JP2014180709A - Manufacturing method of grindstone, and glass substrate for magnetic disk - Google Patents

Manufacturing method of grindstone, and glass substrate for magnetic disk Download PDF

Info

Publication number
JP2014180709A
JP2014180709A JP2013055511A JP2013055511A JP2014180709A JP 2014180709 A JP2014180709 A JP 2014180709A JP 2013055511 A JP2013055511 A JP 2013055511A JP 2013055511 A JP2013055511 A JP 2013055511A JP 2014180709 A JP2014180709 A JP 2014180709A
Authority
JP
Japan
Prior art keywords
glass substrate
grinding
grindstone
end surface
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013055511A
Other languages
Japanese (ja)
Inventor
Hiroaki Ozawa
広昭 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013055511A priority Critical patent/JP2014180709A/en
Publication of JP2014180709A publication Critical patent/JP2014180709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grindstone which grinds an end surface shape of a disk-shaped substrate highly accurately into a target shape.SOLUTION: A grindstone 12 comes into contact with an end surface 10b on an outer circumferential side of a disk-shaped substrate 10 in the state where a rotational axis Y is inclined with respect to a normal direction X of a main surface of the disk-shaped substrate 10 having a pair of main surfaces which is an object to be processed, and performs grinding of the end surface. A cross-sectional shape of the grindstone 12 which contacts the end surface 10b on a grinding surface, which is formed by cutting on a plane including the rotational axis Y, is a concave shape toward the rotational axis Y. A grinding surface of the grindstone 12 is provided for a columnar outer surface, and an end surface 10b on the outer circumferential side of the glass substrate 10 is ground by using the grindstone 12.

Description

本発明は、円盤形状基板を研削する回転砥石及びこの回転砥石を用いた磁気ディスク用ガラス基板の製造方法に関する。   The present invention relates to a rotating grindstone for grinding a disk-shaped substrate and a method for manufacturing a glass substrate for a magnetic disk using the rotating grindstone.

情報記録媒体の1つとして用いられる磁気ディスクには、ガラス基板が好適に用いられている。今日、ハードディスクドライブ装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。これに伴って、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することが行われている。このような磁気ディスクでは、磁気ヘッドによる読み書きを安定にするために、外周端面の真円度及び磁気ディスクに設けられた円孔の真円度の向上が求められている。   A glass substrate is suitably used for a magnetic disk used as one of information recording media. Today, in response to a request for an increase in storage capacity in a hard disk drive device, the density of magnetic recording has been increased. Along with this, the magnetic recording information area is miniaturized by extremely shortening the flying distance from the magnetic recording surface of the magnetic head. In such a magnetic disk, in order to stabilize reading and writing by the magnetic head, it is required to improve the roundness of the outer peripheral end face and the roundness of the circular hole provided in the magnetic disk.

ところで、円盤形状のガラス基板等の加工対象の円盤形状基板の端面研削には、研削の加工効率及び研削に用いる回転砥石の寿命を向上させるために、特許文献1に開示されている研削が行われている。特許文献1に開示の研削とは、円盤形状基板の主表面の法線方向に対して回転砥石の回転軸を傾斜させた状態で(円盤形状基板の回転軸と研削砥石の回転軸が同じ平面上にない状態で)、円盤形状の端面を当接させて、端面の研削を行う研削加工をいう。特許文献1に開示の研削は、ガラス基板へのダメージが少ないこと、研削加工面の表面粗さやその面内ばらつきが小さいこと、研削加工面をより高平滑にできること、さらには砥石寿命を向上できる点で好適な研削である。   By the way, in the end face grinding of a disk-shaped substrate to be processed such as a disk-shaped glass substrate, the grinding disclosed in Patent Document 1 is performed in order to improve the processing efficiency of the grinding and the life of the rotating grindstone used for the grinding. It has been broken. The grinding disclosed in Patent Document 1 is a state in which the rotation axis of the rotating grindstone is inclined with respect to the normal direction of the main surface of the disk-shaped substrate (the rotation axis of the disk-shaped substrate and the rotation axis of the grinding wheel are the same plane). A grinding process in which a disk-shaped end face is brought into contact with the end face to grind the end face. The grinding disclosed in Patent Document 1 has little damage to the glass substrate, small surface roughness and in-plane variation of the ground surface, can make the ground surface smoother, and can improve the life of the grindstone. It is a grinding suitable for the point.

特開2000−167753号公報JP 2000-167753 A

しかし、上記特許文献1に開示の研削方法で、円盤状基板の外周側端面の端面研削を行った結果、研削後の円盤形状基板の外周側端面は、目標とする形状を高精度に得られなかった。
そこで、本発明は、円盤形状基板の端面研削において、円盤形状基板の外周側端面の形状を目標とする形状に高精度に研削することができる回転砥石及びこの回転砥石を用いた磁気ディスク用ガラス基板の製造方法を提供することを目的とする。
However, as a result of performing end surface grinding of the outer peripheral side end surface of the disk-shaped substrate by the grinding method disclosed in Patent Document 1, the target shape can be obtained with high accuracy on the outer peripheral side end surface of the disk-shaped substrate after grinding. There wasn't.
Accordingly, the present invention provides a rotating grindstone that can grind the shape of the outer peripheral side end face of a disc-shaped substrate to a target shape with high accuracy in end face grinding of a disc-shaped substrate, and a glass for a magnetic disk using the rotating grindstone. An object is to provide a method for manufacturing a substrate.

本願発明者は、上記研削方法を用いた円盤形状基板の外周側端面の研削を種々行った後の円盤形状基板の端面形状を観察したところ、円盤形状基板の外周側端面は、主表面に直交する形状でなく、基板厚さ方向の中央部分が凹形状にへこんだ形状であることを見出して、本願発明にいたっている。   The inventor of the present application observed the end face shape of the disc-shaped substrate after variously grinding the outer peripheral end surface of the disc-shaped substrate using the above grinding method, and the outer peripheral side end surface of the disc-shaped substrate was orthogonal to the main surface. The present invention finds that the central portion in the thickness direction of the substrate is not a shape to be concave but is a concave shape.

本発明の一態様は、加工対象である一対の主表面を有する円盤形状基板の主表面の法線方向に対して回転軸を傾斜させた状態で、前記円盤形状基板の外周側の端面に当接させて前記端面の研削加工を行うための回転砥石であって、
前記端面と当接する前記回転砥石の研削面における前記回転軸を含む平面で切断したときの断面形状は、前記回転軸に向かって凹形状である。
In one embodiment of the present invention, the rotation axis is inclined with respect to the normal direction of the main surface of the disk-shaped substrate having a pair of main surfaces to be processed, and the end surface on the outer peripheral side of the disk-shaped substrate is contacted. A rotating grindstone for grinding the end face in contact,
A cross-sectional shape of the grinding surface of the rotating grindstone that comes into contact with the end surface when cut along a plane including the rotating shaft is a concave shape toward the rotating shaft.

前記凹形状は円弧形状である、ことが好ましい。また、前記凹形状は、楕円の円弧形状または放物線形状であってもよい。   The concave shape is preferably an arc shape. The concave shape may be an elliptical arc shape or a parabolic shape.

このとき、前記回転砥石は円柱形状を成し、前記回転砥石の研削面は、前記円柱形状の外側表面に設けられていることが、好ましい。   At this time, it is preferable that the rotating grindstone has a cylindrical shape, and the grinding surface of the rotating grindstone is provided on the outer surface of the columnar shape.

