JP6307407B2 - Manufacturing method of glass substrate - Google Patents
Manufacturing method of glass substrate Download PDFInfo
- Publication number
- JP6307407B2 JP6307407B2 JP2014202075A JP2014202075A JP6307407B2 JP 6307407 B2 JP6307407 B2 JP 6307407B2 JP 2014202075 A JP2014202075 A JP 2014202075A JP 2014202075 A JP2014202075 A JP 2014202075A JP 6307407 B2 JP6307407 B2 JP 6307407B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- abrasive grain
- glass substrate
- grain group
- polishing liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 113
- 239000011521 glass Substances 0.000 title claims description 106
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000005498 polishing Methods 0.000 claims description 144
- 239000006061 abrasive grain Substances 0.000 claims description 117
- 239000007788 liquid Substances 0.000 claims description 79
- 238000007517 polishing process Methods 0.000 claims description 50
- 239000002245 particle Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 18
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 15
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000000227 grinding Methods 0.000 description 16
- 238000007792 addition Methods 0.000 description 10
- 238000003426 chemical strengthening reaction Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000005354 aluminosilicate glass Substances 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 1
- 239000005345 chemically strengthened glass Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Surface Treatment Of Glass (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Description
本発明は、ガラス基板の製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate .
今日、パーソナルコンピュータ、DVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置(HDD:Hard Disk Drive)が内蔵されている。ハードディスク装置では、基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッドで磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板として、金属基板(アルミニウム基板)等に比べて塑性変形し難い性質を持つガラス基板が好適に用いられる。 Today, a personal computer, a DVD (Digital Versatile Disc) recording device, and the like have a built-in hard disk device (HDD: Hard Disk Drive) for data recording. In a hard disk device, a magnetic disk having a magnetic layer provided on a substrate is used, and magnetic recording information is recorded on or read from the magnetic layer by a magnetic head slightly floated on the surface of the magnetic disk. As the substrate of this magnetic disk, a glass substrate having a property that is less likely to be plastically deformed than a metal substrate (aluminum substrate) or the like is preferably used.
ハードディスク装置において記憶容量を増大させるために、磁気記録の高密度化が図られている。例えば、磁性層における磁化方向を基板の面に対して垂直方向にする垂直磁気記録方式を用いて、磁気記録情報エリアの微細化が行われている。これにより、1枚のディスク基板における記憶容量を増大させることができる。このようなディスク基板においては、磁気ディスク用ガラス基板の表面凹凸を可能な限り小さくして磁性粒の成長方向を垂直方向に揃え、磁性層の磁化方向を基板面に対して略垂直方向に向かせることが好ましい。
さらに、記憶容量の一層の増大化のために、DFH(Dynamic Flying Height)機構を搭載した磁気ヘッドを用いて磁気記録面からの浮上距離を極めて短くすることにより、磁気ヘッドの記録再生素子と磁気ディスクの磁気記録層との間の磁気的スペーシングを低減して情報の記録再生の精度をより高める(S/N比を向上させる)ことも行われている。この場合においても、磁気ヘッドによる磁気記録情報の読み書きを長期に亘って安定して行うために、磁気ディスクの基板の表面凹凸を可能な限り小さくすることが求められる。
In order to increase the storage capacity in the hard disk device, the magnetic recording has been increased in density. For example, the magnetic recording information area is miniaturized by using a perpendicular magnetic recording method in which the magnetization direction in the magnetic layer is perpendicular to the surface of the substrate. Thereby, the storage capacity of one disk substrate can be increased. In such a disk substrate, the surface roughness of the glass substrate for magnetic disks is made as small as possible so that the growth direction of the magnetic grains is aligned in the vertical direction, and the magnetization direction of the magnetic layer is oriented substantially perpendicular to the substrate surface. It is preferable to let it go.
Furthermore, in order to further increase the storage capacity, a magnetic head equipped with a DFH (Dynamic Flying Height) mechanism is used to significantly shorten the flying distance from the magnetic recording surface, so that the recording / reproducing element of the magnetic head and the magnetic It is also practiced to increase the accuracy of recording / reproducing information (to improve the S / N ratio) by reducing the magnetic spacing between the magnetic recording layers of the disk. Even in this case, in order to stably read and write the magnetic recording information by the magnetic head for a long period of time, it is required to make the surface unevenness of the substrate of the magnetic disk as small as possible.
磁気ディスク用ガラス基板の表面凹凸を小さくするために、ガラス基板の研磨処理が行われる。ガラス基板を最終製品とするための精密な研磨に、酸化セリウムやコロイダルシリカ等の微細な研磨砥粒を含む研磨剤を用いる方法がある(例えば、特許文献1参照)。 In order to reduce the surface unevenness of the magnetic disk glass substrate, the glass substrate is subjected to a polishing process. There is a method of using an abrasive containing fine abrasive grains such as cerium oxide and colloidal silica for precise polishing for making a glass substrate into a final product (see, for example, Patent Document 1).
一方、ガラス基板の主表面に垂直な側壁面、および、主表面と側壁面とを接続する介在面からなる端面においても、微小な傷があると、ガラス基板の割れの原因となる。また、微小な傷に砥粒等の異物が入り込み、入り込んだ異物がその後主表面に付着する等の問題が生じうる。このため、端面の微小な傷を除去するために、酸化セリウム砥粒を用いたブラシ研磨により端面の研磨処理を行うことも知られている(例えば、特許文献2参照)。 On the other hand, if there are minute scratches on the side wall surface perpendicular to the main surface of the glass substrate and the end surface formed by the interposition surface connecting the main surface and the side wall surface, the glass substrate may be cracked. In addition, foreign matters such as abrasive grains may enter the minute scratches, and the foreign matter may then adhere to the main surface. For this reason, in order to remove minute scratches on the end face, it is also known to perform end face polishing by brush polishing using cerium oxide abrasive grains (see, for example, Patent Document 2).
ところで、酸化セリウムを砥粒として用いて円板状のガラス基板の端面の研磨処理を継続して行うと、ガラス基板の側壁面と介在面との接続部の曲率半径が、徐々に変化してくることがわかった。この接続部は、磁性層の成膜時に磁気ディスク用基板を保持する保持具に接触する部分である。接続部の曲率半径が変化すると、保持具と接続部との接触領域が変化することで保持具に堆積していた磁性膜等が剥ぎ落とされ、異物として基板に付着する場合がある。 By the way, when the polishing process of the end surface of the disk-shaped glass substrate is continuously performed using cerium oxide as abrasive grains, the radius of curvature of the connection portion between the side wall surface of the glass substrate and the interposed surface gradually changes. I knew it would come. This connecting portion is a portion that comes into contact with a holder for holding the magnetic disk substrate when the magnetic layer is formed. When the radius of curvature of the connection portion changes, the contact area between the holder and the connection portion changes, and the magnetic film or the like deposited on the holder may be peeled off, and may adhere to the substrate as foreign matter.
