JP2016126808A - Method for manufacturing substrate for magnetic disk and end surface polishing device - Google Patents

Method for manufacturing substrate for magnetic disk and end surface polishing device Download PDF

Info

Publication number
JP2016126808A
JP2016126808A JP2014267109A JP2014267109A JP2016126808A JP 2016126808 A JP2016126808 A JP 2016126808A JP 2014267109 A JP2014267109 A JP 2014267109A JP 2014267109 A JP2014267109 A JP 2014267109A JP 2016126808 A JP2016126808 A JP 2016126808A
Authority
JP
Japan
Prior art keywords
magnetic
disk
end surface
polishing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014267109A
Other languages
Japanese (ja)
Inventor
修平 東
Shuhei Azuma
修平 東
武良 高橋
Takeyoshi Takahashi
武良 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2014267109A priority Critical patent/JP2016126808A/en
Publication of JP2016126808A publication Critical patent/JP2016126808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a substrate for a magnetic disk, in which a productivity can be further improved by improving a polishing rate at an end surface of the substrate for a magnetic disk.SOLUTION: A method polishes an end surface on the outer peripheral side of a disk-shaped substrate by forming a magnetic slurry mass containing a magnetic substance and abrasive grains in a ring shape by magnetism generating means, bringing the end surface on the outer peripheral side of the disk-shaped substrate into contact with the inner peripheral side of the magnetic slurry mass formed in the ring shape, and moving the magnetic slurry mass formed in the ring shape and the disk-shaped substrate relatively.SELECTED DRAWING: Figure 2

Description

本発明は、ハードディスクドライブ(以下、「HDD」と略記する。)等の磁気記録装置に搭載される磁気ディスクに用いられる磁気ディスク用基板の製造方法、及び磁気ディスク用基板の端面研磨処理に用いる端面研磨処理装置に関する。   The present invention is used for a method of manufacturing a magnetic disk substrate used in a magnetic disk mounted on a magnetic recording apparatus such as a hard disk drive (hereinafter abbreviated as “HDD”), and for end polishing of the magnetic disk substrate. The present invention relates to an end surface polishing apparatus.

HDD等の磁気記録装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、円板状の基板上に磁性層等の薄膜を形成して構成されたものであり、その基板としてアルミニウム合金基板やガラス基板が用いられている。ガラス基板はアルミニウム合金基板よりも硬く、耐衝撃性に優れるという利点がある。これらの基板の表面は磁気ヘッドの浮上高さを極力下げることができるように高精度に研磨して平滑化されており、高記録密度化を実現している。近年、HDDの更なる大記録容量化、低価格化の要求は増すばかりであり、これを実現するためには、磁気ディスク用基板においても更なる高品質化、低コスト化が必要になってきている。   One of information recording media mounted on a magnetic recording device such as an HDD is a magnetic disk. A magnetic disk is configured by forming a thin film such as a magnetic layer on a disk-shaped substrate, and an aluminum alloy substrate or a glass substrate is used as the substrate. A glass substrate is harder than an aluminum alloy substrate, and has an advantage of excellent impact resistance. The surfaces of these substrates are polished and smoothed with high precision so as to reduce the flying height of the magnetic head as much as possible, thereby realizing high recording density. In recent years, the demand for further increase in recording capacity and price of HDDs has increased, and in order to realize this, it has become necessary to further improve the quality and cost of magnetic disk substrates. ing.

磁気ディスク用基板は、通常、円板状に形成した基板に、形状加工(端面研削及び面取り)、端面研磨、主表面研削、主表面研磨、化学強化等の工程を順次施して製造される。
上記のように安価で高記録密度を達成できる磁気ディスクが求められているが、磁気ディスクの高記録密度化のためには、基板の加工精度にも高度なものが要求されており、それは基板の主表面のみならず、端面形状においても同様である。
A magnetic disk substrate is usually manufactured by sequentially performing steps such as shape processing (end surface grinding and chamfering), end surface polishing, main surface grinding, main surface polishing, and chemical strengthening on a disk-shaped substrate.
As described above, there is a demand for a magnetic disk that is inexpensive and can achieve a high recording density. However, in order to increase the recording density of the magnetic disk, a high level of processing accuracy is required for the substrate. The same applies to the end surface shape as well as the main surface.

下記特許文献1に開示されているように、従来一般的には、磁気ディスク用ガラス基板の端面は、総型砥石を用いた端面研削加工を行った後、ブラシ端面研磨を行うことにより加工されていた。
また、下記特許文献2には、フェライト系磁性粒子と研磨砥粒を含むスラリに磁場を加えることにより、磁気ディスク用ガラス基板の端面を研磨する方法が開示されている。
As disclosed in the following Patent Document 1, conventionally, the end surface of a glass substrate for a magnetic disk is generally processed by polishing the end surface using a grindstone and then polishing the end surface of the brush. It was.
Patent Document 2 below discloses a method of polishing an end surface of a glass substrate for a magnetic disk by applying a magnetic field to a slurry containing ferrite magnetic particles and abrasive grains.

特開平11−28649号公報JP-A-11-28649 特開2005−50501号公報JP 2005-50501 A

上記のとおり、高記録密度を達成できるとともに安価な磁気ディスク用基板が求められており、基板の端面研磨加工に関してさらなる生産性の向上が望まれている。   As described above, there is a demand for an inexpensive magnetic disk substrate that can achieve a high recording density, and further improvement in productivity is desired with respect to the polishing of the end face of the substrate.

しかしながら、従来の研磨ブラシを用いてガラス基板の端面を研磨加工する方法では、研磨速度の向上に限界があり、生産性をさらに向上させることが困難であった。   However, the method of polishing the end face of the glass substrate using a conventional polishing brush has a limit in improving the polishing rate, and it has been difficult to further improve productivity.

また、上述の特許文献2に開示されたフェライト系磁性粒子と研磨砥粒を含むスラリに磁場を加えることにより、磁気ディスク用ガラス基板の端面を研磨する方法でも、磁性体と磁石との距離が離れているために磁性体を保持する力が弱く、加工時間が長くなるという問題が生じる。   Further, even when the magnetic disk and the method for polishing the end surface of the glass substrate for magnetic disk by applying a magnetic field to the slurry containing ferrite-based magnetic particles and abrasive grains disclosed in Patent Document 2 described above, the distance between the magnetic body and the magnet is small. Since they are separated from each other, there is a problem that the force for holding the magnetic body is weak and the processing time is long.

そこで、本発明は、磁気ディスク用基板の端面の研磨速度を向上させ、生産効率のさらなる向上を可能とする磁気ディスク用基板の製造方法、及び磁気ディスク用基板の端面研磨処理に好適に用いる端面研磨処理装置を提供することを目的とする。   Therefore, the present invention improves the polishing rate of the end face of the magnetic disk substrate and enables further improvement of production efficiency, and the end face suitably used for the end face polishing treatment of the magnetic disk substrate. An object is to provide a polishing apparatus.

本発明者は、磁性体と研磨砥粒とを含む磁性スラリの塊26を磁気発生手段である一対の磁石21と22の間に形成保持して、そこに円板状の磁気ディスク用ガラス基板10の外周側端面を接触させ、かつ磁気発生手段とガラス基板を共に回転させながら端面研磨処理を行う従来方法を検討した(図4を参照)。本発明者の検討によれば、この場合、磁気発生手段の回転により、磁石21,22間に保持されている磁性体や研磨砥粒が加工中に徐々に飛散していくことが判明した。そのため、加工中にガラス基板が磁性スラリの塊から受けるせん断応力が変化し、安定した加工レートが得られないという問題が発生する。   The inventor forms and holds a magnetic slurry lump 26 including a magnetic body and abrasive grains between a pair of magnets 21 and 22 as magnetism generating means, and a disk-shaped glass substrate for a magnetic disk there. A conventional method was studied in which end face polishing was performed while contacting the outer peripheral side end faces of 10 and rotating both the magnetism generating means and the glass substrate (see FIG. 4). According to the study of the present inventor, it has been found that in this case, the magnetic body and the abrasive grains held between the magnets 21 and 22 are gradually scattered during processing by the rotation of the magnetism generating means. Therefore, the shear stress that the glass substrate receives from the lump of magnetic slurry during processing changes, and a problem that a stable processing rate cannot be obtained occurs.

そこで、本発明者はさらに検討を続けた結果、磁気発生手段により磁性スラリの塊をリング状となるように形成させ、このリング状に形成させた磁性スラリの塊の内周側にガラス基板の外周側端面を接触させて(つまり内接)、端面研磨処理を行うことにより、上記の問題を解決できることを見出した。
すなわち、上記課題を解決するため、本発明は以下の構成を有する。
Therefore, as a result of further investigation, the inventor has formed a magnetic slurry lump in a ring shape by the magnetism generating means, and the glass substrate is formed on the inner peripheral side of the magnetic slurry lump formed in the ring shape. It has been found that the above-mentioned problem can be solved by bringing the outer peripheral side end face into contact (that is, inscribed) and performing the end face polishing treatment.
That is, in order to solve the above problems, the present invention has the following configuration.