また、本発明の他の一態様は、前記回転砥石を、外周側の端面を研削する研削砥石として用いて前記円盤形状基板である磁気ディスク用素板の外周側の端面を研削する外周側端面研削処理を含む磁気ディスク用ガラス基板の製造方法であって、前記外周側端面研削処理では、前記回転砥石を用いて前記素板の外周側端面を研削する。
換言すれば、本発明の他の一態様は、中心に円孔を有する円盤形状基板である磁気ディスク用ガラス素板の端面を研削する端面研削処理を含む磁気ディスク用ガラス基板の製造方法であって、前記端面研削処理では、前記磁気ディスク用ガラス素板の外周端面を、前記回転砥石を用いて研削するものである。
In another aspect of the present invention, an outer peripheral end surface that grinds an outer peripheral side end surface of the disk-shaped substrate, which is the disk-shaped substrate, using the rotary grindstone as a grinding wheel for grinding an outer peripheral end surface. A method for manufacturing a glass substrate for a magnetic disk including a grinding process, wherein in the outer peripheral side end face grinding process, the outer peripheral side end face of the base plate is ground using the rotating grindstone.
In other words, another aspect of the present invention is a method for manufacturing a magnetic disk glass substrate including an end surface grinding process for grinding an end surface of a magnetic disk glass base plate that is a disk-shaped substrate having a circular hole in the center. In the end face grinding process, the outer peripheral end face of the magnetic disk glass base plate is ground using the rotary grindstone.

このとき、前記磁気ディスク用素板の中心に有する円孔部分における前記素板の内周側端面を、円柱形状の内周側端面研削用回転砥石を用いて研削する内周側端面研削処理をさらに含み、前記内周側端面研削処理では、前記素板の内周側端面を前記円柱形状の外側表面を用いて研削し、前記内周側端面研削用回転砥石の研削面における前記内周側端面研削用回転砥石の回転軸を含む平面で切断したときの断面形状が、前記素板の内周側端面に向かって凸形状である、ことが好ましい。   At this time, an inner peripheral side end surface grinding process is performed in which the inner peripheral side end surface of the base plate in the circular hole portion at the center of the magnetic disk base plate is ground using a cylindrical inner peripheral end surface grinding rotary grindstone. In addition, in the inner peripheral side end surface grinding process, the inner peripheral side end surface of the base plate is ground using the cylindrical outer surface, and the inner peripheral side of the grinding surface of the inner peripheral side end surface grinding rotary grindstone It is preferable that the cross-sectional shape when cut along a plane including the rotation axis of the rotating grindstone for end face grinding is a convex shape toward the inner peripheral side end face of the base plate.

上述の回転砥石及びこの回転砥石を用いた磁気ディスク用ガラス基板の製造方法では、円盤形状基板の端面形状を目標とする形状に高精度に形成することができる。   In the above-described rotating grindstone and the method for producing a glass substrate for a magnetic disk using the rotating grindstone, the end face shape of the disk-shaped substrate can be formed with high accuracy into a target shape.

(a),(b)は、本実施形態の回転砥石を用いたガラス基板の外周側端面に対して行う研削を説明する図である。(A), (b) is a figure explaining the grinding performed with respect to the outer peripheral side end surface of the glass substrate using the rotary grindstone of this embodiment. (a)は、本実施形態の回転砥石の断面形状を説明する図であり、(b)は、本実施形態の端面研削後のガラス基板の端面形状を説明する図である。(A) is a figure explaining the cross-sectional shape of the rotary grindstone of this embodiment, (b) is a figure explaining the end surface shape of the glass substrate after the end surface grinding of this embodiment. (a)は、従来の回転砥石の断面形状を説明する図であり、(b)は、従来の端面研削後のガラス基板の端面形状を説明する図である。(A) is a figure explaining the cross-sectional shape of the conventional rotary grindstone, (b) is a figure explaining the end surface shape of the glass substrate after the conventional end surface grinding. ガラス基板の内周側端面に対して行う回転砥石を用いた研削を説明する図である。It is a figure explaining the grinding using the rotating grindstone performed with respect to the inner peripheral side end surface of a glass substrate. ガラス基板の内周側端面に対して行う回転砥石の断面形状を説明する図である。It is a figure explaining the cross-sectional shape of the rotating grindstone performed with respect to the inner peripheral side end surface of a glass substrate.

以下、本発明の回転砥石及び円盤形状基板である磁気ディスク用ガラス基板の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the glass substrate for magnetic discs which is the rotary grindstone of this invention and a disk shaped board | substrate is demonstrated in detail.

(本実施形態に用いる端面研削の概要)
本実施形態では、加工対象である一対の主表面を有する円盤形状基板である、中心に円孔を有する磁気ディスク用ガラス基板の素板(磁気ディスク用素板)の主表面の法線方向に対して回転砥石の回転軸を傾斜させた状態で、素板の主表面と直交している端面(外周側端面)を当接させて端面の研削を行う。これにより、素板の主表面に対して直交する端面(以下、側壁面とする)を形成する。このような端面研削を行う回転砥石における、素板の端面と当接する研削する面の断面形状(回転砥石の回転軸を含む平面で切断したときの断面形状)は、素板の側壁面に対してへこんだ凹形状である。換言すると、前記回転砥石の回転軸を含む平面で切断したときの当該回転砥石の研削面は、回転軸に向かってへこんでいる凹形状である。このような回転砥石を用いた研削により、研削後の側壁面の形状を主表面に対して精度よく直交させることができる。なお、上記研削を行う際には、素板の主表面と直交する軸と、回転砥石の回転軸とが、互いにねじれの関係になるように回転砥石の回転軸を傾斜させている。
(Outline of end face grinding used in this embodiment)
In the present embodiment, in the normal direction of the main surface of the base plate of the magnetic disk glass substrate (magnetic disk base plate) having a circular hole in the center, which is a disk-shaped substrate having a pair of main surfaces to be processed. On the other hand, in a state where the rotation axis of the rotating grindstone is inclined, the end face (outer end face) orthogonal to the main surface of the base plate is brought into contact with the end face to be ground. Thereby, an end surface (hereinafter referred to as a side wall surface) orthogonal to the main surface of the base plate is formed. In the rotary grindstone that performs such end face grinding, the cross-sectional shape of the surface to be ground that comes into contact with the end face of the base plate (the cross-sectional shape when cut along the plane including the rotation axis of the rotary grindstone) is It has a concave shape. In other words, the grinding surface of the rotating grindstone when cut along a plane including the rotating shaft of the rotating grindstone has a concave shape that is recessed toward the rotating shaft. By grinding using such a rotating grindstone, the shape of the side wall surface after grinding can be accurately orthogonal to the main surface. When the grinding is performed, the rotation axis of the rotating grindstone is inclined so that the axis orthogonal to the main surface of the base plate and the rotating shaft of the rotating grindstone are in a twisted relationship with each other.

上述したように、回転砥石の溝の底部の断面形状が直線形状を成している場合に円盤形状基板の外周側端面の研削を行うと、主表面に対して直交する側壁面が形成されるべき素板の端面の部分に、基板厚さ方向の中央部分が凹状にへこんだ形状の面が形成されることを本願発明者は見出している。このため、この凹状にへこんだ形状を直線形状にすべく、回転砥石の溝底部の断面形状を、基板の側壁面に向かってへこんだ凹形状とする。なお、回転砥石における溝底部の凹形状は円弧形状であることが、基板の側壁面を、主表面に対して精度高く直交できる点で好ましい。   As described above, when the outer peripheral side end surface of the disk-shaped substrate is ground when the cross-sectional shape of the bottom of the groove of the rotating grindstone is a linear shape, a side wall surface orthogonal to the main surface is formed. The inventor of the present application has found that a surface having a concave concave central portion in the substrate thickness direction is formed on the end face of the power plate. For this reason, in order to make this concave shape into a linear shape, the cross-sectional shape of the groove bottom portion of the rotating grindstone is a concave shape that is dented toward the side wall surface of the substrate. In addition, it is preferable that the concave shape of the groove bottom part in a rotating grindstone is circular arc shape at the point which can orthogonally cross the side wall surface of a board | substrate with a main surface with high precision.

以下、円盤形状基板として、磁気ディスク用ガラス基板の素板を一例として挙げて、この製造方法を詳細に説明する。
なお、本発明において、磁気ディスク用ガラス基板とは、本発明にかかる研削加工が施されたものを意味する。具体的には、例えば、本発明にかかる磁気ディスク用ガラス基板とは、研削加工が施された直後のものであってもよく、また、研削加工された後、主表面研磨加工、化学強化加工等の後加工が施され、磁性膜等が成膜される前の状態のものであってもよい。
Hereinafter, the manufacturing method will be described in detail by taking a base plate of a magnetic disk glass substrate as an example of a disk-shaped substrate.
In addition, in this invention, the glass substrate for magnetic discs means what the grinding process concerning this invention was given. Specifically, for example, the glass substrate for a magnetic disk according to the present invention may be one immediately after being subjected to grinding, and after grinding, main surface polishing, chemical strengthening The film may be in a state before being subjected to post-processing such as before the magnetic film or the like is formed.