そこで、本発明は、均一な形状のガラス基板を製造することができるガラス基板の製造方法を提供することを目的とする。 Then, an object of this invention is to provide the manufacturing method of the glass substrate which can manufacture the glass substrate of a uniform shape.
本発明者が酸化セリウムを砥粒として含む研磨スラリを用いて円板状のガラス基板の研磨処理を継続して行い、研磨スラリ中の砥粒の粒度分布を分析したところ、研磨処理時間が長くなるほど粒径が大きい砥粒の割合が減少することがわかった。また、研磨処理により得られたガラス基板の接続部の曲率半径を計測したところ、長期間の研磨処理に用いられた研磨スラリを用いて研磨処理を行ったガラス基板ほど曲率半径が小さいことがわかった。
そこで、本発明者が検討したところ、研磨スラリ中の砥粒の粒度分布を所定の範囲に保つことで、研磨処理後のガラス基板における接続部の曲率半径を一定の範囲に保つことができることがわかった。
The inventor continued to polish the disk-shaped glass substrate using a polishing slurry containing cerium oxide as abrasive grains, and analyzed the particle size distribution of the abrasive grains in the polishing slurry. It turned out that the ratio of the abrasive grain with a large particle size decreases. Further, when the radius of curvature of the connecting portion of the glass substrate obtained by the polishing process was measured, it was found that the radius of curvature was smaller as the glass substrate was polished using the polishing slurry used for the long-term polishing process. It was.
Therefore, as a result of investigation by the present inventors, it is possible to keep the radius of curvature of the connecting portion in the glass substrate after the polishing treatment within a certain range by keeping the particle size distribution of the abrasive grains in the polishing slurry within a predetermined range. all right.
本発明の第一の態様は、ガラス基板の主表面に対して垂直な側壁面、および、前記主表面と前記側壁面とを接続する介在面を、第1の研磨液を供給しながら研磨ブラシを用いて研磨する研磨処理を有するガラス基板の製造方法である。
前記第1の研磨液は、
第1の平均粒径を有する酸化セリウムの第1の砥粒群と、
前記第1の平均粒径よりも大きい第2の平均粒径を有する酸化セリウムの第2の砥粒群とを含み、
あらかじめ、前記第1の研磨液中に含まれる前記第1の砥粒群の質量M1に対する前記第2の砥粒群の質量M2の比M1/M2と、前記第1の研磨液を用いて前記端面研磨処理をしたときの前記側壁面と前記介在面との接続部の曲率半径との対応関係を求めておき、
前記曲率半径が所望の値となるように前記第1の研磨液の前記比M1/M2を調整し、当該調整して得られた前記第1の研磨液を用いて前記研磨処理を行う。
A first aspect of the present invention provides a polishing brush while supplying a first polishing liquid to a side wall surface perpendicular to a main surface of a glass substrate and an interposition surface connecting the main surface and the side wall surface. It is a manufacturing method of the glass substrate which has a grinding | polishing process grind | polished using.
The first polishing liquid is
A first abrasive group of cerium oxide having a first average particle size;
A second abrasive grain group of cerium oxide having a second average particle size larger than the first average particle size,
The ratio M1 / M2 of the mass M2 of the second abrasive grain group to the mass M1 of the first abrasive grain group contained in the first polishing liquid and the first polishing liquid are used in advance. The correspondence relationship between the curvature radius of the connection portion between the side wall surface and the interposition surface when the end surface polishing treatment is performed is obtained.
The ratio M1 / M2 of the first polishing liquid is adjusted so that the curvature radius becomes a desired value, and the polishing process is performed using the first polishing liquid obtained by the adjustment.
本発明の第1の態様によれば、曲率半径が所望の値となるように第1の砥粒群の質量M1に対する第2の砥粒群の質量M2の比M1/M2を調整した第1の研磨液を用いて研磨処理を行うことで、側壁面と介在面との接続部の曲率半径を所望の値にすることができる。 According to the first aspect of the present invention, the ratio M1 / M2 of the mass M2 of the second abrasive grain group to the mass M1 of the first abrasive grain group is adjusted so that the radius of curvature becomes a desired value. By performing a polishing process using this polishing liquid, the radius of curvature of the connecting portion between the side wall surface and the interposed surface can be set to a desired value.
前記第1の研磨液を前記研磨処理に用いた後、得られたガラス基板の接続部の曲率半径を計測し、
計測した曲率半径に対応する、第1の砥粒群の質量m1に対する第2の砥粒群の質量m2の比m1/m2を算出し、前記比m1/m2が前記比M1/M2となるように前記端面研磨処理に用いた後の第1の研磨液に追加する前記第1の砥粒群の追加量又は前記第2の砥粒群の追加量を決定し、
決定された追加量の前記第1の砥粒群又は前記第2の砥粒群を前記第1の研磨液に追加することが好ましい。
After using the first polishing liquid for the polishing treatment, measure the radius of curvature of the connecting portion of the obtained glass substrate ,
A ratio m1 / m2 of the mass m2 of the second abrasive grain group to the mass m1 of the first abrasive grain group corresponding to the measured radius of curvature is calculated so that the ratio m1 / m2 becomes the ratio M1 / M2. Determining the additional amount of the first abrasive grain group or the additional amount of the second abrasive grain group to be added to the first polishing liquid after being used for the end face polishing treatment,
It is preferable to add the determined additional amount of the first abrasive grain group or the second abrasive grain group to the first polishing liquid.
研磨処理後に得られたガラス基板の接続部の曲率半径を計測し、計測した曲率半径に対応する比m1/m2に基づいて、追加後の前記比M1/M2が所望の値の曲率半径に対応する値となるように、端面研磨処理に用いた後の第1の研磨液に追加する前記第1の砥粒群の追加量又は前記第2の砥粒群の追加量を算出し、算出された追加量の前記第1の砥粒群又は前記第2の砥粒群を前記第1の研磨液に追加することで、追加後の第1の研磨液における前記質量比が所望の曲率半径と対応する値となるように調整することができる。 The radius of curvature of the connecting portion of the glass substrate obtained after the polishing process is measured, and based on the ratio m1 / m2 corresponding to the measured curvature radius, the ratio M1 / M2 after addition corresponds to the desired radius of curvature. To calculate the additional amount of the first abrasive grain group or the additional amount of the second abrasive grain group to be added to the first polishing liquid after being used for the end surface polishing treatment. By adding the additional amount of the first abrasive grain group or the second abrasive grain group to the first polishing liquid, the mass ratio in the first polishing liquid after the addition becomes a desired radius of curvature. It can be adjusted to a corresponding value.
