal gear in a state of being sandwiched between the upper and lower surface plates in the apparatus in the same manner as the processing object while being a non-processing object. Therefore, when the glass substrate is ground or polished, the holding hole of the carrier is always in contact with or away from the outer peripheral end surface of the glass substrate. At this time, the inner wall of the holding hole and the glass substrate rub against each other, so that scratches may occur on the end surface (particularly the side wall surface) of the glass substrate. If there is such a scratch, it becomes a dust generation source not only during the manufacture of the magnetic disk glass substrate but also during the subsequent manufacture of the magnetic disk or HDD. In addition, since the carrier material is insufficient for the carrier base material alone, the composite material such as glass fiber and epoxy resin is usually used to increase the strength. However, the glass fiber is used on the inner wall of the holding hole. If it protrudes or is exposed, it will be scratched or damaged when it comes into contact with the glass substrate end face.
 そこで、例えば特許文献1では、研磨用キャリアをフッ酸等によりエッチングすることによって、キャリアの保持穴の内壁のガラス繊維を一定深さまで溶解除去し、内壁の表層部に複数の凹部を有する樹脂材料のみからなる保持穴緩衝領域を設けることで、ガラス基板端面に対する損傷を低減させる技術が開示されている。
 また、特許文献2には、研磨用キャリアの保持穴の内壁面に、該内壁面から突出した繊維質よりも厚く形成された樹脂製の当接部を設けることで、ガラス基板端面に対する損傷を低減させる技術が開示されている。
Therefore, in Patent Document 1, for example, by etching a polishing carrier with hydrofluoric acid or the like, the glass fiber on the inner wall of the holding hole of the carrier is dissolved and removed to a certain depth, and a resin material having a plurality of recesses on the surface layer portion of the inner wall A technique for reducing damage to the end face of the glass substrate by providing a holding hole buffering region consisting of only the above is disclosed.
Further, Patent Document 2 provides damage to the glass substrate end face by providing a resin contact portion formed thicker than the fiber protruding from the inner wall surface on the inner wall surface of the holding hole of the polishing carrier. Techniques for reducing are disclosed.
特開2012-218103号公報JP 2012-218103 A 特開2008-000823号公報JP 2008-000823 A
 本発明者の検討によると、上記特許文献1に開示された研磨用キャリアを用いてガラス基板の研磨を行ったところ、保持穴内壁に配された複数の凹部に砥粒やガラススラッジが溜まって粗大化し、その粗大化した凝集物が研磨中に凹部から出てガラス基板主表面にスクラッチや表面汚染を引き起こすことが判明した。また、ガラス繊維が除去された凹部(緩衝領域なる部分)は、従来のガラス繊維によるダメージは低減できるが、芯材となるガラス繊維が除去されたことで強度が低下し、加工中にガラス基板と接触することにより凹部の周囲が破壊されて、その破片がコンタミネーションとなり、上記と同様のガラス基板主表面にスクラッチや表面汚染を引き起こす。さらには、凹部が破壊されたことで保持穴内壁に段差が生じてガラス基板端面の新たな傷発生の要因となったり、保持穴内径の真円度が崩れることによりガラス基板の真円度まで崩してしまうおそれがある。このような種々の問題は特に大量生産時に顕著に発生するので、キャリアを長期間使用する場合の耐久性に乏しい。 According to the study of the present inventors, when the glass substrate was polished using the polishing carrier disclosed in Patent Document 1, abrasive grains and glass sludge accumulated in the plurality of recesses arranged on the inner wall of the holding hole. It became clear that the coarse aggregates and the coarse aggregates came out of the recesses during polishing and caused scratches and surface contamination on the main surface of the glass substrate. In addition, the concave portion from which the glass fiber has been removed (the portion serving as the buffer region) can reduce the damage caused by the conventional glass fiber, but the strength is lowered by the removal of the glass fiber as the core material, and the glass substrate is processed during processing. When the contact is made, the periphery of the recess is destroyed, and the fragments become contamination, which causes scratches and surface contamination on the main surface of the glass substrate as described above. Furthermore, when the concave portion is broken, a step is generated on the inner wall of the holding hole, which may cause a new scratch on the end surface of the glass substrate, or the roundness of the inner diameter of the holding hole may be lost, and the roundness of the glass substrate may be reduced. There is a risk of breaking. Such various problems are particularly prominent during mass production, so that the durability when the carrier is used for a long time is poor.
 また、磁気ディスク用ガラス基板は、加工途中のものも含めて通常2mm以下の厚みに加工されるので、このガラス基板を保持するキャリアについても2mm以下の極薄い板厚のものが使用される。
 上記特許文献2に開示された研磨用キャリアの場合、保持穴の内壁面に例えば樹脂コーティングによって当接部を設けることができるが、板厚が薄いので保持穴の内壁面は非常に狭い領域となり、保持穴内壁面に対する当接部の密着性は低く、加工中にガラス基板と接触することにより上記当接部は破損したり脱落してしまい、ガラス繊維が露出することによるダメージの問題を根本的に解決することは困難である。
 なお、上記の課題は、ガラス基板だけでなく、表面にNiP膜が形成されたアルミニウム合金基板の製造においても発生するものである。NiP膜が形成されたアルミニウム合金基板の主表面を研磨する場合、当該基板をキャリアに保持させながら両面研磨装置を用いて研磨される。このとき、NiP膜はガラス基板より硬度が低いため、外周端面にキズが付きやすい。また、研磨によりNiPのスラッジが発生する。
Moreover, since the glass substrate for magnetic disks is normally processed into the thickness of 2 mm or less also including the thing in the middle of a process, the thing with an extremely thin board thickness of 2 mm or less is used also about the carrier holding this glass substrate.
In the case of the polishing carrier disclosed in Patent Document 2, a contact portion can be provided on the inner wall surface of the holding hole by, for example, resin coating, but the inner wall surface of the holding hole becomes a very narrow region because the plate thickness is thin. The adhesion of the abutting portion to the inner wall surface of the holding hole is low, and the abutting portion breaks or falls off due to contact with the glass substrate during processing, and the problem of damage due to exposure of the glass fiber is fundamental. It is difficult to solve.
The above-mentioned problem occurs not only in the glass substrate but also in the manufacture of an aluminum alloy substrate having a NiP film formed on the surface. When the main surface of the aluminum alloy substrate on which the NiP film is formed is polished using a double-side polishing apparatus while the substrate is held by a carrier. At this time, since the NiP film has a lower hardness than the glass substrate, the outer peripheral end face is easily scratched. Also, NiP sludge is generated by polishing.
 そこで、本発明はこのような従来の課題を解決すべくなされたものであって、その目的は、第1に、加工中の傷等の発生を低減でき、しかも耐久性の良好な磁気ディスク用基板の加工に用いられるキャリアを提供することである。また、第2の目的は、このようなキャリアを用いて磁気ディスク用基板の研削または研磨加工を行う処理を含む磁気ディスク用基板の製造方法、及び磁気ディスクの製造方法を提供することである。 Accordingly, the present invention has been made to solve such a conventional problem. The purpose of the present invention is, first, to reduce the occurrence of scratches during processing, and for a magnetic disk having good durability. It is to provide a carrier used for processing a substrate. A second object of the present invention is to provide a method for manufacturing a magnetic disk substrate and a method for manufacturing a magnetic disk, including processing for grinding or polishing the magnetic disk substrate using such a carrier.
 本発明者は、鋭意研究の結果、以下の構成による発明によれば上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は上記目的を達成するために、以下の構成を有する。
As a result of earnest research, the present inventor has found that the above-described problems can be solved by the invention having the following configuration, and has completed the present invention.
That is, the present invention has the following configuration in order to achieve the above object.
(構成1)
 繊維と樹脂材料とを含む複合材料を用いて形成され、円板状の基板の主表面を研磨または研削処理する際に当該基板を保持するための保持穴を有するキャリアであって、前記保持穴の内周壁面は、前記キャリアの面内方向に延伸した、繊維が存在していない複数の凹部を有し、当該複数の凹部は、樹脂が充填されていることを特徴とするキャリア。
(Configuration 1)
A carrier that is formed using a composite material including fibers and a resin material and has a holding hole for holding the substrate when the main surface of the disk-shaped substrate is polished or ground, and the holding hole The inner peripheral wall surface of the carrier has a plurality of recesses extending in the in-plane direction of the carrier and free of fibers, and the plurality of recesses are filled with a resin.
(構成2)
 前記凹部に充填されている樹脂は、前記複合材料を構成する樹脂材料よりも硬度が低い樹脂であることを特徴とする構成1に記載のキャリア。
(構成3)
 前記凹部に充填されている樹脂は、熱可塑性樹脂であることを特徴とする構成1又は2に記載のキャリア。
(Configuration 2)
The carrier according to Configuration 1, wherein the resin filled in the concave portion is a resin having a hardness lower than that of the resin material constituting the composite material.
(Configuration 3)
The carrier according to Configuration 1 or 2, wherein the resin filled in the recess is a thermoplastic resin.
(構成4)
 前記保持穴の内周壁面の表面の粗さは、Raが1.0μm以下であることを特徴とする構成1乃至3のいずれかに記載のキャリア。
(構成5)
 前記樹脂が充填された複数の凹部を含む領域のキャリア面内方向の距離は、100μm以下であることを特徴とする構成1乃至4のいずれかに記載のキャリア。
(Configuration 4)
4. The carrier according to claim 1, wherein Ra of the inner peripheral wall surface of the holding hole has a Ra of 1.0 μm or less.
(Configuration 5)
The carrier according to any one of configurations 1 to 4, wherein a distance in a carrier in-plane direction of a region including the plurality of concave portions filled with the resin is 100 μm or less.
(構成6)
 前記凹部に充填されている樹脂が前記保持穴の内周壁面を覆っていることを特徴とする構成1乃至5のいずれかに記載のキャリア。
(構成7)
 構成1乃至6のいずれかに記載のキャリアを用い、該キャリアの保持穴に円板状の基板を水平に保持して、定盤の加工面を前記円板状の基板の主表面に押圧し、前記定盤の加工面と前記円板状の基板とを相対的に移動させて、当該円板状の基板の主表面を加工する処理を含むことを特徴とする磁気ディスク用基板の製造方法。
(Configuration 6)
6. The carrier according to any one of configurations 1 to 5, wherein the resin filled in the recess covers an inner peripheral wall surface of the holding hole.
(Configuration 7)
Using the carrier according to any one of Structures 1 to 6, holding the disk-shaped substrate horizontally in the holding hole of the carrier, and pressing the processed surface of the surface plate against the main surface of the disk-shaped substrate A method of manufacturing a magnetic disk substrate comprising: processing a main surface of the disk-shaped substrate by relatively moving a processing surface of the surface plate and the disk-shaped substrate. .
(構成8)
 前記加工処理は、定盤の表面に貼り付けた研磨パッドと前記円板状の基板の主表面との間に研磨砥粒を含む研磨液を供給して、前記円板状の基板の主表面を研磨する研磨処理であることを特徴とする構成7に記載の磁気ディスク用基板の製造方法。
(構成9)
 前記加工処理は、固定砥粒を貼り付けた定盤で前記円板状の基板の主表面を研削する研削処理であることを特徴とする構成7に記載の磁気ディスク用基板の製造方法。
(Configuration 8)
The processing is performed by supplying a polishing liquid containing abrasive grains between a polishing pad affixed to the surface of a surface plate and a main surface of the disk-shaped substrate, and the main surface of the disk-shaped substrate A method for manufacturing a magnetic disk substrate according to Configuration 7, wherein the magnetic disk substrate is polished.
(Configuration 9)
8. The method for manufacturing a magnetic disk substrate according to Configuration 7, wherein the processing is a grinding process in which a main surface of the disk-shaped substrate is ground with a surface plate to which fixed abrasive grains are attached.
(構成10)
 前記保持穴の穴径と前記円板状の基板の外径との差が、0.1~1.0mmであることを特徴とする構成7乃至9のいずれかに記載の磁気ディスク用基板の製造方法。
(構成11)
 前記基板はガラス基板であることを特徴とする構成7乃至10のいずれかに記載の磁気ディスク用基板の製造方法。
(Configuration 10)
10. The magnetic disk substrate according to any one of Structures 7 to 9, wherein a difference between a hole diameter of the holding hole and an outer diameter of the disk-shaped substrate is 0.1 to 1.0 mm. Production method.
(Configuration 11)
11. The method for manufacturing a magnetic disk substrate according to any one of Structures 7 to 10, wherein the substrate is a glass substrate.
(構成12)
 構成7乃至11のいずれかに記載の製造方法によって得られた磁気ディスク用基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 12)
A magnetic disk manufacturing method comprising: forming at least a magnetic recording layer on a magnetic disk substrate obtained by the manufacturing method according to any one of Structures 7 to 11.
 本発明のキャリアは上記構成とすることで、従来のキャリアの保持穴内壁に存在するガラス繊維を除去した凹部に、加工中の砥粒やガラススラッジが溜まって粗大化した凝集物や、凹部の周囲が破壊されたことによる破片、あるいは保持穴内壁に露出したガラス繊維等による傷等の発生を低減でき、しかも耐久性の良好な磁気ディスク用基板の加工に用いられるキャリアを提供することができる。
 また、このようなキャリアを用いて磁気ディスク用基板の研削または研磨加工を行うことで、媒体の高記録密度化を実現する上で阻害要因となる基板主表面や端面の傷等を低減させることができる高品質の磁気ディスク用基板を製造することが可能である。さらに、この基板を用いて、故障が無く安定した特性が得られる信頼性の高い磁気ディスクを得ることが可能である。