本実施形態の円盤形状基板の製造方法、すなわち磁気ディスク用ガラス基板の製造方法の一例を以下説明する。
先ず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクを成形する。次に、このガラスブランクを適宜加工して、中心部分に円孔をあけ、円孔および外周部の主表面のエッジが面取りされるように端面研削加工された円盤形状のガラス基板(素板)を作製する。この後、主表面の研磨処理を行う。なお、研磨処理は、必要に応じて、複数の処理に分けて行ってもよい。また、研磨処理の前に、端面(面取り部含む)の研磨をおこなってもよい。また、研磨処理の前にガラス基板の主表面の研削処理を行ってもよい。このとき各処理の順序は適宜決定してよい。以下、各処理について、説明する。
An example of the manufacturing method of the disk shaped substrate of the present embodiment, that is, the manufacturing method of the glass substrate for magnetic disk will be described below.
First, a glass blank as a material for a plate-like glass substrate for a magnetic disk having a pair of main surfaces is formed. Next, this glass blank is appropriately processed, a circular hole is formed in the central portion, and a disk-shaped glass substrate (base plate) that is subjected to end face grinding so that the edge of the main surface of the circular hole and the outer peripheral portion is chamfered. Is made. Thereafter, the main surface is polished. Note that the polishing process may be performed in a plurality of processes as necessary. In addition, the end face (including the chamfered portion) may be polished before the polishing process. Moreover, you may perform the grinding process of the main surface of a glass substrate before a grinding | polishing process. At this time, the order of each process may be determined as appropriate. Hereinafter, each process will be described.

(a)ガラスブランク成形処理
ガラスブランクの成形では、フロート法の他に、例えばプレス成形法を用いることもできる。さらに、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することができる。これらの公知の製造方法で作られた板状ガラスに対し、適宜形状加工を行うことによって磁気ディスク用ガラス基板の元となる円板状のガラスブランクが切り出される。
(A) Glass blank forming treatment In forming a glass blank, for example, a press forming method can be used in addition to the float method. Furthermore, it can manufacture using well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method. A disk-shaped glass blank serving as a base of the magnetic disk glass substrate is cut out by appropriately performing shape processing on the plate-shaped glass produced by these known manufacturing methods.

(b)形状加工処理
次に、形状加工処理が行われる。形状加工処理では、ガラスブランク成形処理後、公知の加工方法を用いて円孔を形成することにより、円孔があいた円盤形状のガラス基板(素板)を得る。その後、さらに面取りを実施する。面取りは、例えば、ダイヤモンド砥粒を用いた総形砥石により行われる。これにより、ガラス基板(素板)の端面には、主表面と直交している側壁面と、側壁面と主表面を繋ぐ面取面が形成される。さらに、形状加工処理には、後述する端面研削が含まれる。端面研削は、素板の端面に対して行われる。端面研削は、素板の端面に当接する回転砥石の位置が同じ位置とならないような研削が用いられる。この研削については後述する。このガラス基板の形状加工処理により、ガラス基板は磁気ディスク用ガラス基板(以降においても、磁気ディスク用ガラス基板はガラス基板と称する)となる。
(B) Shape processing processing Next, shape processing processing is performed. In the shape processing, a disk-shaped glass substrate (element plate) having a circular hole is obtained by forming a circular hole using a known processing method after the glass blank forming process. Thereafter, further chamfering is performed. The chamfering is performed by, for example, a total shape grindstone using diamond abrasive grains. Thereby, a side wall surface orthogonal to the main surface and a chamfered surface connecting the side wall surface and the main surface are formed on the end surface of the glass substrate (element plate). Further, the shape processing includes end face grinding described later. The end surface grinding is performed on the end surface of the base plate. The end surface grinding is performed such that the rotary grindstone that contacts the end surface of the base plate does not have the same position. This grinding will be described later. By this shape processing of the glass substrate, the glass substrate becomes a magnetic disk glass substrate (hereinafter, the magnetic disk glass substrate is referred to as a glass substrate).

(c)端面研磨処理
次に形状加工処理で得られたガラス基板の端面研磨処理が行われる。端面研磨処理は、研磨ブラシとガラス基板の端面との間に遊離砥粒を含む研磨液を供給して研磨ブラシとガラス基板とを相対的に移動させることにより研磨を行う処理である。端面研磨では、ガラス基板の内周側端面及び外周側端面が鏡面状態になる。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、ガラス基板の端面での塵等の異物粒子が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことができる。これにより、サーマルアスペリティの発生の防止することができる。また、ナトリウムおよび/またはカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる観点からは、少なくとも側壁面の表面粗さ(Rz)が0.15μm以下となるように研磨することが好ましく、0.10μm以下となるように研磨することがより好ましい。また、上記観点においては、少なくとも側壁面の表面粗さ(Ra)が、0.015μm以下であることが好ましく0.010μm以下であることがより好ましい。なお、上記粗さは触針計(測長距離:板厚方向に0.25mm)を用いて測定したものである。
(C) End face polishing process Next, the end face polishing process of the glass substrate obtained by the shape processing process is performed. The end surface polishing process is a process for performing polishing by supplying a polishing liquid containing loose abrasive grains between the polishing brush and the end surface of the glass substrate and relatively moving the polishing brush and the glass substrate. In the end surface polishing, the inner peripheral side end surface and the outer peripheral side end surface of the glass substrate are in a mirror state. At this time, a slurry containing fine particles such as cerium oxide as free abrasive grains is used. By performing the end surface polishing, it is possible to remove contamination such as dust, foreign matter particles such as dust on the end surface of the glass substrate, damage, or scratches. Thereby, generation | occurrence | production of thermal asperity can be prevented. Further, from the viewpoint of preventing the occurrence of ion precipitation that causes corrosion such as sodium and / or potassium, polishing is performed so that at least the surface roughness (Rz) of the side wall surface is 0.15 μm or less. Is preferable, and it is more preferable to polish so as to be 0.10 μm or less. Moreover, in the said viewpoint, it is preferable that the surface roughness (Ra) of at least a side wall surface is 0.015 micrometer or less, and it is more preferable that it is 0.010 micrometer or less. The roughness is measured using a stylus meter (measurement distance: 0.25 mm in the plate thickness direction).

(d)第1研磨処理
次に、ガラス基板の主表面に第1研磨処理が施される。具体的には、ガラス基板を、両面研磨装置に装着される保持部材(キャリア)に設けられた保持孔内に保持しながらガラス基板の両側の主表面の研磨が行われる。なお、表面粗さについてさらに低減したり、より精密な調整を行うために、第1研磨処理を複数の研磨処理に分けて実施してもよい。
(D) First polishing treatment Next, a first polishing treatment is performed on the main surface of the glass substrate. Specifically, the main surfaces on both sides of the glass substrate are polished while holding the glass substrate in a holding hole provided in a holding member (carrier) attached to the double-side polishing apparatus. In addition, in order to further reduce the surface roughness or perform more precise adjustment, the first polishing process may be divided into a plurality of polishing processes.

(e)化学強化処理
ガラス基板は適宜化学強化することができる。化学強化液として、例えば硝酸カリウム、硝酸ナトリウム、またはそれらの混合物を加熱して得られる溶融液を用いることができる。そして、ガラス基板を化学強化液に浸漬することによって、ガラス基板の表層にあるガラス組成中のリチウムイオンやナトリウムイオンが、それぞれ化学強化液中のイオン半径が相対的に大きいナトリウムイオンやカリウムイオンにそれぞれ置換されることで表層部分に圧縮応力層が形成され、ガラス基板が強化される。
化学強化処理を行うタイミングは、適宜決定することができるが、化学強化処理の後に研磨処理を行うようにすると、表面の平滑化とともに化学強化処理によってガラス基板の表面に固着した異物を取り除くことができるので特に好ましい。
(E) Chemical strengthening treatment The glass substrate can be appropriately chemically strengthened. As the chemical strengthening liquid, for example, a molten liquid obtained by heating potassium nitrate, sodium nitrate, or a mixture thereof can be used. Then, by immersing the glass substrate in the chemical strengthening solution, lithium ions and sodium ions in the glass composition on the surface of the glass substrate are converted into sodium ions and potassium ions having relatively large ion radii in the chemical strengthening solution, respectively. By replacing each, a compressive stress layer is formed in the surface layer portion, and the glass substrate is strengthened.
The timing of performing the chemical strengthening treatment can be determined as appropriate. However, if the polishing treatment is performed after the chemical strengthening treatment, the foreign matter fixed to the surface of the glass substrate by the chemical strengthening treatment can be removed together with the smoothing of the surface. This is particularly preferable because it can be performed.