前記主表面と研磨パッドとの間に第2の研磨液を供給し、前記ガラス基板の主表面を研磨する主表面研磨処理をさらに有し、
前記第2の研磨液は、前記第1の平均粒径を有する第1の砥粒群を含み、
前記主表面研磨処理に用いられた前記第2の研磨液に含まれる砥粒を前記第1の研磨液に追加することで、前記第1の研磨液を調整する、ことが好ましい。
Supplying a second polishing liquid between the main surface and the polishing pad, and further comprising a main surface polishing treatment for polishing the main surface of the glass substrate;
The second polishing liquid includes a first abrasive grain group having the first average particle diameter,
It is preferable to adjust the first polishing liquid by adding abrasive grains contained in the second polishing liquid used in the main surface polishing treatment to the first polishing liquid.
主表面研磨処理に用いる第2の研磨液に含まれる砥粒を第1の研磨液の調整に用いることで、第2の研磨液を再利用することができる。 The second polishing liquid can be reused by using the abrasive grains contained in the second polishing liquid used for the main surface polishing treatment for the adjustment of the first polishing liquid.
前記端面研磨処理が所定期間行われる毎に、前記第1の研磨液に前記第2の砥粒群を添加する処理を含み、
前記第2の砥粒群の添加回数が増えるに連れて前記第2の砥粒群の添加量が減少するように前記第2の砥粒群の添加量を調整する、ことが好ましい。
A process of adding the second abrasive grain group to the first polishing liquid each time the end face polishing process is performed for a predetermined period,
It is preferable to adjust the addition amount of the second abrasive grain group so that the addition amount of the second abrasive grain group decreases as the number of additions of the second abrasive grain group increases.
前記第1の砥粒群は、体積分布の粒度分布にて、粒子径が小さい側から砥粒の相対頻度を累積した累積相対頻度が50%となる点の粒子径D50値が0.5μm〜1.5μmであり、
前記第2の砥粒群は、D50値が3μm〜6μmである、ことが好ましい。
In the first abrasive grain group, the particle diameter D50 value at the point where the cumulative relative frequency obtained by accumulating the relative frequency of the abrasive grains from the smaller particle diameter side in the volume distribution of the volume distribution becomes 50% is from 0.5 μm to 0.5 μm. 1.5 μm,
The second abrasive grain group preferably has a D50 value of 3 μm to 6 μm.
前記ガラス基板は、磁気ディスク用ガラス基板である、ことが好ましい。 The glass substrate is preferably a magnetic disk glass substrate .
本発明によれば、端面研磨処理後のガラス基板における接続部の曲率半径を所望の値にし、均一な形状のガラス基板を製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curvature radius of the connection part in the glass substrate after an end surface grinding | polishing process can be made into a desired value, and a glass substrate of a uniform shape can be manufactured.
以下、本発明の実施形態に係る磁気ディスク用ガラス基板の製造方法について詳細に説明する。なお、本発明は、公称2.5インチサイズ(直径65mm)、板厚0.635mmの磁気ディスク用ガラス基板の製造に好適である。 Hereinafter, the manufacturing method of the glass substrate for magnetic disks which concerns on embodiment of this invention is demonstrated in detail. The present invention is suitable for manufacturing a glass substrate for a magnetic disk having a nominal 2.5 inch size (diameter 65 mm) and a plate thickness of 0.635 mm.
(磁気ディスク用ガラス基板)
まず、磁気ディスク用ガラス基板について説明する。磁気ディスク用ガラス基板は、円板形状であって、外周と同心の円形の中心孔がくり抜かれたリング状である。磁気ディスク用ガラス基板の両面の円環状領域に磁性層(記録領域)が形成されることで、磁気ディスクが形成される。
(Magnetic disk glass substrate)
First, the glass substrate for magnetic disks will be described. The glass substrate for a magnetic disk has a disc shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out. A magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the glass substrate for a magnetic disk.
磁気ディスク用ガラスブランク(以降、単にガラスブランクという)は、プレス成形により作製される円形状のガラス板であって、中心孔がくり抜かれる前の形態である。ガラスブランクの材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。 A magnetic disk glass blank (hereinafter simply referred to as a glass blank) is a circular glass plate produced by press molding, and is in a form before the center hole is cut out. As a material for the glass blank, aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
図1は本発明の実施形態に係る基板の断面図であり、図2は図1のII部の拡大図である。
本実施形態の基板1は、主表面10と、外側端面20と、内側端面30とを有する。
外側端面20は、主表面に対して垂直な外側壁面21、および、主表面10と外側壁面21とを接続する介在面22が含まれる。介在面22は、主表面10および外側壁面21に対して傾斜しており、外側壁面21と介在面22とは、所定の曲率半径Rを有する接続部23により接続されている。
内側端面30は、主表面10に対して垂直な内側壁面31、および、主表面10と内側壁面31とを接続する介在面32が含まれる。介在面32は、主表面10および内側壁面31に対して傾斜しており、内側壁面31と介在面32とは、所定の曲率半径Rを有する接続部33により接続されている。
FIG. 1 is a cross-sectional view of a substrate according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a portion II in FIG.