The carrier according to the present invention has the above-described configuration, so that the agglomerates in which abrasive grains and glass sludge during processing are accumulated in the recesses from which the glass fibers existing on the inner walls of the holding holes of the carrier are removed, It is possible to provide a carrier used for processing a magnetic disk substrate having excellent durability, which can reduce the occurrence of debris due to the destruction of the surroundings, or scratches caused by glass fibers exposed on the inner wall of the holding hole. .
In addition, by grinding or polishing a magnetic disk substrate using such a carrier, it is possible to reduce scratches on the substrate main surface and end surface, which are obstructive factors in realizing high recording density of the medium. It is possible to manufacture a high-quality magnetic disk substrate that can be used. Furthermore, by using this substrate, it is possible to obtain a highly reliable magnetic disk that can obtain stable characteristics without failure.
磁気ディスク用ガラス基板の全体斜視図である。It is a whole perspective view of the glass substrate for magnetic discs. 本発明に係るキャリアの平面図である。It is a top view of the carrier concerning the present invention. 本発明に係るキャリアの一実施の形態を示す図2のキャリアの縦断面図である。It is a longitudinal cross-sectional view of the carrier of FIG. 2 which shows one Embodiment of the carrier based on this invention. 本発明に係るキャリアの他の実施の形態を示す図2のキャリアの縦断面図である。It is a longitudinal cross-sectional view of the carrier of FIG. 2 which shows other embodiment of the carrier which concerns on this invention. 両面研磨装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of a double-side polish apparatus.
 以下、本発明の実施の形態を詳述する。以下の実施の形態では、主に磁気ディスク用のガラス基板の製造について説明する。
 磁気ディスク用ガラス基板は、通常、粗研削工程、形状加工工程、精研削工程、端面研磨工程、主表面研磨工程(第1研磨工程、第2研磨工程)、化学強化工程、等を経て製造される。
Hereinafter, embodiments of the present invention will be described in detail. In the following embodiments, manufacturing of a glass substrate for a magnetic disk will be mainly described.
A glass substrate for a magnetic disk is usually manufactured through a rough grinding process, a shape processing process, a fine grinding process, an end surface polishing process, a main surface polishing process (first polishing process, second polishing process), a chemical strengthening process, and the like. The
 この磁気ディスク用ガラス基板の製造は、まず、溶融ガラスからダイレクトプレスにより円盤状のガラス基板(ガラスディスク)を成型する。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板を得てもよい。
 次に、この成型したガラス基板の主表面に対して寸法精度及び形状精度を向上させるための粗研削を行う。この粗研削工程は、通常両面研削装置を用い、遊離砥粒や固定砥粒を用いてガラス基板主表面の研削を行う。なお、本発明のキャリアを用いてもよい。こうしてガラス基板主表面を研削することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。この粗研削工程は適宜省略してもよい。
In manufacturing the magnetic disk glass substrate, first, a disk-shaped glass substrate (glass disk) is molded from molten glass by direct pressing. In addition to such a direct press, a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
Next, rough grinding is performed on the main surface of the molded glass substrate to improve dimensional accuracy and shape accuracy. In this rough grinding process, a double-side grinding apparatus is usually used to grind the main surface of the glass substrate using loose abrasive grains or fixed abrasive grains. In addition, you may use the carrier of this invention. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained. This rough grinding step may be omitted as appropriate.
 この粗研削工程の終了後は、形状加工(面取り)工程を行う。
 その後、適宜、精研削工程を行う。この精研削工程では、たとえばダイヤモンドパッドを用いた固定砥粒による研削方法が好適である。ダイヤモンドパッドとは、ダイヤモンド粒子や、いくつかのダイヤモンド粒子がガラス、セラミック、金属、樹脂等のバインダーで固められた凝集体を、樹脂(例えばアクリル系樹脂等)などの支持材を用いて固定したペレットをシートに貼り付けたものである。なお、ダイヤモンドパッドは必ずしも一般的な呼び名ではないが、ここでは便宜上「ダイヤモンドパッド」と呼ぶこととする。
 ダイヤモンドパッドを用いた固定砥粒による研削では、シート表面に砥粒が均一に存在しているため、荷重が集中することなく、加えて樹脂を用いて砥粒をシートに固定しているため、砥粒に荷重が加わっても砥粒を固定している樹脂の高弾性作用により、加工面のクラック(加工変質層)は浅く、加工表面粗さの低下が可能となり、後工程への負荷(取代など)が低減される。なお、固定砥粒による研削時には、水等のクーラントを加工面に供給しながら行うことが好ましい。
After the rough grinding step, a shape processing (chamfering) step is performed.
Thereafter, a precision grinding process is performed as appropriate. In this fine grinding step, for example, a grinding method using fixed abrasive grains using a diamond pad is suitable. A diamond pad is an agglomerate in which diamond particles or some diamond particles are hardened with a binder such as glass, ceramic, metal, resin, etc., and fixed using a support material such as resin (for example, acrylic resin). A pellet is pasted on a sheet. The diamond pad is not necessarily a general name, but is referred to as “diamond pad” here for convenience.
In grinding with fixed abrasive grains using a diamond pad, since the abrasive grains are uniformly present on the sheet surface, the load is not concentrated, and in addition, the abrasive grains are fixed to the sheet using resin, Even if a load is applied to the abrasive grains, the high elasticity of the resin that fixes the abrasive grains makes the cracks on the machined surface (work-affected layer) shallow, allowing the machined surface roughness to be reduced and reducing the load on subsequent processes ( The allowance is reduced. In addition, it is preferable to perform the grinding with the fixed abrasive while supplying a coolant such as water to the processing surface.
 その後、端面研磨工程を行った後、高精度な平面を得るための主表面の鏡面研磨加工を行う。ガラス基板の鏡面研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、発泡ポリウレタン等の研磨パッドを用いて行うのが好適である。 After that, after performing the end face polishing step, the main surface is mirror-polished to obtain a highly accurate plane. As a method for mirror polishing a glass substrate, it is preferable to use a polishing pad such as polyurethane foam while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. .
 上記研磨液に含有されるコロイダルシリカ研磨砥粒は、平均粒径が1~50nmの範囲内ものを使用するのが研磨効率の点からは好ましい。特に、仕上げ鏡面研磨工程(後段の第2研磨工程)に用いる研磨液に含有される研磨砥粒は、表面粗さのいっそうの低減を図る観点から、平均粒径が10nm以上30nm未満のものを使用するのが好ましい。さらに好ましくは10~20nmの範囲のものである。 It is preferable from the viewpoint of polishing efficiency that the colloidal silica abrasive grains contained in the above polishing liquid are those having an average particle diameter in the range of 1 to 50 nm. In particular, the abrasive grains contained in the polishing liquid used in the finishing mirror polishing process (second polishing process in the subsequent stage) should have an average particle diameter of 10 nm or more and less than 30 nm from the viewpoint of further reducing the surface roughness. It is preferred to use. More preferably, it is in the range of 10 to 20 nm.
 なお、本発明において、上記平均粒径とは、光散乱法により測定された粒度分布における粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径(以下、「累積平均粒子径(50%径)」と呼ぶ。)を言う。本発明において、累積平均粒子径(50%径)は、具体的には、粒子径・粒度分布測定装置を用いて測定して得られる値である。 In the present invention, the average particle size is a point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%. (Hereinafter referred to as “cumulative average particle diameter (50% diameter)”). In the present invention, the cumulative average particle diameter (50% diameter) is specifically a value obtained by measurement using a particle diameter / particle size distribution measuring apparatus.
 研磨方法としては、ガラス基板と研磨パッドとを接触させ、研磨砥粒を含む研磨液を供給しながら、研磨パッドとガラス基板とを相対的に移動させて、ガラス基板の表面を鏡面状に研磨すればよい。 As a polishing method, the glass substrate and the polishing pad are brought into contact with each other, and the polishing pad and the glass substrate are moved relative to each other while supplying a polishing liquid containing polishing abrasive grains, thereby polishing the surface of the glass substrate in a mirror shape. do it.
 図5は、ガラス基板の鏡面研磨工程に用いることができる遊星歯車方式の両面研磨装置の概略構成を示す縦断面図であり、その構成についてはすでに説明したとおりであるが、ここで再度説明すると、図5に示す両面研磨装置は、太陽歯車2と、その外方に同心円状に配置される内歯歯車3と、太陽歯車2及び内歯歯車3に噛み合い、太陽歯車2や内歯歯車3の回転に応じて公転及び自転するキャリア10と、このキャリア10に保持された被研磨加工物1を挟持可能な研磨パッド7がそれぞれ貼着された上定盤5及び下定盤6と、上定盤5と下定盤6との間に研磨液を供給する研磨液供給部(図示せず)とを備えている。 FIG. 5 is a longitudinal sectional view showing a schematic configuration of a planetary gear type double-side polishing apparatus that can be used in a mirror polishing process of a glass substrate, and the configuration thereof is as already described. The double-side polishing apparatus shown in FIG. 5 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outside thereof, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3. An upper surface plate 5 and a lower surface plate 6 each having a carrier 10 that revolves and rotates in accordance with the rotation of the substrate 10 and a polishing pad 7 that can hold the workpiece 1 held by the carrier 10. A polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between the panel 5 and the lower surface plate 6.
 このような両面研磨装置によって、研磨加工時には、キャリア10に保持された被研磨加工物1、即ちガラス基板を上定盤5及び下定盤6とで挟持するとともに、上下定盤5,6の研磨パッド7と被研磨加工物1との間に研磨液を供給しながら、太陽歯車2や内歯歯車3の回転に応じてキャリア10が公転及び自転しながら、被研磨加工物1の上下両面が研磨加工される。 With such a double-side polishing apparatus, the workpiece 1 held on the carrier 10, that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6 during polishing, and the upper and lower surface plates 5 and 6 are polished. While supplying the polishing liquid between the pad 7 and the workpiece 1, the carrier 10 revolves and rotates according to the rotation of the sun gear 2 and the internal gear 3, and the upper and lower surfaces of the workpiece 1 are moved. Polished.
 本発明は、上述の研磨加工処理において加工対象物であるガラス基板を保持するために用いられる上記キャリア10に関するものである。
 本発明に係るキャリアは、たとえば、定盤の加工面をガラス基板の主表面に押圧し、前記定盤の加工面と前記ガラス基板とを相対的に移動させて、当該ガラス基板の主表面を加工する際に用いられ、前記ガラス基板を水平に保持するためのキャリアである。そして、上記構成1にあるように、繊維と樹脂材料とを含む複合材料を用いて形成され、円板状のガラス基板の主表面を研磨または研削処理する際に当該ガラス基板を保持するための保持穴を有するキャリアであって、前記保持穴の内周壁面は、該内周壁面に対して例えばほぼ直交する方向であり前記キャリアの面内方向に延伸した、繊維が存在していない複数の凹部を有し、当該複数の凹部は、樹脂が充填されている構成としたものである。
The present invention relates to the carrier 10 used for holding a glass substrate which is an object to be processed in the above polishing process.
The carrier according to the present invention, for example, presses the processing surface of the surface plate against the main surface of the glass substrate, relatively moves the processing surface of the surface plate and the glass substrate, and moves the main surface of the glass substrate. It is a carrier that is used when processing and holds the glass substrate horizontally. And as it exists in the said structure 1, it forms using the composite material containing a fiber and a resin material, and hold | maintains the said glass substrate when grind | polishing or grinding the main surface of a disk-shaped glass substrate A carrier having a holding hole, wherein the inner peripheral wall surface of the holding hole is in a direction substantially perpendicular to the inner peripheral wall surface, for example, and extends in the in-plane direction of the carrier, and a plurality of fibers that do not exist It has a recessed part and the said several recessed part is set as the structure filled with resin.
 図2及び図3はそれぞれ本発明に係るキャリアの一実施の形態を示すものである。図2は、本発明に係るキャリアの平面図である。また、図3は、本発明に係るキャリアの一実施の形態を示す図2のキャリアの縦断面図である。 2 and 3 each show an embodiment of a carrier according to the present invention. FIG. 2 is a plan view of the carrier according to the present invention. FIG. 3 is a longitudinal sectional view of the carrier of FIG. 2 showing an embodiment of the carrier according to the present invention.