(f)第2研磨(最終研磨)処理
次に、化学強化処理後のガラス基板に第2研磨処理が施される。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。第2研磨の後、ガラス基板は洗浄され、磁気ディスク用ガラス基板が作製される。
(F) Second Polishing (Final Polishing) Process Next, a second polishing process is performed on the glass substrate after the chemical strengthening process. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. After the second polishing, the glass substrate is washed to produce a magnetic disk glass substrate.

(ガラス基板の外周側端面の研削)
図1(a),(b)は、素板である円盤形状のガラス基板10の外周側端面に対して行う回転砥石12を用いた研削を説明する図である。図2(a)は、回転砥石12の溝12cの断面形状を説明する図であり、図2(b)は、端面研削後のガラス基板10の端面形状を説明する図である。回転砥石12は、ガラス基板の外周側端面の研削に用いる回転砥石である。図1(a),図2(a)では、理解し易いように、溝12cの大きさ及びガラス基板10の厚さを回転砥石12の大きさに比べて相対的に大きく示している。
(Grinding of the outer edge of the glass substrate)
FIGS. 1A and 1B are diagrams illustrating grinding using a rotating grindstone 12 performed on an outer peripheral side end surface of a disk-shaped glass substrate 10 which is a base plate. FIG. 2A is a view for explaining the cross-sectional shape of the groove 12c of the rotary grindstone 12, and FIG. 2B is a view for explaining the end face shape of the glass substrate 10 after end face grinding. The rotary grindstone 12 is a rotary grindstone used for grinding the outer peripheral side end face of the glass substrate. In FIG. 1A and FIG. 2A, the size of the groove 12c and the thickness of the glass substrate 10 are shown relatively larger than the size of the rotating grindstone 12 for easy understanding.

図1(a)に示すように、ガラス基板10の外周側端面の研削に用いる回転砥石12は、全体が円柱状に形成されているとともに、図2(a)に示すように、側壁部12a及びその両側に存在する面取部12b,12bからなる溝12cを有する。換言すると、回転砥石12は、円柱状の回転体の表面に研削加工用の研削溝が形成されている。そして、この研削溝のうち、溝12cは、ガラス基板10の外周側端面の側壁面10aと面取面10bとの両方の面を同時に研削加工できるように形成されている。具体的には、側壁部12aは、側壁面10aを研削し、面取部12b,12bは、面取り面10b,10bを研削する。上記溝12cの側壁部12a及び面取部12bは、ガラス基板10の研削加工面の仕上がり目標の寸法形状を考慮して、所定の寸法形状に形成されている。
ガラス基板10の外周側端面の研削では、図1(a)に示されるように、回転砥石12に形成された溝12cの溝方向に対してガラス基板10を傾けた状態、つまりガラス基板10の主表面の法線方向Xに対して回転砥石12の回転軸方向Yに延びる回転軸14を傾斜角度αだけ傾斜させた状態で、ガラス基板10の外周側端面を当接させて研削を行う。これによって、ガラス基板10の外周側端面に当接する回転砥石12の研削面における研削点の位置は、回転砥石12の回転軸方向の同じ位置に固定されないので、回転砥石12の周上に微小凸部があっても、ガラス基板10の外周側端面の回転軸方向の同じ位置において常にキズがつかない。このため、ガラス基板10へのダメージを少なくすることができる。また、ガラス基板の側壁面および面取面の表面粗さ、およびその面内ばらつきも小さくすることができる。研削加工面をより高平滑に、すなわちより高い品質要求に応えられるレベルの品位に仕上げることができる。さらには、従来の回転軸をガラス基板の法線方向に傾斜させないで研削加工を行う場合と比べて砥石寿命の向上効果も有する。
As shown in FIG. 1 (a), the rotating grindstone 12 used for grinding the outer peripheral side end face of the glass substrate 10 is formed in a cylindrical shape as a whole, and as shown in FIG. 2 (a), a side wall 12a. And a groove 12c formed of chamfered portions 12b and 12b existing on both sides thereof. In other words, in the rotating grindstone 12, grinding grooves for grinding are formed on the surface of a cylindrical rotating body. Of the grinding grooves, the groove 12c is formed so that both the side wall surface 10a and the chamfered surface 10b of the outer peripheral side end surface of the glass substrate 10 can be ground simultaneously. Specifically, the side wall portion 12a grinds the side wall surface 10a, and the chamfered portions 12b and 12b grind the chamfered surfaces 10b and 10b. The side wall portion 12a and the chamfered portion 12b of the groove 12c are formed in a predetermined dimensional shape in consideration of the target dimensional shape of the ground surface of the glass substrate 10.
In grinding of the outer peripheral side end surface of the glass substrate 10, as shown in FIG. 1A, the glass substrate 10 is inclined with respect to the groove direction of the groove 12 c formed in the rotating grindstone 12, that is, the glass substrate 10. Grinding is performed by bringing the outer peripheral side end face of the glass substrate 10 into contact with the rotating shaft 14 extending in the rotating shaft direction Y of the rotating grindstone 12 with respect to the normal direction X of the main surface by an inclination angle α. As a result, the position of the grinding point on the grinding surface of the rotating grindstone 12 that contacts the outer peripheral end surface of the glass substrate 10 is not fixed at the same position in the rotation axis direction of the rotating grindstone 12, so Even if there is a portion, the outer peripheral side end surface of the glass substrate 10 is not always scratched at the same position in the rotation axis direction. For this reason, damage to the glass substrate 10 can be reduced. Moreover, the surface roughness of the side wall surface and the chamfered surface of the glass substrate and the in-plane variation thereof can be reduced. It is possible to finish the ground surface to a higher level, that is, to a level of quality that can meet higher quality requirements. Furthermore, it has an effect of improving the life of the grindstone as compared with the case where grinding is performed without tilting the conventional rotating shaft in the normal direction of the glass substrate.