The substrate 1 of this embodiment has a
The outer end surface 20 includes an
(磁気ディスク用ガラス基板の製造方法)
次に、磁気ディスク用ガラス基板の製造方法を説明する。先ず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクをプレス成形により作製する(プレス成形処理)。次に、作製されたガラスブランクの中心部分に円孔を形成しリング形状(円環状)のガラス基板とする(円孔形成処理)。次に、円孔を形成したガラス基板に対して形状加工を行う(形状加工処理)。これにより、ガラス基板が生成される。次に、形状加工されたガラス基板に対して端面研磨を行う(端面研磨処理)。端面研磨の行われたガラス基板に、平坦度を改善するための精密研削を行う(精密研削処理)。次に、ガラス基板の主表面に第1研磨を行う(第1研磨処理)。次に、ガラス基板に対して化学強化を行う(化学強化処理)。次に、化学強化されたガラス基板に対して第2研磨を行う(第2研磨処理)。以上の処理を経て、磁気ディスク用ガラス基板が得られる。以下、各処理について、詳細に説明する。
(Method for producing glass substrate for magnetic disk)
Next, a method for manufacturing a magnetic disk glass substrate will be described. First, a glass blank as a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is produced by press molding (press molding process). Next, a circular hole is formed in the center part of the produced glass blank, and it is set as a ring-shaped (annular) glass substrate (circular hole formation process). Next, shape processing is performed on the glass substrate in which the circular holes are formed (shape processing processing). Thereby, a glass substrate is produced | generated. Next, end-face polishing is performed on the shape-processed glass substrate (end-face polishing process). Precision grinding to improve flatness is performed on the glass substrate that has been subjected to end surface polishing (precision grinding treatment). Next, 1st grinding | polishing is performed to the main surface of a glass substrate (1st grinding | polishing process). Next, chemical strengthening is performed on the glass substrate (chemical strengthening treatment). Next, second polishing is performed on the chemically strengthened glass substrate (second polishing treatment). The glass substrate for magnetic disks is obtained through the above processing. Hereinafter, each process will be described in detail.
(a)プレス成形処理
熔融ガラス流の先端部を切断器により切断し、切断された熔融ガラス塊を一対の金型のプレス成形面の間に挟みこみ、プレスしてガラスブランクを成形する。
(A) Press molding process The front-end | tip part of a molten glass flow is cut | disconnected with a cutter, the cut molten glass lump is pinched | interposed between the press molding surfaces of a pair of metal molds, and a glass blank is formed by pressing.
(b)円孔形成処理
ガラスブランクに対してドリル等を用いて円孔を形成することにより円形状の孔があいたディスク状のガラス基板を得ることもできる。
(B) Circular hole formation treatment A disk-shaped glass substrate having a circular hole can be obtained by forming a circular hole in a glass blank using a drill or the like.
(c)形状加工処理
形状加工処理では、円孔形成処理後のガラス基板の端部に対する面取り加工を行う。
(C) Shape processing In the shape processing, chamfering is performed on the end of the glass substrate after the circular hole formation processing.
(d)端面研磨処理
端面研磨処理では、ガラス基板の外側端面および内側端面に対して、ブラシ研磨により鏡面仕上げを行う。ここで、端面は、ガラス基板の主表面に対して垂直な側壁面、および、前記主表面と前記側壁面とを接続する介在面からなる。
端面研磨処理では、複数のガラス素板を主表面同士の間にスペーサを挟んで積層する。この積層体を回転させながら、ガラス基板の外側端面および内側端面に研磨ブラシを当てて研磨を行う。
端面研磨処理を行うことにより、ガラス基板の端面に付着した塵等の異物や、傷等の損傷の除去を行うことができる。
端面研磨処理の際、酸化セリウム等の微粒子を遊離砥粒として含む第1の研磨液が研磨ブラシに供給される。第1の研磨液については、後述する。
(D) End surface polishing process In the end surface polishing process, mirror finishing is performed on the outer end surface and the inner end surface of the glass substrate by brush polishing. Here, the end surface includes a side wall surface perpendicular to the main surface of the glass substrate, and an interposed surface that connects the main surface and the side wall surface.
In the end surface polishing treatment, a plurality of glass base plates are laminated with a spacer interposed between the main surfaces. Polishing is performed by applying a polishing brush to the outer end surface and the inner end surface of the glass substrate while rotating the laminate.
By performing the end surface polishing treatment, foreign matters such as dust attached to the end surface of the glass substrate and damage such as scratches can be removed.
During the end face polishing process, a first polishing liquid containing fine particles such as cerium oxide as free abrasive grains is supplied to the polishing brush. The first polishing liquid will be described later.
(e)精密研削処理
精密研削処理では、遊星歯車機構を備えた両面研削装置を用いて、ガラス基板の主表面に対して研削加工を行う。具体的には、ガラスブランクから生成されたガラス基板の外周側端面を、両面研削装置の保持部材に設けられた保持孔内に保持しながらガラス基板の両側の主表面の研削を行う。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させ、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研削することができる。
(E) Precision grinding process In the precision grinding process, grinding is performed on the main surface of the glass substrate using a double-side grinding apparatus equipped with a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate generated from the glass blank in the holding hole provided in the holding member of the double-side grinding apparatus. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
(f)第1研磨処理
第1研磨処理は、主表面研磨処理であり、例えば固定砥粒による研削を行った場合に主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。具体的には、両面研磨装置の研磨用キャリアに設けられた保持孔内にガラス基板の外周側端面を保持しながら、ガラス基板の両側の主表面の研磨が行われる。
(F) First Polishing Process The first polishing process is a main surface polishing process, for example, removal of scratches and distortions remaining on the main surface when grinding with fixed abrasive grains, or minute surface irregularities (microwave The purpose is to adjust the business and roughness. Specifically, the main surfaces on both sides of the glass substrate are polished while holding the outer peripheral end face of the glass substrate in the holding hole provided in the polishing carrier of the double-side polishing apparatus.
第1研磨処理では、固定砥粒による研削処理に用いる両面研削装置と同様の構成を備えた両面研磨装置を用いて、両面研磨装置に第2の研磨液を供給しながらガラス基板の主表面を研磨する。第1研磨処理には、酸化セリウム等の微粒子を遊離砥粒として含む第2の研磨液が用いられる。 In the first polishing process, the main surface of the glass substrate is applied while supplying a second polishing liquid to the double-side polishing apparatus using a double-side polishing apparatus having the same configuration as the double-side grinding apparatus used for the grinding process using the fixed abrasive grains. Grind. In the first polishing treatment, a second polishing liquid containing fine particles such as cerium oxide as free abrasive grains is used.
両面研磨装置は、両面研削装置と同様に、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面が研磨される。 Similar to the double-side grinding apparatus, the double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. Both main surfaces of the glass substrate are polished by moving either the upper surface plate or the lower surface plate or both of them to move the glass substrate and each surface plate relatively.
(g)化学強化処理
化学強化処理では、ガラス基板を化学強化液中に浸漬することで、ガラス基板を化学強化する。化学強化液として、例えば硝酸カリウムと硫酸ナトリウムの混合熔融液等を用いることができる。
(G) Chemical strengthening process In a chemical strengthening process, a glass substrate is chemically strengthened by immersing a glass substrate in a chemical strengthening liquid. As the chemical strengthening liquid, for example, a mixed melt of potassium nitrate and sodium sulfate can be used.