 図2に示すように、本発明の一実施の形態によるキャリア10は、全体が円板形状の保持部材11から構成されており、ガラス基板を保持する複数の保持穴12を備えている。この複数の保持穴12は、ガラス基板の主表面に対する研削や研磨を均一に行うため、また、ガラス基板の端面との局所的な接触によるキズ発生を抑制するため、いずれも円形をなすが、望ましくは本実施の形態のように真円状に形成されている。上記観点から、保持穴の真円度は、例えば20μm以下であることが好適である。保持穴の真円度は、たとえば真円度・円筒形状測定機で測定することが可能である。上記保持穴12は、たとえば円板形状の保持部材11の元材に所定の大きさの穴を穿設することによって形成することができる。 As shown in FIG. 2, a carrier 10 according to an embodiment of the present invention is composed of a disk-shaped holding member 11 as a whole and includes a plurality of holding holes 12 for holding a glass substrate. The plurality of holding holes 12 are all circular in order to uniformly grind and polish the main surface of the glass substrate, and to suppress generation of scratches due to local contact with the end surface of the glass substrate. Desirably, it is formed in a perfect circle as in this embodiment. From the above viewpoint, the roundness of the holding hole is preferably, for example, 20 μm or less. The roundness of the holding hole can be measured by, for example, a roundness / cylindrical shape measuring machine. The holding hole 12 can be formed, for example, by drilling a hole of a predetermined size in the base material of the disk-shaped holding member 11.
 上記保持穴12の穴径(直径)と、該保持穴12内に保持されるガラス基板の外径との差は、ガラス基板のサイズに関わらず、通常、0.1~1.0mmであることが好ましい。1.0mmより大きいと、ガラス基板のキャリア運動(遊星歯車運動)への追従性が悪化して、主表面に研削または研磨のムラが発生する場合がある。また、0.1mm未満となると、保持穴内でのガラス基板の動きの自由度が低くなりすぎて端部の同一箇所に力が集中し、キズが発生しやすくなる場合がある。また、キャリアからの基板の着脱がしにくくなる。 The difference between the hole diameter (diameter) of the holding hole 12 and the outer diameter of the glass substrate held in the holding hole 12 is usually 0.1 to 1.0 mm regardless of the size of the glass substrate. It is preferable. If it is larger than 1.0 mm, the followability to the carrier motion (planetary gear motion) of the glass substrate is deteriorated, and grinding or polishing unevenness may occur on the main surface. On the other hand, if the thickness is less than 0.1 mm, the degree of freedom of movement of the glass substrate in the holding hole becomes too low, and the force concentrates on the same portion of the end portion, which may easily cause scratches. Moreover, it becomes difficult to attach and detach the substrate from the carrier.
 また、上記保持部材11の外周部には、上記両面研磨装置の太陽歯車2及び内歯歯車3と噛み合う複数のギア歯13が形成されている。 A plurality of gear teeth 13 that mesh with the sun gear 2 and the internal gear 3 of the double-side polishing apparatus are formed on the outer peripheral portion of the holding member 11.
 図3の縦断面図に示されるように、上記保持部材11は、後述の領域A1を除いては、ガラス繊維30と樹脂材料A(例えばエポキシ樹脂等)31とを含む複合材料で形成されている。具体的には、例えばガラス繊維をエポキシ樹脂内に積層した基材(もしくはこの基材を複数枚積層したもの)で形成されている。
 なお、ガラス繊維の代わりに、例えば、金属繊維を用いることもできる。本件では、ガラス繊維と樹脂材とを含む複合材料により保持部材が形成される場合を一例として例示する。
 なお、図3では、図示の便宜上、上記保持部材11の内部断面構造(特に上記複合材料からなる領域)をあくまでもイメージとして描いたものであり、実際の内部構造を必ずしも正確に描いたものではない。
As shown in the longitudinal sectional view of FIG. 3, the holding member 11 is formed of a composite material including glass fibers 30 and a resin material A (for example, epoxy resin) 31 except for a region A1 described later. Yes. Specifically, for example, it is formed of a base material in which glass fibers are laminated in an epoxy resin (or a laminate of a plurality of such base materials).
In addition, for example, metal fibers can be used instead of glass fibers. In this case, the case where a holding member is formed with the composite material containing glass fiber and a resin material is illustrated as an example.
In FIG. 3, for convenience of illustration, the internal cross-sectional structure of the holding member 11 (particularly, the region made of the composite material) is merely depicted as an image, and the actual internal structure is not necessarily accurately depicted. .
 また、図3に示すように、上記保持穴12の内周壁面には、該内周壁面に対して直交する方向であり前記キャリアの面内方向に延伸した、ガラス繊維が存在していない複数の凹部20を有し、当該複数の凹部20は、上記樹脂材料A31と同一又は異なる樹脂材料B21が充填されている。そして、上記保持穴12の内周壁面からキャリア主表面の面内方向であって保持穴の外側に向かう方向に、上記複数の凹部20を含む上記樹脂材料A31と上記樹脂材料B21により形成された領域A1を備えている。すなわち、上記保持穴12の内周壁面から外側に向かう所定領域A1は、上記樹脂材料A31と、当該樹脂材料A31と同一又は異なる樹脂材料B21が充填された複数の凹部20により形成されている。そして、上記領域A1を除く領域、つまり上記領域A1のキャリア外周側の領域A2は、上記したとおり、ガラス繊維30と樹脂材料A31とを含む複合材料で形成されている。なお、本発明では、上記領域A1においては、保持穴12の内周壁面に対して平行な方向に延伸したガラス繊維は存在していてもよい。 Further, as shown in FIG. 3, the inner peripheral wall surface of the holding hole 12 includes a plurality of glass fibers extending in the in-plane direction of the carrier that are orthogonal to the inner peripheral wall surface and do not exist. The plurality of recesses 20 are filled with a resin material B21 that is the same as or different from the resin material A31. Then, the resin material A31 including the plurality of recesses 20 and the resin material B21 are formed in the in-plane direction of the carrier main surface from the inner peripheral wall surface of the holding hole 12 toward the outside of the holding hole. A region A1 is provided. In other words, the predetermined area A1 extending outward from the inner peripheral wall surface of the holding hole 12 is formed by the resin material A31 and a plurality of recesses 20 filled with the same or different resin material B21 as the resin material A31. And the area | region except the said area | region A1, ie, area | region A2 of the carrier outer periphery side of said area | region A1, is formed with the composite material containing the glass fiber 30 and the resin material A31 as above-mentioned. In the present invention, in the region A1, glass fibers stretched in a direction parallel to the inner peripheral wall surface of the holding hole 12 may exist.
 上記領域A1に含まれる上記凹部20は、たとえば、上記複合材料からなる保持部材11の元材に所定の大きさの穴を穿設して形成された上記保持穴12の内周壁面に露出しているガラス繊維を一定深さ(上記領域A1相当)まで溶解除去することにより形成することができる。この場合のガラス繊維を溶解除去する方法としては、例えば上記保持穴12を形成したキャリアをフッ酸等によりエッチングする方法が挙げられる。そして、このようにガラス繊維が一定深さまで溶解除去されて形成された凹部に上記樹脂材料B21が充填されることにより、上記樹脂材料A31と、当該樹脂材料A31と同一又は異なる樹脂材料B21が充填された複数の凹部20からなる領域A1が形成される。 The concave portion 20 included in the region A1 is exposed on the inner peripheral wall surface of the holding hole 12 formed by drilling a hole of a predetermined size in the base material of the holding member 11 made of the composite material, for example. The glass fiber can be formed by dissolving and removing it to a certain depth (corresponding to the region A1). Examples of the method for dissolving and removing the glass fiber in this case include a method of etching the carrier in which the holding hole 12 is formed with hydrofluoric acid or the like. Then, the resin material B21 is filled in the recess formed by melting and removing the glass fiber to a certain depth in this way, so that the resin material A31 and the resin material B21 that is the same as or different from the resin material A31 are filled. A region A1 composed of the plurality of recessed portions 20 is formed.
 上記のとおり、本発明のキャリア10を基本的に構成するガラス繊維と樹脂の複合材料に含まれる上記樹脂材料A31としては、エポキシ樹脂が一般的であるが、この他には、例えばフェノール樹脂、ビスマレイミド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリフェニレンサルファイド樹脂等を使用してもよい。 As described above, the resin material A31 contained in the glass fiber and resin composite material basically constituting the carrier 10 of the present invention is generally an epoxy resin, but in addition to this, for example, a phenol resin, Bismaleimide resin, silicone resin, diallyl phthalate resin, unsaturated polyester resin, polyphenylene sulfide resin, etc. may be used.
 また、本発明のキャリア10の上記領域A1に含まれる上記凹部20に充填される樹脂材料B21としては、上記樹脂材料A31と同一の樹脂材料であれば例えばエポキシ樹脂である。また、上記樹脂材料A31と異なる樹脂材料であれば特に制約無く用いることが可能であるが、後述の充填方法の観点からは特に熱可塑性樹脂であることが好ましく、例えばポリカーボネート、ポリオキシメチレン、ポリプロピレン、ポリフェニレンサルファイド、ポリアミド、ポリエチレン、ポリスチレン、アクリル、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリアセタール、ポリブチレンテレフタレート、ポリフェフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂、ウレタン樹脂、液晶ポリマー、エラストマー等の樹脂から選ばれる少なくとも1種であることが好ましい。 The resin material B21 filled in the recess 20 included in the region A1 of the carrier 10 of the present invention is, for example, an epoxy resin as long as it is the same resin material as the resin material A31. Further, any resin material different from the above resin material A31 can be used without any particular restriction, but from the viewpoint of the filling method described later, a thermoplastic resin is particularly preferable. For example, polycarbonate, polyoxymethylene, polypropylene At least selected from resins such as polyphenylene sulfide, polyamide, polyethylene, polystyrene, acrylic, polyethylene terephthalate, polyphenylene ether, polyacetal, polybutylene terephthalate, polyphephenylene sulfide, polyether ether ketone, fluororesin, urethane resin, liquid crystal polymer, and elastomer. One type is preferable.
 キャリア基材の樹脂材料は、製造工程の都合上、一般に熱硬化性エポキシ樹脂が使用されている。よって、上記凹部20にこれと同じ熱硬化性エポキシ樹脂を充填すると、加工中に保持穴の壁面とガラス基板端部との間に強い摩擦が生じて局所的に摩擦熱が発生した場合でも、特に変形しないので、ガラス基板に端面傷を発生させ易い。一方、凹部20に、キャリア基材の樹脂材料と異なる例えば熱可塑性の樹脂を充填する場合、摩擦熱によって僅かに変形するため、ガラス基板に端面傷がつきにくい。また、キャリア基材のエポキシ樹脂より硬度が低い樹脂を使用すると、クッションの役割を果たすのでやはりガラス基板に端面傷が生じにくい。 A thermosetting epoxy resin is generally used for the resin material of the carrier substrate for the convenience of the manufacturing process. Therefore, when the concave portion 20 is filled with the same thermosetting epoxy resin, strong friction is generated between the wall surface of the holding hole and the edge of the glass substrate during processing, and even when frictional heat is locally generated, Since it does not deform | transform especially, it is easy to generate | occur | produce an end surface crack on a glass substrate. On the other hand, when the concave portion 20 is filled with, for example, a thermoplastic resin different from the resin material of the carrier base material, the glass substrate is not easily damaged because of a slight deformation due to frictional heat. Further, when a resin having a lower hardness than the epoxy resin of the carrier substrate is used, it plays a role of a cushion, so that the end face scratch is hardly generated on the glass substrate.
 従って、上記凹部20に充填される樹脂は、熱可塑性樹脂であることが好ましい。
 また、上記凹部20に充填される樹脂は、キャリア基材である複合材料を構成する樹脂材料よりも硬度が低い樹脂であることが好ましい。この場合、充填する樹脂の硬度は、ロックウェル硬度でM80未満であることが好ましい。この範囲内とすることで、基材のエポキシ樹脂よりも硬度を低くすることができるので、ガラス基板の端面傷を生じにくくすることが可能となる。エポキシ樹脂の硬度は、一般的にロックウェル硬度でM80~100である。
Therefore, it is preferable that the resin filled in the recess 20 is a thermoplastic resin.
Moreover, it is preferable that resin with which the said recessed part 20 is filled is resin whose hardness is lower than the resin material which comprises the composite material which is a carrier base material. In this case, it is preferable that the resin to be filled has a Rockwell hardness of less than M80. By setting it within this range, it is possible to make the hardness lower than that of the epoxy resin of the base material, so that it is possible to make it difficult to cause scratches on the end face of the glass substrate. The hardness of the epoxy resin is generally M80 to 100 in terms of Rockwell hardness.
 上記樹脂材料B21を上記凹部20に充填する方法としては、たとえば以下のような方法が挙げられる。
 上記保持穴12の内周壁面に上記樹脂材料B21を塗布した後、加熱を行い、樹脂材料B21を溶かして充填を行う。このとき、充填部分の凹部内部を減圧することができれば、凹部の底部まで充填することが可能になるのでより望ましい。例えば、減圧環境下で塗布を行い、その後常圧として加熱すればよい。加熱方法としては、熱板溶着法、振動溶着法、超音波溶着法、レーザー透過溶着法などを適用することが好適である。なお、キャリアの保持部材11を多数枚積層した状態で上述の充填作業を行うと効率よく行うことができる。なお、充填処理後、凹部からはみ出した樹脂を除去してもよい。樹脂の除去には、例えば回転刃を用いることができる。
Examples of the method for filling the recess 20 with the resin material B21 include the following methods.
After the resin material B21 is applied to the inner peripheral wall surface of the holding hole 12, heating is performed to melt and fill the resin material B21. At this time, if the inside of the recessed portion of the filling portion can be depressurized, it is more preferable because the bottom of the recessed portion can be filled. For example, the coating may be performed in a reduced pressure environment and then heated to normal pressure. As a heating method, it is preferable to apply a hot plate welding method, a vibration welding method, an ultrasonic welding method, a laser transmission welding method, or the like. The above filling operation can be efficiently performed in a state where a large number of carrier holding members 11 are stacked. In addition, you may remove the resin which protruded from the recessed part after the filling process. For example, a rotary blade can be used to remove the resin.