(構成1)
円板状基板の端面を加工する端面加工処理を含む磁気ディスク用基板の製造方法であって、前記端面加工処理は、磁気発生手段により磁性体と研磨砥粒とを含む磁性スラリの塊をリング状となるように形成させ、前記リング状に形成させた磁性スラリの塊の内周側に前記円板状基板の外周側端面を接触させ、かつ前記リング状に形成させた磁性スラリの塊と前記円板状基板とを相対的に移動させながら前記円板状基板の外周側端面を研磨する端面研磨処理を含むことを特徴とする磁気ディスク用基板の製造方法。
(Configuration 1)
A method of manufacturing a magnetic disk substrate including an end surface processing for processing an end surface of a disk-shaped substrate, wherein the end surface processing is performed by ringing a lump of magnetic slurry containing a magnetic body and abrasive grains by a magnetism generating means. An outer peripheral side end surface of the disk-shaped substrate is brought into contact with an inner peripheral side of the magnetic slurry lump formed in the ring shape and the magnetic slurry lump formed in the ring shape is formed. A method of manufacturing a magnetic disk substrate, comprising: an end surface polishing process for polishing an outer peripheral side end surface of the disk-shaped substrate while relatively moving the disk-shaped substrate.

(構成2)
前記円板状基板の外周側端面の側壁面と、該円板状基板の両主表面と前記側壁面との間の2つの面取面の少なくとも一方の面取面を同時に研磨することを特徴とする構成1に記載の磁気ディスク用基板の製造方法。
(Configuration 2)
The chamfered surface of at least one of the chamfered surface between the side wall surface of the outer peripheral side end surface of the disk-shaped substrate and the two main surfaces of the disk-shaped substrate and the side wall surface is simultaneously polished. A manufacturing method of a magnetic disk substrate according to Configuration 1.

(構成3)
前記リング状に形成させた磁性スラリの塊が成す平面に対して前記円板状基板の回転軸が直交しないように前記円板状基板を前記磁性スラリの塊に接触させて、端面研磨処理を行うことを特徴とする構成1又は2に記載の磁気ディスク用基板の製造方法。
(Configuration 3)
The disk-shaped substrate is brought into contact with the magnetic slurry lump so that the rotation axis of the disk-shaped substrate is not perpendicular to a plane formed by the magnetic slurry lump formed in the ring shape, and end face polishing treatment is performed. A method for manufacturing a magnetic disk substrate according to Configuration 1 or 2, wherein the method is performed.

(構成4)
前記円板状基板は、複数の円板状基板を積層した積層体であることを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用基板の製造方法。
(Configuration 4)
4. The method for manufacturing a magnetic disk substrate according to any one of Structures 1 to 3, wherein the disk-shaped substrate is a stacked body in which a plurality of disk-shaped substrates are stacked.

(構成5)
磁気ディスク用の円板状基板の端面を研磨する端面研磨処理に用いる端面研磨処理装置であって、磁性体と研磨砥粒とを含む磁性スラリの塊をリング状となるように形成させて保持する磁気発生手段を備え、前記リング状に形成させた磁性スラリの塊の内周側に前記円板状基板の外周側端面を接触させ、かつ前記リング状に形成させた磁性スラリの塊と前記円板状基板とを相対的に移動させながら前記円板状基板の外周側端面を研磨することを特徴とする端面研磨処理装置。
(Configuration 5)
An end surface polishing apparatus used for end surface polishing processing for polishing an end surface of a disk-shaped substrate for a magnetic disk, and a magnetic slurry lump including a magnetic body and abrasive grains is formed and held in a ring shape. And a magnetic slurry lump formed in the ring shape, wherein the outer peripheral side end surface of the disk-shaped substrate is brought into contact with an inner circumferential side of the lump of magnetic slurry formed in the ring shape. An end surface polishing apparatus for polishing an outer peripheral side end surface of a disk-shaped substrate while relatively moving the disk-shaped substrate.

本発明によれば、磁気ディスク用基板の端面の研磨速度を向上させ、生産効率のさらなる向上を可能とする。また、基板端面の面取面と側壁面の形状精度を向上させ、端面を高品質に仕上げることができる安定した端面加工が可能である。
また、本発明の端面研磨処理装置は、上記本発明の磁気ディスク用基板の端面研磨処理に好適に用いることができる。
According to the present invention, the polishing rate of the end face of the magnetic disk substrate can be improved, and the production efficiency can be further improved. In addition, it is possible to improve the shape accuracy of the chamfered surface and the side wall surface of the substrate end surface, and to perform stable end surface processing that can finish the end surface with high quality.
Moreover, the end surface polishing apparatus of the present invention can be suitably used for the end surface polishing processing of the magnetic disk substrate of the present invention.

磁気ディスク用ガラス基板の端面形状を示す断面図である。It is sectional drawing which shows the end surface shape of the glass substrate for magnetic discs. 本発明の磁性スラリを用いた端面研磨処理を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the end surface grinding | polishing process using the magnetic slurry of this invention. 図2における磁性スラリの塊が成す平面に沿った断面図である。It is sectional drawing along the plane which the lump of the magnetic slurry in FIG. 2 comprises. 従来の磁性スラリを用いた端面研磨処理を説明するための要部斜視図である。It is a principal part perspective view for demonstrating the end surface grinding | polishing process using the conventional magnetic slurry.

以下、本発明を実施するための形態について詳述する。磁気ディスク用基板としては上述の通りアルミニウム合金系の基板も存在するが、ここでは一例としてガラス基板の場合について述べる。
図1は、本発明が適用される磁気ディスク用ガラス基板1の外周側端部の断面図である。該ガラス基板1は、図1には示されていないが、中心部に円孔を有する全体が円板状に形成され、その表裏の主表面11,11と、これら主表面11,11間に形成される外周側の端面と内周側の端面を有する。
Hereinafter, embodiments for carrying out the present invention will be described in detail. As described above, an aluminum alloy-based substrate also exists as a magnetic disk substrate. Here, a glass substrate will be described as an example.
FIG. 1 is a cross-sectional view of the outer peripheral end of a magnetic disk glass substrate 1 to which the present invention is applied. Although the glass substrate 1 is not shown in FIG. 1, the whole having a circular hole in the center is formed in a disk shape, and the main surfaces 11, 11 on the front and back sides thereof and between these main surfaces 11, 11 are formed. An outer peripheral end surface and an inner peripheral end surface are formed.

上記ガラス基板1の外周側の端面は、その主表面11と直交する側壁面12aと、この側壁面12aと表裏の主表面11,11との間にそれぞれ形成されている2つの面取面(面取りした面)12b、12bとからなる形状に形成されている。また、上記ガラス基板1の内周側の端面については図示していないが、上記外周側端面と同様に、その主表面11と直交する側壁面と、この側壁面と表裏の主表面11,11との間にそれぞれ形成されている2つの面取面(面取りした面)とからなる形状に形成されている。   The end surface on the outer peripheral side of the glass substrate 1 has a side wall surface 12a orthogonal to the main surface 11 and two chamfered surfaces formed between the side wall surface 12a and the front and back main surfaces 11, 11 ( Chamfered surfaces) 12b and 12b. Moreover, although it does not show in figure about the end surface of the inner peripheral side of the said glass substrate 1, similarly to the said outer peripheral side end surface, the side wall surface orthogonal to the main surface 11 and the main surfaces 11 and 11 of this side wall surface and front and back Are formed in a shape composed of two chamfered surfaces (chamfered surfaces) formed between the two.

そして磁気ディスク、例えば、公称2.5インチディスクの場合は、ガラス基板1の外径が65mmで内径が20mm、公称3.5インチディスクの場合は、ガラス基板1の外径が95mmで内径が25mmに仕上げられる。ここで、内径とは、ガラス基板1の中心部の円孔の内径のことである。   In the case of a magnetic disk, for example, a nominal 2.5 inch disk, the outer diameter of the glass substrate 1 is 65 mm and the inner diameter is 20 mm. In the case of a nominal 3.5 inch disk, the outer diameter of the glass substrate 1 is 95 mm and the inner diameter is Finished to 25 mm. Here, the inner diameter is the inner diameter of a circular hole in the center of the glass substrate 1.

磁気ディスク用ガラス基板1の主表面11、外周側端面および内周側端面はいずれも、最終的にはそれぞれ所定の表面粗さとなるように研磨(鏡面研磨)仕上げされる。ガラス基板1の外周側端面及び内周側端面はいずれも、上述のような端面形状に仕上げられ、なお且つ、表面粗さが例えばRzで1μm以下、Raで0.1μm以下の鏡面状態に仕上げられることが通常求められる。   The main surface 11, the outer peripheral side end surface, and the inner peripheral side end surface of the glass substrate 1 for magnetic disk are all polished (mirror polished) to have a predetermined surface roughness. Both the outer peripheral side end surface and the inner peripheral side end surface of the glass substrate 1 are finished to the end face shape as described above, and the surface roughness is finished to a mirror surface state with Rz of 1 μm or less and Ra of 0.1 μm or less, for example. It is usually sought to be.

磁気ディスク用ガラス基板1は、例えばダイレクトプレス法やフロート法等により得られたガラス板を所定の円板状に加工して得られた円板状のガラス基板10に、端面の研削・研磨(鏡面研磨)、主表面の研削・鏡面研磨、化学強化等の工程を順次施して製造される。
なお、本発明においては、ダイレクトプレス法やフロート法等により得られたガラス板を所定の円板状に加工したガラス基板(ガラス素板)から、このガラス基板に加工、処理等を施して作製される最終製品のガラス基板にいたるまで、説明の便宜上、すべてガラス基板もしくは磁気ディスク用ガラス基板と呼ぶこととする。
The magnetic disk glass substrate 1 is formed by subjecting a glass plate 10 obtained by processing, for example, a glass plate obtained by a direct press method or a float method into a predetermined disc shape, and grinding and polishing an end face ( (Mirror polishing), grinding of the main surface, mirror polishing, chemical strengthening, etc. are performed in order.
In the present invention, a glass plate obtained by processing a glass plate obtained by a direct press method or a float method into a predetermined disc shape (glass base plate) is processed and processed on the glass substrate. For the sake of convenience of explanation, all of the final product glass substrates are referred to as a glass substrate or a magnetic disk glass substrate.