上述の傾斜角度αは任意に設定することができるが、上述の作用効果をより良く発揮させるためには、例えば1〜30度の範囲内とすることが好ましく、5〜15度の範囲内とすることがより好ましく、2〜10度の範囲内とすることがさらに好ましい。
研削に用いる回転砥石12の砥粒としては、特に限定されないが、加工速度の観点からは、ダイヤモンド砥粒を用いることが好ましい。そして、ダイヤモンド砥粒を電着させた電着砥石およびダイヤモンド砥粒をレジン(樹脂)で結合させたレジンボンド砥石を好適に使用することができる。
研削に用いる回転砥石12として、電着砥石を用いた場合には、研削速度を向上できるため好ましい。研削速度を向上させる観点から、電着砥石であるダイヤンモンド砥石の番手は、♯300〜♯800であることが好ましい。
研削に用いる回転砥石12として、レジンボンド砥石を用いた場合には、研削加工によるガラス基板の端面(面取面、側壁面)の面粗さをより一層向上できるため好ましい。このとき、ダイヤモンド砥石の番手は、研削工程後の端面品質を向上させて、端面研磨工程の負荷を低減する観点で、#2000〜#3000であることが好ましい。
研削加工を行う際の回転砥石12の周速度は例えば、800〜1000m/分の範囲内が好ましい。また、ガラス基板10の周速度は、5〜20m/分の範囲内が好ましい。また、ガラス基板10の周速度に対する回転砥石12の周速度の比(周速度比)は、研削加工によるガラス基板の端面品質を向上させるために80〜200の範囲内であることが好ましい。
The above-mentioned inclination angle α can be arbitrarily set, but in order to better exhibit the above-described effects, it is preferably within a range of 1 to 30 degrees, for example, within a range of 5 to 15 degrees. More preferably, it is more preferably in the range of 2 to 10 degrees.
Although it does not specifically limit as an abrasive grain of the rotary grindstone 12 used for grinding, From a viewpoint of a processing speed, it is preferable to use a diamond abrasive grain. An electrodeposition grindstone in which diamond abrasive grains are electrodeposited and a resin bond grindstone in which diamond abrasive grains are bonded with a resin (resin) can be suitably used.
When an electrodeposition grindstone is used as the rotating grindstone 12 used for grinding, it is preferable because the grinding speed can be improved. From the viewpoint of improving the grinding speed, the count of the diamond grindstone that is an electrodeposited grindstone is preferably # 300 to # 800.
When a resin bond grindstone is used as the rotating grindstone 12 used for grinding, it is preferable because the surface roughness of the end surface (chamfered surface, side wall surface) of the glass substrate by grinding can be further improved. At this time, the count of the diamond grindstone is preferably # 2000 to # 3000 from the viewpoint of improving the end face quality after the grinding process and reducing the load of the end face polishing process.
For example, the peripheral speed of the rotating grindstone 12 when grinding is preferably in the range of 800 to 1000 m / min. Moreover, the peripheral speed of the glass substrate 10 is preferably within a range of 5 to 20 m / min. The ratio of the peripheral speed of the rotating grindstone 12 to the peripheral speed of the glass substrate 10 (peripheral speed ratio) is preferably in the range of 80 to 200 in order to improve the end face quality of the glass substrate by grinding.

このような回転砥石12の側壁部12a、すなわち、ガラス基板10の側壁面10aと当接する回転砥石12の研削面は、回転軸14を含む平面で切断したときの断面形状は、研削対象であるガラス基板10の側に対してへこんだ凹形状(回転軸14に向かって凹形状)である。この凹形状は、例えば図2(a)で示す滑らかな曲線形状で形成されるが、好ましくは、円弧形状または放物線形状で形成されることが好ましい。円柱状の回転砥石12の外側表面が研削面であり、回転砥石12の円形状とガラス基板10の円形状が外接するように配置して研削加工を行う場合における、ガラス基板10の側壁面を研削する回転砥石12の研削面の円弧形状の好ましい曲率半径は、ガラス基板10の外径、回転砥石12の内径、及び傾斜角度αおよび、側壁面の主表面に対する直交する度合いに応じて適宜設定すればよい。具体的には、例えば、ガラス基板10の外径が50mm〜150mmの範囲にあり、回転砥石12の外径が10〜20mmにあり、傾斜角度αが1〜15度の場合、回転砥石12の研削面の凹形状を成した円弧形状の曲率半径としては、10〜700mmの範囲内が好ましい。   The side wall portion 12a of the rotating grindstone 12, that is, the grinding surface of the rotating grindstone 12 that comes into contact with the side wall surface 10a of the glass substrate 10, has a cross-sectional shape when it is cut by a plane including the rotating shaft 14 to be ground. The concave shape is concave with respect to the glass substrate 10 side (concave shape toward the rotating shaft 14). The concave shape is formed with, for example, a smooth curved shape shown in FIG. 2A, and is preferably formed with an arc shape or a parabolic shape. The outer surface of the cylindrical rotating grindstone 12 is a grinding surface, and the side wall surface of the glass substrate 10 in the case where grinding is performed with the circular shape of the rotating grindstone 12 and the circular shape of the glass substrate 10 being circumscribed is performed. The preferable radius of curvature of the arc shape of the grinding surface of the rotating grindstone 12 to be ground is appropriately set according to the outer diameter of the glass substrate 10, the inner diameter of the rotating grindstone 12, the inclination angle α, and the degree of orthogonality to the main surface of the side wall surface. do it. Specifically, for example, when the outer diameter of the glass substrate 10 is in the range of 50 mm to 150 mm, the outer diameter of the rotating grindstone 12 is 10 to 20 mm, and the inclination angle α is 1 to 15 degrees, The radius of curvature of the arc shape having the concave shape of the grinding surface is preferably within a range of 10 to 700 mm.

このような回転砥石12を用いてガラス基板10の外周側端面を研削加工することにより、図2(b)に示すように、ガラス基板10の主表面10cに対して直交する方向に延びる側壁面10aを形成することができる。
図3(a),(b)は、従来の回転砥石102の溝102cの断面形状と、従来の端面研削後のガラス基板100の端面形状を説明する図である。
図3(a)に示すように、回転砥石102の側壁部102a、すなわち、ガラス基板100の面100aと当接する回転砥石102の研削する面は、回転砥石102の回転軸を含む平面で切断したときの断面形状は、直線形状である。そして、この回転砥石102を用いて外周側端面の研削加工を行ったガラス基板100の側壁面に対応する面100aは、回転砥石102の側に対してへこんだ凹形状を成している。このような形状が形成されるのは、回転砥石102の外側表面にガラス基板100の外周側端面が当接するように、すなわち外接するように配置して研削を行うことによる。本願発明者は、この点を見出して、ガラス基板10の主表面10cに対して直交する方向に延びる側壁面を形成するために、予め回転砥石の側壁部を凹形状にすることを着想している。
A side wall surface extending in a direction orthogonal to the main surface 10c of the glass substrate 10 as shown in FIG. 2B by grinding the outer peripheral side end surface of the glass substrate 10 using such a rotating grindstone 12. 10a can be formed.
FIGS. 3A and 3B are views for explaining the cross-sectional shape of the groove 102c of the conventional rotating grindstone 102 and the end surface shape of the glass substrate 100 after conventional end surface grinding.
As shown in FIG. 3A, the side wall 102 a of the rotating grindstone 102, that is, the surface to be ground of the rotating grindstone 102 that comes into contact with the surface 100 a of the glass substrate 100 was cut by a plane including the rotation axis of the rotating grindstone 102. The cross-sectional shape at the time is a linear shape. And the surface 100a corresponding to the side wall surface of the glass substrate 100 which performed the grinding | polishing process of the outer peripheral side end surface using this rotating grindstone 102 has comprised the concave shape dented with respect to the rotating grindstone 102 side. The reason why such a shape is formed is that grinding is performed by placing the outer peripheral side end surface of the glass substrate 100 in contact with the outer surface of the rotating grindstone 102, that is, so as to circumscribe. The inventor of the present application has found this point, and in order to form a side wall surface extending in a direction orthogonal to the main surface 10 c of the glass substrate 10, the idea is that the side wall portion of the rotating grindstone is made concave in advance. Yes.

本実施形態では、溝12cは、側壁部12a及び面取部12bを有するため、ガラス基板10の側壁面10aと面取り面10b,10bとを同時に研削することができる。なお、例えば、ガラス基板10の側壁面10aのみを研削する場合には、回転砥石12は、面取部12bを有していなくてもよい。   In this embodiment, since the groove 12c has the side wall portion 12a and the chamfered portion 12b, the side wall surface 10a and the chamfered surfaces 10b and 10b of the glass substrate 10 can be ground simultaneously. For example, when grinding only the side wall surface 10a of the glass substrate 10, the rotating grindstone 12 may not have the chamfered portion 12b.