 なお、上記樹脂材料B21を凹部の底部まで完全に充填しなくてもよい。凹部の入り口を塞いでさえすれば砥粒やスラッジが凹部に入りこむことを防止できる。なお、凹部の入り口からの樹脂材料B21が充填されている深さが1μm以上あると、樹脂材料B21が脱落しにくくなるとともに厚みによる耐久性が増すので好ましい。当該深さは、2μm以上となるとさらに好ましく、5μm以上となるとさらに好ましい。なお、樹脂材料B21が凹部に完全に充填されている場合はキャリアとの密着性が最大となるため最も好ましい。 The resin material B21 may not be completely filled up to the bottom of the recess. As long as the entrance of the recess is blocked, it is possible to prevent abrasive grains and sludge from entering the recess. In addition, it is preferable that the depth at which the resin material B21 is filled from the entrance of the recess is 1 μm or more because the resin material B21 is less likely to drop off and durability due to the thickness is increased. The depth is more preferably 2 μm or more, and further preferably 5 μm or more. Note that it is most preferable that the resin material B21 is completely filled in the concave portion because the adhesiveness with the carrier is maximized.
 本発明のキャリア10においては、上記樹脂材料A31と、当該樹脂材料A31と同一又は異なる樹脂材料B21が充填された複数の凹部20からなる(を含む)領域A1の距離は、100μm以下とすることが好ましい。100μmを超えると、保持穴の内壁近傍領域の強度が低下し、保持穴の真円度が悪化するおそれがある。一方、1μm未満であると、本発明の作用効果が十分に得られないことがある。 In the carrier 10 of the present invention, the distance between the resin material A31 and a region A1 (including) a plurality of recesses 20 filled with the same or different resin material B21 as the resin material A31 is 100 μm or less. Is preferred. When it exceeds 100 μm, the strength of the region near the inner wall of the holding hole is lowered, and the roundness of the holding hole may be deteriorated. On the other hand, if it is less than 1 μm, the effects of the present invention may not be sufficiently obtained.
 本発明のキャリア10において、上記保持穴の内周壁面の表面の粗さは、算術平均粗さRaが1.0μm以下であることが好ましい。この範囲であれば、加工中のガラス基板の端面の傷発生を抑制することができる。 In the carrier 10 of the present invention, the surface roughness of the inner peripheral wall surface of the holding hole is preferably an arithmetic average roughness Ra of 1.0 μm or less. If it is this range, the flaw generation | occurrence | production of the end surface of the glass substrate in process can be suppressed.
 本実施の形態に係る本発明のキャリア10は、上記のとおり、保持穴12の内周壁面に、前記樹脂材料A31と同一又は異なる樹脂材料B21が充填された複数の凹部20を有し、この内周壁面から保持穴の外側に向かう方向に、樹脂が充填されている凹部20を含む領域A1を備える構成としているため、この保持穴12の内周壁面近傍の領域A1においては樹脂材料のみにより形成され、少なくとも内周壁面に対して直交する方向に延伸したガラス繊維は含まないので、領域A1の樹脂材料の弾性変形によってガラス基板端面を保護でき、従来のガラス繊維の突出や露出によるガラス基板端面での傷の発生は起こらない。 As described above, the carrier 10 of the present invention according to the present embodiment has a plurality of recesses 20 filled on the inner peripheral wall surface of the holding hole 12 with the resin material B21 that is the same as or different from the resin material A31. Since the region A1 including the recess 20 filled with resin is provided in the direction from the inner peripheral wall surface to the outside of the holding hole, the region A1 in the vicinity of the inner peripheral wall surface of the holding hole 12 is made of only the resin material. Since glass fibers formed and at least stretched in a direction perpendicular to the inner peripheral wall surface are not included, the glass substrate end face can be protected by elastic deformation of the resin material in the region A1, and a glass substrate due to conventional glass fiber protrusion or exposure There will be no scratches on the end face.
 また、保持穴12内壁の複数の凹部20は樹脂材料B21で充填されているため、この凹部20に砥粒やガラススラッジが滞留することはなく、従来技術の凹部に溜まった砥粒やガラススラッジが粗大化し凹部から出てガラス基板主表面にスクラッチや表面汚染を引き起こす問題を解決することができる。また、凹部20が樹脂材料B21で充填されていることで、凹部周囲の強度低下を抑制し、従来技術の凹部の周囲が破壊されて、その破片がコンタミネーションとなり、ガラス基板主表面にスクラッチや表面汚染を引き起こす問題を解決することができる。 Further, since the plurality of recesses 20 in the inner wall of the holding hole 12 are filled with the resin material B21, abrasive grains and glass sludge do not stay in the recesses 20, and the abrasive grains and glass sludge collected in the recesses of the prior art. Can solve the problem of coarsening and coming out of the recess and causing scratches and surface contamination on the main surface of the glass substrate. Further, since the recess 20 is filled with the resin material B21, the strength reduction around the recess is suppressed, the periphery of the recess of the prior art is destroyed, and the fragments become contamination, and the glass substrate main surface is scratched. Problems that cause surface contamination can be solved.
 さらには、従来の凹部が破壊されることで保持穴内壁に段差が生じてガラス基板端面の新たな傷発生の要因となったり、保持穴内径の真円度が崩れることによりガラス基板の真円度まで崩してしまう問題をも解決することができる。
 本発明のキャリア10は、特に大量生産時に顕著に発生する従来技術の種々の問題を解決することができるので、キャリアを長期間使用する場合の耐久性に優れている。
Furthermore, when the conventional recess is broken, a step is generated on the inner wall of the holding hole, which may cause a new scratch on the end surface of the glass substrate, or the roundness of the inner diameter of the holding hole may be lost. The problem of breaking down to the extent can also be solved.
Since the carrier 10 of the present invention can solve various problems of the prior art that are particularly prominent during mass production, it is excellent in durability when the carrier is used for a long period of time.
 また、図4は、本発明に係るキャリアの他の実施の形態を示す図2のキャリアの縦断面図である。
 図4に示されるように、本実施の形態では、前記保持穴12の内周壁面の表面が、前記凹部20に充填された樹脂材料B21で覆われ、樹脂材料B21が充填された前記凹部20と、樹脂材料B21で覆われた前記内周壁面の表面部とは連続している構成としたものである。
FIG. 4 is a longitudinal sectional view of the carrier of FIG. 2 showing another embodiment of the carrier according to the present invention.
As shown in FIG. 4, in the present embodiment, the surface of the inner peripheral wall surface of the holding hole 12 is covered with the resin material B21 filled in the recess 20, and the recess 20 filled with the resin material B21. And the surface portion of the inner peripheral wall surface covered with the resin material B21 is continuous.
 本実施の形態において、上記保持穴12の内周壁面を覆う樹脂材料B21のキャリア面内方向の厚みtは、特に制約されないが、1μm~2mm程度の範囲が好適である。当該厚みや表面性状は、厚く形成した後、回転刃などで削るなどして調整することができる。 In the present embodiment, the thickness t in the carrier plane direction of the resin material B21 covering the inner peripheral wall surface of the holding hole 12 is not particularly limited, but is preferably in the range of about 1 μm to 2 mm. The thickness and surface properties can be adjusted by forming the film thickly and then cutting it with a rotary blade.
 また、本実施の形態に係るキャリアによれば、上述の図3に示されるような実施の形態のキャリアにより得られる作用効果に加えて、さらに保持穴12の内周壁面の表面全体が樹脂材料B21で覆われることで、上記保持穴12の内周壁面の表面粗さをより向上させることができるという効果も得られる。具体的には、Raが0.5μm以下とすることが可能である。 Further, according to the carrier according to the present embodiment, in addition to the effects obtained by the carrier of the embodiment as shown in FIG. 3 described above, the entire inner peripheral wall surface of the holding hole 12 is made of resin material. By being covered with B21, the effect that the surface roughness of the inner peripheral wall surface of the holding hole 12 can be further improved can be obtained. Specifically, Ra can be 0.5 μm or less.
 なお、キャリアの板厚が薄いので保持穴の内壁面も非常に狭い領域であるものの、樹脂材料B21で覆われた保持穴内周壁面の表面部は同じく樹脂材料B21が充填された凹部20と連続しているため、上記保持穴内周壁面を覆う表面部が、加工中にガラス基板と接触することにより破損したり脱落するような不具合が生じることは防止できる。 Although the inner wall surface of the holding hole is a very narrow region because the thickness of the carrier is thin, the surface portion of the inner peripheral wall surface of the holding hole covered with the resin material B21 is continuous with the concave portion 20 filled with the resin material B21. Therefore, it is possible to prevent the surface portion covering the inner peripheral wall surface of the holding hole from being damaged or dropped due to contact with the glass substrate during processing.
 従来、磁気ディスク用ガラス基板向けなどの板厚が2mm以下と薄いキャリアにおいて、例えば前述の特許文献2に開示されているような保持穴の内周壁面を樹脂材料で覆う場合、例えば塗布する方法が使用されていたが、この方法では実質的に面内方向に50ミクロン程度までしか厚みを増すことが不可能であった。これは、キャリアの板厚が薄いために接着面が小さく、厚みを増すと内周壁面から剥がれてしまうからである。また、キャリアとは別のリング状の部材を保持穴の内側にはめ込む方法もあるが、固定されていないため、又は仮に固定したとしても接着力が弱く、加工中に保持穴からはずれてしまうことが多く大量生産には不向きであった。
 しかし、本実施の形態では、保持穴の内周壁面に根(上記凹部に形成された凸部)を生やすような形態となるので、従来の方法よりも接着力を強固にすることができるため、上記の厚みtを大幅に増加させることができる。例えば、厚みtは、100μm以上や、0.5mm以上とすることができる。このように厚くすることができるので、端面傷の防止効果を長期間に亘って安定して得ることができる。
Conventionally, in a carrier having a thin plate thickness of 2 mm or less, such as for a magnetic disk glass substrate, for example, when the inner peripheral wall surface of a holding hole as disclosed in Patent Document 2 is covered with a resin material, for example, a coating method However, in this method, the thickness could be increased only to about 50 microns in the in-plane direction. This is because the thickness of the carrier is small and the adhesive surface is small, and when the thickness is increased, the carrier is peeled off from the inner peripheral wall surface. There is also a method of fitting a ring-shaped member different from the carrier inside the holding hole, but it is not fixed, or even if it is temporarily fixed, the adhesive force is weak, and it will be detached from the holding hole during processing However, it was unsuitable for mass production.
However, in the present embodiment, since the root (convex portion formed in the concave portion) is formed on the inner peripheral wall surface of the holding hole, the adhesive force can be strengthened more than the conventional method. The thickness t can be greatly increased. For example, the thickness t can be 100 μm or more, or 0.5 mm or more. Since the thickness can be increased in this way, the effect of preventing end face scratches can be stably obtained over a long period of time.
 なお、以上説明したような本発明のキャリアを用いたガラス基板の鏡面研磨処理においては、加える荷重(加工面圧力)は、10gf/cm以上300gf/cm以下の範囲内が好適である。下限値のより好ましくは50gf/cm以上である。また、上限値のより好ましくは200gf/cm以下である。
 上記荷重が、10gf/cmよりも低いと、ガラス基板の加工性(研磨速度)が低下する場合があるために好ましくない。また、250gf/cmよりも高い場合には、ガラス基板表面にスクラッチ等の傷が発生する場合があるため好ましくない。
In addition, in the mirror polishing process of the glass substrate using the carrier of the present invention as described above, the applied load (working surface pressure) is preferably in the range of 10 gf / cm 2 or more and 300 gf / cm 2 or less. The lower limit value is more preferably 50 gf / cm 2 or more. Further, the upper limit is more preferably 200 gf / cm 2 or less.
When the load is lower than 10 gf / cm 2 , the workability (polishing rate) of the glass substrate may be lowered, which is not preferable. Moreover, when higher than 250 gf / cm < 2 >, since scratches, such as a scratch, may generate | occur | produce on the glass substrate surface, it is unpreferable.
 通常、鏡面研磨処理は、ラッピング工程で残留した傷や歪みを除去するための第1研磨工程と、この第1研磨工程で得られた平坦な表面を維持しつつ、ガラス基板主表面の表面粗さを平滑な鏡面に仕上げる第2研磨工程の2段階を経て行われることが一般的である(但し、3段階以上の多段階研磨を行うこともある)が、この第1研磨と第2研磨は同じ研磨装置を用いて行うことが好適であるため、この第1研磨と第2研磨のいずれにおいても、本発明のキャリアを適用することが好適である。 In general, the mirror polishing process is performed in the first polishing process for removing scratches and distortions remaining in the lapping process, and the surface roughness of the main surface of the glass substrate while maintaining the flat surface obtained in the first polishing process. In general, it is performed through two stages of a second polishing process that finishes the surface to a smooth mirror surface (however, multistage polishing of three or more stages may be performed). The first polishing and the second polishing Since it is preferable to carry out using the same polishing apparatus, it is preferable to apply the carrier of the present invention in both the first polishing and the second polishing.
 なお、以上では、本発明に係るキャリアをガラス基板の研磨処理において適用する場合を説明したが、前記ガラス基板主表面の研削工程においても、上記両面研磨装置と同様の構成の両面研削装置を用いて加工が行われるため、この両面研削装置を用いて行われるガラス基板の研削加工においても上述の本発明に係るキャリアを適用することが好適である。
 本発明のキャリアは、固定砥粒を用いる研削加工(例えば前述のダイヤモンドパッドを用いる精研削)に特に好適である。固定砥粒を用いる精研削では、ガラススラッジのみが大量に発生するので、ガラススラッジの純度が高くなりやすく、従来のキャリアでは、これらガラススラッジが凹部の中で溜まって結晶化しやすいため、従来の課題が顕著に発生するからである。