最初に、上記端面研削加工工程について説明する。
通常、上記端面研削加工は、所謂総形砥石を用いて行うことができる。
この総形砥石は、所定の大きさの円筒状に形成されており、その外周面には、ガラス基板の端面形状を形成するための溝形状を有しており、具体的には、ガラス基板の外周側端面に側壁面と面取り面の両方の面を形状転写できるような溝形状となっている。この総形砥石は、ガラス基板の研削加工面の仕上がり目標の寸法形状を考慮して、所定の寸法形状に形成されている。
First, the end face grinding process will be described.
Usually, the end face grinding can be performed using a so-called general-purpose grindstone.
This total shape grindstone is formed in a cylindrical shape of a predetermined size, and has a groove shape for forming an end face shape of the glass substrate on its outer peripheral surface. Specifically, the glass substrate The groove shape is such that the shape of both the side wall surface and the chamfered surface can be transferred to the outer peripheral side end surface. This total shape grindstone is formed in a predetermined dimensional shape in consideration of the target dimensional shape of the ground surface of the glass substrate.

上記端面研削加工で用いる総形砥石としては、例えば高剛性砥石であるダイヤモンド砥粒を電着ボンドやメタルボンド、レジンボンド等で固定した砥石が好適である。また、砥粒としては、アルミナ砥粒、立方晶窒化ホウ素砥粒などを用いることもできる。また、砥粒や砥粒の固定方法を変更した複数の砥石を用いた多段階の研削とすることもできる。   For example, a grindstone in which diamond abrasive grains, which are high-rigidity grindstones, are fixed by an electrodeposition bond, a metal bond, a resin bond, or the like is suitable as the total shape grindstone used in the end face grinding. As the abrasive grains, alumina abrasive grains, cubic boron nitride abrasive grains, and the like can be used. Moreover, it can also be set as the multistage grinding using the grindstone which changed the abrasive grain and the fixing method of the abrasive grain.

本発明においては、上述の端面研削加工に続いて、磁性体と研磨砥粒とを含む磁性スラリを用いた端面研磨処理を行う。
次に、本発明の端面研磨処理について詳しく説明する。
本発明の端面研磨処理は、磁気発生手段により磁性体と研磨砥粒とを含む磁性スラリの塊をリング状となるように形成させ、前記リング状に形成させた磁性スラリの塊の内周側に前記ガラス基板の外周側端面を接触させ、かつ前記リング状に形成させた磁性スラリの塊と前記ガラス基板とを相対的に移動させながら前記ガラス基板の外周側端面を研磨する処理である。
In the present invention, subsequent to the above-described end surface grinding, an end surface polishing process using a magnetic slurry containing a magnetic body and abrasive grains is performed.
Next, the end surface polishing treatment of the present invention will be described in detail.
In the end surface polishing treatment of the present invention, a magnetic slurry lump including a magnetic material and abrasive grains is formed in a ring shape by a magnetism generating means, and the inner peripheral side of the magnetic slurry lump formed in the ring shape The outer peripheral side end face of the glass substrate is polished while the outer peripheral side end face of the glass substrate is brought into contact with and the mass of the magnetic slurry formed in the ring shape and the glass substrate are relatively moved.

また、本発明の端面研磨処理には、磁性体と研磨砥粒とを含む磁性スラリの塊をリング状となるように形成させて保持する磁気発生手段を備え、前記リング状に形成させた磁性スラリの塊の内周側に前記ガラス基板の外周側端面を接触させ、かつ前記リング状に形成させた磁性スラリの塊と前記ガラス基板とを相対的に移動させながら前記ガラス基板の外周側端面を研磨する端面研磨処理装置を好ましく用いることができる。   Further, the end surface polishing treatment of the present invention includes a magnetic generating means for forming and holding a lump of a magnetic slurry including a magnetic material and abrasive grains in a ring shape, and the magnet formed in the ring shape. The outer peripheral side end surface of the glass substrate while the outer peripheral side end surface of the glass substrate is brought into contact with the inner peripheral side of the slurry lump and the magnetic slurry lump formed in the ring shape and the glass substrate are relatively moved. An end surface polishing apparatus for polishing the surface can be preferably used.

図2および図3はいずれも本発明の磁性スラリを用いた端面研磨処理を説明するための図であり、図2は本発明の磁性スラリを用いた端面研磨処理を説明するための要部断面図であり、図3は図2における磁性スラリの塊が成す平面に沿った断面図である。   2 and 3 are diagrams for explaining an end surface polishing process using the magnetic slurry of the present invention, and FIG. 2 is a cross-sectional view of a main part for describing an end surface polishing process using the magnetic slurry of the present invention. FIG. 3 is a cross-sectional view taken along a plane formed by the lump of magnetic slurry in FIG.

本発明における端面研磨処理では、リング状に形成させた磁性スラリの塊を用いてガラス基板の端面の研磨を行う。この磁性スラリは磁性体と研磨砥粒とを含む。
図2に示すように、例えば永久磁石である一対の磁石21,22と、ストッパー部23とを含む。なお、必要に応じて、非磁性材料から形成された外装部材内で、上記磁石21,22やストッパー部23を覆ってもよい。
In the end surface polishing treatment in the present invention, the end surface of the glass substrate is polished using a lump of magnetic slurry formed in a ring shape. This magnetic slurry includes a magnetic material and abrasive grains.
As shown in FIG. 2, for example, a pair of magnets 21 and 22 that are permanent magnets and a stopper portion 23 are included. In addition, you may cover the said magnets 21 and 22 and the stopper part 23 within the exterior member formed from the nonmagnetic material as needed.

図2に示す一実施形態では、磁気発生手段である上記一対の磁石21,22がいずれも円筒状に形成されており、この円筒状に形成された磁石21,22間には上記ストッパー部23が配置されている。そして、上記磁石21,22間であって上記ストッパー部23の内側に上記磁性スラリの塊25をリング状となるように形成保持させている。そして、このリング状に形成させた磁性スラリの塊26の内周側にガラス基板10の外周側端面を接触させ、かつこのリング状に形成させた磁性スラリの塊26とガラス基板10とを相対的に移動させながらガラス基板の外周側端面を研磨する。上記ストッパー部23は例えば非磁性材料で形成され、磁石21,22間を所定の間隔に維持するとともに、上記のリング状に形成させた磁性スラリの塊26に含まれている磁性体や研磨砥粒が加工中に外側へ飛散することを防止している。   In one embodiment shown in FIG. 2, the pair of magnets 21 and 22 as magnetism generating means are both formed in a cylindrical shape, and the stopper portion 23 is interposed between the cylindrical magnets 21 and 22. Is arranged. The lump 25 of the magnetic slurry is formed and held in a ring shape between the magnets 21 and 22 and inside the stopper portion 23. Then, the outer peripheral side end face of the glass substrate 10 is brought into contact with the inner peripheral side of the magnetic slurry lump 26 formed in the ring shape, and the magnetic slurry lump 26 formed in the ring shape and the glass substrate 10 are relatively moved. The outer peripheral side end surface of the glass substrate is polished while being moved. The stopper portion 23 is made of, for example, a non-magnetic material, and maintains a predetermined distance between the magnets 21 and 22, and also includes a magnetic body or polishing abrasive contained in the magnetic slurry lump 26 formed in the ring shape. The particles are prevented from splashing outside during processing.

上記一対の磁石21と磁石22は、互いに近接して、磁気発生手段として機能し、これら磁石21,22間に磁力線を形成する。図2に示す例では、例えばガラス基板10の厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の対が磁気発生手段として用いられる。磁石21,22との間には、上記のとおり、磁石21のN極の端面と磁石22のS極の端面との間の離間距離を予め定めた距離とするため、非磁性材料からなるストッパー部23が設けられている。磁性スラリの塊26は、ガラス基板10の外周側端面と接触し、この端面との間で相対運動する部分であるため、磁性スラリの塊26の剛性を確保する点から、磁力はある程度強いことが望まれる。このため、磁石21のN極の端面と磁石22のS極の端面との間の離間距離は短いことが好ましいが、あまり短すぎるとガラス基板を磁石間に挿入する場合に実施しにくくなる。そのため、磁石21のN極の端面と磁石22のS極の端面との間の離間距離はある所定の範囲に定められることが好適である。   The pair of magnets 21 and 22 are close to each other and function as magnetism generating means, and form lines of magnetic force between these magnets 21 and 22. In the example shown in FIG. 2, for example, a pair of magnets arranged in the thickness direction of the glass substrate 10 so as to be separated from each other so that the N-pole surface and the S-pole surface face each other is used as the magnetism generating means. Between the magnets 21 and 22, as described above, a stopper made of a non-magnetic material is used to set a predetermined distance between the end face of the N pole of the magnet 21 and the end face of the S pole of the magnet 22. A portion 23 is provided. Since the magnetic slurry lump 26 is a portion that contacts the outer peripheral side end surface of the glass substrate 10 and moves relative to the end surface, the magnetic slurry lump 26 has a certain degree of magnetic force in order to ensure the rigidity of the magnetic slurry lump 26. Is desired. For this reason, it is preferable that the separation distance between the end face of the N pole of the magnet 21 and the end face of the S pole of the magnet 22 is short, but if it is too short, it becomes difficult to carry out when inserting the glass substrate between the magnets. Therefore, it is preferable that the separation distance between the end face of the N pole of the magnet 21 and the end face of the S pole of the magnet 22 is set within a certain predetermined range.