このように、ガラス基板10の外周側端面を、本発明に基づいて研削加工する場合、ガラス基板10の外周側端面と当接する回転砥石12の研削する面を、回転砥石12の回転軸14を含む平面で切断したときの断面形状は、ガラス基板10の端面に対してへこんだ凹形状(回転砥石12の回転軸に向かってへこんだ凹形状)を成している。このため、ガラス基板10の端面をガラス基板10の主表面10cに対して直交する側壁面10aを形成することができる。すなわち、ガラス基板10の端面形状を目標とする形状に高精度に形成することができる。
本実施形態においてガラス基板10の外周側端面の側壁面を、回転砥石12の外側表面と当接(外接)させて研削する場合、ガラス基板10の中心および回転砥石12の回転軸が、ガラス基板10の側壁面と回転砥石12の研削面とが当接する研削点から見て回転砥石12の周およびガラス基板の周のそれぞれを境にして逆側に存在するように研削加工が行われている。いいかえると、ガラス基板10の中心と回転砥石12の回転軸が、研削点を挟んだ位置に存在する。この場合において、回転砥石12の研削面の形状を上記凹形状とすることで、ガラス基板10の外周側端面の側壁面の形状を、主表面に対して精度よく直交させることができる。
また、本発明にかかる回転砥石は、加工対象である素板であるガラス基板10の主表面10cと直交する軸に対して回転軸を傾斜させた状態で、当該ガラス基板10の端面(10aおよび10b)に当接(外接)させることにより、当該端面(10aおよび10b)を構成する側壁面10a、および側壁面10aと主表面10cとの間に介在する介在面(面取面10b)の研削加工を行うための回転砥石であって、外周側端面の側壁面10aを研削加工するための底部12aと、底部12aと繋がっており上記介在面を研削加工するための底部12aに対して傾斜している傾斜部12bとを備え、底部12aは、前記回転軸を含む平面における断面形状が、砥石の外側(ガラス基板10の端面(10aおよび10b))に対してへこんだ(砥石の回転軸に向かってへこんだ)凹形状である構成であってもよい。
つまり、ガラス基板10の外周側端面を研削する際に、回転砥石12を用いて研削すると、回転砥石12の回転軸が、ガラス基板10の中心(円孔10dの中心)と研削点を挟んだ位置に存在することになる。この場合において、回転砥石12の研削面の形状を上記凹形状とすることで、ガラス基板10の外周側端面の側壁面の形状を、主表面に対して精度よく直交させることができる。換言すると、回転砥石12の形状が円柱形状でその外表面に研削溝が形成されている場合であって、この回転砥石12の回転軸と、ガラス基板10の中心とが研削点を挟んで対向する位置にある場合には、回転砥石12の研削面の形状を上記凹形状とすることで、ガラス基板10の外周側端面の側壁面の形状を、主表面に対して精度よく直交させることができる。
外周側端面の研削及びこの研削に用いる回転砥石の説明は以上である。さらに、ガラス基板の内周側端面の研削及びこの研削に用いる回転砥石について、好ましい形態の例を挙げて説明する。
Thus, when the outer peripheral side end face of the glass substrate 10 is ground according to the present invention, the surface to be ground of the rotary grindstone 12 that comes into contact with the outer peripheral side end face of the glass substrate 10 is the rotational axis 14 of the rotary grindstone 12. The cross-sectional shape when cut by the plane including the surface forms a concave shape (concave shape recessed toward the rotation axis of the rotating grindstone 12) with respect to the end surface of the glass substrate 10. For this reason, the side wall surface 10a in which the end surface of the glass substrate 10 is orthogonal to the main surface 10c of the glass substrate 10 can be formed. That is, the end surface shape of the glass substrate 10 can be formed with high accuracy into a target shape.
In this embodiment, when the side wall surface of the outer peripheral side end surface of the glass substrate 10 is ground (contacted) with the outer surface of the rotating grindstone 12, the center of the glass substrate 10 and the rotation axis of the rotating grindstone 12 are the glass substrate. Grinding is performed so that each of the circumference of the rotating grindstone 12 and the circumference of the glass substrate exists on the opposite side when viewed from the grinding point where the side wall surface of 10 and the grinding surface of the rotating grindstone 12 abut. . In other words, the center of the glass substrate 10 and the rotation axis of the rotating grindstone 12 exist at a position sandwiching the grinding point. In this case, by making the shape of the grinding surface of the rotating grindstone 12 the concave shape, the shape of the side wall surface of the outer peripheral side end surface of the glass substrate 10 can be accurately orthogonal to the main surface.
In addition, the rotating grindstone according to the present invention is such that the end surface (10a and 10a and 10b), the side wall surface 10a constituting the end surfaces (10a and 10b) and the intervening surface (chamfered surface 10b) interposed between the side wall surface 10a and the main surface 10c are ground. It is a rotary grindstone for processing, and is inclined with respect to a bottom portion 12a for grinding the side wall surface 10a of the outer peripheral side end surface and a bottom portion 12a connected to the bottom portion 12a and for grinding the interposition surface. The bottom portion 12a has a concave cross section in the plane including the rotation axis with respect to the outside of the grindstone (the end surfaces (10a and 10b) of the glass substrate 10) (abrasion). The recessed toward the axis of rotation) may be configured as a concave shape.
That is, when the outer peripheral side end face of the glass substrate 10 is ground using the rotating grindstone 12, the rotation axis of the rotating grindstone 12 sandwiches the center of the glass substrate 10 (center of the circular hole 10d) and the grinding point. Will be in position. In this case, by making the shape of the grinding surface of the rotating grindstone 12 the concave shape, the shape of the side wall surface of the outer peripheral side end surface of the glass substrate 10 can be accurately orthogonal to the main surface. In other words, the shape of the rotating grindstone 12 is a cylindrical shape and a grinding groove is formed on the outer surface thereof, and the rotating shaft of the rotating grindstone 12 and the center of the glass substrate 10 face each other with a grinding point interposed therebetween. If it is in the position to be used, the shape of the grinding surface of the rotating grindstone 12 is the above concave shape, so that the shape of the side wall surface of the outer peripheral side end surface of the glass substrate 10 can be accurately orthogonal to the main surface. it can.
This completes the description of the grinding of the outer peripheral side end face and the rotary grindstone used for this grinding. Furthermore, the grinding | polishing of the inner peripheral side end surface of a glass substrate and the rotating grindstone used for this grinding are given and demonstrated about the example of a preferable form.

(ガラス基板の内周側端面の研削)
図4は、素板であるガラス基板10の内周側端面に対して行う回転砥石22を用いた研削を説明する図である。図5は、回転砥石22の断面形状を説明する図である。回転砥石22は、ガラス基板の内周側端面の研削に用いる回転砥石である。
(Grinding of the inner surface of the glass substrate)
FIG. 4 is a diagram illustrating grinding using the rotating grindstone 22 performed on the inner peripheral side end face of the glass substrate 10 which is a base plate. FIG. 5 is a view for explaining the cross-sectional shape of the rotating grindstone 22. The rotating grindstone 22 is a rotating grindstone used for grinding the inner peripheral side end face of the glass substrate.