In addition, although the case where the carrier according to the present invention is applied in the polishing treatment of the glass substrate has been described above, the double-side grinding apparatus having the same configuration as the above-described double-side polishing apparatus is also used in the grinding process of the glass substrate main surface. Therefore, it is preferable to apply the carrier according to the present invention described above also in the grinding processing of the glass substrate performed using this double-side grinding apparatus.
The carrier of the present invention is particularly suitable for grinding using fixed abrasive grains (for example, precision grinding using the aforementioned diamond pad). In precision grinding using fixed abrasive grains, only a large amount of glass sludge is generated, so that the purity of the glass sludge tends to be high. This is because a problem occurs remarkably.
 また、本発明においては、ガラス基板を構成するガラス(の硝種)は、SiO2を主成分とし、さらにアルミナを含むアルミノシリケートガラスを用いることが好ましい。このようなガラスを用いたガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。また、化学強化によってさらに強度を上げることもできる。
 また、上記ガラスは、結晶化ガラスであってもよく、アモルファスガラスであってもよい。アモルファスガラスとすることで、ガラス基板としたときの主表面の表面粗さをより一層下げることができる。
In the present invention, it is preferable to use an aluminosilicate glass containing SiO 2 as a main component and further containing alumina as the glass (glass type) constituting the glass substrate. A glass substrate using such glass can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. Further, the strength can be further increased by chemical strengthening.
The glass may be crystallized glass or amorphous glass. By using amorphous glass, the surface roughness of the main surface when the glass substrate is used can be further reduced.
 このようなアルミノシリケートガラスとしては、SiO2が58重量%以上75重量%以下、Al23が5重量%以上23重量%以下、Li2Oが3重量%以上10重量%以下、Na2Oが4重量%以上13重量%以下を主成分として含有するアルミノシリケートガラス(ただし、リン酸化物を含まないアルミノシリケートガラス)を用いることができる。さらに、例えば、アルカリ土類金属の酸化物が5重量%以上であって、SiO2 を62重量%以上75重量%以下、Al23 を5重量%以上15重量%以下、Li2Oを4重量%以上10重量%以下、Na2 Oを4重量%以上12重量%以下、ZrO2 を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2の重量比が0.5以上2.0以下、Al2 O3 /ZrO2 の重量比が0.4以上2.5以下であるリン酸化物を含まないアモルファスのアルミノシリケートガラスとすることができる。 As such an aluminosilicate glass, SiO 2 is 58 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 23 wt%, Li 2 O is 3 wt% to 10 wt%, Na 2 An aluminosilicate glass containing O as a main component in an amount of 4 wt% or more and 13 wt% or less (however, an aluminosilicate glass containing no phosphorus oxide) can be used. Further, for example, the alkaline earth metal oxide is 5% by weight or more, SiO 2 is 62% by weight or more and 75% by weight or less, Al 2 O 3 is 5% by weight or more and 15% by weight or less, and Li 2 O is added. 4% by weight or more and 10% by weight or less, Na 2 O 4% by weight or more and 12% by weight or less, ZrO 2 5.5% by weight or more and 15% by weight or less as a main component, and Na 2 O / ZrO 2 An amorphous aluminosilicate glass containing no phosphorus oxide having a weight ratio of 0.5 to 2.0 and a weight ratio of Al 2 O 3 / ZrO 2 of 0.4 to 2.5 can be obtained.
 本発明においては、上記鏡面研磨処理後のガラス基板の表面は、AFMを用いて1μm×1μmの範囲を256×256ピクセルの解像度で測定したときの算術平均表面粗さRaが0.20nm以下である鏡面とされることが好ましい。本発明においてRaというときは、日本工業規格(JIS)B0601に準拠して算出される粗さのことである。 In the present invention, the surface of the glass substrate after the mirror polishing treatment has an arithmetic average surface roughness Ra of 0.20 nm or less when the AFM is used to measure a range of 1 μm × 1 μm with a resolution of 256 × 256 pixels. A certain mirror surface is preferable. In the present invention, Ra is a roughness calculated in accordance with Japanese Industrial Standard (JIS) B0601.
 本発明によれば、媒体の高記録密度化を実現する上で阻害要因となるガラス基板主表面や端面の傷等を低減させることができる高品質のガラス基板を製造することが可能であり、本発明によって製造される磁気ディスク用ガラス基板は、超低浮上量を実現できるDFH型磁気ヘッドを備えるHDDに搭載される磁気ディスクに用いられるガラス基板に好適である。
 なお、上記の実施の形態では、本発明を主に磁気ディスク用のガラス基板の製造に適用した場合について説明したが、本発明は、このようなガラス基板だけでなく、表面にNiP膜が形成されたアルミニウム合金基板の製造においても同様に適用することが可能であり、同様な本発明の効果が得られる。
According to the present invention, it is possible to produce a high-quality glass substrate that can reduce scratches on the main surface and end face of the glass substrate, which is an impediment to achieving high recording density of the medium, The glass substrate for a magnetic disk manufactured by the present invention is suitable for a glass substrate used for a magnetic disk mounted on an HDD having a DFH type magnetic head capable of realizing an ultra-low flying height.
In the above embodiment, the case where the present invention is mainly applied to the manufacture of a glass substrate for a magnetic disk has been described. However, the present invention forms not only such a glass substrate but also a NiP film on the surface. The present invention can be applied in the same manner to the manufactured aluminum alloy substrate, and the same effect of the present invention can be obtained.
 また、本発明は、以上の磁気ディスク用の例えばガラス基板を用いた磁気ディスクの製造方法についても提供するものである。
 磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁気記録層(磁性層)を形成して製造される。また、磁気記録層の上に、保護層、潤滑層をこの順に形成するとよい。
The present invention also provides a method of manufacturing a magnetic disk using, for example, a glass substrate for the above magnetic disk.
The magnetic disk is manufactured by forming at least a magnetic recording layer (magnetic layer) on the glass substrate for a magnetic disk according to the present invention. Further, a protective layer and a lubricating layer may be formed in this order on the magnetic recording layer.
 本発明によって得られるガラス基板を利用することにより、たとえばDFHヘッドによる記録再生を行っても、ヘッドクラッシュ等の故障が起こらず、安定した特性が得られる信頼性の高い磁気ディスクを得ることができる。それゆえ、例えば500ギガバイトを超えるような今まで以上に高記録密度の磁気ディスクを製造するのに好適である。 By using the glass substrate obtained by the present invention, a highly reliable magnetic disk that can obtain stable characteristics without causing a head crash or the like even when recording / reproducing with a DFH head, for example, can be obtained. . Therefore, it is suitable for manufacturing a magnetic disk having a higher recording density than ever before, for example, exceeding 500 gigabytes.
 以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1、比較例1)
 以下の(1)粗研削工程、(2)形状加工工程、(3)精研削工程、(4)端面研磨工程、(5)主表面研磨工程(第1研磨工程)、(6)化学強化工程、(7)主表面研磨工程(第2研磨工程)を経て磁気ディスク用ガラス基板を製造した。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.
(Example 1, Comparative Example 1)
The following (1) rough grinding step, (2) shape processing step, (3) fine grinding step, (4) end surface polishing step, (5) main surface polishing step (first polishing step), (6) chemical strengthening step (7) A glass substrate for a magnetic disk was manufactured through a main surface polishing step (second polishing step).
(1)粗研削工程
 まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ1.0mmの円盤状のアルミノシリゲートガラスからなるガラス基板を得た。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板を得てもよい。
 このガラス基板に寸法精度及び形状精度の向上させるため粗研削工程を行った。この粗研削工程は両面研削装置を用いて行った。
(1) Coarse grinding step First, a glass substrate made of disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper die, a lower die, and a barrel die. In addition to such a direct press, a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
This glass substrate was subjected to a rough grinding process in order to improve dimensional accuracy and shape accuracy. This rough grinding process was performed using a double-side grinding machine.
(2)形状加工工程
 次に、円筒状の砥石を用いてガラス基板の中央部分に孔を空けると共に、外周端面の研削をして直径を65mmφとした後、外周端面および内周端面に所定の面取り加工を施した。
(3)精研削工程
 この精研削工程は両面研削装置を用い、上記の固定砥粒による研削処理を行った。
(2) Shape processing step Next, a cylindrical grindstone is used to make a hole in the central portion of the glass substrate, and the outer peripheral end face is ground to a diameter of 65 mmφ. Chamfered.
(3) Precision grinding process This precision grinding process performed the grinding process by said fixed abrasive using the double-sided grinding apparatus.
(4)端面研磨工程
 次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)を研磨した。そして、上記端面研磨を終えたガラス基板の表面を洗浄した。
(4) End surface grinding | polishing process Next, the end surface (inner periphery, outer periphery) of the glass substrate was grind | polished by brush grinding | polishing, rotating a glass substrate. And the surface of the glass substrate which finished the said end surface grinding | polishing was wash | cleaned.
(5)主表面研磨工程(第1研磨工程)
 次に、両面研磨装置を用いて、主表面の第1研磨工程を行なった。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラス基板を密着させ、このキャリアを太陽歯車(サンギア)と内歯歯車(インターナルギア)とに噛合させ、上記ガラス基板を上下定盤によって挟圧する。
(5) Main surface polishing step (first polishing step)
Next, the 1st grinding | polishing process of the main surface was performed using the double-side polish apparatus. In a double-side polishing machine, a glass substrate held by a carrier is closely attached between an upper and lower polishing surface plate to which a polishing pad is attached, and this carrier is engaged with a sun gear (sun gear) and an internal gear (internal gear). The glass substrate is sandwiched between upper and lower surface plates.
 上記キャリアは、前述の図2及び図3に示す本発明の一実施形態に係るキャリアを適用した。このキャリアは、ガラス繊維とエポキシ樹脂とを含む複合材料をキャリア基材とし、フッ酸によるエッチングによって保持穴内壁のガラス繊維を10μmの深さまで溶解除去し、形成された凹部にポリカーボネート樹脂を充填したものである。具体的には、減圧条件下でポリカーボネート樹脂を塗布し、常圧に戻した後で加熱して凹部へ完全に充填させ、処理後に凹部からはみ出したポリカーボネート樹脂を回転刃で除去した。このポリカーボネート樹脂の硬度は、ロックウェル硬度でM78である。なお、保持穴の直径は、2.5インチサイズのガラス基板の加工に適するように、65.5mmとした。保持穴の真円度は15μmであった。キャリアの板厚は0.5mmである。 The carrier according to the embodiment of the present invention shown in FIG. 2 and FIG. 3 was applied as the carrier. This carrier uses a composite material containing glass fiber and epoxy resin as a carrier base material, and the glass fiber on the inner wall of the holding hole is dissolved and removed to a depth of 10 μm by etching with hydrofluoric acid, and the formed recess is filled with polycarbonate resin. Is. Specifically, a polycarbonate resin was applied under reduced pressure conditions, returned to normal pressure, and then heated to completely fill the recess, and the polycarbonate resin protruding from the recess after the treatment was removed with a rotary blade. The polycarbonate resin has a Rockwell hardness of M78. The diameter of the holding hole was set to 65.5 mm so as to be suitable for processing a 2.5-inch glass substrate. The roundness of the holding hole was 15 μm. The thickness of the carrier is 0.5 mm.
 その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤上で自転しながら公転して両面を同時に研磨加工した。研磨パッドとして硬質ポリシャ(硬質発泡ウレタン)を用い、研磨液は平均粒径1.5μmの酸化セリウムを研磨剤として分散したものとした。上記第1研磨工程を終えたガラス基板を、洗浄し、乾燥した。
 なお、上記の第1研磨工程では、1回の研磨で用いるキャリアが複数の場合は同一種類のものとし、キャリアを交換しないで100バッチ加工した。なお、1バッチあたりの加工枚数は50枚である。
Thereafter, the polishing liquid was supplied between the polishing pad and the polishing surface of the glass substrate and rotated, whereby the glass substrate revolved while rotating on the surface plate, and both surfaces were polished simultaneously. A hard polisher (hard urethane foam) was used as the polishing pad, and the polishing liquid was a dispersion of cerium oxide having an average particle size of 1.5 μm as an abrasive. The glass substrate after the first polishing step was washed and dried.
In the first polishing step, when a plurality of carriers are used in one polishing, the same type is used, and 100 batches are processed without replacing the carriers. The number of processed sheets per batch is 50 sheets.
(6)化学強化工程
 次に、上記洗浄を終えたガラス基板に化学強化を施した。
(6) Chemical strengthening process Next, the glass substrate which finished the said washing | cleaning was chemically strengthened.
(7)主表面研磨工程(第2研磨工程)
 次いで上記の第1研磨工程で使用したものと同じ両面研磨装置を用い、研磨パッドを軟質ポリシャ(スウェード)の研磨パッド(発泡ポリウレタン)に替えて第2研磨工程を実施した。また、第2研磨工程におけるキャリアは、上記第1研磨工程に用いたキャリアと同種類のものを適用した。この第2研磨工程は、ガラス基板主表面の表面粗さをRaで0.2nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。研磨液としては平均粒径20nmのコロイダルシリカの研磨砥粒を水に分散させたものを用いた。上記第2研磨工程を終えたガラス基板を、洗浄し、乾燥した。
(7) Main surface polishing step (second polishing step)