なお、磁気発生手段として永久磁石に限らず、例えば電磁石を用いることもできる。   The magnetism generating means is not limited to a permanent magnet, and an electromagnet can be used, for example.

また、上記ガラス基板10は、図示されない保持手段によって回転可能に保持されている。保持手段によって保持されたガラス基板10を上記磁石21,22間にリング状に形成させた磁性スラリの塊26の内周側に接近させ、磁性スラリの塊26とガラス基板10の外周側端面とを接触させる。上記一対の磁石21,22からなる磁気発生手段及びガラス基板10を保持する保持手段は、図示されない駆動モータに接続されている。したがって、上記磁石21,22と上記ガラス基板10が回転してガラス基板10の外周側端面と磁性スラリの塊26とを相対的に移動させることにより、ガラス基板10の外周側端面を研磨することができる。   The glass substrate 10 is rotatably held by holding means (not shown). The glass substrate 10 held by the holding means is brought close to the inner peripheral side of the magnetic slurry lump 26 formed in a ring shape between the magnets 21 and 22, and the magnetic slurry lump 26 and the outer peripheral side end surface of the glass substrate 10 are Contact. The magnetism generating means comprising the pair of magnets 21 and 22 and the holding means for holding the glass substrate 10 are connected to a drive motor (not shown). Therefore, the outer peripheral side end surface of the glass substrate 10 is polished by rotating the magnets 21 and 22 and the glass substrate 10 to relatively move the outer peripheral side end surface of the glass substrate 10 and the magnetic slurry lump 26. Can do.

端面研磨に用いる磁性スラリの磁性体としては、磁性体粒子(磁性体微粒子)を分散媒に分散させたものを用いる。磁性体粒子としては、強磁性体であればよく、特に磁力が強いという観点では、Feからなる粒子が好ましい。また、FeとFe以外の強磁性体とを混合したものを用いてもよい。磁性体粒子の粒径は、0.1〜10μmの範囲内が好ましい。上記範囲とすることで、研磨砥粒を好適に保持することができる。分散媒としては、非極性オイルまたは極性オイル等が好適に用いることができる。分散媒としては、非極性オイルまたは極性オイルを用いる場合には、例えば、室温(20℃)において100〜1000(mPa・秒)の粘度を有することが好ましい。また、磁性体に界面活性剤を添加してもよい。   As the magnetic material of the magnetic slurry used for the end surface polishing, a material obtained by dispersing magnetic particles (magnetic particles) in a dispersion medium is used. The magnetic particles may be any ferromagnetic material, and from the viewpoint that the magnetic force is particularly strong, particles made of Fe are preferable. Moreover, you may use what mixed Fe and ferromagnetic materials other than Fe. The particle size of the magnetic particles is preferably within the range of 0.1 to 10 μm. By setting it as the said range, an abrasive grain can be hold | maintained suitably. As the dispersion medium, nonpolar oil or polar oil can be suitably used. As a dispersion medium, when using nonpolar oil or polar oil, it is preferable that it has a viscosity of 100-1000 (mPa * second) at room temperature (20 degreeC), for example. Further, a surfactant may be added to the magnetic material.

また、磁性スラリに含まれる研磨砥粒としては、酸化セリウム、コロイダルシリカ、酸化ジルコニア、アルミナ砥粒、ダイヤモンド砥粒等の公知のガラス基板の研磨砥粒を用いることができる。研磨砥粒の粒径については、例えば0.5〜3μmである。この範囲の粒径の研磨砥粒を用いることにより、ガラス基板の端面を良好に研磨することができる。研磨砥粒は、磁性スラリ中に、例えば3〜15体積%程度含有させることが好ましい。   Moreover, as abrasive grains contained in the magnetic slurry, known abrasive grains of glass substrates such as cerium oxide, colloidal silica, zirconia oxide, alumina abrasive grains, and diamond abrasive grains can be used. The particle size of the abrasive grains is, for example, 0.5 to 3 μm. By using abrasive grains having a particle size in this range, the end face of the glass substrate can be satisfactorily polished. The abrasive grains are preferably contained in the magnetic slurry, for example, about 3 to 15% by volume.

磁性スラリの粘度は、磁性体の濃度調整により、室温(20℃)で1000〜2000mPa・秒であることが、磁性スラリの塊26を形成させ、端面研磨を効率よく行う点で好ましい。粘度が低い(磁性体の濃度が低い)と塊26を形成し難くなり、ガラス基板10の端面に押圧された状態で相対運動させて研磨することは難しい。一方、磁性スラリの粘度が過度に高い場合、均一な押圧状態が形成し難い。また、磁気発生手段における磁束密度は、磁性スラリの塊26を形成させ、端面研磨を効率よく行う点で、0.3〜0.8テスラであることが好ましい。また、磁性体と研磨砥粒を含む磁性スラリの降伏応力は、0.4テスラの磁場を印加した状態で30kPa以上であることが好ましく、30〜60kPaであることがより好ましい。   The viscosity of the magnetic slurry is preferably 1000 to 2000 mPa · sec at room temperature (20 ° C.) by adjusting the concentration of the magnetic material, from the viewpoint of forming the magnetic slurry lump 26 and performing end face polishing efficiently. If the viscosity is low (the concentration of the magnetic material is low), it is difficult to form the lump 26, and it is difficult to perform the relative movement while being pressed against the end face of the glass substrate 10 for polishing. On the other hand, when the viscosity of the magnetic slurry is excessively high, it is difficult to form a uniform pressed state. The magnetic flux density in the magnetism generating means is preferably 0.3 to 0.8 Tesla from the viewpoint of forming the magnetic slurry lump 26 and efficiently polishing the end face. In addition, the yield stress of the magnetic slurry containing the magnetic material and the abrasive grains is preferably 30 kPa or more, more preferably 30 to 60 kPa, with a 0.4 Tesla magnetic field applied.

ここで、磁性スラリの降伏応力(降伏せん断応力)は、 例えば次の方法により求めることができる。回転粘度計に、所定の磁場を印加可能な磁場印加手段(永久磁石、電磁石等)を組込んだ装置を用いて、磁性スラリのせん断速度とせん断応力の関係を求め、得られたせん断速度とせん断応力の関係を公知のCassonの式を用いて近似することよって、磁性スラリの降伏応力を求めることができる。   Here, the yield stress (yield shear stress) of the magnetic slurry can be obtained, for example, by the following method. Using a device incorporating a magnetic field application means (permanent magnet, electromagnet, etc.) capable of applying a predetermined magnetic field to a rotational viscometer, the relationship between the shear rate and the shear stress of the magnetic slurry was determined, and the obtained shear rate and The yield stress of the magnetic slurry can be obtained by approximating the relationship of the shear stress using the known Casson equation.

上記降伏応力は、磁場によって保持された磁性スラリとガラス基板端部とが相対運動する際に、ガラス基板が磁性スラリから受ける圧力、即ちせん断応力に影響を与える。したがって、磁性スラリの降伏応力が高い程(磁性スラリ流動時のせん断応力が高い程)、研磨砥粒とガラス基板との接触による研磨が効率的に行われ、加工レートを向上させることができる。   The yield stress affects the pressure that the glass substrate receives from the magnetic slurry, that is, the shear stress, when the magnetic slurry held by the magnetic field and the edge of the glass substrate move relative to each other. Therefore, the higher the yield stress of the magnetic slurry (the higher the shear stress during the magnetic slurry flow), the more efficiently the polishing by contact between the abrasive grains and the glass substrate can be achieved, and the processing rate can be improved.

本発明における端面研磨処理においては、上述したように、磁気発生手段により磁性体と研磨砥粒を含む磁性スラリの塊をリング状となるように形成させ、このリング状に形成させた磁性スラリの塊の内周側にガラス基板の外周側端面を接触させ、かつこのリング状に形成させた磁性スラリの塊とガラス基板とを相対的に移動させながらガラス基板の外周側端面を研磨することが特徴である。   In the end surface polishing process of the present invention, as described above, a magnetic slurry lump containing a magnetic material and abrasive grains is formed in a ring shape by the magnetism generating means, and the magnetic slurry formed in this ring shape is formed. The outer peripheral side end surface of the glass substrate can be polished while the outer peripheral side end surface of the glass substrate is brought into contact with the inner peripheral side of the lump, and the lump of the magnetic slurry formed in the ring shape and the glass substrate are relatively moved. It is a feature.

ガラス基板10と、磁石21、22(または磁性スラリの塊)とは、加工位置(接触位置)における両者の周速度の相対速度が50〜500m/分となるように回転させることが好ましい。このとき、両者の回転方向は、加工位置において互いに逆向き(アップカット)、または同じ向き(ダウンカット)のいずれでもよい。
また、本発明においては、加工後のガラス基板の形状精度向上の観点から、上記磁石21,22の周速度の絶対値よりもガラス基板10の周速度の絶対値の方が大きいことが好ましい。この逆の場合、ガラス基板の外周端部の真円度が加工により悪化する場合がある。
It is preferable to rotate the glass substrate 10 and the magnets 21 and 22 (or magnetic slurry lump) so that the relative speeds of the peripheral speeds at the processing position (contact position) are 50 to 500 m / min. At this time, both rotation directions may be opposite to each other (up cut) or the same direction (down cut) at the processing position.
In the present invention, it is preferable that the absolute value of the peripheral speed of the glass substrate 10 is larger than the absolute value of the peripheral speed of the magnets 21 and 22 from the viewpoint of improving the shape accuracy of the glass substrate after processing. In the opposite case, the roundness of the outer peripheral edge of the glass substrate may be deteriorated by processing.

本発明の端面研磨処理においては、上記磁石21,22が回転しているときに、この磁石21,22間に形成保持されたリング状の磁性スラリの塊26が遠心力によって外側に飛散することを阻止することができる。そのため、加工中にガラス基板が磁性スラリの塊から受けるせん断応力がほとんど変化することはなく、長時間にわたって安定した加工レートが得られるとともに、加工後の形状バラツキの小さい安定した加工が可能となる。   In the end surface polishing process of the present invention, when the magnets 21 and 22 are rotating, the ring-shaped magnetic slurry lump 26 formed and held between the magnets 21 and 22 is scattered to the outside by centrifugal force. Can be prevented. Therefore, the shear stress that the glass substrate receives from the magnetic slurry lump hardly changes during processing, and a stable processing rate can be obtained over a long period of time, and stable processing with less shape variation after processing becomes possible. .

なお、前にも説明したように、例えば図4に示すように、磁性スラリの塊の外周側にガラス基板10の外周側端面を接触させて(謂わば外接)、研磨を行った場合、磁気発生手段の回転により、磁石21,22間に保持されている磁性スラリが加工中に徐々に飛散していき、そのため、加工中にガラス基板が磁性スラリの塊から受けるせん断応力が変化し、安定した加工レートが得られないという問題が発生する。   As described above, for example, as shown in FIG. 4, when the outer peripheral side end face of the glass substrate 10 is brought into contact with the outer peripheral side of the magnetic slurry lump (so-called circumscribing), polishing is performed. Due to the rotation of the generating means, the magnetic slurry held between the magnets 21 and 22 is gradually scattered during processing, so that the shear stress that the glass substrate receives from the mass of magnetic slurry during processing changes and is stable. This causes a problem that the processed rate cannot be obtained.

本発明の端面研磨処理によれば、ガラス基板10の外周側端面の側壁面12aと、該ガラス基板10の両主表面11,11と前記側壁面12aとの間の2つの面取面12bの少なくとも一方の面取面を同時に研磨することが可能である。
また、本発明においては、磁性スラリの塊26に対してガラス基板の水平面を適当な方向に傾斜させて接触させることで、特に基板端面の面取面と磁性スラリとの接触を促進させることができる。これにより、ガラス基板端面の面取面と側壁面とで加工レートの差が生じるのを抑制でき、所定の加工時間内で面取面と側壁面の両方を同じ品質の鏡面に仕上ることが可能となる。
According to the end surface polishing treatment of the present invention, the side wall surface 12a of the outer peripheral side end surface of the glass substrate 10 and the two chamfered surfaces 12b between both the main surfaces 11 and 11 of the glass substrate 10 and the side wall surface 12a. At least one chamfered surface can be polished simultaneously.
In the present invention, the contact between the chamfered surface of the substrate and the magnetic slurry can be promoted by inclining the horizontal plane of the glass substrate in an appropriate direction with the lump 26 of the magnetic slurry. it can. As a result, it is possible to suppress the difference in processing rate between the chamfered surface and the side wall surface of the glass substrate end surface, and it is possible to finish both the chamfered surface and the side wall surface to the same quality mirror surface within a predetermined processing time. It becomes.

また、本発明においては、ガラス基板10の主表面と直交する軸に対して、磁性スラリの塊26を保持する上記磁石21,22の回転軸を傾斜させた状態で、ガラス基板を磁性スラリの塊に接触させて、端面研磨処理を行うようにしてもよい。これによっても、ガラス基板端面の面取面と側壁面とで加工レートの差が生じるのを抑制することができる。   Further, in the present invention, the glass substrate is made of the magnetic slurry in a state where the rotation axes of the magnets 21 and 22 holding the magnetic slurry lump 26 are inclined with respect to the axis orthogonal to the main surface of the glass substrate 10. You may make it contact an lump and perform an end surface grinding | polishing process. Also by this, it can suppress that the difference in a processing rate arises with the chamfering surface and side wall surface of a glass substrate end surface.

上述の本発明における端面研磨処理による加工取代は、1〜30μmの範囲内とすることが好ましい。また、10μm以下とすると、さらに形状精度が高まるためなおよく、5μm以下とするとよりいっそうよい。   The machining allowance by the end surface polishing treatment in the present invention is preferably in the range of 1 to 30 μm. Further, if it is 10 μm or less, the shape accuracy is further improved, and if it is 5 μm or less, it is even better.

また、本実施形態ではガラス基板10の外周側端面の研磨について説明したが、ガラス基板10の内周側端面についても、磁性スラリを用いた研磨方法を適用することができる。たとえば図4に示すような磁性スラリを保持する磁気発生手段をガラス基板10の中心の円孔に通して、磁性スラリの塊をガラス基板10の内周側端面と接触させることにより、内周側端面を研磨することができる。   Moreover, although this embodiment demonstrated grinding | polishing of the outer peripheral side end surface of the glass substrate 10, the grinding | polishing method using a magnetic slurry is applicable also to the inner peripheral side end surface of the glass substrate 10. FIG. For example, the magnetic generating means for holding the magnetic slurry as shown in FIG. 4 is passed through the circular hole at the center of the glass substrate 10, and the lump of magnetic slurry is brought into contact with the inner peripheral side end surface of the glass substrate 10. The end face can be polished.

また、複数の磁石を縦方向に互いに離間させた状態で配置し、これら磁石間にそれぞれ磁性スラリの塊を形成させ、この複数段の磁性スラリの塊に複数枚のガラス基板を積層させた状態でその端部を接触させることにより、積層した複数枚のガラス基板の端面を同時に加工することもできる。
また、一対の磁石の間に、積層させた複数のガラス基板の端面を入れるようにして、複数枚の基板を同時に加工してもよい。本発明の端面研磨処理においては、上記磁石21,22が回転しているときに、この磁石21,22間に形成保持されたリング状の磁性スラリの塊26が遠心力によって外側に飛散することを阻止することができるので、磁石間の距離が広がって磁場は弱まっても磁性スラリを保持することが可能であり、複数枚の基板の積層により、生産性を飛躍的に増大させることができる。
In addition, a plurality of magnets are arranged in a state of being separated from each other in the vertical direction, a magnetic slurry lump is formed between the magnets, and a plurality of glass substrates are laminated on the multi-stage magnetic slurry lump. The end surfaces of a plurality of laminated glass substrates can be processed simultaneously by bringing the end portions into contact with each other.
Further, a plurality of substrates may be processed at the same time so that end surfaces of a plurality of laminated glass substrates are put between a pair of magnets. In the end surface polishing process of the present invention, when the magnets 21 and 22 are rotating, the ring-shaped magnetic slurry lump 26 formed and held between the magnets 21 and 22 is scattered to the outside by centrifugal force. It is possible to hold the magnetic slurry even if the distance between the magnets increases and the magnetic field weakens, and the productivity can be dramatically increased by stacking multiple substrates. .

本発明においては、ガラス基板を構成するガラス(の硝種)は、アモルファスのアルミノシリケートガラスとすることが好ましい。このようなガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。このようなアルミノシリケートガラスとしては、例えば、SiO2 を主成分としてAl23 を20重量%以下含むガラスが好ましい。具体的には例えば、SiO2を62重量%以上75重量%以下、Al23 を5重量%以上15重量%以下、Li2 Oを4重量%以上10重量%以下、Na2Oを4重量%以上12重量%以下、ZrO2 を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2の重量比が0.5以上2.0以下、Al23 /ZrO2 の重量比が0.4以上2.5以下であるリン酸化物を含まないアモルファスのアルミノシリケートガラスを用いることができる。 In the present invention, the glass constituting the glass substrate is preferably an amorphous aluminosilicate glass. Such a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. As such an aluminosilicate glass, for example, a glass containing SiO 2 as a main component and containing 20 wt% or less of Al 2 O 3 is preferable. Specifically, for example, SiO 2 is 62 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 15 wt%, Li 2 O is 4 wt% to 10 wt%, and Na 2 O is 4 wt%. Wt% to 12 wt%, ZrO 2 is contained in an amount of 5.5 wt% to 15 wt% as a main component, and the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, Al 2 An amorphous aluminosilicate glass containing no phosphorus oxide and having a weight ratio of O 3 / ZrO 2 of 0.4 to 2.5 can be used.

上述の本発明の端面研磨処理の終了後は、このガラス基板に寸法精度及び形状精度を向上させるための主表面の研削加工(ラッピング)を行う。この主表面の研削加工は、通常両面ラッピング装置を用い、ダイヤモンド等の硬質砥粒を用いてガラス基板主表面の研削を行う。こうしてガラス基板主表面を研削加工することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。   After the end face polishing process of the present invention is completed, the glass substrate is ground (lapped) to improve the dimensional accuracy and shape accuracy. This main surface grinding is usually performed by using a double-sided lapping machine to grind the main surface of the glass substrate using hard abrasive grains such as diamond. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.

そして、上記主表面研削加工の終了後は、高平滑な主表面を得るための鏡面研磨加工を行う。
ガラス基板の主表面の鏡面研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、ポリウレタン等のポリシャの研磨パッドを用いて行うのが好適である。高い平滑性を有するガラス基板は、たとえば酸化セリウム系研磨材を用いて研磨した後(第1研磨加工)、さらにコロイダルシリカ砥粒を用いた仕上げ研磨(鏡面研磨)(第2研磨加工)によって得ることが可能である。
And after completion | finish of the said main surface grinding process, the mirror polishing process for obtaining a highly smooth main surface is performed.
The mirror polishing method for the main surface of the glass substrate is performed using a polishing pad of a polisher such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. Is preferred. A glass substrate having high smoothness is obtained, for example, by polishing with a cerium oxide-based abrasive (first polishing process) and then with final polishing (mirror polishing) (second polishing process) using colloidal silica abrasive grains. It is possible.

また、本発明においては、基板強度を向上させるために化学強化処理を施してもよい。化学強化処理の方法としては、例えば、ガラス転移点の温度を超えない温度領域で、イオン交換を行う低温型イオン交換法などが好ましい。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。
以上のようにして、本発明に係る磁気ディスク用基板が製造される。
In the present invention, chemical strengthening treatment may be applied to improve the substrate strength. As a method of the chemical strengthening treatment, for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range not exceeding the glass transition temperature is preferable. Since the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example.
As described above, the magnetic disk substrate according to the present invention is manufactured.

以上は、磁気ディスク用基板の一例としてガラス基板の場合について説明したが、磁気ディスク用基板としては上述の通りアルミニウム合金系の基板も存在し、このアルミニウム合金系の基板の端面研磨処理においても上述した本発明の磁性スラリを用いた端面研磨処理を好ましく適用することができ、基板端面の研磨速度を向上させて、生産効率のさらなる向上が可能となる。なお、上記アルミニウム合金系の基板としては、アルミニウム合金基板と、表面にNiP系合金が形成されたアルミニウム合金基板とが含まれる。   The above description has been given of the case of a glass substrate as an example of a magnetic disk substrate. However, as described above, an aluminum alloy-based substrate also exists as a magnetic disk substrate. The end surface polishing treatment using the magnetic slurry of the present invention can be preferably applied, and the polishing rate of the substrate end surface can be improved to further improve the production efficiency. The aluminum alloy substrate includes an aluminum alloy substrate and an aluminum alloy substrate having a NiP alloy formed on the surface thereof.

また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供する。本発明において磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁性層を形成して製造される。磁性層の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることが好適である。またガラス基板と磁性層との間に、下地層を介挿することにより磁性層の磁性グレインの配向方向や磁性グレインの大きさを制御することができる。例えば,Cr系合金など立方晶系下地層を用いることにより、例えば磁性層の磁化容易方向を磁気ディスク面に沿って配向させることができる。この場合、面内磁気記録方式の磁気ディスクが製造される。また、例えば、RuやTiを含む六方晶系下地層を用いることにより、例えば磁性層の磁化容易方向を磁気ディスク面の法線に沿って配向させることができる。この場合、垂直磁気記録方式の磁気ディスクが製造される。下地層は磁性層同様にスパッタリング法により形成することができる。   The present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk. In the present invention, the magnetic disk is manufactured by forming at least a magnetic layer on the magnetic disk glass substrate according to the present invention. As a material for the magnetic layer, a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used. As a method of forming the magnetic layer, it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method. Further, by interposing an underlayer between the glass substrate and the magnetic layer, the orientation direction of the magnetic grains of the magnetic layer and the size of the magnetic grains can be controlled. For example, by using a cubic base layer such as a Cr-based alloy, for example, the magnetization easy direction of the magnetic layer can be oriented along the magnetic disk surface. In this case, a magnetic disk of the in-plane magnetic recording system is manufactured. Further, for example, by using a hexagonal underlayer containing Ru or Ti, for example, the easy magnetization direction of the magnetic layer can be oriented along the normal of the magnetic disk surface. In this case, a perpendicular magnetic recording type magnetic disk is manufactured. The underlayer can be formed by sputtering as with the magnetic layer.

また、磁性層の上に、保護層、潤滑層をこの順に形成するとよい。保護層としてはアモルファスの水素化炭素系保護層が好適である。例えばプラズマCVD法により保護層を形成することができる。また、潤滑層としては、パーフルオロポリエーテル化合物の主鎖の末端に官能基を有する潤滑剤を用いることができる。取り分け、極性官能基として水酸基を末端に備えるパーフルオロポリエーテル化合物を主成分とすることが好ましい。潤滑層はディップ法により塗布形成することができる。
本発明によって得られるガラス基板を利用することにより、基板の端面が高精度形状及び高品質に仕上げられているため、基板端面の表面状態が起因する障害の発生を防止し、より一層の高記録密度化を実現でき、且つ信頼性の高い磁気ディスクを得ることができる。
In addition, a protective layer and a lubricating layer may be formed in this order on the magnetic layer. As the protective layer, an amorphous hydrogenated carbon-based protective layer is suitable. For example, the protective layer can be formed by a plasma CVD method. Further, as the lubricating layer, a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used. In particular, it is preferable that the main component is a perfluoropolyether compound having a terminal hydroxyl group as a polar functional group. The lubricating layer can be applied and formed by a dip method.
By utilizing the glass substrate obtained by the present invention, the end face of the substrate is finished with a high precision shape and high quality, so that the occurrence of a failure due to the surface state of the end face of the substrate is prevented, and further higher recording is achieved. Density can be realized and a highly reliable magnetic disk can be obtained.

以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
以下の(1)基板準備工程、(2)主表面研削工程、(3)端面研削工程、(4)端面研磨工程、(5)主表面研磨工程(第1研磨工程)、(6)化学強化工程、(7)主表面研磨工程(第2研磨工程)を経て磁気ディスク用ガラス基板を製造した。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.
Example 1
The following (1) substrate preparation step, (2) main surface grinding step, (3) end surface grinding step, (4) end surface polishing step, (5) main surface polishing step (first polishing step), (6) chemical strengthening A glass substrate for a magnetic disk was manufactured through steps (7) and a main surface polishing step (second polishing step).

(1)基板準備工程
まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ0.635mmの円板状のアルミノシリケートガラスからなるガラス基板(ガラス素板)を得た。なお、この場合、ダイレクトプレス以外に、ダウンドロー法やフロート法で形成したシートガラスから研削砥石で切り出して円板状のガラス基板を得てもよい。このアルミノシリケートガラスとしては、SiO:62〜75重量%、ZrO:5.5〜15重量%、Al:5〜15重量%、LiO:4〜10重量%、NaO:4〜12重量%を含有する化学強化用ガラスを使用した。
(1) Substrate preparation step First, a glass substrate (glass base plate) made of aluminosilicate glass having a diameter of 66 mmφ and a thickness of 0.635 mm by direct press using molten glass from an upper mold, a lower mold, and a body mold. Got. In this case, in addition to the direct press, a disk-shaped glass substrate may be obtained by cutting out from a sheet glass formed by a downdraw method or a float method with a grinding wheel. As the aluminosilicate glass, SiO 2: 62 to 75 wt%, ZrO 2: 5.5~15 wt%, Al 2 O 3: 5~15 wt%, Li 2 O: 4~10 wt%, Na 2 O: Glass for chemical strengthening containing 4 to 12% by weight was used.

(2)主表面研削工程
この主表面研削加工は両面ラッピング装置を用い、ダイヤモンドパッドが貼り付けられた上下定盤の間にキャリアにより保持したガラス基板をセットして行ない、所定の板厚に調節した。
(3)端面研削工程
次に、円筒状砥石を用いてガラス基板の中央部分に孔を空けると共に、総形砥石を用いて外周端面および内周端面に所定の端面研削(形状加工)を行った。
(2) Main surface grinding process This main surface grinding process is performed by using a double-sided lapping machine and setting a glass substrate held by a carrier between the upper and lower surface plates to which diamond pads are affixed, and adjusting to a predetermined plate thickness. did.
(3) End face grinding step Next, a cylindrical grindstone was used to make a hole in the center portion of the glass substrate, and a predetermined end face grinding (shape processing) was performed on the outer peripheral end face and the inner peripheral end face using a general-purpose grindstone. .

(4)端面研磨工程
次いで、上記のように研削加工により基板端面に面取面及び側壁面を形成したガラス基板の外周側端面の研磨処理を行った。本実施例では、前述の図2に示す方法に従って磁性スラリを用いる端面研磨処理を行った。
図2に示すように、一対の磁石からなる磁気発生手段を内蔵した研磨装置を用いて2つの磁石間にリング状の磁性スラリの塊を形成させた。磁性体および研磨砥粒は本明細書中に記載(前述)のものを使用した。そして、これら2つの磁石とガラス基板とを互いに回転させることにより、ガラス基板の端面を研磨した。なお、両者の回転方向は互いに逆方向とし、回転数は適宜調整した。
こうして、ガラス基板の外周端面の研磨を行った。加工後の基板の外周端面の表面粗さは、側壁面、面取面ともにRzで0.1μm以下であった。
また、ガラス基板の内周側については、従来の研磨ブラシを用いて研磨を行った。
以上のようにして、上記端面研磨を終えたガラス基板を洗浄した。
(4) End surface polishing process Next, the grinding | polishing process of the outer peripheral side end surface of the glass substrate which formed the chamfering surface and the side wall surface in the substrate end surface by grinding as mentioned above was performed. In this example, the end surface polishing process using a magnetic slurry was performed according to the method shown in FIG.
As shown in FIG. 2, a ring-shaped magnetic slurry lump was formed between two magnets using a polishing apparatus incorporating magnetism generating means composed of a pair of magnets. The magnetic substance and abrasive grains described in the present specification (described above) were used. And the end surface of the glass substrate was grind | polished by rotating these two magnets and a glass substrate mutually. The rotational directions of the two were opposite to each other, and the rotational speed was appropriately adjusted.
In this way, the outer peripheral end face of the glass substrate was polished. The surface roughness of the outer peripheral end surface of the substrate after processing was 0.1 μm or less in terms of Rz for both the side wall surface and the chamfered surface.
Moreover, about the inner peripheral side of the glass substrate, it grind | polished using the conventional grinding | polishing brush.
As described above, the glass substrate after the end face polishing was washed.

(5)主表面研磨工程(第1研磨工程)
次に、上述した主表面研削加工で残留した傷や歪みを除去するための第1研磨工程を両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラス基板を密着させ、このキャリアを太陽歯車(サンギア)と内歯歯車(インターナルギア)とに噛合させ、上記ガラス基板を上下定盤によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤上で自転しながら公転して両面を同時に研磨加工するものである。第1研磨工程を終えたガラス基板を洗浄し、乾燥した。
(5) Main surface polishing step (first polishing step)
Next, the 1st grinding | polishing process for removing the flaw and distortion which remain | survived by the main surface grinding process mentioned above was performed using the double-side polish apparatus. In a double-side polishing machine, a glass substrate held by a carrier is closely attached between an upper and lower polishing surface plate to which a polishing pad is attached, and this carrier is engaged with a sun gear (sun gear) and an internal gear (internal gear). The glass substrate is sandwiched between upper and lower surface plates. Thereafter, a polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, whereby the glass substrate revolves while rotating on the surface plate to simultaneously polish both surfaces. The glass substrate after the first polishing step was washed and dried.

(6)化学強化工程
次に、上記洗浄を終えたガラス基板に化学強化を施した。化学強化は硝酸カリウムと硝酸ナトリウムを混合して加熱溶融させた化学強化液にガラス基板を約4時間浸漬して化学強化処理を行なった。
(6) Chemical strengthening process Next, the glass substrate which finished the said washing | cleaning was chemically strengthened. The chemical strengthening was performed by immersing the glass substrate in a chemical strengthening solution in which potassium nitrate and sodium nitrate were mixed and heated and melted for about 4 hours.

(7)主表面研磨工程(第2研磨工程)
次いで上記の第1研磨工程で使用したものと同じ両面研磨装置を用い、第2研磨工程を実施した。この第2研磨工程は、上述した第1研磨工程で得られた平坦な表面を維持しつつ、例えばガラス基板主表面の表面粗さをRa(原子間力顕微鏡での測定値)で0.2nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。上記第2研磨工程を終えたガラス基板を洗浄し、乾燥した。
(7) Main surface polishing step (second polishing step)
Next, the second polishing step was performed using the same double-side polishing apparatus as used in the first polishing step. In this second polishing step, for example, the surface roughness of the main surface of the glass substrate is 0.2 nm in terms of Ra (measured with an atomic force microscope) while maintaining the flat surface obtained in the first polishing step described above. This is a mirror polishing process for finishing the surface to a smooth mirror surface. The glass substrate after the second polishing step was washed and dried.

上記工程を経て得られたガラス基板の主表面の表面粗さを原子間力顕微鏡(AFM)にて測定したところ、Rz=1.53nm、Ra=0.13nmと超平滑な主表面を持つガラス基板を得た。
また、得られたガラス基板の外径は65mm、内径は20mm、板厚は0.635mmであった。
こうして、本実施例の磁気ディスク用ガラス基板を得た。
When the surface roughness of the main surface of the glass substrate obtained through the above steps was measured with an atomic force microscope (AFM), glass having an ultra-smooth main surface with Rz = 1.53 nm and Ra = 0.13 nm. A substrate was obtained.
The obtained glass substrate had an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.635 mm.
Thus, a glass substrate for magnetic disk of this example was obtained.

(比較例1)
上記端面研磨工程において、外周側端面を従来のブラシ研磨を用いて研磨したこと以外は、上記実施例1と同様にして磁気ディスク用ガラス基板を得た。なお、ブラシ研磨は、基板を25枚積層させて実施した。
(Comparative Example 1)
A glass substrate for a magnetic disk was obtained in the same manner as in Example 1 except that in the end surface polishing step, the outer peripheral side end surface was polished using conventional brush polishing. Brush polishing was performed by laminating 25 substrates.

(比較例2)
上記端面研磨工程において、前述の図4に示す方法に従って磁性スラリを用いる端面研磨処理を行ったこと以外は、上記実施例1と同様にして磁気ディスク用ガラス基板を得た。
なお、磁性体および研磨砥粒は実施例1と同じものを使用し、磁石とガラス基板の回転方向は互いに逆方向とし、回転数は適宜調整した。
(Comparative Example 2)
A glass substrate for a magnetic disk was obtained in the same manner as in Example 1 except that in the end surface polishing step, an end surface polishing process using a magnetic slurry was performed according to the method shown in FIG.
In addition, the same thing as Example 1 was used for the magnetic body and the abrasive grain, the rotation direction of the magnet and the glass substrate was made into the mutually opposite direction, and the rotation speed was adjusted suitably.

なお、以上の実施例1、比較例1,2における外周端面研磨の研磨取代はいずれも10μmである。
以上の実施例1、比較例1,2のそれぞれの条件で製造したガラス基板(各例について100枚ずつ)について、基板の外周端面における面取面と側壁面との間のエッジ部分(図1のA部)の曲率半径を1枚ずつ求め、各例におけるばらつきを求めた。ここでのばらつきとは、得られた100枚の基板のデータの最大値と最小値との差である。また、曲率半径は触針式評価装置を用いて評価した。
In addition, the grinding allowance of outer peripheral end face grinding | polishing in the above Example 1 and Comparative Examples 1 and 2 is all 10 micrometers.
About the glass substrate (100 pieces for each example) manufactured under the conditions of Example 1 and Comparative Examples 1 and 2 above, the edge portion between the chamfered surface and the side wall surface on the outer peripheral end surface of the substrate (FIG. 1). The radius of curvature of part A) was determined one by one, and the variation in each example was determined. The variation here is a difference between the maximum value and the minimum value of the data of the 100 obtained substrates. The curvature radius was evaluated using a stylus evaluation device.

そして、基板100枚におけるばらつきが0.02mm以下をレベル1、0.02mmより大きく0.03mm以下をレベル2、0.03mmより大きい場合をレベル3とした。レベルが小さいほど良好であることを示している。結果を纏めて表1に示した。なお、表1では、便宜上、実施例1を内接型磁気研磨、比較例2を外接型磁気研磨と記載している。   A variation of 0.02 mm or less in 100 substrates is level 1, a level greater than 0.02 mm and 0.03 mm or less is level 2, and a level 3 is greater than 0.03 mm. The smaller the level, the better. The results are summarized in Table 1. In Table 1, for convenience, Example 1 is described as inscribed magnetic polishing, and Comparative Example 2 is described as circumscribed magnetic polishing.

Figure 2016126808
Figure 2016126808

上記表1の結果から、以下のことがわかる。
1.リング状に形成させた磁性スラリの塊の内周側にガラス基板の外周側端面を接触させ、かつリング状に形成させた磁性スラリの塊とガラス基板とを相対的に移動(本実施例では回転)させながらガラス基板の外周側端面を研磨する端面研磨処理を行った実施例1においては、比較例1,2と比べると同じ研磨取代でも加工時間が短くて済み、研磨速度を向上させることができる。しかも、外周端面における面取面と側壁面との間のエッジ部分の曲率半径ばらつきの結果が良好であり、加工精度も良好であった。
2.これに対し、従来のブラシ研磨により端面研磨処理を行った比較例1では、加工時間が非常に長くかかり、面取面と側壁面との間のエッジ部分の曲率半径ばらつきが大きく良好な形状精度は得られなかった。
また、磁性スラリを用いた端面研磨処理であるが、従来の外接型(図4)により実施した比較例2では、加工時間が実施例1よりも若干長くかかり、面取面と側壁面との間のエッジ部分の曲率半径ばらつきも実施例1よりは悪い結果となった。
From the results in Table 1, the following can be understood.
1. The outer peripheral side end surface of the glass substrate is brought into contact with the inner peripheral side of the magnetic slurry lump formed in the ring shape, and the magnetic slurry lump formed in the ring shape and the glass substrate are relatively moved (in this embodiment, In Example 1 in which the end surface polishing process for polishing the outer peripheral side end surface of the glass substrate was performed while rotating, the processing time can be shortened even with the same polishing allowance compared with Comparative Examples 1 and 2, and the polishing rate should be improved. Can do. Moreover, the result of the variation in the radius of curvature of the edge portion between the chamfered surface and the side wall surface at the outer peripheral end surface was good, and the machining accuracy was also good.
2. On the other hand, in Comparative Example 1 in which the end surface polishing process was performed by the conventional brush polishing, the processing time was very long, and the variation in the radius of curvature of the edge portion between the chamfered surface and the side wall surface was large and good shape accuracy was achieved. Was not obtained.
Moreover, although it is an end surface grinding | polishing process using a magnetic slurry, in the comparative example 2 implemented by the conventional circumscribed type | mold (FIG. 4), processing time takes a little longer than Example 1, and a chamfer surface and a side wall surface are The variation in the radius of curvature of the edge portion between them was also worse than that in Example 1.

(磁気ディスクの製造)
上記実施例1で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
すなわち、上記ガラス基板上に、Ti系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、Ru薄膜からなる下地層、CoCrPt合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
得られた磁気ディスクについて、DFHヘッドを備えたHDDに組み込み、80℃かつ80%RHの高温高湿環境下においてDFH機能を作動させつつ1ヶ月間のロードアンロード耐久性試験を行ったところ、特に障害も無く、良好な結果が得られた。
(Manufacture of magnetic disk)
The following film formation process was performed on the magnetic disk glass substrate obtained in Example 1 to obtain a magnetic disk for perpendicular magnetic recording.
That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed. The protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
The obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained.

1 磁気ディスク用ガラス基板
10 円板状ガラス基板(ガラス素板)
11 ガラス基板の主表面
12 ガラス基板の外周側端面
12a 側壁面
12b 面取面
21,22 磁石
23 ストッパー部
25、26 磁性スラリの塊
1 Glass substrate for magnetic disk 10 Disc-shaped glass substrate (glass base plate)
DESCRIPTION OF SYMBOLS 11 Main surface 12 of glass substrate Outer peripheral side end surface 12a of glass substrate Side wall surface 12b Chamfered surfaces 21, 22 Magnet 23 Stopper portion 25, 26 Mass of magnetic slurry

Claims (5)

円板状基板の端面を加工する端面加工処理を含む磁気ディスク用基板の製造方法であって、
前記端面加工処理は、
磁気発生手段により磁性体と研磨砥粒とを含む磁性スラリの塊をリング状となるように形成させ、
前記リング状に形成させた磁性スラリの塊の内周側に前記円板状基板の外周側端面を接触させ、かつ前記リング状に形成させた磁性スラリの塊と前記円板状基板とを相対的に移動させながら前記円板状基板の外周側端面を研磨する端面研磨処理を含むことを特徴とする磁気ディスク用基板の製造方法。
A method for manufacturing a magnetic disk substrate including an end surface processing for processing an end surface of a disk-shaped substrate,
The end face processing is
A magnetic slurry lump containing a magnetic body and abrasive grains is formed in a ring shape by a magnetism generating means,
The outer peripheral side end surface of the disk-shaped substrate is brought into contact with the inner peripheral side of the ring-shaped magnetic slurry lump, and the ring-shaped magnetic slurry lump and the disk-shaped substrate are relatively A method of manufacturing a magnetic disk substrate, comprising: an end surface polishing process for polishing an outer peripheral side end surface of the disk-shaped substrate while moving the disk-shaped substrate.
前記円板状基板の外周側端面の側壁面と、該円板状基板の両主表面と前記側壁面との間の2つの面取面の少なくとも一方の面取面を同時に研磨することを特徴とする請求項1に記載の磁気ディスク用基板の製造方法。   The chamfered surface of at least one of the chamfered surface between the side wall surface of the outer peripheral side end surface of the disk-shaped substrate and the two main surfaces of the disk-shaped substrate and the side wall surface is simultaneously polished. A method for manufacturing a magnetic disk substrate according to claim 1. 前記リング状に形成させた磁性スラリの塊が成す平面に対して前記円板状基板の回転軸が直交しないように前記円板状基板を前記磁性スラリの塊に接触させて、端面研磨処理を行うことを特徴とする請求項1又は2に記載の磁気ディスク用基板の製造方法。   The disk-shaped substrate is brought into contact with the magnetic slurry lump so that the rotation axis of the disk-shaped substrate is not perpendicular to a plane formed by the magnetic slurry lump formed in the ring shape, and end face polishing treatment is performed. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the method is performed. 前記円板状基板は、複数の円板状基板を積層した積層体であることを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用基板の製造方法。   4. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the disk-shaped substrate is a stacked body in which a plurality of disk-shaped substrates are stacked. 磁気ディスク用の円板状基板の端面を研磨する端面研磨処理に用いる端面研磨処理装置であって、
磁性体と研磨砥粒とを含む磁性スラリの塊をリング状となるように形成させて保持する磁気発生手段を備え、
前記リング状に形成させた磁性スラリの塊の内周側に前記円板状基板の外周側端面を接触させ、かつ前記リング状に形成させた磁性スラリの塊と前記円板状基板とを相対的に移動させながら前記円板状基板の外周側端面を研磨することを特徴とする端面研磨処理装置。
An end surface polishing apparatus used for end surface polishing processing for polishing an end surface of a disk-shaped substrate for a magnetic disk,
A magnetic generating means for forming and holding a lump of magnetic slurry including a magnetic body and abrasive grains in a ring shape;
The outer peripheral side end surface of the disk-shaped substrate is brought into contact with the inner peripheral side of the ring-shaped magnetic slurry lump, and the ring-shaped magnetic slurry lump and the disk-shaped substrate are relatively An end face polishing apparatus for polishing an outer peripheral side end face of the disk-shaped substrate while moving it periodically.
JP2014267109A 2014-12-31 2014-12-31 Method for manufacturing substrate for magnetic disk and end surface polishing device Pending JP2016126808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014267109A JP2016126808A (en) 2014-12-31 2014-12-31 Method for manufacturing substrate for magnetic disk and end surface polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014267109A JP2016126808A (en) 2014-12-31 2014-12-31 Method for manufacturing substrate for magnetic disk and end surface polishing device

Publications (1)

Publication Number Publication Date
JP2016126808A true JP2016126808A (en) 2016-07-11

Family

ID=56357028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014267109A Pending JP2016126808A (en) 2014-12-31 2014-12-31 Method for manufacturing substrate for magnetic disk and end surface polishing device

Country Status (1)

Country Link
JP (1) JP2016126808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112454013A (en) * 2020-10-16 2021-03-09 陕西斯瑞新材料股份有限公司 Auxiliary metal processing technology for CuCr contact surface treatment processing
JP2022028852A (en) * 2017-03-31 2022-02-16 Hoya株式会社 Nonmagnetic substrate for magnetic disc and magnetic disc

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028852A (en) * 2017-03-31 2022-02-16 Hoya株式会社 Nonmagnetic substrate for magnetic disc and magnetic disc
JP7191185B2 (en) 2017-03-31 2022-12-16 Hoya株式会社 Non-magnetic substrate for magnetic disk and magnetic disk
US11545178B2 (en) 2017-03-31 2023-01-03 Hoya Corporation Substrate for magnetic disk and magnetic disk
US11955151B2 (en) 2017-03-31 2024-04-09 Hoya Corporation Substrate for magnetic disk and magnetic disk
JP7465332B2 (en) 2017-03-31 2024-04-10 Hoya株式会社 Non-magnetic substrate for magnetic disk and magnetic disk
CN112454013A (en) * 2020-10-16 2021-03-09 陕西斯瑞新材料股份有限公司 Auxiliary metal processing technology for CuCr contact surface treatment processing
CN112454013B (en) * 2020-10-16 2021-10-22 陕西斯瑞新材料股份有限公司 Auxiliary metal processing technology for CuCr contact surface treatment processing

Similar Documents

Publication Publication Date Title
JP6165227B2 (en) Glass substrate, method for manufacturing glass substrate for magnetic disk, substrate for magnetic disk, magnetic disk, method for manufacturing magnetic disk
JP6215770B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
CN101010736B (en) Magnetic disk substrate and production method of magnetic disk
JP6089001B2 (en) Glass substrate for magnetic disk, magnetic disk
WO2015152316A1 (en) Magnetic disk-use glass substrate
JP6156967B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and glass substrate end surface polishing apparatus
JP2016126808A (en) Method for manufacturing substrate for magnetic disk and end surface polishing device
JP2018200743A (en) Method for manufacturing glass substrate as base of glass substrate for a magnetic disk, method for manufacturing glass substrate for magnetic disk and fixed abrasive grindstone
JP5898381B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND MAGNETIC DISC DEVICE
JP2015069668A (en) Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk
WO2014104377A1 (en) Method for manufacturing glass substrates for magnetic disks and method for manufacturing magnetic disks
JP2017228340A (en) Method of manufacturing glass substrate for information recording medium and polishing brush
JP5492276B2 (en) Glass substrate for magnetic disk and magnetic disk
JP6353524B2 (en) Substrate manufacturing method
JP5704777B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6193388B2 (en) Method of manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate, method of manufacturing magnetic disk, and fixed abrasive wheel
JPWO2014208718A1 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, grinding wheel
JP2010179395A (en) Manufacturing method for glass substrate
JP2015069687A (en) Method of manufacturing glass substrate for magnetic disk and method of manufacturing the magnetic disk