回転砥石22は、全体が円柱状に形成されているとともに、図5に示すように、側壁部22a及びその両側に存在する面取部22b,22bからなる溝22cを有する。溝22cは、ガラス基板10に設けられる円孔10dの内周側端面の側壁面10aと面取面10bとの両方の面を同時に研削加工できるように形成されている。具体的には、側壁部22aは、側壁面10aを研削し、面取部22b,22bは、面取り面10b、10bを研削する。上記溝22cの側壁部22a及び面取部22bは、ガラス基板10の研削加工面の仕上がり目標の寸法形状を考慮して、所定の寸法形状に形成されている。
ガラス基板10の内周側端面の研削でも、外周側端面の研削と同様に、回転砥石22に形成された溝22cの溝方向に対してガラス基板10を傾けた状態、つまりガラス基板10の主表面の法線方向に対して回転砥石22の回転軸方向に延びる回転軸(図示されない)を傾斜角度αだけ傾斜させた状態で、ガラス基板10の内周側端面を当接させて、内周側端面の研削を行う。この場合、回転砥石22の研削面は、ガラス基板10の内周側端面に内接する。これによって、ガラス基板10の内周側端面に当接する回転砥石12の位置は、回転砥石12の回転軸方向の同じ位置に固定されないので、回転砥石12の周上に微小凸部があっても、ガラス基板10の外周側端面の回転軸方向の同じ位置において常にキズがつかない。このため、ガラス基板10へのダメージを少なくすることができる。また、ガラス基板の側壁面および面取面の表面粗さ、およびその面内ばらつきも小さくすることができる。研削加工面をより高平滑に、すなわちより高い品質要求に応えられるレベルの品位に仕上げることができる。さらには、従来の回転軸をガラス基板の法線方向に傾斜させないで研削加工を行う場合と比べて砥石寿命の向上効果も有する。
The rotating grindstone 22 is formed in a cylindrical shape as a whole, and has a side wall 22a and a groove 22c including chamfered portions 22b and 22b existing on both sides thereof as shown in FIG. The groove 22c is formed so that both the side wall surface 10a and the chamfered surface 10b of the inner peripheral side end surface of the circular hole 10d provided in the glass substrate 10 can be ground simultaneously. Specifically, the side wall portion 22a grinds the side wall surface 10a, and the chamfered portions 22b and 22b grind the chamfered surfaces 10b and 10b. The side wall portion 22a and the chamfered portion 22b of the groove 22c are formed in a predetermined dimensional shape in consideration of the target dimensional shape of the ground surface of the glass substrate 10.
In the grinding of the inner peripheral side end face of the glass substrate 10, as in the grinding of the outer peripheral side end face, the glass substrate 10 is tilted with respect to the groove direction of the groove 22 c formed in the rotating grindstone 22, that is, the main glass substrate 10. With the rotation axis (not shown) extending in the rotation axis direction of the rotating grindstone 22 inclined by the inclination angle α with respect to the normal direction of the surface, the inner peripheral side end surface of the glass substrate 10 is brought into contact with the inner periphery. Grind side end faces. In this case, the grinding surface of the rotating grindstone 22 is inscribed in the inner peripheral side end surface of the glass substrate 10. As a result, the position of the rotating grindstone 12 that contacts the inner peripheral side end surface of the glass substrate 10 is not fixed at the same position in the rotation axis direction of the rotating grindstone 12, so that even if there are minute convex portions on the circumference of the rotating grindstone 12. In the same position in the rotation axis direction of the outer peripheral side end face of the glass substrate 10, there is always no scratch. For this reason, damage to the glass substrate 10 can be reduced. Moreover, the surface roughness of the side wall surface and the chamfered surface of the glass substrate and the in-plane variation thereof can be reduced. It is possible to finish the ground surface to a higher level, that is, to a level of quality that can meet higher quality requirements. Furthermore, it has an effect of improving the life of the grindstone as compared with the case where grinding is performed without tilting the conventional rotating shaft in the normal direction of the glass substrate.

なお、回転砥石22を用いて、ガラス基板10の円孔である内周側端面を研削加工する際の傾斜角度および研削砥粒の構成については、上述した回転砥石12と同様にすればよい。   In addition, what is necessary is just to make it the same as that of the rotating grindstone 12 mentioned above about the inclination angle at the time of grinding the inner peripheral side end surface which is a circular hole of the glass substrate 10 using the rotating grindstone 22. As shown in FIG.

そして、回転砥石22の側壁部22a、すなわち、ガラス基板10の側壁面10aと当接する回転砥石22の研削面は、回転砥石22の回転軸を含む平面で切断したときの断面形状が、研削対象であるガラス基板10の側に向かって凸形状である。換言すると、前記研削面における回転砥石22の回転軸を含む平面で切断したときの断面形状は、回転砥石22の回転軸と直交する方向に突出する形状(凸形状)である。この凸形状は、例えば滑らかな曲線形状で形成されるが、好ましくは、円弧形状または放物線形状で形成されることが好ましい。回転砥石22の外側表面とガラス基板10とを内接するように当接させて研削加工を行う場合における、ガラス基板10の側壁面を研削する回転砥石22の研削面の円弧形状の好ましい曲率半径は、ガラス基板10の外径、回転砥石22の外径、及び傾斜角度αおよび、側壁面の主表面に対する直交する度合いに応じて適宜設定すればよい。具体的には、例えば、ガラス基板10の内径が10mm〜20mmの範囲にあり、回転砥石22の外径が5〜18mmにあり、傾斜角度αが1〜15度の場合、回転砥石22の研削面の円弧形状の曲率半径としては、6〜300mmの範囲内が好ましい。
つまり、ガラス基板10の円孔10dの内周側端面の側壁面に、回転砥石22の外側表面を当接(内接)させて研削する場合、ガラス基板10の中心および回転砥石12の回転軸が、ガラス基板10の側壁面と回転砥石12の研削面とが当接する研削点から見て回転砥石12の周およびガラス基板の周のうち大きな周を境にして同じ側に存在するように研削加工が行われている。
And the side wall part 22a of the rotating grindstone 22, that is, the grinding surface of the rotating grindstone 22 that comes into contact with the side wall surface 10a of the glass substrate 10, has a cross-sectional shape when cut by a plane including the rotation axis of the rotating grindstone 22, It is convex toward the glass substrate 10 side. In other words, the cross-sectional shape of the grinding surface when cut along a plane including the rotation axis of the rotating grindstone 22 is a shape (convex shape) protruding in a direction perpendicular to the rotation axis of the rotating grindstone 22. The convex shape is formed, for example, in a smooth curved shape, but is preferably formed in an arc shape or a parabolic shape. The preferred radius of curvature of the arc shape of the grinding surface of the rotating grindstone 22 for grinding the side wall surface of the glass substrate 10 when the outer surface of the rotating grindstone 22 and the glass substrate 10 are in contact with each other so as to be inscribed is as follows. The outer diameter of the glass substrate 10, the outer diameter of the rotating grindstone 22, the inclination angle α, and the degree of orthogonality to the main surface of the side wall surface may be set as appropriate. Specifically, for example, when the inner diameter of the glass substrate 10 is in the range of 10 mm to 20 mm, the outer diameter of the rotating grindstone 22 is 5 to 18 mm, and the inclination angle α is 1 to 15 degrees, the grinding of the rotating grindstone 22 is performed. The radius of curvature of the arc shape of the surface is preferably in the range of 6 to 300 mm.
That is, when the outer surface of the rotating grindstone 22 is brought into contact (inscribed) with the side wall surface of the inner peripheral end surface of the circular hole 10d of the glass substrate 10, the center of the glass substrate 10 and the rotating shaft of the rotating grindstone 12 are ground. However, it is ground so that it exists on the same side of the circumference of the rotating grindstone 12 and the circumference of the glass substrate as seen from the grinding point where the side wall surface of the glass substrate 10 and the grinding surface of the rotating grindstone 12 abut. Processing is in progress.

このような回転砥石22を用いてガラス基板10の円孔10dにおける内周側端面を研削加工することにより、ガラス基板10の主表面10cに対して直交する方向に延びる側壁面10aを内周側端面に形成することができる。
回転砥石22の溝22cには、側壁部22a及び面取部22bを有するが、面取り部22bは設けられなくてもよい。例えば、内周側端面に面取り面を有しないような端面研削を行う場合、面取部22bを必要としない。
By grinding the inner peripheral side end face in the circular hole 10d of the glass substrate 10 using such a rotating grindstone 22, the side wall surface 10a extending in the direction orthogonal to the main surface 10c of the glass substrate 10 is set on the inner peripheral side. It can be formed on the end face.
Although the groove 22c of the rotating grindstone 22 has the side wall portion 22a and the chamfered portion 22b, the chamfered portion 22b may not be provided. For example, when performing end surface grinding that does not have a chamfered surface on the inner peripheral side end surface, the chamfered portion 22b is not required.

[実験例]
本実施形態の外周側端面の効果を確認するために、2つの異なる条件の研削によりガラス基板の外周側端面の研削を行った(実施例及び従来例)。
端面研磨対象のガラス基板には、外径65mm、内径20mm、厚さ0.8mmの円盤形状のガラス基板(素板)を用いた。ガラス基板の円孔は、ガラス基板の中心と円孔の中心が一致するように設け、円孔の内径を20mmとした。
[Experimental example]
In order to confirm the effect of the outer peripheral end face of the present embodiment, the outer peripheral end face of the glass substrate was ground by grinding under two different conditions (Example and Conventional Example).
A disk-shaped glass substrate (element plate) having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.8 mm was used as the glass substrate to be polished. The circular hole of the glass substrate was provided so that the center of the glass substrate coincided with the center of the circular hole, and the inner diameter of the circular hole was 20 mm.