Next, using the same double-side polishing apparatus as used in the first polishing step, the polishing pad was replaced with a polishing pad (foamed polyurethane) of a soft polisher (suede), and a second polishing step was performed. The carrier used in the second polishing step was the same type as the carrier used in the first polishing step. This second polishing step is a mirror polishing process for finishing the surface roughness of the glass substrate main surface to a smooth mirror surface with an Ra of about 0.2 nm or less. As the polishing liquid, a dispersion of colloidal silica polishing abrasive grains having an average particle diameter of 20 nm in water was used. The glass substrate after the second polishing step was washed and dried.
 上記各工程を経て、磁気ディスク用ガラス基板を作製した。得られたガラス基板は、図1に示すような、中心に円孔103を有し、両主表面101、102と、該両主表面間の内周端面104および外周端面105とを備えた円盤状のガラス基板100であり、その外径は65mm、内径は20mm、板厚は0.635mm、真円度1.5μmであった。 The glass substrate for magnetic disk was produced through the above steps. The obtained glass substrate has a circular hole 103 in the center as shown in FIG. 1, and is a disk provided with both main surfaces 101, 102 and an inner peripheral end surface 104 and an outer peripheral end surface 105 between the two main surfaces. A glass substrate 100 having an outer diameter of 65 mm, an inner diameter of 20 mm, a plate thickness of 0.635 mm, and a roundness of 1.5 μm.
 上記第1研磨工程の100バッチ目のガラス基板について、そのガラス基板の外周端面を暗室内で集光ランプを当てながら目視で観察し、キャリアとの接触による傷の有無を確認したところ、傷は見られなかった。また、主表面について光学式表面分析装置で測定したところ、特にスクラッチは見つからなかった。 About the glass substrate of the 100th batch of the first polishing step, the outer peripheral end face of the glass substrate was visually observed while applying a condenser lamp in a dark room, and the presence or absence of scratches due to contact with the carrier was confirmed. I couldn't see it. Further, when the main surface was measured with an optical surface analyzer, no particular scratch was found.
 また、以上の実施例1に対する比較例1として、上記第1研磨工程及び第2研磨工程において、ガラス繊維とエポキシ樹脂とを含む複合材料をキャリア基材とし、フッ酸によるエッチングによって保持穴内壁のガラス繊維を所定深さ(10μm)まで溶解除去したキャリア(つまり、内壁に形成された凹部には何も充填していない)を適用したこと以外は、上記実施例1と同様にして磁気ディスク用ガラス基板を作製した。
 第1研磨工程の100バッチ目のガラス基板について、上記実施例1と同様に、そのガラス基板の外周端面及び主表面について観察したところ、外周端面にはキャリアとの接触による傷が基板1枚当たり平均6個見つかり、主表面には基板1面当たり平均5個のスクラッチ又はピット欠陥が観察された。
Further, as Comparative Example 1 with respect to Example 1 described above, in the first polishing step and the second polishing step, a composite material containing glass fibers and an epoxy resin is used as a carrier substrate, and the inner wall of the holding hole is etched by hydrofluoric acid. For a magnetic disk in the same manner as in Example 1 except that a carrier in which glass fibers are dissolved and removed to a predetermined depth (10 μm) (that is, nothing is filled in the recesses formed on the inner wall) is applied. A glass substrate was produced.
About the glass substrate of the 100th batch of the 1st grinding | polishing process, when the outer periphery end surface and main surface of the glass substrate were observed similarly to the said Example 1, the damage | wound by contact with a carrier is per 1 board | substrate on an outer periphery end surface. An average of 6 scratches was found, and an average of 5 scratches or pit defects was observed per substrate surface on the main surface.
(実施例2、比較例2)
 さらに、上記(3)の精研削工程において、上記と同様に、実施例1および比較例1と同じキャリアを用いて100バッチずつ研削加工を行い、100バッチ目のガラス基板を洗浄、乾燥し、主表面と外周端面とを観察した(実施例2及び比較例2)。なお、主表面の観察は目視検査にて行った。その結果、上記の精研削工程において、比較例1と同じキャリアを用いた場合、外周端部におけるキズは平均13個、主表面に長いスクラッチが平均3個見つかった。一方、実施例1と同じキャリアを用いた場合は、両方とも0個であった。
(Example 2, comparative example 2)
Furthermore, in the fine grinding step of (3) above, similarly to the above, grinding is performed 100 batches using the same carrier as in Example 1 and Comparative Example 1, and the glass substrate of the 100th batch is washed and dried, The main surface and the outer peripheral end face were observed (Example 2 and Comparative Example 2). The main surface was observed by visual inspection. As a result, when the same carrier as in Comparative Example 1 was used in the fine grinding step, an average of 13 scratches at the outer peripheral edge and an average of 3 long scratches on the main surface were found. On the other hand, when the same carrier as in Example 1 was used, both were 0.
 上記結果からわかるように、本発明実施例のキャリアを適用して、両面研磨装置によりガラス基板表面の鏡面研磨処理を行った場合や、研削処理を行った場合において、100バッチ目のガラス基板についても、傷等の表面欠陥の発生は見られず、良好な結果が得られた。また、100バッチ分のガラス基板作製後のキャリアを詳細に観察したところ、保持穴の内壁の損傷等は見られなかった。 As can be seen from the above results, in the case of applying the carrier of the embodiment of the present invention and performing a mirror polishing process on the surface of the glass substrate with a double-side polishing apparatus, or when performing a grinding process, the glass substrate in the 100th batch However, surface defects such as scratches were not observed, and good results were obtained. Moreover, when the carrier after 100 batches of glass substrate preparation was observed in detail, the damage of the inner wall of a holding hole, etc. were not seen.
 一方、比較例のキャリアを適用して、両面研磨装置によりガラス基板表面の鏡面研磨を行った場合や、研削処理を行った場合において、100バッチ目のガラス基板については、傷等の表面欠陥が主表面および外周端面のいずれにおいても観察された。また、100バッチ分のガラス基板作製後のキャリアを詳細に観察したところ、保持穴の内壁の破損が見られた。 On the other hand, in the case where the carrier of the comparative example is applied and the surface of the glass substrate is mirror-polished by a double-side polishing apparatus or when the grinding treatment is performed, the glass substrate of the 100th batch has surface defects such as scratches. It was observed on both the main surface and the outer peripheral end face. Moreover, when the carrier after 100 batches of glass substrate preparation was observed in detail, the damage of the inner wall of a holding hole was seen.
 このように、比較例のキャリアを適用した場合にガラス基板において傷等の表面欠陥が発生した原因としては、次のような点が挙げられる。
1.保持穴内壁の凹部に砥粒やガラススラッジが溜まって粗大化した凝集物が研磨中に凹部から出てガラス基板端面や主表面にスクラッチや表面汚染を引き起こした。
2.保持穴の内壁には、ガラス繊維が存在しておらず、何も充填されていない複数の凹部を有し、保持穴の内壁の強度が低いため、加工中にガラス基板と接触することにより破損して、その破片がコンタミネーションとなり、上記1と同様のガラス基板端面や主表面にスクラッチや表面汚染を引き起こした。
Thus, when the carrier of a comparative example is applied, the following points are mentioned as a cause which surface defects, such as a crack | wound, generate | occur | produced in the glass substrate.
1. Agglomerates, which were coarsened due to accumulation of abrasive grains and glass sludge in the recesses in the inner wall of the holding hole, came out of the recesses during polishing and caused scratches and surface contamination on the end surfaces and the main surface of the glass substrate.
2. There is no glass fiber on the inner wall of the holding hole, it has a plurality of recesses that are not filled with anything, and the strength of the inner wall of the holding hole is low, so it breaks due to contact with the glass substrate during processing As a result, the fragments were contaminated, and scratches and surface contamination were caused on the glass substrate end face and the main surface as in 1 above.
(実施例3)
 本実施例では、前述の図4に示す実施形態に係るキャリアを適用した。このキャリアは、ガラス繊維とエポキシ樹脂とを含む複合材料をキャリア基材とし、フッ酸によるエッチングによって保持穴内壁のガラス繊維を10μmの深さまで溶解除去し、形成された凹部にポリカーボネート樹脂を充填した後、保持穴内壁からのキャリア面内方向の厚みtが1mmとなるように切断刃で除去量を調節した。その状態で保持穴の直径は65.5mmとなるようにした。
 実施例1と同様に上記キャリアを第1および第2研磨に用いてガラス基板を200バッチ加工した。200バッチ目のガラス基板について、上記実施例1と同様に、そのガラス基板の外周端面及び主表面について観察したところ、外周端面、主表面ともにスクラッチや傷等は見られなかった。
Example 3
In this example, the carrier according to the embodiment shown in FIG. 4 was applied. This carrier uses a composite material containing glass fiber and epoxy resin as a carrier base material, and the glass fiber on the inner wall of the holding hole is dissolved and removed to a depth of 10 μm by etching with hydrofluoric acid, and the formed recess is filled with polycarbonate resin. Thereafter, the removal amount was adjusted with a cutting blade so that the thickness t in the carrier plane direction from the inner wall of the holding hole was 1 mm. In this state, the diameter of the holding hole was set to 65.5 mm.
As in Example 1, 200 batches of glass substrates were processed using the carrier for the first and second polishing. When the glass substrate of the 200th batch was observed on the outer peripheral end face and the main surface of the glass substrate in the same manner as in Example 1, no scratches or scratches were found on the outer peripheral end face and the main surface.
(比較例3)
 従来のキャリア(ガラス繊維とエポキシ樹脂とを含む複合材料をキャリア基材とし、フッ酸エッチングによる保持穴内壁のガラス繊維の溶解除去を行っていない)の保持穴内壁に厚み1mmとなるようにポリカーボネート樹脂コーティングを施した。その状態で保持穴の直径は65.5mmとなるようにした。実施例3と同様に、このキャリアを第1および第2研磨に用いてガラス基板を200バッチ加工した。200バッチ目のガラス基板について、その外周端面及び主表面について観察したところ、外周端面にはキャリアとの接触による傷が基板1枚当たり平均25個見つかり、主表面には基板1面当たり平均11個のスクラッチ又はピット欠陥が観察された。
(Comparative Example 3)
Polycarbonate so that the inner wall of the holding hole of a conventional carrier (a composite material containing glass fiber and epoxy resin is used as a carrier base material and the glass fiber of the inner wall of the holding hole is not dissolved and removed by hydrofluoric acid etching) has a thickness of 1 mm. Resin coating was applied. In this state, the diameter of the holding hole was set to 65.5 mm. As in Example 3, 200 batches of glass substrates were processed using this carrier for the first and second polishing. As for the 200th batch of glass substrates, the outer peripheral end face and the main surface were observed. On the outer peripheral end face, an average of 25 scratches per substrate were found, and the main surface averaged 11 per substrate face. Scratch or pit defects were observed.
(比較例4)
 上記従来のキャリア(エッチング処理無し)の保持穴内壁に厚み1mmのリング状ポリカーボネート樹脂部材をはめた。その状態で保持穴の直径は65.5mmとなるようにした。このキャリアを第1および第2研磨に用いてガラス基板を加工したところ、第1、第2研磨ともに、研磨途中でリング状部材が外れてしまい、200バッチ加工できなかった。
(Comparative Example 4)
A ring-shaped polycarbonate resin member having a thickness of 1 mm was fitted to the inner wall of the holding hole of the conventional carrier (without etching treatment). In this state, the diameter of the holding hole was set to 65.5 mm. When the glass substrate was processed using this carrier for the first and second polishing, the ring-shaped member was detached during the polishing for both the first and second polishing, and 200 batch processing could not be performed.
 以上の結果より、図4に示す実施形態のキャリアを使用すると、ガラス基板の外周端面や主表面にキズ等を長期間にわたって発生させることなく安定した生産が可能である。 From the above results, when the carrier of the embodiment shown in FIG. 4 is used, stable production is possible without causing scratches or the like on the outer peripheral end face or main surface of the glass substrate over a long period of time.
(磁気ディスクの製造)
 上記実施例1で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
 すなわち、上記ガラス基板上に、Ti系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、Ru薄膜からなる下地層、CoCrPt合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
(Manufacture of magnetic disk)
The following film formation process was performed on the magnetic disk glass substrate obtained in Example 1 to obtain a magnetic disk for perpendicular magnetic recording.
That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed. The protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
 得られた磁気ディスクについて、DFHヘッドとともにHDDに組み込み、長期稼動試験を行った結果、ヘッドクラッシュ等の不具合は起こらず良好な結果が得られた。 The obtained magnetic disk was incorporated into an HDD together with a DFH head and subjected to a long-term operation test. As a result, no problems such as a head crash occurred and a good result was obtained.
1 被研磨加工物(ガラス基板)
2 太陽歯車
3 内歯歯車
5 上定盤
6 下定盤
7 研磨パッド
10 キャリア
11 保持部材
12 保持穴
13 ギア歯
20 凹部
21 樹脂材料B
30 ガラス繊維
31 樹脂材料A
100 磁気ディスク用ガラス基板
101,102 主表面
103 円孔
104 内周端面
105 外周端面
1 Workpiece to be polished (glass substrate)
2 Sun gear 3 Internal gear 5 Upper surface plate 6 Lower surface plate 7 Polishing pad 10 Carrier 11 Holding member 12 Holding hole 13 Gear tooth 20 Recess 21 Resin material B
30 Glass fiber 31 Resin material A
DESCRIPTION OF SYMBOLS 100 Glass substrate 101,102 for magnetic discs Main surface 103 Circular hole 104 Inner peripheral end surface 105 Outer peripheral end surface