(h)第2研磨(最終研磨)処理
第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。具体的には、ガラス基板の外周側端面を、両面研磨装置の研磨用キャリアに設けられた保持孔内に保持しながらガラス基板の両側の主表面の研磨が行われる。第2研磨による取り代は、例えば1〜10nm程度である。第2研磨処理が第1研磨処理と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。具体的には、粒径5〜100nm程度のコロイダルシリカを遊離砥粒として含む研磨液が両面研磨装置の研磨パッドとガラス基板の主表面との間に供給され、ガラス基板の主表面が研磨される。研磨されたガラス基板を中性洗剤、純水、イソプロピルアルコール等を用いて洗浄することで、磁気ディスク用ガラス基板が得られる。
第2研磨処理を実施することで、主表面の粗さ(Ra)を0.1nm以下かつ主表面のマイクロウェービネスを0.1nm以下とすることができる。このようにして、第2研磨の施されたガラス基板は、適宜洗浄・乾燥されて磁気ディスク用ガラス基板となる。
(H) Second polishing (final polishing) treatment The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. Specifically, the main surface on both sides of the glass substrate is polished while holding the outer peripheral side end face of the glass substrate in a holding hole provided in the polishing carrier of the double-side polishing apparatus. The machining allowance by the second polishing is, for example, about 1 to 10 nm. The second polishing process is different from the first polishing process in that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different. Specifically, a polishing liquid containing colloidal silica having a particle size of about 5 to 100 nm as free abrasive grains is supplied between the polishing pad of the double-side polishing apparatus and the main surface of the glass substrate, and the main surface of the glass substrate is polished. The The polished glass substrate is washed with a neutral detergent, pure water, isopropyl alcohol or the like to obtain a magnetic disk glass substrate.
By performing the second polishing treatment, the roughness (Ra) of the main surface can be set to 0.1 nm or less and the micro waveness of the main surface can be set to 0.1 nm or less. In this manner, the glass substrate subjected to the second polishing is appropriately washed and dried to become a glass substrate for a magnetic disk.
次に、端面研磨処理に用いる第1の研磨液、および、第1研磨処理に用いる第2の研磨液に付いて説明する。
第1の研磨液は、第1の平均粒径を有する第1の砥粒群と、第1の平均粒径よりも大きい第2の平均粒径を有する第2の砥粒群とを含む。
一方、第2の研磨液は、第1の平均粒径を有する第1の砥粒群を含む。
Next, the first polishing liquid used for the end face polishing process and the second polishing liquid used for the first polishing process will be described.
The first polishing liquid includes a first abrasive grain group having a first average particle diameter and a second abrasive grain group having a second average particle diameter larger than the first average particle diameter.
On the other hand, the second polishing liquid contains a first abrasive grain group having a first average particle diameter.
第1の砥粒群は、例えば体積分布の粒度分布にて、粒子径が小さい側から砥粒の相対頻度を累積した累積相対頻度が50%となる点の粒子径D50値が0.5μm〜1.5μmである。
また、第2の砥粒群は、例えばD50値が3μm〜6μmである。
In the first abrasive grain group, for example, in the particle size distribution of the volume distribution, the particle diameter D50 value at which the cumulative relative frequency obtained by accumulating the relative frequency of the abrasive grains from the side where the particle diameter is small becomes 50% is 0.5 μm to 1.5 μm.
The second abrasive grain group has a D50 value of 3 μm to 6 μm, for example.
第1の砥粒群、第2の砥粒群として、例えば、酸化セリウム砥粒、水酸化セリウム砥粒、を用いることができる。特に、研磨レートを良好にするために、酸化セリウム砥粒を用いることが好ましい。 As the first abrasive grain group and the second abrasive grain group, for example, cerium oxide abrasive grains and cerium hydroxide abrasive grains can be used. In particular, in order to improve the polishing rate, it is preferable to use cerium oxide abrasive grains.
本実施形態においては、あらかじめ、第1の研磨液中に含まれる第1の砥粒群の質量M1に対する第2の砥粒群の質量M2の比M1/M2と、第一の研磨液を用いて端面研磨処理をしたときの側壁面と介在面との接続部の曲率半径との対応関係を求めておき、曲率半径が所望の値となるように第1の研磨液の比M1/M2を調整し、当該調整して得られた第1の研磨液を用いて端面研磨処理を行う。 In this embodiment, the ratio M1 / M2 of the mass M2 of the second abrasive grain group to the mass M1 of the first abrasive grain group contained in the first polishing liquid and the first polishing liquid are used in advance. Then, a correspondence relationship between the curvature radius of the connection portion between the side wall surface and the interposition surface when the end surface polishing process is performed is obtained, and the ratio M1 / M2 of the first polishing liquid is set so that the curvature radius becomes a desired value. An end face polishing process is performed using the first polishing liquid obtained by the adjustment.
なお、砥粒全体の平均粒径が大きいほど、接続部23の曲率半径が大きくなることが分かっている。すなわち、比M1/M2が小さいほど、曲率半径Rが大きくなることが分かっている。このため、本実施形態においては、所望の値の曲率半径Rと対応するように比M1/M2を調整した第1の研磨液を用いて端面研磨処理を行うことで、接続部の曲率半径を所望の値にすることができる。
In addition, it turns out that the curvature radius of the
ここで、比M1/M2と曲率半径Rとの関係を図3に示す。第1の砥粒群のみを用いて端面研磨処理を行ったときの曲率半径をR1、第2の砥粒群のみを用いて端面研磨処理を行ったときの曲率半径をR2(R1<R2)とすると、比M1/M2を変化させたときの曲率半径RはR1とR2の間で変動し、M1の割合が大きくなるほど(M1/M2が大きくなるほど)RはR2からR1に近づく。すなわち、図3における直線R=R1は、RとM1/M2の関数のグラフの漸近線である。一方、M1/M2=0(M1=0)のときR=R2である。 Here, the relationship between the ratio M1 / M2 and the radius of curvature R is shown in FIG. The radius of curvature when the end face polishing process is performed using only the first abrasive grain group is R1, and the radius of curvature when the end face polishing process is performed using only the second abrasive grain group is R2 (R1 <R2). Then, the radius of curvature R when the ratio M1 / M2 is changed fluctuates between R1 and R2, and as the ratio of M1 increases (M1 / M2 increases), R approaches R1 from R2. That is, the straight line R = R1 in FIG. 3 is an asymptotic line of the graph of the function of R and M1 / M2. On the other hand, when M1 / M2 = 0 (M1 = 0), R = R2.