回転砥石は、実施例及び従来例では、図1(a)に示すような円柱形状の砥石を用い、回転砥石の外側表面を研削する面として用い、回転砥石の外側表面を研削面としてガラス基板の外周側端面を研削した。砥石の外径は15mmであり、溝の深さは1mmとした。
実施例及び従来例における傾斜角度αは10度とした。
実施例に用いた回転砥石の側壁部の断面形状は、曲率半径34mmの円弧形状からなる凹形状とした。一方、従来例に用いた回転砥石の側壁部の断面形状は、直線形状とした。
In the embodiment and the conventional example, the rotating grindstone uses a cylindrical grindstone as shown in FIG. 1A, uses the outer surface of the rotating grindstone as a surface to be ground, and uses the outer surface of the rotating grindstone as a grinding surface. The outer peripheral side end face of was ground. The outer diameter of the grindstone was 15 mm, and the depth of the groove was 1 mm.
The inclination angle α in the example and the conventional example was 10 degrees.
The cross-sectional shape of the side wall portion of the rotating grindstone used in the examples was a concave shape formed of an arc shape having a curvature radius of 34 mm. On the other hand, the cross-sectional shape of the side wall portion of the rotary grindstone used in the conventional example was a linear shape.

上記実施例及び従来例の内容で、ガラス基板(素板)の側壁面の研削を行い、ガラス基板の端面の形状を観察した。
その結果、実施例の研削で得られたガラス基板の側壁面の断面形状は直線形状であり、ガラス基板の主表面に直交する側壁面が得られた。一方、従来例の研削で得られたガラス基板の側壁面に対応する面は、図3(b)に示すように断面形状はへこんだ曲線形状となり、ガラス基板の主表面に直交する側壁面は得られなかった。
これより、本実施形態の効果は明らかである。
With the contents of the above examples and conventional examples, the side wall surface of the glass substrate (element plate) was ground, and the shape of the end surface of the glass substrate was observed.
As a result, the cross-sectional shape of the side wall surface of the glass substrate obtained by grinding of the example was a linear shape, and a side wall surface orthogonal to the main surface of the glass substrate was obtained. On the other hand, the surface corresponding to the side wall surface of the glass substrate obtained by the grinding of the conventional example is a curved shape having a concave cross section as shown in FIG. 3B, and the side wall surface orthogonal to the main surface of the glass substrate is It was not obtained.
From this, the effect of this embodiment is clear.

以上、本発明の回転砥石及び磁気ディスク用ガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As mentioned above, although the manufacturing method of the rotary grindstone of this invention and the glass substrate for magnetic discs was demonstrated in detail, this invention is not limited to the said embodiment and Example, In the range which does not deviate from the main point of this invention, it is various improvement. Of course, you may make changes.

10,100 ガラス基板
10a 側壁面
10b 面取り面
10c 主表面
10d 円孔
12,22,102 回転砥石
12a,22a,102a 側壁部
12b,22b 面取り部
12c,22c 溝
14 回転軸
100a 面
10, 100 Glass substrate 10a Side wall surface 10b Chamfered surface 10c Main surface 10d Circular holes 12, 22, 102 Rotating grindstones 12a, 22a, 102a Side wall portions 12b, 22b Chamfered portions 12c, 22c Groove 14 Rotating shaft 100a surface

Claims (4)

加工対象である一対の主表面を有する円盤形状基板の主表面の法線方向に対して回転軸を傾斜させた状態で、前記円盤形状基板の外周側の端面に当接させて前記端面の研削加工を行うための回転砥石であって、
前記端面と当接する前記回転砥石の研削面における前記回転軸を含む平面で切断したときの断面形状は、前記回転軸に向かって凹形状である、ことを特徴とする回転砥石。
Grinding the end surface by bringing it into contact with the outer peripheral end surface of the disk-shaped substrate in a state where the rotation axis is inclined with respect to the normal direction of the main surface of the disk-shaped substrate having a pair of main surfaces to be processed A rotating grindstone for processing,
The rotary grindstone is characterized in that a cross-sectional shape of the rotating grindstone of the rotating grindstone that comes into contact with the end surface when cut along a plane including the rotating shaft is concave toward the rotating shaft.
前記凹形状は円弧形状である、請求項1に記載の回転砥石。   The rotating grindstone according to claim 1, wherein the concave shape is an arc shape. 前記回転砥石は円柱形状を成し、
前記回転砥石の研削面は、前記円柱形状の外側表面に設けられている、請求項1または2に記載の回転砥石。
The rotating grindstone has a cylindrical shape,
The rotating grindstone according to claim 1 or 2, wherein a grinding surface of the rotating grindstone is provided on an outer surface of the columnar shape.
中心に円孔を有する円盤形状基板である磁気ディスク用ガラス素板の端面を研削する端面研削処理を含む磁気ディスク用ガラス基板の製造方法であって、
前記端面研削処理では、前記磁気ディスク用ガラス素板の外周端面が、請求項1〜3のいずれか1項に記載の回転砥石を用いて研削される、ことを特徴とする磁気ディスク用ガラス基板の製造方法。

A method for producing a glass substrate for a magnetic disk including an end surface grinding process for grinding an end surface of a glass base plate for a magnetic disk, which is a disk-shaped substrate having a circular hole in the center,
In the said end surface grinding process, the outer peripheral end surface of the said glass base plate for magnetic discs is ground using the rotary grindstone of any one of Claims 1-3, The glass substrate for magnetic discs characterized by the above-mentioned. Manufacturing method.

JP2013055511A 2013-03-18 2013-03-18 Manufacturing method of grindstone, and glass substrate for magnetic disk Pending JP2014180709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055511A JP2014180709A (en) 2013-03-18 2013-03-18 Manufacturing method of grindstone, and glass substrate for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055511A JP2014180709A (en) 2013-03-18 2013-03-18 Manufacturing method of grindstone, and glass substrate for magnetic disk

Publications (1)

Publication Number Publication Date
JP2014180709A true JP2014180709A (en) 2014-09-29

Family

ID=51699905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055511A Pending JP2014180709A (en) 2013-03-18 2013-03-18 Manufacturing method of grindstone, and glass substrate for magnetic disk

Country Status (1)

Country Link
JP (1) JP2014180709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116810503A (en) * 2023-08-30 2023-09-29 长沙华实半导体有限公司 Processing method of C-shaped cavity of plasma confinement ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116810503A (en) * 2023-08-30 2023-09-29 长沙华实半导体有限公司 Processing method of C-shaped cavity of plasma confinement ring

Similar Documents

Publication Publication Date Title
JP5005645B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5305698B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk
JP6280355B2 (en) Manufacturing method of magnetic disk substrate and carrier for polishing treatment
US20100247978A1 (en) Method of manufacturing a substrate for a magnetic disk
JP2010080025A (en) Substrate for magnetic disk and magnetic disk
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6177603B2 (en) Grinding / polishing carrier and substrate manufacturing method
JP2014180709A (en) Manufacturing method of grindstone, and glass substrate for magnetic disk
WO2014178416A1 (en) Grinding stone, method for manufacturing glass substrate for magnetic disc, and magnetic disc manufacturing method
JP2006225181A (en) Glass substrate, method of manufacturing glass substrate, glass substrate for magnetic recording medium and method of manufacturing glass substrate for magnetic recording medium
JP6199047B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6637944B2 (en) Polishing pad material, polishing pad manufacturing method, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
JP2011198428A (en) Glass substrate for magnetic disk and evaluation method thereof
JP5787702B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate
JP2014161989A (en) Rotary grind stone and method for production of glass substrate for magnetic disk
JP6307407B2 (en) Manufacturing method of glass substrate
WO2012090655A1 (en) Method for producing glass substrate
JP2015064920A (en) Manufacturing method of glass substrate for magnetic disk
JP2016126808A (en) Method for manufacturing substrate for magnetic disk and end surface polishing device
WO2022181715A1 (en) Magnetic disk substrate, magnetic disk, annular-shaped substrate, and method for manufacturing magnetic disk substrate
JP2012071408A (en) Plate-like glass material before grinding and method for manufacturing glass substrate for information recording medium
JP6170557B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, grinding wheel
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6353524B2 (en) Substrate manufacturing method
JP6121759B2 (en) Manufacturing method of glass substrate for magnetic disk