Claims (12)

  1.  繊維と樹脂材料とを含む複合材料を用いて形成され、円板状の基板の主表面を研磨または研削処理する際に当該基板を保持するための保持穴を有するキャリアであって、
     前記保持穴の内周壁面は、前記キャリアの面内方向に延伸した、繊維が存在していない複数の凹部を有し、
     当該複数の凹部は、樹脂が充填されていることを特徴とするキャリア。
    A carrier having a holding hole for holding the substrate when polishing or grinding the main surface of the disk-shaped substrate, formed using a composite material including fibers and a resin material,
    The inner peripheral wall surface of the holding hole has a plurality of recesses extending in the in-plane direction of the carrier and free of fibers,
    The carrier, wherein the plurality of recesses are filled with resin.
  2.  前記凹部に充填されている樹脂は、前記複合材料を構成する樹脂材料よりも硬度が低い樹脂であることを特徴とする請求項1に記載のキャリア。 2. The carrier according to claim 1, wherein the resin filled in the recess is a resin having a lower hardness than a resin material constituting the composite material.
  3.  前記凹部に充填されている樹脂は、熱可塑性樹脂であることを特徴とする請求項1又は2に記載のキャリア。 3. The carrier according to claim 1 or 2, wherein the resin filled in the recess is a thermoplastic resin.
  4.  前記保持穴の内周壁面の表面の粗さは、Raが1.0μm以下であることを特徴とする請求項1乃至3のいずれかに記載のキャリア。 The carrier according to any one of claims 1 to 3, wherein Ra of the inner peripheral wall surface of the holding hole has a surface roughness Ra of 1.0 µm or less.
  5.  前記樹脂が充填された複数の凹部を含む領域のキャリア面内方向の距離は、100μm以下であることを特徴とする請求項1乃至4のいずれかに記載のキャリア。 The carrier according to any one of claims 1 to 4, wherein a distance in a carrier in-plane direction of a region including a plurality of concave portions filled with the resin is 100 µm or less.
  6.  前記凹部に充填されている樹脂が前記保持穴の内周壁面を覆っていることを特徴とする請求項1乃至5のいずれかに記載のキャリア。 The carrier according to any one of claims 1 to 5, wherein the resin filled in the recess covers an inner peripheral wall surface of the holding hole.
  7.  請求項1乃至6のいずれかに記載のキャリアを用い、該キャリアの保持穴に円板状の基板を水平に保持して、定盤の加工面を前記円板状の基板の主表面に押圧し、前記定盤の加工面と前記円板状の基板とを相対的に移動させて、当該円板状の基板の主表面を加工する処理を含むことを特徴とする磁気ディスク用基板の製造方法。 A carrier according to any one of claims 1 to 6, wherein a disk-shaped substrate is horizontally held in a holding hole of the carrier, and a processing surface of a surface plate is pressed against a main surface of the disk-shaped substrate. And manufacturing the magnetic disk substrate, wherein the processing surface of the surface plate and the disk-shaped substrate are relatively moved to process the main surface of the disk-shaped substrate. Method.
  8.  前記加工処理は、定盤の表面に貼り付けた研磨パッドと前記円板状の基板の主表面との間に研磨砥粒を含む研磨液を供給して、前記円板状の基板の主表面を研磨する研磨処理であることを特徴とする請求項7に記載の磁気ディスク用基板の製造方法。 The processing is performed by supplying a polishing liquid containing abrasive grains between a polishing pad affixed to the surface of a surface plate and a main surface of the disk-shaped substrate, and the main surface of the disk-shaped substrate The method for manufacturing a magnetic disk substrate according to claim 7, wherein the magnetic disk substrate is a polishing process for polishing the substrate.
  9.  前記加工処理は、固定砥粒を貼り付けた定盤で前記円板状の基板の主表面を研削する研削処理であることを特徴とする請求項7に記載の磁気ディスク用基板の製造方法。 The method for manufacturing a magnetic disk substrate according to claim 7, wherein the processing is a grinding process in which a main surface of the disk-shaped substrate is ground with a surface plate to which fixed abrasive grains are attached.
  10.  前記保持穴の穴径と前記円板状の基板の外径との差が、0.1~1.0mmであることを特徴とする請求項7乃至9のいずれかに記載の磁気ディスク用基板の製造方法。 10. The magnetic disk substrate according to claim 7, wherein a difference between a diameter of the holding hole and an outer diameter of the disk-shaped substrate is 0.1 to 1.0 mm. Manufacturing method.
  11.  前記基板はガラス基板であることを特徴とする請求項7乃至10のいずれかに記載の磁気ディスク用基板の製造方法。 11. The method for manufacturing a magnetic disk substrate according to claim 7, wherein the substrate is a glass substrate.
  12.  請求項7乃至11のいずれかに記載の製造方法によって得られた磁気ディスク用基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
     
     
    A method for manufacturing a magnetic disk, comprising forming at least a magnetic recording layer on a magnetic disk substrate obtained by the manufacturing method according to claim 7.

PCT/JP2014/067448 2013-06-30 2014-06-30 Carrier, method for producing substrate for magnetic disks, and method for producing magnetic disk WO2015002152A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201509844VA SG11201509844VA (en) 2013-06-30 2014-06-30 Carrier, method for producing substrate for magnetic disks, and method for producing magnetic disk
JP2015525212A JP6063044B2 (en) 2013-06-30 2014-06-30 Carrier, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
CN201480024723.3A CN105163908B (en) 2013-06-30 2014-06-30 The manufacture method of pallet, the manufacture method of substrate for magnetic disc and disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-137659 2013-06-30
JP2013137659 2013-06-30

Publications (1)

Publication Number Publication Date
WO2015002152A1 true WO2015002152A1 (en) 2015-01-08

Family

ID=52143727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067448 WO2015002152A1 (en) 2013-06-30 2014-06-30 Carrier, method for producing substrate for magnetic disks, and method for producing magnetic disk

Country Status (5)

Country Link
JP (1) JP6063044B2 (en)
CN (1) CN105163908B (en)
MY (1) MY170789A (en)
SG (1) SG11201509844VA (en)
WO (1) WO2015002152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151185A1 (en) * 2018-01-31 2019-08-08 Hoya株式会社 Method for producing glass substrate for magnetic disk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895918B2 (en) * 2018-03-23 2021-06-30 古河電気工業株式会社 Manufacturing method of aluminum alloy substrate for magnetic disk, disk drive, and aluminum alloy substrate for magnetic disk

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309665A (en) * 1998-04-30 1999-11-09 Toshiba Corp Manufacture of oxide single crystal substrate
JP2002326156A (en) * 2001-04-27 2002-11-12 Nippon Sheet Glass Co Ltd Carrier for polishing glass substrate, and glass substrate polishing device
JP2006068895A (en) * 2004-08-02 2006-03-16 Showa Denko Kk Manufacturing method of carrier for polishing and silicon substrate for magnetic recording medium and silicon substrate for magnetic recording medium
JP2008000823A (en) * 2006-06-20 2008-01-10 Konica Minolta Opto Inc Polishing carrier
JP2008006526A (en) * 2006-06-28 2008-01-17 Konica Minolta Opto Inc Polishing carrier
JP2012218103A (en) * 2011-04-07 2012-11-12 Asahi Glass Co Ltd Polishing carrier, method for polishing glass substrate using the carrier, method for manufacturing glass substrate, and glass substrate for magnetic recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224517B2 (en) * 2007-02-20 2009-02-18 昭和電工株式会社 Polishing method for disk-shaped substrate
JP2010257561A (en) * 2009-03-30 2010-11-11 Hoya Corp Method for manufacturing substrate for magnetic disk
JP5452984B2 (en) * 2009-06-03 2014-03-26 不二越機械工業株式会社 Wafer double-side polishing method
JP5580130B2 (en) * 2010-07-20 2014-08-27 Hoya株式会社 Manufacturing method of grinding pad and glass substrate for magnetic disk

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309665A (en) * 1998-04-30 1999-11-09 Toshiba Corp Manufacture of oxide single crystal substrate
JP2002326156A (en) * 2001-04-27 2002-11-12 Nippon Sheet Glass Co Ltd Carrier for polishing glass substrate, and glass substrate polishing device
JP2006068895A (en) * 2004-08-02 2006-03-16 Showa Denko Kk Manufacturing method of carrier for polishing and silicon substrate for magnetic recording medium and silicon substrate for magnetic recording medium
JP2008000823A (en) * 2006-06-20 2008-01-10 Konica Minolta Opto Inc Polishing carrier
JP2008006526A (en) * 2006-06-28 2008-01-17 Konica Minolta Opto Inc Polishing carrier
JP2012218103A (en) * 2011-04-07 2012-11-12 Asahi Glass Co Ltd Polishing carrier, method for polishing glass substrate using the carrier, method for manufacturing glass substrate, and glass substrate for magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151185A1 (en) * 2018-01-31 2019-08-08 Hoya株式会社 Method for producing glass substrate for magnetic disk
JPWO2019151185A1 (en) * 2018-01-31 2020-07-30 Hoya株式会社 Disk-shaped glass base plate manufacturing method and magnetic disk glass substrate manufacturing method

Also Published As

Publication number Publication date
MY170789A (en) 2019-08-28
JP6063044B2 (en) 2017-01-18
SG11201509844VA (en) 2015-12-30
CN105163908A (en) 2015-12-16
CN105163908B (en) 2017-10-13
JPWO2015002152A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4790973B2 (en) Method for manufacturing glass substrate for information recording medium using polishing pad and glass substrate for information recording medium obtained by the method
WO2011058969A1 (en) Method for manufacturing glass substrate for use in magnetic recording medium
JP2012169024A (en) Method for manufacturing glass substrate for magnetic recording medium
JP2012099172A (en) Method for manufacturing glass substrate for magnetic recording medium
JP2012089221A (en) Method for manufacturing glass substrate for magnetic recording medium
JP2021167062A (en) Fixed abrasive grain grindstone
CN104011795A (en) Manufacturing method for magnetic-disk glass substrate
JP5361185B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6063044B2 (en) Carrier, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
US20100081013A1 (en) Magnetic disk substrate and magnetic disk
JP2012027976A (en) Method for manufacturing glass substrate for magnetic recording medium
JP4994213B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
JP5312911B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2005293840A (en) Glass disk substrate, magnetic disk, method for manufacturing glass disk substrate for magnetic disk, and method for manufacturing magnetic disk
WO2017171052A1 (en) Carrier and substrate manufacturing method using this carrier
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2010231841A (en) Method for manufacturing glass substrate, glass substrate and magnetic recording medium
JP5492276B2 (en) Glass substrate for magnetic disk and magnetic disk
JP2010073289A (en) Substrate for magnetic disk and magnetic disk
WO2014045653A1 (en) Method for manufacturing glass substrate for information recording medium
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium
JP5310671B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk
JP2006095636A (en) Glass substrate carrier for magnetic recording medium, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
WO2014156798A1 (en) Method of manufacturing glass substrate for information recording medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024723.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819672

Country of ref document: EP

Kind code of ref document: A1