第1の研磨液を用いて継続して端面研磨処理を行うと、第1の砥粒群の質量と第2の砥粒群の質量との比が変化する。この変化の理由として、小さい粒径の砥粒が凝集して大きい粒径の砥粒となることや、大きい粒径の砥粒が砕けて小さい粒径の砥粒となることが考えられる。いずれの場合も、第1の砥粒群の質量の変化量と第2の砥粒群の質量の変化量とは、その絶対値が等しく符号が異なると考えられる。 When the end face polishing process is continuously performed using the first polishing liquid, the ratio between the mass of the first abrasive grain group and the mass of the second abrasive grain group changes. It is conceivable that the reason for this change is that the abrasive grains having a small particle size aggregate to form an abrasive grain having a large particle size, or the abrasive grains having a large particle size are broken to become abrasive grains having a small particle size. In any case, it is considered that the amount of change in mass of the first abrasive grain group and the amount of change in mass of the second abrasive grain group have the same absolute value and different signs.
この場合、上記の曲率半径Rと比M1/M2との関係を用いて、端面研磨処理後の接続部の曲率半径が所望の値となるように第1の研磨液を調整することができる。
例えば、継続して端面研磨処理を行った後のある時点の第1の研磨液に含まれる第1の砥粒群の質量をm1、第2の砥粒群の質量をm2とすると、この時点の第1の研磨液を用いて端面研磨処理を行って得られた磁気ディスク用ガラス基板の接続部の曲率半径rを計測することで、比m1/m2を算出することができる。継続して端面研磨処理を行ったことによる第2の砥粒群の質量の変化量と第1の砥粒群の質量の変化量の絶対値が等しく符号が異なるとすると、m1+m2の初期値がわかれば、m1およびm2を求めることができる。
In this case, the first polishing liquid can be adjusted using the relationship between the radius of curvature R and the ratio M1 / M2 so that the radius of curvature of the connection portion after the end surface polishing process becomes a desired value.
For example, when the mass of the first abrasive grain group included in the first polishing liquid at a certain time after the end face polishing process is continuously performed is m1, and the mass of the second abrasive grain group is m2, the time is The ratio m1 / m2 can be calculated by measuring the radius of curvature r of the connecting portion of the glass substrate for magnetic disk obtained by performing the end face polishing process using the first polishing liquid. Assuming that the absolute value of the mass change amount of the second abrasive grain group and the mass change amount of the first abrasive grain group due to the continuous end face polishing process are equal and the signs are different, the initial value of m1 + m2 is If known, m1 and m2 can be obtained.
その後、求めたm1、m2を用いて、端面研磨処理後の接続部の曲率半径が所望の値となるように第1の研磨液を調整することができる。
例えば、所望の曲率半径Rに対応する比がM1/M2であれば、第1の研磨液に第1の砥粒群を追加する場合、その追加量をΔm1とすれば、
(m1+Δm1)/m2=M1/M2
を満たすΔm1を決定することができる。
同様に、第1の研磨液に第2の砥粒群を追加する場合、その追加量をΔm2とすれば、
m1/(m2+Δm2)=M1/M2
を満たすΔm2を決定することができる。
決定した追加量の第1の砥粒群又は第2の砥粒群を第1の研磨液に追加することで、その後の端面研磨処理において、接続部の曲率半径が所望の値となる基板を得ることができる。
Thereafter, using the obtained m1 and m2, the first polishing liquid can be adjusted so that the radius of curvature of the connecting portion after the end face polishing treatment becomes a desired value.
For example, if the ratio corresponding to the desired radius of curvature R is M1 / M2, when adding the first abrasive grain group to the first polishing liquid, if the additional amount is Δm1,
(M1 + Δm1) / m2 = M1 / M2
Δm1 that satisfies the above can be determined.
Similarly, when adding the second abrasive grain group to the first polishing liquid, if the additional amount is Δm2,
m1 / (m2 + Δm2) = M1 / M2
Δm2 that satisfies the above can be determined.
By adding the determined additional amount of the first abrasive grain group or the second abrasive grain group to the first polishing liquid, a substrate in which the radius of curvature of the connection portion has a desired value in the subsequent end face polishing process is obtained. Can be obtained.
なお、第1研磨処理に用いる第2の研磨液に含まれる砥粒として、第1の砥粒群と同一種類かつ同一の粒度分布を有する砥粒を用いることができる。この場合において、第1の研磨液の調整に用いる第1砥粒群として、第1研磨処理に用いられた第2の研磨液に含まれる砥粒を用いてもよい。端面研磨処理において研磨するガラス基板の外側端面および内側端面には、主表面ほどの精密は要求されないため、主表面研磨処理に用いた研磨液を端面研磨処理に再利用しても、問題はない。第1研磨処理に用いられた第2の研磨液を第1の研磨液の調整に用いることで、第2の研磨液を再利用し、研磨液の廃棄量を低減することができる。 Note that as the abrasive grains contained in the second polishing liquid used for the first polishing treatment, abrasive grains having the same type and the same particle size distribution as the first abrasive grain group can be used. In this case, the abrasive grains contained in the second polishing liquid used in the first polishing process may be used as the first abrasive grain group used for adjusting the first polishing liquid. Since the outer end surface and inner end surface of the glass substrate to be polished in the end surface polishing process do not require the same precision as the main surface, there is no problem even if the polishing liquid used in the main surface polishing process is reused in the end surface polishing process. . By using the second polishing liquid used in the first polishing process for the adjustment of the first polishing liquid, the second polishing liquid can be reused and the amount of polishing liquid discarded can be reduced.
なお、第2の砥粒群を第1の研磨液に添加する処理を行う場合、この処理は、第1の研磨液を用いた研磨処理が所定期間行われる毎に行うことが好ましい。この場合において、第2の砥粒群の添加回数が増えるに連れて第2の砥粒群の添加量が減少するように添加することが好ましい。第2の砥粒群の砥粒の質量が徐々に減少するような条件で研磨処理を行いながら第2の砥粒群の添加を繰り返すと、第1の砥粒群よりも粒径が大きく第2の砥粒群よりも粒径が小さい粒径の砥粒の割合が増加し、粒度分布のばらつきが大きくなってしまうためである。第2の砥粒群の添加回数の増加に伴い第2の砥粒群の添加量を減少させることで、第1の研磨液を好適に調整することができる。 In addition, when performing the process which adds a 2nd abrasive grain group to a 1st polishing liquid, it is preferable to perform this process, whenever the polishing process using a 1st polishing liquid is performed for a predetermined period. In this case, it is preferable to add so that the addition amount of the second abrasive grain group decreases as the number of additions of the second abrasive grain group increases. When the addition of the second abrasive grain group is repeated while performing the polishing process under the condition that the mass of the abrasive grains of the second abrasive grain group gradually decreases, the grain size becomes larger than that of the first abrasive grain group. This is because the proportion of abrasive grains having a grain size smaller than that of the abrasive grain group 2 increases and the dispersion of the grain size distribution becomes large. The first polishing liquid can be suitably adjusted by reducing the addition amount of the second abrasive grain group as the number of additions of the second abrasive grain group increases.
以上、本発明のガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the glass substrate of this invention was demonstrated in detail, this invention is not limited to the said embodiment and Example, Even if it is variously improved and changed in the range which does not deviate from the main point of this invention. Of course it is good.
〔実施例〕
以下、本発明の実施例について説明する。
D50値が1μmの酸化セリウムの遊離砥粒を第1の遊離砥粒群とした。添加する質量をM1とする。
D50値が4μmの粒度分布を有する酸化セリウムの遊離砥粒を第2の遊離砥粒群とした。添加する質量をM2とする。
初期の質量比をM1:M2=4:1として、10wt%の酸化セリウムの研磨液を用意した。50枚(1バッチ)のガラス基板をスペーサを挟んで重ね、ガラス基板の外周端部に対して研磨ブラシを用いて端面研磨処理を行なった。1バッチ目の研磨処理後の外周端部の接続部の曲率半径を計測したところ、曲率半径の平均値は400μmであった。
〔Example〕
Examples of the present invention will be described below.
The free abrasive grains of cerium oxide having a D50 value of 1 μm were taken as the first free abrasive grain group. The mass to be added is M1.
A free abrasive grain of cerium oxide having a particle size distribution with a D50 value of 4 μm was taken as a second free abrasive grain group. The mass to be added is M2.
The initial mass ratio was M1: M2 = 4: 1, and a 10 wt% cerium oxide polishing liquid was prepared. Fifty (one batch) glass substrates were stacked with a spacer in between, and an edge polishing process was performed on the outer peripheral edge of the glass substrate using a polishing brush. When the radius of curvature of the connecting portion at the outer peripheral end after the first batch polishing treatment was measured, the average value of the radius of curvature was 400 μm.
上記の第1の研磨液を循環させながら、ガラス基板の端面研磨処理を100バッチ行った。ガラス基板は毎回新しいものに交換した。100バッチ目のガラス基板の接続部の曲率半径を計測したところ、曲率半径は200μmに低下した。あらかじめ求めておいた、第1の砥粒群の質量M1に対する第2の砥粒群の質量M2の比M1/M2と曲率半径Rとの対応関係から、100バッチ分の端面研磨処理の終了後における第1の遊離砥粒群の質量(m1)と第2の遊離砥粒群の質量(m2)との質量比(m1/m2)は2と算出した。
次に、第1の研磨液に第2の砥粒群を適宜追加し、攪拌することで、質量比を4に調整した。調整後の第1の研磨液を用いてガラス基板の端面研磨処理を1バッチ行い、処理後のガラス基板の接続部の曲率半径を計測したところ、曲率半径は400μmに戻った。
While circulating the first polishing liquid, 100 batches of edge polishing of the glass substrate were performed. The glass substrate was replaced with a new one each time. When the radius of curvature of the connecting portion of the 100th batch of glass substrates was measured, the radius of curvature decreased to 200 μm. After the end face polishing process for 100 batches is completed, the correspondence between the ratio M1 / M2 of the mass M2 of the second abrasive grain group to the mass M1 of the first abrasive grain group and the curvature radius R is obtained in advance. The mass ratio (m1 / m2) between the mass (m1) of the first free abrasive grain group and the mass (m2) of the second free abrasive grain group was calculated as 2.
Next, the second abrasive grain group was appropriately added to the first polishing liquid, and the mass ratio was adjusted to 4 by stirring. One batch of end polishing of the glass substrate was performed using the adjusted first polishing liquid, and the radius of curvature of the connecting portion of the glass substrate after the treatment was measured. As a result, the radius of curvature returned to 400 μm.
このように、本実施形態によれば、継続して端面研磨処理を行うことで研磨液に含まれる砥粒の粒度分布が変化した場合でも、研磨液の粒度分布を調整し、端面研磨処理後のガラス基板における接続部の曲率半径を所望の値にすることができる。 Thus, according to this embodiment, even when the particle size distribution of the abrasive grains contained in the polishing liquid is changed by continuously performing the end surface polishing process, the particle size distribution of the polishing liquid is adjusted, and after the end surface polishing process The curvature radius of the connecting portion in the glass substrate can be set to a desired value.
1 ガラス基板
10 主表面
20 外側端面
21 外側壁面
22 介在面
23 接続部
30 内側端面
31 内側壁面
32 介在面
33 接続部
DESCRIPTION OF SYMBOLS 1
Claims (6)
前記第1の研磨液は、
第1の平均粒径を有する酸化セリウムの第1の砥粒群と、
前記第1の平均粒径よりも大きい第2の平均粒径を有する酸化セリウムの第2の砥粒群とを含み、
あらかじめ、前記第1の研磨液中に含まれる前記第1の砥粒群の質量M1に対する前記第2の砥粒群の質量M2の比M1/M2と、前記第1の研磨液を用いて端面研磨処理をしたときの前記側壁面と前記介在面との接続部の曲率半径との対応関係を求めておき、
前記曲率半径が所望の値となるように前記第1の研磨液の前記比M1/M2を調整し、
当該調整して得られた前記第1の研磨液を用いて前記端面研磨処理を行う、ガラス基板の製造方法。 An end surface for polishing a side wall surface perpendicular to the main surface of the glass substrate and an end surface composed of an interposition surface connecting the main surface and the side wall surface with a polishing brush while supplying a first polishing liquid. A method for producing a glass substrate having a polishing treatment,
The first polishing liquid is
A first abrasive group of cerium oxide having a first average particle size;
A second abrasive grain group of cerium oxide having a second average particle size larger than the first average particle size,
A ratio M1 / M2 of the mass M2 of the second abrasive grain group to the mass M1 of the first abrasive grain group contained in the first polishing liquid and an end face using the first polishing liquid in advance. Finding the correspondence between the curvature radius of the connecting portion between the side wall surface and the interposition surface when the polishing process is performed,
Adjusting the ratio M1 / M2 of the first polishing liquid so that the curvature radius becomes a desired value;
A method for producing a glass substrate , wherein the end surface polishing treatment is performed using the first polishing liquid obtained by the adjustment.
計測した曲率半径に対応する、第1の砥粒群の質量m1に対する第2の砥粒群の質量m2の比m1/m2を算出し、
前記比m1/m2が前記比M1/M2となるように前記端面研磨処理に用いた後の第1の研磨液に追加する前記第1の砥粒群の追加量又は前記第2の砥粒群の追加量を決定し、
決定された追加量の前記第1の砥粒群又は前記第2の砥粒群を前記第1の研磨液に追加する、請求項1に記載のガラス基板の製造方法。 After using the first polishing liquid for the end surface polishing treatment, measure the radius of curvature of the connection portion of the obtained glass substrate ,
The ratio m1 / m2 of the mass m2 of the second abrasive grain group to the mass m1 of the first abrasive grain group corresponding to the measured radius of curvature is calculated,
An additional amount of the first abrasive grain group or the second abrasive grain group to be added to the first polishing liquid after being used for the end surface polishing treatment so that the ratio m1 / m2 becomes the ratio M1 / M2. Determine the additional amount of
The method for producing a glass substrate according to claim 1, wherein the determined additional amount of the first abrasive grain group or the second abrasive grain group is added to the first polishing liquid.
前記第2の研磨液は、前記第1の平均粒径を有する第1の砥粒群を含み、
前記主表面研磨処理に用いられた前記第2の研磨液に含まれる砥粒を前記第1の研磨液に追加することで、前記第1の研磨液を調整する、請求項1又は2に記載のガラス基板の製造方法。 Supplying a second polishing liquid between the main surface and the polishing pad, and further comprising a main surface polishing treatment for polishing the main surface of the glass substrate;
The second polishing liquid includes a first abrasive grain group having the first average particle diameter,
The said 1st polishing liquid is adjusted by adding the abrasive grain contained in the said 2nd polishing liquid used for the said main surface polishing process to the said 1st polishing liquid, The Claim 1 or 2 Glass substrate manufacturing method.
前記第2の砥粒群を添加する処理の回数が増えるに連れて前記第2の砥粒群の添加量が減少するように前記第2の砥粒群の添加量を調整する、請求項1〜3のいずれか一項に記載のガラス基板の製造方法。 A process of adding the second abrasive grain group to the first polishing liquid each time the end face polishing process is performed for a predetermined period,
The addition amount of the second abrasive grain group is adjusted so that the addition amount of the second abrasive grain group decreases as the number of times of the process of adding the second abrasive grain group increases. The manufacturing method of the glass substrate as described in any one of -3.
前記第2の砥粒群は、D50値が3μm〜6μmである、請求項1〜4のいずれか一項に記載のガラス基板の製造方法。 In the first abrasive grain group, the particle diameter D50 value at a point where the cumulative relative frequency obtained by accumulating the relative frequency of the abrasive grains from the smaller particle diameter side in the volume distribution is 50% is 0.5 μm to 1.5 μm,
The said 2nd abrasive grain group is a manufacturing method of the glass substrate as described in any one of Claims 1-4 whose D50 value is 3 micrometers-6 micrometers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014202075A JP6307407B2 (en) | 2014-09-30 | 2014-09-30 | Manufacturing method of glass substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014202075A JP6307407B2 (en) | 2014-09-30 | 2014-09-30 | Manufacturing method of glass substrate |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016071916A JP2016071916A (en) | 2016-05-09 |
JP2016071916A5 JP2016071916A5 (en) | 2017-09-14 |
JP6307407B2 true JP6307407B2 (en) | 2018-04-04 |
Family
ID=55864858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014202075A Active JP6307407B2 (en) | 2014-09-30 | 2014-09-30 | Manufacturing method of glass substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6307407B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6904338B2 (en) | 2016-04-27 | 2021-07-14 | Agc株式会社 | Window members and vehicle window glass |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4274708B2 (en) * | 2001-05-14 | 2009-06-10 | Hoya株式会社 | Glass substrate for magnetic recording medium and manufacturing method thereof |
JP5287174B2 (en) * | 2008-04-30 | 2013-09-11 | 日立化成株式会社 | Abrasive and polishing method |
JP5326638B2 (en) * | 2009-02-18 | 2013-10-30 | 富士電機株式会社 | Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium in which it is used, and perpendicular magnetic recording medium |
-
2014
- 2014-09-30 JP JP2014202075A patent/JP6307407B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016071916A (en) | 2016-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4947754B2 (en) | Information recording medium substrate and method for manufacturing the same, information recording medium, and glass base plate | |
JP5593224B2 (en) | Magnetic disk substrate, manufacturing method thereof, and magnetic disk | |
JP5305698B2 (en) | Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk | |
JP5356606B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP5967999B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP7547449B2 (en) | Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk | |
JP6181325B2 (en) | Magnetic disk substrate manufacturing method and magnetic disk manufacturing method | |
JPWO2011033948A1 (en) | GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND METHOD FOR PRODUCING GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM | |
JP2010080025A (en) | Substrate for magnetic disk and magnetic disk | |
JP5905765B2 (en) | Method for producing plate glass material for magnetic disk, method for producing glass substrate for magnetic disk | |
JP5297281B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP6307407B2 (en) | Manufacturing method of glass substrate | |
JPWO2015046525A1 (en) | Manufacturing method of non-magnetic substrate | |
JP5706250B2 (en) | Glass substrate for HDD | |
WO2012090655A1 (en) | Method for producing glass substrate | |
JP6063611B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
JP6236542B2 (en) | Magnetic disk substrate manufacturing method, magnetic disk manufacturing method, polishing pad material, and substrate manufacturing method | |
JP6225248B2 (en) | Glass substrate for magnetic disk, magnetic disk for heat-assisted magnetic recording, and method for manufacturing magnetic disk for heat-assisted magnetic recording | |
JP2013080532A (en) | Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate | |
JP5177328B2 (en) | Method for manufacturing glass substrate for magnetic information recording medium | |
JP2013012282A (en) | Method for manufacturing glass substrate for hdd | |
JP2016071909A (en) | Manufacturing method of magnetic disk substrate and manufacturing method of magnetic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170803 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180312 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6307407 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |