JP2015069668A - Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk - Google Patents

Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk Download PDF

Info

Publication number
JP2015069668A
JP2015069668A JP2013202849A JP2013202849A JP2015069668A JP 2015069668 A JP2015069668 A JP 2015069668A JP 2013202849 A JP2013202849 A JP 2013202849A JP 2013202849 A JP2013202849 A JP 2013202849A JP 2015069668 A JP2015069668 A JP 2015069668A
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic
end surface
magnetic disk
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013202849A
Other languages
Japanese (ja)
Inventor
修平 東
Shuhei Azuma
修平 東
修 輿水
Osamu Koshimizu
修 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013202849A priority Critical patent/JP2015069668A/en
Publication of JP2015069668A publication Critical patent/JP2015069668A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a magnetic disk glass substrate, capable of improving accuracy of form of an end surface of a glass substrate and allowing high quality.SOLUTION: A rotation axis of magnetic generation means for forming and holding magnetic slurry mass containing magnetic viscous fluid and polishing abrasive grain is inclined with respect to an axis orthogonal to a principal face of a glass substrate. While in this state, both a side wall surface of an end surface of the glass substrate and a chamfered face interposed between a principal face of the glass substrate and the side wall surface are polished by bringing the end surface of the glass substrate into contact with the magnetic slurry mass.

Description

本発明は、ハードディスクドライブ(以下、「HDD」と略記する。)等の磁気記録装置に搭載される磁気ディスクに用いられる磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate for a magnetic disk used in a magnetic disk mounted on a magnetic recording apparatus such as a hard disk drive (hereinafter abbreviated as “HDD”) and a method for manufacturing the magnetic disk.

HDD等の磁気記録装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板として従来はアルミ基板が用いられてきた。しかし、最近では、高記録密度化の追求に呼応して、アルミ基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。また、ガラス基板表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化、低価格化の要求は増すばかりであり、これを実現するためには、磁気ディスク用ガラス基板においても更なる高品質化、低コスト化が必要になってきている。 One of information recording media mounted on a magnetic recording device such as an HDD is a magnetic disk. A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate. However, recently, in response to the pursuit of higher recording density, the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing. Further, the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible. In recent years, there has been an increasing demand for HDDs with higher recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.

磁気ディスク用ガラス基板は、通常、円盤状に形成したガラス基板に、形状加工(端面研削及び面取り)、端面研磨、主表面研削、主表面研磨、化学強化等の工程を順次施して製造される。
上記のように安価で高記録密度を達成できる磁気ディスクが求められているが、磁気ディスクの高記録密度化のためには、ガラス基板の加工精度にも高度なものが要求されており、それはガラス基板の主表面のみならず、端面形状においても同様である。
A glass substrate for a magnetic disk is usually produced by sequentially performing steps such as shape processing (end grinding and chamfering), end surface polishing, main surface grinding, main surface polishing, chemical strengthening on a glass substrate formed into a disk shape. .
As described above, there is a demand for a magnetic disk that is inexpensive and can achieve a high recording density. However, in order to increase the recording density of the magnetic disk, a high level of processing accuracy of the glass substrate is required. The same applies not only to the main surface of the glass substrate but also to the end face shape.

下記特許文献1に開示されているように、従来一般的には、磁気ディスク用ガラス基板の端面は、総型砥石を用いた端面研削加工を行った後、ブラシ端面研磨を行うことにより加工されていた。
また、下記特許文献2には、フェライト系磁性粒子と研磨砥粒を含むスラリに磁場を加えることにより、磁気ディスク用ガラス基板の端面を研磨する方法が開示されている。
また、下記特許文献3には、被加工物の加工面と離間して配置された磁気電極を被加工物と相対的に回転させ、磁気電極に吸引されている磁性流体(磁性粉体)が保持している砥粒により被加工物を加工する磁気研磨方法が開示されている。
As disclosed in the following Patent Document 1, conventionally, the end surface of a glass substrate for a magnetic disk is generally processed by polishing the end surface using a grindstone and then polishing the end surface of the brush. It was.
Patent Document 2 below discloses a method of polishing an end surface of a glass substrate for a magnetic disk by applying a magnetic field to a slurry containing ferrite magnetic particles and abrasive grains.
Patent Document 3 below discloses a magnetic fluid (magnetic powder) that is attracted to a magnetic electrode by rotating a magnetic electrode disposed away from the processing surface of the workpiece relative to the workpiece. A magnetic polishing method for processing a workpiece with held abrasive grains is disclosed.

特開平11−28649号公報JP-A-11-28649 特開2005−50501号公報JP 2005-50501 A 特開2004−291208号公報JP 2004-291208 A

上記のとおり、安価で高記録密度を達成できる磁気ディスクが求められており、そのためには、基板の端面に関しては、媒体主表面に対するコロージョン発生などのコンタミ要因の低減要請に基づく高品位化、ディスクフラッタ(バタツキ)低減のための形状精度の向上の両方の達成が要求されている。   As described above, there is a need for an inexpensive magnetic disk that can achieve a high recording density. For this purpose, the end face of the substrate is improved in quality based on a request to reduce contamination factors such as the occurrence of corrosion on the main surface of the medium. It is required to achieve both improvement in shape accuracy to reduce flutter (flutter).

しかしながら、上述した従来の総型砥石を用いた端面研削加工を行った後、ブラシ端面研磨を行うことによりガラス基板の端面を加工する方法では、量産加工においては、特に基板端面における面取面と側壁面間のエッジ角度のばらつきが大きく、基板端面の形状精度を向上させることが困難であった。   However, in the method of processing the end surface of the glass substrate by performing end surface grinding using the above-described conventional general-purpose grindstone and then performing brush end surface polishing, in mass production processing, particularly with the chamfered surface at the end surface of the substrate The variation in the edge angle between the side wall surfaces is large, and it is difficult to improve the shape accuracy of the substrate end surface.

また、上述の特許文献2に開示されたフェライト系磁性粒子と研磨砥粒を含むスラリに磁場を加えることにより、磁気ディスク用ガラス基板の端面を研磨する方法では、ガラス基板端面の面取面と側壁面とでは、加工レートが異なり、所定の加工時間内で面取面と側壁面の両方を鏡面に仕上ることが困難である。この場合、面取面と側壁面の両方を鏡面に仕上るまで加工すると、加工時間が長くなる上に、形状精度が劣化するという問題が生じる。
また、上述の特許文献3には、磁気ディスク用ガラス基板の端面研磨についての開示は無い。仮に、磁気ディスク用ガラス基板の端面研磨に特許文献3の磁気研磨方法を適用しようとすると、ガラス基板端面の面取面と側壁面を同時に研磨加工するためには、磁性流体中でガラス基板の加工点を揺動させながら加工する必要があり、量産加工を考えた場合、特に仕上がりの端面形状のばらつきを抑えることが困難である。
Further, in the method of polishing the end surface of the glass substrate for magnetic disks by applying a magnetic field to the slurry containing the ferrite-based magnetic particles and the abrasive grains disclosed in Patent Document 2, the chamfered surface of the end surface of the glass substrate is used. The processing rate is different from that of the side wall surface, and it is difficult to finish both the chamfered surface and the side wall surface into a mirror surface within a predetermined processing time. In this case, if both the chamfered surface and the side wall surface are processed until they are finished to a mirror surface, there arises a problem that the processing time is increased and the shape accuracy is deteriorated.
Moreover, the above-mentioned Patent Document 3 does not disclose the end face polishing of the magnetic disk glass substrate. Assuming that the magnetic polishing method of Patent Document 3 is applied to end face polishing of a glass substrate for a magnetic disk, in order to simultaneously polish the chamfered surface and the side wall surface of the end face of the glass substrate, It is necessary to perform processing while oscillating the processing point. When considering mass production processing, it is particularly difficult to suppress variations in the finished end face shape.

近年、より一層の高情報記録密度化などの観点から、ガラス基板の端面の形状精度や面取り加工の仕上がり面品位など、磁気ディスク用ガラス基板に対する品質要求は従来に増して高まる一方であり、従来の研削方法や研磨方法を用いて量産ベースの多数枚の磁気ディスク用ガラス基板を製造した場合、高まるガラス基板の品質要求に安定的に応えることが次第に困難になってきている現状がある。   In recent years, quality requirements for glass substrates for magnetic disks, such as the shape accuracy of the end face of the glass substrate and the finished surface quality of chamfering, are increasing from the viewpoint of higher information recording density. When a large number of mass-produced glass substrates for magnetic disks are manufactured using the above-mentioned grinding method and polishing method, it is becoming increasingly difficult to stably meet the increasing quality requirements of glass substrates.

そこで、本発明は、高記録密度化への信頼性の確保が急務となっている磁気ディスクの高記録密度化の要請に応える観点から、特に磁気ディスク用ガラス基板の端面の形状精度を向上させ、高品質に仕上げることができる安定した加工を可能とする磁気ディスク用ガラス基板の製造方法、およびそれによって得られるガラス基板を利用した磁気ディスクの製造方法を提供することを目的とする。 Therefore, the present invention improves the shape accuracy of the end surface of the magnetic disk glass substrate particularly from the viewpoint of meeting the demand for higher recording density of magnetic disks, which is urgently required to ensure high recording density. Another object of the present invention is to provide a method for producing a glass substrate for a magnetic disk capable of stable processing that can be finished with high quality, and a method for producing a magnetic disk using the glass substrate obtained thereby.

上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
円盤状のガラス基板の端面を加工する端面加工処理を含む磁気ディスク用ガラス基板の製造方法であって、前記端面加工処理は、ガラス基板の主表面と直交する軸に対して、磁気粘性流体と研磨砥粒を含む磁性スラリの塊を形成して保持する磁気発生手段の回転軸を傾斜させた状態で、前記ガラス基板の端面を前記磁性スラリの塊と接触させて、前記ガラス基板の端面の側壁面と、該ガラス基板の主表面と前記側壁面との間に介在する面取面とを研磨する端面研磨処理を含むことを特徴とする磁気ディスク用ガラス基板の製造方法。
In order to solve the above problems, the present invention has the following configuration.
(Configuration 1)
A method of manufacturing a glass substrate for a magnetic disk including an end face processing for processing an end face of a disk-shaped glass substrate, wherein the end face processing is performed with respect to an axis perpendicular to the main surface of the glass substrate, With the rotation axis of the magnetism generating means for forming and holding a lump of magnetic slurry containing abrasive grains tilted, the end surface of the glass substrate is brought into contact with the lump of magnetic slurry, and the end surface of the glass substrate A method of manufacturing a glass substrate for a magnetic disk, comprising: an end surface polishing treatment for polishing a side wall surface and a chamfered surface interposed between the main surface of the glass substrate and the side wall surface.

(構成2)
前記端面研磨処理では、前記磁気発生手段の回転方向を加工途中段階で変更することを特徴とする構成1に記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 2)
2. The method of manufacturing a glass substrate for a magnetic disk according to Configuration 1, wherein in the end surface polishing process, the rotation direction of the magnetism generating means is changed in the middle of processing.

(構成3)
前記ガラス基板の主表面と直交する軸に対する前記磁気発生手段の回転軸の傾斜角度は、3度〜7度の範囲内であることを特徴とする構成1又は2に記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 3)
The glass substrate for a magnetic disk according to Configuration 1 or 2, wherein an inclination angle of a rotation axis of the magnetism generating unit with respect to an axis orthogonal to the main surface of the glass substrate is in a range of 3 degrees to 7 degrees. Manufacturing method.

(構成4)
前記端面研磨処理の前に、前記ガラス基板の端面に面取面と側壁面の両方の面を形成する研削処理を行うことを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 4)
The glass for a magnetic disk according to any one of Structures 1 to 3, wherein a grinding process for forming both a chamfered surface and a side wall surface on the end surface of the glass substrate is performed before the end surface polishing process. A method for manufacturing a substrate.

(構成5)
構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 5)
5. A magnetic disk manufacturing method comprising: forming at least a magnetic recording layer on a magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 4.

本発明によれば、ガラス基板端面の面取面と側壁面の加工レートの差が生じるのを抑制でき、ガラス基板端面の面取面と側壁面の形状精度を向上させ、端面を高品質に仕上げることができる安定した端面加工が可能であり、基板端面が高精度形状及び高品質に仕上げられた磁気ディスク用ガラス基板を安定して提供することが可能になる。 According to the present invention, the difference in processing rate between the chamfered surface of the glass substrate end surface and the side wall surface can be suppressed, the shape accuracy of the chamfered surface of the glass substrate end surface and the side wall surface is improved, and the end surface is made of high quality. Stable end surface processing that can be finished is possible, and it is possible to stably provide a glass substrate for a magnetic disk whose substrate end surface is finished with a high-precision shape and high quality.

さらに、この磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板を用いることにより、基板の端面が高精度形状及び高品質に仕上げられているため、コロージョン対策など、基板端面の表面状態が起因する障害の発生を防止し、より一層の高記録密度化を実現でき、且つ信頼性の高い磁気ディスクを提供することができる。 Furthermore, by using the glass substrate for magnetic disk manufactured by this method for manufacturing a glass substrate for magnetic disk, the end surface of the substrate is finished with high precision shape and high quality. It is possible to provide a magnetic disk that can prevent the occurrence of a failure due to the state, can achieve higher recording density, and has high reliability.

磁気ディスク用ガラス基板の端面形状を示す断面図である。It is sectional drawing which shows the end surface shape of the glass substrate for magnetic discs. (a)〜(c)はそれぞれ本発明の端面研磨処理に適用される磁気発生手段の構成を説明するための図である。(A)-(c) is a figure for demonstrating the structure of the magnetic generation means applied to the end surface grinding | polishing process of this invention, respectively. 磁性スラリによる端面研磨処理を説明するための斜視図である。It is a perspective view for demonstrating the end surface grinding | polishing process by a magnetic slurry. 本発明の端面研磨処理を行っている状態を説明するための模式図である。It is a schematic diagram for demonstrating the state which is performing the end surface grinding | polishing process of this invention.

以下、本発明を実施するための形態について詳述する。
図1は、本発明が適用される磁気ディスク用ガラス基板1の外周側端部の断面図である。該ガラス基板1は、図1には示されていないが、中心部に円孔を有する全体が円盤状に形成され、その表裏の主表面11a,11bと、これら主表面11a,11b間に形成される外周側の端面と内周側の端面を有する。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
FIG. 1 is a cross-sectional view of the outer peripheral end of a magnetic disk glass substrate 1 to which the present invention is applied. The glass substrate 1 is not shown in FIG. 1, but the whole having a circular hole in the center is formed in a disc shape, and is formed between the main surfaces 11a and 11b on the front and back sides and between these main surfaces 11a and 11b. An outer peripheral end surface and an inner peripheral end surface.

上記ガラス基板1の外周側の端面は、その表裏一対の主表面11a,11bと直交する側壁面12と、この側壁面12と表裏の主表面11a,11bとの間にそれぞれ形成されている2つの面取面(面取りした面)13a、13bとからなる形状に形成されている。また、上記ガラス基板1の内周側の端面については図示していないが、上記外周側端面と同様に、その主表面11a,11bと直交する側壁面と、この側壁面と表裏の主表面11a,11bとの間にそれぞれ形成されている2つの面取面(面取りした面)とからなる形状に形成されている。 The end surface on the outer peripheral side of the glass substrate 1 is formed between the side wall surface 12 orthogonal to the pair of front and back main surfaces 11a and 11b, and between the side wall surface 12 and the front and back main surfaces 11a and 11b, respectively. It is formed in the shape which consists of two chamfered surfaces (chamfered surfaces) 13a, 13b. Moreover, although it does not show in figure about the end surface of the inner peripheral side of the said glass substrate 1, like the said outer peripheral side end surface, the side wall surface orthogonal to the main surfaces 11a and 11b, this side wall surface, and the main surface 11a of the front and back , 11b and two chamfered surfaces (chamfered surfaces) formed between them.

そして磁気ディスク、例えば、2.5インチディスクの場合は、ガラス基板1の外径が65mm、内径が20mmに仕上げられる。ここで、内径とは、ガラス基板1の中心部の円孔の内径のことである。 In the case of a magnetic disk, for example, a 2.5 inch disk, the glass substrate 1 is finished to have an outer diameter of 65 mm and an inner diameter of 20 mm. Here, the inner diameter is the inner diameter of a circular hole in the center of the glass substrate 1.

磁気ディスク用ガラス基板1の表裏一対の主表面11a,11b、外周側端面および内周側端面はいずれも、最終的にはそれぞれ所定の表面粗さとなるように研磨(鏡面研磨)仕上げされる。ガラス基板1の外周側端面及び内周側端面はいずれも、上述のような端面形状に仕上げられ、なお且つ、表面粗さが例えばRzで0.2μm以下、Raで0.02μm以下の鏡面状態に仕上げられることが通常求められる。   The pair of front and back main surfaces 11a and 11b, the outer peripheral side end surface, and the inner peripheral side end surface of the magnetic disk glass substrate 1 are each finally polished (mirror polished) to have a predetermined surface roughness. Both the outer peripheral side end face and the inner peripheral side end face of the glass substrate 1 are finished to the end face shape as described above, and the surface roughness is, for example, Rz 0.2 μm or less and Ra 0.02 μm or less in a mirror surface state. It is usually required to be finished.

磁気ディスク用ガラス基板1は、通常、例えばダイレクトプレス等により所定の円盤状に成形したガラス基板(ガラスディスク10)に、端面の研削・研磨(鏡面研磨)、主表面の研削・鏡面研磨、化学強化等の工程を順次施して製造される。
なお、本発明においては、ダイレクトプレス等により所定の円盤状に成形したガラスディスクから、このガラスディスクに加工、処理等を施して作製される最終製品のガラス基板にいたるまで、説明の便宜上、すべてガラス基板もしくは磁気ディスク用ガラス基板と呼ぶこととする。
The glass substrate 1 for a magnetic disk is usually subjected to grinding / polishing (mirror polishing) of the end surface, grinding / mirror polishing of the main surface, chemical treatment on a glass substrate (glass disk 10) formed into a predetermined disk shape by a direct press or the like. Manufactured with sequential steps such as strengthening.
In the present invention, everything from a glass disk molded into a predetermined disk shape by direct press or the like to a final product glass substrate produced by processing, processing, etc. on this glass disk is used for convenience of explanation. It will be called a glass substrate or a magnetic disk glass substrate.

最初に、上記端面研削加工工程について説明する。
通常、上記端面研削加工は、所謂総形砥石を用いて行うことができる。
この総形砥石は、所定の大きさの円盤状に形成されており、その外周側には、ガラス基板の端面形状を形成するための溝形状を有しており、具体的には、ガラス基板の外周側端面に側壁面と面取り面の両方の面を形状転写できるような溝形状となっている。この総形砥石は、ガラス基板の研削加工面の仕上がり目標の寸法形状を考慮して、所定の寸法形状に形成されている。
First, the end face grinding process will be described.
Usually, the end face grinding can be performed using a so-called general-purpose grindstone.
This total shape grindstone is formed in a disk shape of a predetermined size, and has a groove shape for forming the end face shape of the glass substrate on the outer peripheral side thereof. Specifically, the glass substrate The groove shape is such that the shape of both the side wall surface and the chamfered surface can be transferred to the outer peripheral side end surface. This total shape grindstone is formed in a predetermined dimensional shape in consideration of the target dimensional shape of the ground surface of the glass substrate.

上記端面研削加工で用いる総形砥石としては、粗研削加工用には、例えば高剛性砥石であるダイヤモンド砥粒を電着ボンドで固めた所謂電着ボンド砥石が好適である。また、仕上げの精密研削加工用には、砥粒同士を結合するバインダーが例えばフェノール樹脂、ウレタン樹脂、ポリイミド樹脂、ポリエステル樹脂、フッ素樹脂等の樹脂材料であるレジンボンド砥石や、バインダーが例えば銅系合金、鋳鉄系合金、チタン系合金等の金属質結合剤であるメタルボンド砥石、バインダーがガラス質結合剤であるビトリファイド砥石などが好適であり、またこれらの結合剤を混合させた複合砥石を用いることもできる。この中でも、砥石の硬度の調整が比較的容易なレジンボンド砥石が特に好適である。また、砥粒としては、アルミナ砥粒、立方晶窒化ホウ素砥粒などを用いることもできる。   As the general-purpose grindstone used in the end face grinding, a so-called electrodeposition bond grindstone in which diamond abrasive grains, which are high-rigidity grindstones are hardened by electrodeposition bond, is suitable for rough grinding. In addition, for finishing precision grinding, a resin bond grindstone in which the binder for bonding abrasive grains is a resin material such as phenol resin, urethane resin, polyimide resin, polyester resin, fluororesin, or the binder is copper-based, for example. Metal bond grindstones that are metallic binders such as alloys, cast iron alloys, and titanium alloys, and vitrified grindstones whose binder is a vitreous binder are suitable, and a composite grindstone in which these binders are mixed is used. You can also Among these, a resin bond grindstone in which the adjustment of the hardness of the grindstone is relatively easy is particularly suitable. As the abrasive grains, alumina abrasive grains, cubic boron nitride abrasive grains, and the like can be used.

また、砥粒の粒径としては、粗さを維持しながら砥石寿命に亘って研削性能を維持できるためには、例えば平均粒子径30μm以下の砥粒が好適であるが、特に精密研削加工用には、平均粒子径3〜15μmの範囲内の砥粒が好適である。砥粒としては、例えばダイヤモンド砥粒が好適である。砥粒の粒径は、例えば電気抵抗試験法で測定することが可能である。 Further, as the grain size of the abrasive grains, for example, abrasive grains having an average grain diameter of 30 μm or less are suitable in order to maintain the grinding performance over the life of the grinding wheel while maintaining the roughness. For this, abrasive grains having an average particle diameter of 3 to 15 μm are suitable. As an abrasive grain, a diamond abrasive grain is suitable, for example. The particle size of the abrasive grains can be measured by, for example, an electrical resistance test method.

上記総形砥石を用いた端面研削加工では、ガラス基板と砥石とが同一平面状となるような配置関係で、加工が行われる。この場合、砥石及びガラス基板をそれぞれ所定方向に回転させながら加工を行うことが好ましく、砥石及びガラス基板の各々の周速度、周速度比については内外周側端面の研削加工に好適なように適宜設定されればよい。砥石とガラス基板の回転方向は、同方向(カウンタ方向)、異方向(アンチカウンタ方向)のいずれでもよい。   In the end surface grinding using the above-described general-purpose grindstone, the processing is performed in such an arrangement relationship that the glass substrate and the grindstone are in the same plane. In this case, it is preferable to perform the processing while rotating the grindstone and the glass substrate in respective predetermined directions. The peripheral speed and the peripheral speed ratio of each of the grindstone and the glass substrate are appropriately set so as to be suitable for the grinding of the inner and outer peripheral side end faces. It only has to be set. The rotation direction of the grindstone and the glass substrate may be either the same direction (counter direction) or a different direction (anticounter direction).

また、ガラス材料は研削加工時に発生する熱による影響を受けやすい加工特性を有するため、安定した研削加工を可能とならしめるためには、ガラス基板の端面部分に供給する研削液(クーラント)による冷却効果を高めて、研削加工時の熱による影響をできるだけ軽減することが望ましい。本発明に使用する研削液(クーラント)としては、特に制約はないが、冷却効果が高く、生産現場において安全性の高い水溶性の研削液が特に好適である。 In addition, since glass materials have processing characteristics that are easily affected by the heat generated during grinding, cooling with a grinding liquid (coolant) supplied to the end face of the glass substrate is necessary to enable stable grinding. It is desirable to increase the effect and reduce the influence of heat during grinding as much as possible. The grinding fluid (coolant) used in the present invention is not particularly limited, but a water-soluble grinding fluid having a high cooling effect and high safety at the production site is particularly suitable.

上記総形砥石を用いた研削加工により、基板端面の面取面及び側壁面の形状を作りこむことができるが、たとえば総形砥石を用いて粗研削加工を行った後の精密研削加工方法として、ガラス基板の主表面と直交する軸に対して砥石の回転軸を傾斜させた状態で当該砥石をガラス基板の端面に当接させて当該ガラス基板の端面を研削加工する方法を適用することが好適である。 By grinding using the above-mentioned general-purpose grinding wheel, the shape of the chamfered surface and the side wall surface of the substrate end surface can be created. For example, as a precision grinding method after rough grinding using a general-purpose grinding wheel Applying a method of grinding the end face of the glass substrate by bringing the grindstone into contact with the end face of the glass substrate in a state where the rotation axis of the grindstone is inclined with respect to an axis orthogonal to the main surface of the glass substrate. Is preferred.

たとえば総形砥石を用いた粗研削加工によって内外周側端面にそれぞれ側壁面と面取り面の両方の面が形成されたガラス基板に対して、砥石を傾斜させた状態で精密研削加工を行う。この場合に使用する砥石は、所定の大きさの円盤状に形成されており、その外周側には、ガラス基板の端面と接触する面に溝形状を有しており、例えば断面視では内方に凹んだ凹形状となっている。前記の総形砥石とは異なり、溝形状の一部を使って形状転写を行う。
このようなガラス基板に対して砥石を傾けた状態で精密研削する加工法において用いられる砥石としては、上述のレジンボンド砥石を適用することが好適である。
For example, a precision grinding process is performed in a state where the grindstone is inclined with respect to a glass substrate in which both the side wall surface and the chamfered surface are formed on the inner and outer peripheral end faces by rough grinding using a general-purpose grindstone. The grindstone used in this case is formed in a disk shape of a predetermined size, and has a groove shape on the outer peripheral side thereof in contact with the end surface of the glass substrate. It has a concave shape. Unlike the above-mentioned general shape grindstone, shape transfer is performed using a part of the groove shape.
As the grindstone used in the processing method for performing precision grinding in a state where the grindstone is inclined with respect to such a glass substrate, it is preferable to apply the above-mentioned resin bond grindstone.

この場合においても、砥石及びガラス基板をそれぞれ所定方向に回転させながら加工を行うことが好ましく、各々の周速度、周速度比については内外周側端面の加工に好適なように適宜設定されればよい。砥石とガラス基板の回転方向は、同方向(カウンタ方向)、異方向(アンチカウンタ方向)のいずれでもよい。 Even in this case, it is preferable to perform the processing while rotating the grindstone and the glass substrate in respective predetermined directions, and the respective peripheral speeds and peripheral speed ratios may be appropriately set so as to be suitable for processing of the inner and outer peripheral side end faces. Good. The rotation direction of the grindstone and the glass substrate may be either the same direction (counter direction) or a different direction (anticounter direction).

この加工方法の場合、ガラス基板の主表面と直交する軸に対して砥石の回転軸を傾斜させた状態で当該砥石をガラス基板の端面に当接させることにより、ガラス基板の端面に当接する砥石の軌跡が一定とならないようにガラス基板の端面と砥石とを接触させて、加工が行われる。
この加工方法では、ガラス基板の端面に当接する砥石の軌跡が一定とはならないで、砥石の凸部(砥粒)が基板端面に対してランダムな位置に当接、作用するため、基板へのダメージが少なく、研削加工面の表面粗さやその面内ばらつきも小さくなり、上述の総形砥石による研削加工面をより高平滑(準鏡面状態)に仕上げることができる。
In the case of this processing method, the grindstone that comes into contact with the end surface of the glass substrate by bringing the grindstone into contact with the end surface of the glass substrate in a state where the rotation axis of the grindstone is inclined with respect to the axis orthogonal to the main surface of the glass substrate. The processing is performed by bringing the end face of the glass substrate into contact with the grindstone so that the trajectory is not constant.
In this processing method, the trajectory of the grindstone that comes into contact with the end surface of the glass substrate is not constant, and the convex portions (abrasive grains) of the grindstone abut and act on the substrate end surface at random positions. There is little damage, and the surface roughness and in-plane variation of the ground surface are reduced, so that the ground surface with the above-described general-purpose grindstone can be finished to a higher smoothness (quasi-mirror surface state).

本発明においては、上述の端面研削加工に続いて、磁気粘性流体と研磨砥粒を含む磁性スラリを用いた端面研磨処理を行うが、この磁性スラリを用いた端面研磨処理は高品質な研磨が可能であるが、その前処理(前加工)が総形砥石加工のみの場合には研削面の粗さが高いため、磁性スラリを用いた端面研磨処理において低粗さとするには取代が多くなってしまい(従来のブラシ研磨と同等の50μm程度)、総形砥石で作りこんだ形状からの乖離が生じ、例えばエッジが大きく丸まったりしてしまうおそれがある。従って、上述のとおり、磁性スラリを用いた端面研磨処理の前に、ガラス基板に対して砥石を傾けた状態で精密研削することにより、基板端面を準鏡面状態に仕上げておくことが好ましい。   In the present invention, following the end face grinding process described above, an end face polishing process using a magnetic slurry containing a magnetorheological fluid and abrasive grains is performed. The end face polishing process using the magnetic slurry is performed with high quality polishing. Although it is possible, if the pre-processing (pre-processing) is only the grinding wheel processing, the grinding surface has a high roughness, so that the machining allowance is increased to reduce the roughness in the end surface polishing process using magnetic slurry. Therefore, there is a possibility that the edge is greatly rounded, for example, due to a deviation from the shape formed by the general-purpose grindstone. Therefore, as described above, it is preferable to finish the substrate end surface in a quasi-mirror surface state by precision grinding with the grindstone tilted with respect to the glass substrate before the end surface polishing treatment using the magnetic slurry.

次に、上記端面研削加工処理の後に続けて実施する本発明の端面研磨処理について詳しく説明する。
本発明の端面研磨処理は、ガラス基板の主表面と直交する軸に対して、磁気粘性流体と研磨砥粒を含む磁性スラリの塊を形成して保持する磁気発生手段の回転軸を傾斜させた状態で、前記ガラス基板の端面を前記磁性スラリの塊と接触させて、前記ガラス基板の端面の側壁面と、該ガラス基板の主表面と前記側壁面との間に介在する面取面との両方の面を同時に研磨する処理である。
Next, the end face polishing process of the present invention that is performed after the end face grinding process will be described in detail.
In the end surface polishing treatment of the present invention, the rotation axis of the magnetism generating means for forming and holding a mass of magnetic slurry containing the magnetorheological fluid and the abrasive grains is inclined with respect to the axis orthogonal to the main surface of the glass substrate. In this state, the end surface of the glass substrate is brought into contact with the lump of magnetic slurry, and a side wall surface of the end surface of the glass substrate and a chamfered surface interposed between the main surface of the glass substrate and the side wall surface This is a process for polishing both surfaces simultaneously.

図2の(a)〜(c)はそれぞれ本発明の端面研磨処理に適用される磁気発生手段の構成を説明するための図である。また、図3は磁性スラリを用いた端面研磨処理を説明するための斜視図であり、図4は本発明の端面研磨処理を行っている状態を説明するための模式図である。
本発明における端面研磨処理に用いられる装置20は、磁気を発生させる手段と磁性スラリを用いてガラス基板の端面の研磨を行うものである。図2(a)〜(c)、図3及び図4は、いずれもガラス基板の外周側端面の研磨を行う場合を示している。
FIGS. 2A to 2C are views for explaining the configuration of the magnetism generating means applied to the end surface polishing process of the present invention. 3 is a perspective view for explaining an end surface polishing process using a magnetic slurry, and FIG. 4 is a schematic view for explaining a state in which the end surface polishing process of the present invention is performed.
The apparatus 20 used for the end surface polishing treatment in the present invention polishes the end surface of the glass substrate using a magnetism generating means and a magnetic slurry. 2 (a) to 2 (c), FIG. 3 and FIG. 4 each show a case where the outer peripheral side end face of the glass substrate is polished.

上記装置20の概要を説明すると、図2(a)に示すように、装置20は、永久磁石である一対の磁石21,22と、スペーサ23と、非磁性体、例えばステンレスからなる中空の円柱形状の外装部材24とを含む。外装部材24内に、磁石21,22及びスペーサ23が内蔵されている。
なお、研磨レート等の調整を行うべく磁性スラリとガラス基板との接触量を増やしたい場合は、ガラス基板の端部を磁石21、22間に挿入して加工する必要があるので、外装部材24は設けない。
The outline of the apparatus 20 will be described. As shown in FIG. 2A, the apparatus 20 includes a pair of magnets 21 and 22 that are permanent magnets, a spacer 23, and a hollow cylinder made of a nonmagnetic material such as stainless steel. Shape-shaped exterior member 24. Magnets 21 and 22 and a spacer 23 are built in the exterior member 24.
If it is desired to increase the amount of contact between the magnetic slurry and the glass substrate in order to adjust the polishing rate, etc., it is necessary to insert the end portion of the glass substrate between the magnets 21 and 22 so that the exterior member 24 is processed. Is not provided.

上記端面研削加工を施したガラス基板10は、図示されない保持具によって把持されている。保持具に把持されたガラス基板10を外装部材24に接近させ、さらに後述する磁性スラリの塊26(図2(c),図3参照)とガラス基板10の外周側端面とを接触させる。装置20の外装部材24及びガラス基板10を保持する図示されない保持具は、図示されない駆動モータに接続されている。外装部材24と保持具が回転してガラス基板10の外周側端面と磁性スラリの塊26とを相対的に移動させることにより、ガラス基板10の外周側端面を研磨することができる。例えば、外装部材24とガラス基板10を保持する保持具と(換言すると、ガラス基板10と磁石21、22と)の回転方向を互いに逆向きに回転させ(図3参照)、外装部材24とガラス基板10との周速度の相対速度を例えば50〜500m/分として回転させることが好ましい。なお、ガラス基板10の外周側端面と磁性スラリの塊26とを相対的に移動させることができれば、ガラス基板10と磁性スラリの塊26とのいずれか一方を固定し他方を回転させてもよい。 The glass substrate 10 subjected to the end face grinding is held by a holder (not shown). The glass substrate 10 held by the holder is brought close to the exterior member 24, and a lump 26 of magnetic slurry (see FIGS. 2C and 3), which will be described later, and the outer peripheral side end surface of the glass substrate 10 are brought into contact with each other. A holder (not shown) that holds the exterior member 24 and the glass substrate 10 of the apparatus 20 is connected to a drive motor (not shown). The outer peripheral end surface of the glass substrate 10 can be polished by rotating the exterior member 24 and the holder to relatively move the outer peripheral end surface of the glass substrate 10 and the magnetic slurry lump 26. For example, the exterior member 24 and the holder for holding the glass substrate 10 (in other words, the glass substrate 10 and the magnets 21 and 22) are rotated in opposite directions (see FIG. 3), and the exterior member 24 and the glass It is preferable to rotate the substrate 10 relative to the peripheral speed of, for example, 50 to 500 m / min. If the outer peripheral side end face of the glass substrate 10 and the magnetic slurry lump 26 can be relatively moved, either the glass substrate 10 or the magnetic slurry lump 26 may be fixed and the other may be rotated. .

より具体的に説明すると、一対の磁石21と磁石22は、互いに近接して、磁気発生手段として機能し、図2(b)に示すような磁力線25を形成する。この磁力線25は、磁石21,22の中心からガラス基板の厚さ方向に進むような直線状の磁力線である。図2(b)に示す例では、ガラス基板10の厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の対が磁気発生手段として用いられる。磁石21,22との間には、磁石21のN極の端面と磁石22のS極の端面との間の離間距離を予め定めた距離とするために、非磁性体からなるスペーサ23が設けられている。なお、前述したとおり、外装部材24を使用せずに、磁性スラリの塊を磁石21と22の間に形成してそこにガラス基板の端部を接触させるようにしてもよい。磁性スラリの塊26は、ガラス基板10の外周側端面と接触し、この端面との間で相対運動する部分であるため、磁性スラリの塊26の剛性を確保する点から、磁力はある程度強いことが望まれる。このため、磁石21のN極の端面と磁石22のS極の端面との間の離間距離は短いことが好ましいが、あまり短すぎるとガラス基板を磁石間に挿入する場合に実施しにくくなる。そのため、磁石21のN極の端面と磁石22のS極の端面との間の離間距離はある所定の範囲に定められることが好適である。   More specifically, the pair of magnets 21 and 22 are close to each other, function as magnetism generating means, and form magnetic lines 25 as shown in FIG. The magnetic field lines 25 are linear magnetic field lines that proceed from the centers of the magnets 21 and 22 in the thickness direction of the glass substrate. In the example shown in FIG. 2B, a pair of magnets arranged in the thickness direction of the glass substrate 10 so that the N-pole surface and the S-pole surface are spaced apart from each other is used as the magnetism generating means. It is done. A spacer 23 made of a non-magnetic material is provided between the magnets 21 and 22 in order to set a predetermined separation distance between the N pole end face of the magnet 21 and the S pole end face of the magnet 22. It has been. As described above, without using the exterior member 24, a lump of magnetic slurry may be formed between the magnets 21 and 22, and the end of the glass substrate may be brought into contact therewith. Since the magnetic slurry lump 26 is a portion that contacts the outer peripheral side end surface of the glass substrate 10 and moves relative to the end surface, the magnetic slurry lump 26 has a certain degree of magnetic force in order to ensure the rigidity of the magnetic slurry lump 26. Is desired. For this reason, it is preferable that the separation distance between the end face of the N pole of the magnet 21 and the end face of the S pole of the magnet 22 is short, but if it is too short, it becomes difficult to carry out when inserting the glass substrate between the magnets. Therefore, it is preferable that the separation distance between the end face of the N pole of the magnet 21 and the end face of the S pole of the magnet 22 is set within a certain predetermined range.

なお、図2に示す例では、磁気発生手段として永久磁石を用いたが、例えば電磁石を用いることもできる。また、磁石21のN極の端面と磁石22のS極の端面との間の離間距離を一定の距離に確保するために、スペーサ23を用いたが、スペーサ23を用いず、外装部材24に磁石21,22が固定されていて、磁石21のN極の端面と磁石22のS極の端面との間の離間距離を一定に確保することもできる。   In the example shown in FIG. 2, a permanent magnet is used as the magnetism generating means. However, for example, an electromagnet can be used. In addition, the spacer 23 is used in order to ensure a certain distance between the end face of the N pole of the magnet 21 and the end face of the S pole of the magnet 22, but the outer member 24 is not used without using the spacer 23. The magnets 21 and 22 are fixed, and the separation distance between the end face of the N pole of the magnet 21 and the end face of the S pole of the magnet 22 can be kept constant.

端面研磨に用いる磁性スラリの磁気粘性流体としては、磁性体粒子(磁性体微粒子)を分散媒に分散させたものを用いる。磁性体粒子としては、強磁性体であればよく、特に磁力が強いという観点では、Feからなる粒子が好ましい。また、FeとFe以外の強磁性体とを混合したものを用いてもよい。磁性体粒子の粒径は、0.1〜10μmの範囲内が好ましい。上記範囲とすることで、研磨砥流を好適に保持することができる。分散媒としては、非極性オイルまたは極性オイル等が好適に用いることができる。分散媒としては、非極性オイルまたは極性オイルを用いる場合には、例えば、室温(20℃)において100〜1000(mPa・秒)の粘度を有することが好ましい。また、磁気粘性流体に界面活性剤を添加してもよい。   As the magnetorheological fluid of the magnetic slurry used for the end face polishing, a magnetic slurry (magnetic fine particles) dispersed in a dispersion medium is used. The magnetic particles may be any ferromagnetic material, and from the viewpoint that the magnetic force is particularly strong, particles made of Fe are preferable. Moreover, you may use what mixed Fe and ferromagnetic materials other than Fe. The particle size of the magnetic particles is preferably within the range of 0.1 to 10 μm. By setting it as the said range, a polishing grinding | polishing flow can be hold | maintained suitably. As the dispersion medium, nonpolar oil or polar oil can be suitably used. As a dispersion medium, when using nonpolar oil or polar oil, it is preferable that it has a viscosity of 100-1000 (mPa * second) at room temperature (20 degreeC), for example. A surfactant may be added to the magnetorheological fluid.

磁性スラリに含まれる研磨砥粒としては、酸化セリウム、コロイダルシリカ、酸化ジルコニア、アルミナ砥粒、ダイヤモンド砥粒等の公知のガラス基板の研磨砥粒を用いることができる。研磨砥粒の粒径については、例えば0.5〜3μmである。この範囲の粒径の研磨砥粒を用いることにより、ガラス基板の端面を良好に研磨することができる。研磨砥粒は、磁性スラリ中に、例えば3〜15体積%程度含有させることが好ましい。   As the abrasive grains contained in the magnetic slurry, known abrasive grains for glass substrates such as cerium oxide, colloidal silica, zirconia oxide, alumina abrasive grains, and diamond abrasive grains can be used. The particle size of the abrasive grains is, for example, 0.5 to 3 μm. By using abrasive grains having a particle size in this range, the end face of the glass substrate can be satisfactorily polished. The abrasive grains are preferably contained in the magnetic slurry, for example, about 3 to 15% by volume.

磁性スラリの粘度は、磁気粘性流体の濃度調整により、室温(20℃)で1000〜2000mPa・秒であることが、磁性スラリの塊26を形成させ、端面研磨を効率よく行う点で好ましい。粘度が低い(磁気粘性流体の濃度が低い)と塊26を形成し難くなり、ガラス基板10の端面に押圧された状態で相対運動させて研磨することは難しい。一方、磁性スラリの粘度が過度に高い場合、均一な押圧状態が形成し難い。また、磁気発生手段における磁束密度は、磁性スラリの塊26を形成させ、端面研磨を効率よく行う点で、0.3〜0.8テスラであることが好ましい。また、磁気粘性流体と研磨砥粒を含む磁性スラリの降伏応力は、0.4テスラの磁場を印加した状態で30kPa以上であることが好ましく、30〜60kPaであることがより好ましい。   The viscosity of the magnetic slurry is preferably 1000 to 2000 mPa · sec at room temperature (20 ° C.) by adjusting the concentration of the magnetorheological fluid, from the viewpoint of forming the magnetic slurry lump 26 and performing end face polishing efficiently. If the viscosity is low (the concentration of the magnetorheological fluid is low), it is difficult to form the lump 26, and it is difficult to perform relative movement while being pressed against the end face of the glass substrate 10 for polishing. On the other hand, when the viscosity of the magnetic slurry is excessively high, it is difficult to form a uniform pressed state. The magnetic flux density in the magnetism generating means is preferably 0.3 to 0.8 Tesla from the viewpoint of forming the magnetic slurry lump 26 and efficiently polishing the end face. The yield stress of the magnetic slurry containing the magnetorheological fluid and abrasive grains is preferably 30 kPa or more, more preferably 30 to 60 kPa, with a 0.4 Tesla magnetic field applied.

ここで、磁気粘性流体の降伏応力(降伏せん断応力)は、 例えば次の方法により求めることができる。回転粘度計に、所定の磁場を印加可能な磁場印加手段(永久磁石、電磁石等)を組込んだ装置を用いて、磁気粘性流体のせん断速度とせん断応力の関係を求め、得られたせん断速度とせん断応力の関係を公知のCassonの式を用いて近似することよって、磁気粘性流体の降伏応力を求めることができる。   Here, the yield stress (yield shear stress) of the magnetorheological fluid can be obtained, for example, by the following method. Using a device incorporating a magnetic field application means (permanent magnet, electromagnet, etc.) capable of applying a predetermined magnetic field to a rotational viscometer, the relationship between the shear rate and shear stress of the magnetorheological fluid was determined, and the obtained shear rate The yield stress of the magnetorheological fluid can be determined by approximating the relationship between the shear stress and the shear stress using the known Casson equation.

上記降伏応力は、磁場によって保持された磁性スラリとガラス基板端部とが相対運動する際に、ガラス基板が磁性スラリから受ける圧力、即ちせん断応力に影響を与える。したがって、磁性スラリの降伏応力が高い程(磁性スラリ流動時のせん断応力が高い程)、研磨砥粒とガラス基板との接触による研磨が効率的に行われ、加工レートを向上させることができる。   The yield stress affects the pressure that the glass substrate receives from the magnetic slurry, that is, the shear stress, when the magnetic slurry held by the magnetic field and the edge of the glass substrate move relative to each other. Therefore, the higher the yield stress of the magnetic slurry (the higher the shear stress during the magnetic slurry flow), the more efficiently the polishing by contact between the abrasive grains and the glass substrate can be achieved, and the processing rate can be improved.

本発明における端面研磨処理においては、ガラス基板の主表面と直交する軸に対して、磁気粘性流体と研磨砥粒を含む磁性スラリの塊を形成して保持する磁気発生手段の回転軸を傾斜させた状態で、ガラス基板の端面を磁性スラリの塊と接触させて研磨を行うことを特徴としている。たとえば図4に示すように、磁気発生手段である対向配置された一対の磁石21,22間に直線状に進むように形成される磁力線の方向に沿って磁性スラリの塊26が形成されており、ガラス基板10の主表面と直交する軸(例えば回転軸)LSに対して、上記磁気発生手段の回転軸LMを角度αだけ傾斜させた状態でガラス基板10の端面を磁性スラリの塊26と接触させる。   In the end surface polishing process of the present invention, the rotation axis of the magnetic generating means for forming and holding a mass of magnetic slurry containing the magnetorheological fluid and the abrasive grains is inclined with respect to the axis orthogonal to the main surface of the glass substrate. In this state, the polishing is performed by bringing the end face of the glass substrate into contact with a lump of magnetic slurry. For example, as shown in FIG. 4, a mass 26 of magnetic slurry is formed along the direction of the magnetic force lines formed so as to advance linearly between a pair of opposed magnets 21 and 22 that are magnetism generating means. The end surface of the glass substrate 10 and the magnetic slurry lump 26 in a state where the rotation axis LM of the magnetic generating means is inclined by an angle α with respect to an axis (for example, a rotation axis) LS orthogonal to the main surface of the glass substrate 10. Make contact.

たとえば、上記ガラス基板を傾斜させないで、磁力線の方向と直交する面方向に挿入してガラス基板の端面を磁性スラリの塊と接触させて研磨を行った場合、ガラス基板端面の側壁面の方が面取面よりも磁性スラリとの接触量が多くなるため、側壁面の加工レートが面取面の加工レートよりも大きくなり、側壁面の方が優先的に加工される。このように、ガラス基板端面の面取面と側壁面とで加工レートが異なると、所定の加工時間内で面取面と側壁面の両方を同じ品質の鏡面に仕上ることが困難である。この場合、面取面と側壁面の両方を同じ品質に仕上るまで加工すると、加工時間が長くなる上に、優先的に加工された側壁面の形状精度が劣化するという問題が生じる。   For example, when the glass substrate is not inclined and is inserted in a plane direction perpendicular to the direction of the magnetic field lines and the end surface of the glass substrate is brought into contact with a lump of magnetic slurry, the side wall surface of the end surface of the glass substrate is more Since the amount of contact with the magnetic slurry is larger than the chamfered surface, the processing rate of the side wall surface is larger than the processing rate of the chamfered surface, and the side wall surface is processed with priority. Thus, if the processing rate differs between the chamfered surface and the side wall surface of the glass substrate end surface, it is difficult to finish both the chamfered surface and the side wall surface to the same quality within a predetermined processing time. In this case, if both the chamfered surface and the side wall surface are processed until they are finished to the same quality, there arises a problem that the processing time becomes longer and the shape accuracy of the preferentially processed side wall surface deteriorates.

そこで、本発明においては、ガラス基板10の主表面と直交する軸LSに対して、磁気発生手段の回転軸LMを傾斜させた状態で、ガラス基板10の端面を磁性スラリの塊26と接触させることで、磁性スラリが基板端面に対してランダムな位置に当接、作用するため、結果的に、従来技術よりも基板端面の面取面と磁性スラリとの接触を促進させることができ、面取面の加工圧力が増加する。これにより、ガラス基板端面の面取面と側壁面とで加工レートの差が生じるのを抑制でき、所定の加工時間内で面取面と側壁面の両方を同じ品質の鏡面に仕上ることが可能となる。その結果、ガラス基板端面の面取面と側壁面の両方の面の形状精度を向上させ、端面を高品質に仕上げることができる安定した研磨加工が可能である。   Therefore, in the present invention, the end surface of the glass substrate 10 is brought into contact with the magnetic slurry lump 26 with the rotation axis LM of the magnetism generating means inclined with respect to the axis LS orthogonal to the main surface of the glass substrate 10. As a result, the magnetic slurry contacts and acts at random positions with respect to the substrate end surface, and as a result, the contact between the chamfered surface of the substrate end surface and the magnetic slurry can be promoted more than the conventional technology. The processing pressure on the chamfer increases. As a result, it is possible to suppress the difference in processing rate between the chamfered surface and the side wall surface of the glass substrate end surface, and it is possible to finish both the chamfered surface and the side wall surface to the same quality mirror surface within a predetermined processing time. It becomes. As a result, it is possible to improve the shape accuracy of both the chamfered surface and the side wall surface of the glass substrate end surface, and to perform stable polishing that can finish the end surface with high quality.

本発明において、上記ガラス基板10の主表面と直交する軸LSに対する、磁気発生手段の回転軸LMの傾斜角度αは、磁石間距離や磁束密度等によっても若干異なるが、例えば3度〜7度の範囲内とすることが好ましい。上記の傾斜角度が3度未満であると、上述のガラス基板端面の面取面と側壁面とで加工レートの差が生じるのを抑制する効果が得られ難い。一方、上記の傾斜角度が7度よりも大きくなると、磁性スラリの保持状態を乱してしまい、側壁面と面取面双方の加工レートが低下してしまう。 In the present invention, the inclination angle α of the rotation axis LM of the magnetism generating unit with respect to the axis LS orthogonal to the main surface of the glass substrate 10 is slightly different depending on the distance between magnets, the magnetic flux density, etc. It is preferable to be within the range. When the tilt angle is less than 3 degrees, it is difficult to obtain an effect of suppressing the difference in processing rate between the chamfered surface and the side wall surface of the glass substrate end surface. On the other hand, when the inclination angle is larger than 7 degrees, the holding state of the magnetic slurry is disturbed, and the processing rate of both the side wall surface and the chamfered surface is lowered.

また、本発明の磁性スラリを用いた端面研磨処理においては、上記磁気発生手段の回転方向を加工途中段階で変更することが好適である。たとえば、図4において、磁気発生手段の回転、つまり磁性スラリの回転がA方向の場合、ガラス基板10のA‘側の面取面の加工圧力がより増加して、とりわけ側壁面とA‘側の面取面の加工レート差を抑制できる効果が大きくなる。一方、磁気発生手段の回転、つまり磁性スラリの回転がB方向の場合、ガラス基板10のB‘側の面取面の加工圧力がより増加して、とりわけ側壁面とB‘側の面取面の加工レート差を抑制できる効果が大きくなる。したがって、上記磁気発生手段の回転方向を加工途中段階で変更することによって、A’側、B‘側のいずれの面取面とも側壁面との加工レート差を抑制できるので、より好ましい実施態様である。 In the end surface polishing process using the magnetic slurry of the present invention, it is preferable to change the rotation direction of the magnetism generating means in the middle of processing. For example, in FIG. 4, when the rotation of the magnetism generating means, that is, the rotation of the magnetic slurry is in the A direction, the processing pressure on the chamfered surface on the A ′ side of the glass substrate 10 is further increased. The effect which can suppress the processing rate difference of a chamfering surface becomes large. On the other hand, when the rotation of the magnetism generating means, that is, the rotation of the magnetic slurry is in the B direction, the processing pressure of the chamfered surface on the B ′ side of the glass substrate 10 is further increased, and in particular, the side wall surface and the chamfered surface on the B ′ side. The effect which can suppress the processing rate difference of becomes large. Therefore, by changing the rotation direction of the magnetism generating means in the middle of processing, the processing rate difference between the chamfered surface on the A ′ side and B ′ side and the side wall surface can be suppressed. is there.

本発明の端面研磨処理によれば、上述のとおり、所定の加工時間内で面取面と側壁面の両方を同じ品質の鏡面に仕上ることが可能であり、ガラス基板端面の面取面と側壁面の両方の面の形状精度を向上させることができる。たとえば、本発明の端面研磨処理後の、ガラス基板の面取面と側壁面とのエッジの曲率半径のばらつきと、ガラス基板の主表面と面取面とのエッジの曲率半径のばらつきをいずれも0.03mm以内に収めることが可能である。 According to the end surface polishing treatment of the present invention, as described above, it is possible to finish both the chamfered surface and the side wall surface into a mirror surface of the same quality within a predetermined processing time. The shape accuracy of both surfaces of the wall surface can be improved. For example, after the end surface polishing treatment of the present invention, the variation in the curvature radius of the edge between the chamfered surface and the side wall surface of the glass substrate and the variation in the curvature radius of the edge between the main surface and the chamfered surface of the glass substrate are both. It is possible to fit within 0.03 mm.

上述の本発明における端面研磨処理による加工取代は、1〜10μm程度である。また、5μm以下とすると、さらに形状精度が高まるためなおよい。 The machining allowance by the end surface polishing process in the present invention is about 1 to 10 μm. Further, if the thickness is 5 μm or less, the shape accuracy is further improved, which is further preferable.

なお、以上はガラス基板10の外周側端面の研磨について説明したが、ガラス基板10の内周側端面についても、同様の方法により研磨することができる。すなわち、上記の磁気発生手段をガラス基板10の中心の円孔に通して、磁性スラリの塊をガラス基板10の内周側端面と接触させることにより、内周側端面についても研磨することができる。 In addition, although the above demonstrated the grinding | polishing of the outer peripheral side end surface of the glass substrate 10, it can grind | polish also about the inner peripheral side end surface of the glass substrate 10 by the same method. That is, the inner peripheral side end face can also be polished by passing the magnetism generating means through the circular hole in the center of the glass substrate 10 and bringing the lump of magnetic slurry into contact with the inner peripheral end face of the glass substrate 10. .

また、複数の磁石を縦方向に互いに離間させた状態で配置し、これら磁石間にそれぞれ磁性スラリの塊を形成させ、この複数段の磁性スラリの塊に複数枚のガラス基板を積層させた状態でその端部を接触させることにより、積層した複数枚のガラス基板の端面を同時に加工することもできる。 In addition, a plurality of magnets are arranged in a state of being separated from each other in the vertical direction, a magnetic slurry lump is formed between the magnets, and a plurality of glass substrates are laminated on the multi-stage magnetic slurry lump. The end surfaces of a plurality of laminated glass substrates can be processed simultaneously by bringing the end portions into contact with each other.

また、本発明における磁性スラリを用いる端面研磨処理を含む端面加工処理は、端面加工処理に投入するガラス基板の板厚が例えば0.5mm以下の薄板でも厚板(例えば0.635mm以上)と同等の端面品質を確保できる。 Further, the end face processing including end face polishing using the magnetic slurry in the present invention is equivalent to a thick plate (for example, 0.635 mm or more) even if the glass substrate thickness to be input into the end face processing is, for example, 0.5 mm or less. The end face quality can be secured.

本発明においては、ガラス基板を構成するガラス(の硝種)は、アモルファスのアルミノシリケートガラスとすることが好ましい。このようなガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。このようなアルミノシリケートガラスとしては、例えば、SiO2 を主成分としてAl23 を20重量%以下含むガラスが好ましい。さらに、SiO2を主成分としてAl23を15重量%以下含むガラスとするとより好ましい。具体的には、SiO2を62重量%以上75重量%以下、Al23 を5重量%以上15重量%以下、Li2 Oを4重量%以上10重量%以下、Na2Oを4重量%以上12重量%以下、ZrO2 を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2の重量比が0.5以上2.0以下、Al23 /ZrO2 の重量比が0.4以上2.5以下であるリン酸化物を含まないアモルファスのアルミノシリケートガラスを用いることができる。 In the present invention, the glass constituting the glass substrate is preferably an amorphous aluminosilicate glass. Such a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. As such an aluminosilicate glass, for example, a glass containing SiO 2 as a main component and containing 20 wt% or less of Al 2 O 3 is preferable. Furthermore, it is more preferable to use glass containing SiO 2 as a main component and containing 15% by weight or less of Al 2 O 3 . Specifically, SiO 2 is 62 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 15 wt%, Li 2 O is 4 wt% to 10 wt%, and Na 2 O is 4 wt%. % To 12% by weight, ZrO 2 is contained in an amount of 5.5% to 15% by weight as a main component, and the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, Al 2 O An amorphous aluminosilicate glass containing no phosphorus oxide and having a 3 / ZrO 2 weight ratio of 0.4 to 2.5 can be used.

また、耐熱性ガラスとしては、例えば、モル%表示にて、SiOを50〜75%、Alを0〜5%、BaOを0〜2%、LiOを0〜3%、ZnOを0〜5%、NaOおよびKOを合計で3〜15%、MgO、CaO、SrOおよびBaOを合計で14〜35%、ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2〜9%、含み、モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.85〜1の範囲であり、且つモル比[Al/(MgO+CaO)]が0〜0.30の範囲であるガラスを好ましく用いることができる。
また、SiOを56〜75モル%、Alを1〜9モル%、LiO、NaOおよびKOからなる群から選ばれるアルカリ金属酸化物を合計で6〜15モル%、MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物を合計で10〜30モル%、ZrO、TiO、Y、La、Gd、NbおよびTaからなる群から選ばれる酸化物を合計で0%超かつ10モル%以下、含むガラスであってもよい。
本発明において、ガラス組成におけるAlの含有量が15重量%以下であると好ましい。さらには、Alの含有量が5モル%以下であるとなお好ましい。
As the heat-resistant glass, for example, in mol%, the SiO 2 50 to 75%, the Al 2 O 3 0~5%, 0~2 % of BaO, 0 to 3% of Li 2 O, ZnO 0-5%, Na 2 O and K 2 O in total 3-15%, MgO, CaO, SrO and BaO in total 14-35%, ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 are included in a total amount of 2 to 9%, and the molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] is in the range of 0.85 to 1. And glass having a molar ratio [Al 2 O 3 / (MgO + CaO)] in the range of 0 to 0.30 can be preferably used.
Further, the total amount of alkali metal oxides selected from the group consisting of 56 to 75 mol% SiO 2 , 1 to 9 mol% Al 2 O 3 , Li 2 O, Na 2 O and K 2 O is 6 to 15 mol. %, MgO, 10 to 30 mol% in total of alkaline earth metal oxide selected from the group consisting of CaO and SrO, ZrO 2, TiO 2, Y 2 O 3, La 2 O 3, Gd 2 O 3, Nb Glass containing oxides selected from the group consisting of 2 O 5 and Ta 2 O 5 in total exceeding 0% and not more than 10 mol% may be used.
In the present invention, the content of Al 2 O 3 in the glass composition is preferably 15% by weight or less. Furthermore, still preferably Al 2 O 3 content is 5 mol% or less.

上述の本発明の端面研磨処理の終了後は、このガラス基板に寸法精度及び形状精度を向上させるための主表面の研削加工を行う。この主表面の研削加工は、通常両面研削装置を用い、ダイヤモンド等の硬質砥粒を用いてガラス基板主表面の研削を行う。こうしてガラス基板主表面を研削加工することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。なお、この主表面研削工程は、前述のダイレクトプレス法により作製した円盤状のガラスディスクに対し、端面研削加工を行う前に実施してもよい。 After the end face polishing process of the present invention is finished, the main surface is ground to improve the dimensional accuracy and shape accuracy of the glass substrate. This main surface grinding is usually performed by using a double-sided grinding device and grinding the main surface of the glass substrate using hard abrasive grains such as diamond. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained. This main surface grinding step may be performed before the end surface grinding is performed on the disk-shaped glass disk produced by the direct press method described above.

そして、上記主表面研削加工の終了後は、高平滑な主表面を得るための鏡面研磨加工を行う。
ガラス基板の鏡面研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、ポリウレタン等のポリシャの研磨パッドを用いて行うのが好適である。高い平滑性を有するガラス基板は、たとえば酸化セリウム系研磨材を用いて研磨した後(第1研磨加工)、さらにコロイダルシリカ砥粒を用いた仕上げ研磨(鏡面研磨)(第2研磨加工)によって得ることが可能である。
And after completion | finish of the said main surface grinding process, the mirror polishing process for obtaining a highly smooth main surface is performed.
As a mirror polishing method for a glass substrate, it is preferable to use a polishing pad of a polisher such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. is there. A glass substrate having high smoothness is obtained, for example, by polishing with a cerium oxide-based abrasive (first polishing process) and then with final polishing (mirror polishing) (second polishing process) using colloidal silica abrasive grains. It is possible.

ここで、本発明においては、Ra、Rzというときは、日本工業規格(JIS)B0601に準拠する粗さのことである。また、本発明において側壁面及び面取面の表面粗さ(例えば、最大粗さRz、算術平均粗さRa)は、レーザー顕微鏡を用いて観察倍率を3000倍にして50μm×50μmの測定領域で測定した値である。 Here, in the present invention, Ra and Rz are roughnesses in accordance with Japanese Industrial Standard (JIS) B0601. In the present invention, the surface roughness (for example, maximum roughness Rz, arithmetic average roughness Ra) of the side wall surface and the chamfered surface is measured in a measurement region of 50 μm × 50 μm using a laser microscope with an observation magnification of 3000 times. It is a measured value.

本発明においては、基板強度を向上させるために化学強化処理を施してもよい。化学強化処理の方法としては、例えば、ガラス転移点の温度を超えない温度領域で、イオン交換を行う低温型イオン交換法などが好ましい。化学強化処理とは、溶融させた化学強化塩とガラス基板とを接触させることにより、化学強化塩中の相対的に大きな原子半径のアルカリ金属元素と、ガラス基板中の相対的に小さな原子半径のアルカリ金属元素とをイオン交換し、ガラス基板の表層に該イオン半径の大きなアルカリ金属元素を浸透させ、ガラス基板の表面に圧縮応力を生じさせる処理のことである。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。化学強化塩としては、硝酸カリウムや硝酸ナトリウムなどのアルカリ金属硝酸塩を好ましく用いることができる。
以上のようにして、本発明に係る磁気ディスク用ガラス基板が製造される。
In the present invention, chemical strengthening treatment may be performed to improve the substrate strength. As a method of the chemical strengthening treatment, for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range not exceeding the glass transition temperature is preferable. The chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate. This is a treatment in which an alkali metal element is ion-exchanged, an alkali metal element having a large ion radius is permeated into the surface layer of the glass substrate, and compressive stress is generated on the surface of the glass substrate. Since the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example. As the chemical strengthening salt, alkali metal nitrates such as potassium nitrate and sodium nitrate can be preferably used.
As described above, the magnetic disk glass substrate according to the present invention is manufactured.

また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供する。本発明において磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁性層を形成して製造される。磁性層の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることが好適である。 The present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk. In the present invention, the magnetic disk is manufactured by forming at least a magnetic layer on the magnetic disk glass substrate according to the present invention. As a material for the magnetic layer, a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used. As a method of forming the magnetic layer, it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method.

また、磁性層の上に、保護層、潤滑層をこの順に形成するとよい。保護層としてはアモルファスの水素化炭素系保護層が好適である。例えばプラズマCVD法により保護層を形成することができる。また、潤滑層としては、パーフルオロポリエーテル化合物の主鎖の末端に官能基を有する潤滑剤を用いることができる。潤滑層はディップ法により塗布形成することができる。
本発明によって得られるガラス基板を利用することにより、基板の端面が高精度形状及び高品質に仕上げられているため、コロージョン対策など、基板端面の表面状態が起因する障害の発生を防止し、より一層の高記録密度化を実現でき、且つ信頼性の高い磁気ディスクを得ることができる。
In addition, a protective layer and a lubricating layer may be formed in this order on the magnetic layer. As the protective layer, an amorphous hydrogenated carbon-based protective layer is suitable. For example, the protective layer can be formed by a plasma CVD method. Further, as the lubricating layer, a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used. The lubricating layer can be applied and formed by a dip method.
By utilizing the glass substrate obtained by the present invention, the end surface of the substrate is finished with a high precision shape and high quality, so that the occurrence of failures due to the surface state of the substrate end surface, such as anti-corrosion, is prevented. A higher recording density can be realized, and a highly reliable magnetic disk can be obtained.

以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1〜5、比較例1〜2)
以下の(1)基板準備工程、(2)主表面研削工程、(3)端面研削工程、(4)端面研磨工程、(5)主表面研磨工程(第1研磨工程)、(6)化学強化工程、(7)主表面研磨工程(第2研磨工程)を経て磁気ディスク用ガラス基板を製造した。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.
(Examples 1-5, Comparative Examples 1-2)
The following (1) substrate preparation step, (2) main surface grinding step, (3) end surface grinding step, (4) end surface polishing step, (5) main surface polishing step (first polishing step), (6) chemical strengthening A glass substrate for a magnetic disk was manufactured through steps (7) and a main surface polishing step (second polishing step).

(1)基板準備工程
まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ0.635mmの円盤状のアルミノシリケートガラスからなるガラス基板(ガラスディスク)を得た。なお、この場合、ダイレクトプレス以外に、ダウンドロー法やフロート法で形成したシートガラスから研削砥石で切り出して円盤状のガラス基板を得てもよい。このアルミノシリケートガラスとしては、SiO:62〜75重量%、ZrO:5.5〜15重量%、Al:5〜15重量%、LiO:4〜10重量%、NaO:4〜12重量%を含有する化学強化用ガラスを使用した。
(1) Substrate preparation process First, a glass substrate (glass disk) made of disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 0.635 mm is obtained from molten glass by direct pressing using an upper die, a lower die, and a barrel die. It was. In this case, in addition to the direct press, a disk-shaped glass substrate may be obtained by cutting out with a grinding wheel from a sheet glass formed by a downdraw method or a float method. As the aluminosilicate glass, SiO 2: 62 to 75 wt%, ZrO 2: 5.5~15 wt%, Al 2 O 3: 5~15 wt%, Li 2 O: 4~10 wt%, Na 2 O: Glass for chemical strengthening containing 4 to 12% by weight was used.

(2)主表面研削工程
この主表面研削加工は両面研削装置を用い、ダイヤモンドパッドが貼り付けられた上下定盤の間にキャリアにより保持したガラス基板をセットして行ない、所定の板厚に調節した。
(3)端面研削工程
次に、円筒状砥石を用いてガラス基板の中央部分に孔を空けると共に、外周端面および内周端面に所定の端面研削(形状加工)を行った。
本実施例では、まず総形砥石を用いて基板の外周端面を面取り加工した後、さらに前述のガラス基板面に対して砥石を傾けた状態で研削加工を行い、基板端面に面取面および側壁面を形成した。
なお、砥石の種類、粒度などは適当なものを選択して用いた。
このときのガラス基板の外周側端面の表面粗さは、側壁面、面取面ともにRzで1.2μm以下であった。
また、基板の内周側端面に関しては、所定の総形砥石を用いて面取り加工を施した。
なお、砥石及びガラス基板の回転方向、回転数、基板と砥石の回転数の相対比等については、上述の実施の形態中に記載の範囲である。
(2) Main surface grinding process This main surface grinding process is performed by using a double-sided grinding machine, setting a glass substrate held by a carrier between the upper and lower surface plates to which diamond pads are attached, and adjusting to a predetermined plate thickness. did.
(3) End surface grinding step Next, a cylindrical grindstone was used to make a hole in the central portion of the glass substrate, and predetermined end surface grinding (shape processing) was performed on the outer peripheral end surface and the inner peripheral end surface.
In this example, first, the outer peripheral end face of the substrate was chamfered using a general-purpose grindstone, and then grinding was performed in a state where the grindstone was tilted with respect to the glass substrate surface described above, and the chamfered surface and the side were formed on the substrate end face A wall was formed.
In addition, the kind of grindstone, the particle size, etc. selected and used appropriately.
The surface roughness of the outer peripheral side end surface of the glass substrate at this time was 1.2 μm or less in terms of Rz for both the side wall surface and the chamfered surface.
Further, the inner peripheral side end face of the substrate was chamfered using a predetermined total shape grindstone.
In addition, about the rotation direction and rotation speed of a grindstone and a glass substrate, the relative ratio of the rotation speed of a board | substrate and a grindstone, etc. are the ranges as described in the above-mentioned embodiment.

(4)端面研磨工程
次いで、上記のように研削加工により基板端面に面取面及び側壁面を形成したガラス基板の外周側端面の研磨処理を行った。実施例では、前述の図4に示す方法に従って磁性スラリを用いる研磨処理を行った。
図4に示すように、一対の磁石からなる磁気発生手段を内蔵した研磨装置を用いて2つの磁石間に磁性スラリの塊を形成させた。そして、これら磁気発生手段とガラス基板とを互いに回転させることにより、ガラス基板の端面を研磨した。なお、両者の回転方向は図3に示すように互いに逆方向とした。
なお、磁気発生手段(磁性スラリの塊)の回転数、基板の回転数、基板と磁性スラリの塊の回転数の相対比、および磁石の磁束密度等については、上述の実施の形態中に記載の範囲である。
また、実施例1〜5として、ガラス基板の回転軸に対する磁気発生手段の回転軸の傾斜角度α(図4参照)は、3度〜15度の範囲で設定した(下記表1参照)。なお、実施例5では、磁気発生手段の回転方向を途中で変更し、変更前と変更後各々同時間処理した。また、比較例2として、ガラス基板を傾斜させない(傾斜角度ゼロ度)こと以外は同様にして加工した。さらに、比較例1として、磁性スラリを用いる研磨処理の代わりに従来のブラシ研磨を行った。
こうして、ガラス基板の外周端面の研磨を行った。
また、ガラス基板の内周側については、従来の研磨ブラシを用いて研磨を行った。
以上のようにして、上記端面研磨を終えたガラス基板を洗浄した。
(4) End Surface Polishing Step Next, the outer peripheral side end surface of the glass substrate in which the chamfered surface and the side wall surface were formed on the substrate end surface by grinding as described above was polished. In the example, a polishing process using a magnetic slurry was performed according to the method shown in FIG.
As shown in FIG. 4, a lump of magnetic slurry was formed between two magnets using a polishing apparatus incorporating magnetism generating means composed of a pair of magnets. And the end surface of the glass substrate was grind | polished by rotating these magnetism generation means and a glass substrate mutually. The rotational directions of the two were opposite to each other as shown in FIG.
The rotational speed of the magnetism generating means (magnetic slurry lump), the rotation speed of the substrate, the relative ratio of the rotation speed of the lump of the substrate and the magnetic slurry, the magnetic flux density of the magnet, etc. are described in the above embodiment. Range.
In Examples 1 to 5, the inclination angle α (see FIG. 4) of the rotation axis of the magnetism generating unit with respect to the rotation axis of the glass substrate was set in the range of 3 to 15 degrees (see Table 1 below). In Example 5, the rotation direction of the magnetism generating means was changed in the middle, and the same time was processed before and after the change. Moreover, as Comparative Example 2, the glass substrate was processed in the same manner except that the glass substrate was not tilted (tilt angle was 0 degree). Further, as Comparative Example 1, conventional brush polishing was performed instead of polishing processing using a magnetic slurry.
In this way, the outer peripheral end face of the glass substrate was polished.
Moreover, about the inner peripheral side of the glass substrate, it grind | polished using the conventional grinding | polishing brush.
As described above, the glass substrate after the end face polishing was washed.

(5)主表面研磨工程(第1研磨工程)
次に、上述した主表面研削加工で残留した傷や歪みを除去するための第1研磨工程を両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラス基板を密着させ、このキャリアを太陽歯車(サンギア)と内歯歯車(インターナルギア)とに噛合させ、上記ガラス基板を上下定盤によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤上で自転しながら公転して両面を同時に研磨加工するものである。第1研磨工程を終えたガラス基板を洗浄し、乾燥した。
(5) Main surface polishing step (first polishing step)
Next, the 1st grinding | polishing process for removing the flaw and distortion which remain | survived by the main surface grinding process mentioned above was performed using the double-side polish apparatus. In a double-side polishing machine, a glass substrate held by a carrier is closely attached between an upper and lower polishing surface plate to which a polishing pad is attached, and this carrier is engaged with a sun gear (sun gear) and an internal gear (internal gear). The glass substrate is sandwiched between upper and lower surface plates. Thereafter, a polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, whereby the glass substrate revolves while rotating on the surface plate to simultaneously polish both surfaces. The glass substrate after the first polishing step was washed and dried.

(6)化学強化工程
次に、上記洗浄を終えたガラス基板に化学強化を施した。化学強化は硝酸カリウムと硝酸ナトリウムの混合した化学強化液を用意し、この化学強化溶液を380℃に加熱し、上記洗浄・乾燥済みのガラス基板を約4時間浸漬して化学強化処理を行なった。
(6) Chemical strengthening step Next, chemical strengthening was performed on the glass substrate after the cleaning. For chemical strengthening, a chemical strengthening solution in which potassium nitrate and sodium nitrate were mixed was prepared, the chemical strengthening solution was heated to 380 ° C., and the cleaned and dried glass substrate was immersed for about 4 hours to perform chemical strengthening treatment.

(7)主表面研磨工程(第2研磨工程)
次いで上記の第1研磨工程で使用したものと同じ両面研磨装置を用い、第2研磨工程を実施した。この第2研磨工程は、上述した第1研磨工程で得られた平坦な表面を維持しつつ、例えばガラス基板主表面の表面粗さをRa(原子間力顕微鏡での測定値)で0.2nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。上記第2研磨工程を終えたガラス基板を洗浄し、乾燥した。
(7) Main surface polishing step (second polishing step)
Next, the second polishing step was performed using the same double-side polishing apparatus as used in the first polishing step. In this second polishing step, for example, the surface roughness of the main surface of the glass substrate is 0.2 nm in terms of Ra (measured with an atomic force microscope) while maintaining the flat surface obtained in the first polishing step described above. This is a mirror polishing process for finishing the surface to a smooth mirror surface. The glass substrate after the second polishing step was washed and dried.

上記工程を経て得られたガラス基板の主表面の表面粗さを原子間力顕微鏡(AFM)にて測定したところ、Rz=1.53nm、Ra=0.13nmと平滑な主表面を持つガラス基板を得た。
また、得られたガラス基板の外径は65mm、内径は20mm、板厚は0.635mmであった。
こうして、上記実施例及び比較例の各磁気ディスク用ガラス基板を得た。
When the surface roughness of the main surface of the glass substrate obtained through the above steps was measured with an atomic force microscope (AFM), a glass substrate having a smooth main surface with Rz = 1.53 nm and Ra = 0.13 nm. Got.
The obtained glass substrate had an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.635 mm.
Thus, glass substrates for magnetic disks of the above examples and comparative examples were obtained.

そして、同様にして作製した100枚のガラス基板について、上記端面研磨終了後の基板の外周端面における側壁面と2つの面取面の表面粗さ(Rz)を、レーザー顕微鏡を用いて計測し、結果を纏めて表1に示した。
また、同様にして作製した100枚のガラス基板について、上記端面研磨工程における基板の外周端面の側壁面と2つの面取面の各加工レートを、マイクロメータを用いて測定(直径寸法変化)し、結果を纏めて表1に示した。また、面取面と側壁面との加工レート比についても併せて表1に示した。
なお、表1中では、上記側壁面を「12面」、2つの面取面を夫々「13a面」と「13b面」(図1を参照)と表記した。
And about 100 glass substrates produced in the same manner, the surface roughness (Rz) of the side wall surface and the two chamfered surfaces on the outer peripheral end surface of the substrate after the end face polishing is measured using a laser microscope, The results are summarized in Table 1.
Moreover, about 100 glass substrates produced similarly, each processing rate of the side wall surface of the outer peripheral end surface of a board | substrate in the said end surface grinding | polishing process and two chamfering surfaces is measured (diameter dimension change). The results are summarized in Table 1. The processing rate ratio between the chamfered surface and the side wall surface is also shown in Table 1.
In Table 1, the side wall surface is represented as “12 surface”, and the two chamfered surfaces are represented as “13a surface” and “13b surface” (see FIG. 1), respectively.

Figure 2015069668
Figure 2015069668

上記表1の結果から、以下のことがわかる。
1.上記磁性スラリによる端面研磨処理において、ガラス基板の回転軸に対する磁気発生手段の回転軸を、傾斜角度(α)3度〜7度の範囲内で傾斜させた状態で研磨処理を行った実施例1,2においては、ガラス基板の面取面と側壁面との加工レート差が小さくなり、所定の加工時間(短時間)内で面取面と側壁面の両方を同じ品質の鏡面に仕上ることが可能となる。特に、磁気発生手段の回転方向を途中で切り替えた実施例5では、面取面と側壁面との加工レート差が非常に小さくなり(加工レート比が1.0に近い)、さらに13a面、13b面のいずれの面取面とも側壁面との加工レート差を抑制できた。
また、傾斜角度が上記の範囲よりも大きな実施例3,4においては、特に面取面の加工レートの低下が見られた。
また、2つの面取面と側壁面との粗さ(Rz)の差に関しては、基板を傾斜させない場合(比較例2)と比べると、基板を傾斜させたもの(実施例)の方が、上記差が小さいことがわかった。
2.これに対し、ガラス基板の回転軸に対して磁気発生手段の回転軸を傾斜させないで研磨処理を行った比較例2では、面取面側への加工が進行しにくいため、ガラス基板の面取面と側壁面との加工レート差が非常に大きくなり、面取面の加工レートは側壁面の加工レートの1/4程度であった。
また、磁性スラリによる端面研磨処理に代えて従来のブラシ研磨を行った比較例1では、面取面と側壁面との加工レート差は小さいが、加工レート自体が低く、面取面と側壁面の両方を同じ品質の鏡面に仕上るためには長時間(少なくとも1800秒程度)の加工が必要であり、端面の形状精度が劣化するおそれがある。
From the results in Table 1, the following can be understood.
1. Example 1 in which the polishing process was performed in the state where the rotation axis of the magnetism generating means with respect to the rotation axis of the glass substrate was inclined within the range of the inclination angle (α) of 3 degrees to 7 degrees in the end surface polishing process using the magnetic slurry. , 2, the processing rate difference between the chamfered surface and the side wall surface of the glass substrate is reduced, and both the chamfered surface and the side wall surface can be finished to the same quality mirror surface within a predetermined processing time (short time). It becomes possible. In particular, in Example 5 in which the rotation direction of the magnetism generating means was switched halfway, the difference in the machining rate between the chamfered surface and the side wall surface was very small (the machining rate ratio was close to 1.0), and further the 13a surface, It was possible to suppress the processing rate difference between the chamfered surface of the 13b surface and the side wall surface.
Further, in Examples 3 and 4 in which the inclination angle is larger than the above range, a reduction in the chamfered surface machining rate was observed.
In addition, regarding the difference in roughness (Rz) between the two chamfered surfaces and the side wall surface, compared to the case where the substrate is not inclined (Comparative Example 2), the one where the substrate is inclined (Example), It was found that the difference was small.
2. On the other hand, in Comparative Example 2 in which the polishing process was performed without inclining the rotation axis of the magnetism generating unit with respect to the rotation axis of the glass substrate, the chamfering of the glass substrate was difficult because the processing toward the chamfered surface side hardly progressed. The difference in the processing rate between the surface and the side wall surface became very large, and the processing rate of the chamfered surface was about 1/4 of the processing rate of the side wall surface.
Further, in Comparative Example 1 in which the conventional brush polishing was performed instead of the end surface polishing treatment with the magnetic slurry, the processing rate difference between the chamfered surface and the side wall surface was small, but the processing rate itself was low, and the chamfered surface and the side wall surface were In order to finish both to a mirror surface of the same quality, processing for a long time (at least about 1800 seconds) is required, and the shape accuracy of the end face may be deteriorated.

(磁気ディスクの製造)
上記実施例5で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
すなわち、上記ガラス基板上に、Ti系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、Ru薄膜からなる下地層、CoCrPt合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
得られた磁気ディスクについて、DFHヘッドを備えたHDDに組み込み、80℃かつ80%RHの高温高湿環境下においてDFH機能を作動させつつ1ヶ月間のロードアンロード耐久性試験を行ったところ、特に障害も無く、良好な結果が得られた。
(Manufacture of magnetic disk)
The following film formation process was performed on the magnetic disk glass substrate obtained in Example 5 to obtain a magnetic disk for perpendicular magnetic recording.
That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed. The protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon and provides wear resistance. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
The obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained.

1 磁気ディスク用ガラス基板
10 円盤状ガラス基板(ガラスディスク)
11 ガラス基板の主表面
12 ガラス基板の外周側端面
12a 側壁面
12b 面取面
20 端面研磨装置
21,22 磁石
23 スペーサ
24 外装部材
25 磁力線
26 磁性スラリの塊
1 Glass substrate for magnetic disk 10 Disc-shaped glass substrate (glass disk)
DESCRIPTION OF SYMBOLS 11 Main surface 12 of glass substrate Peripheral side end surface 12a of glass substrate Side wall surface 12b Chamfering surface 20 End surface polishing device 21, 22 Magnet 23 Spacer 24 Exterior member 25 Magnetic field line 26 Magnetic slurry lump

Claims (5)

円盤状のガラス基板の端面を加工する端面加工処理を含む磁気ディスク用ガラス基板の製造方法であって、
前記端面加工処理は、ガラス基板の主表面と直交する軸に対して、磁気粘性流体と研磨砥粒を含む磁性スラリの塊を形成して保持する磁気発生手段の回転軸を傾斜させた状態で、前記ガラス基板の端面を前記磁性スラリの塊と接触させて、前記ガラス基板の端面の側壁面と、該ガラス基板の主表面と前記側壁面との間に介在する面取面とを研磨する端面研磨処理を含むことを特徴とする磁気ディスク用ガラス基板の製造方法。
A method of manufacturing a glass substrate for a magnetic disk including an end face processing for processing an end face of a disk-shaped glass substrate,
In the end face processing, the rotation axis of the magnetism generating means for forming and holding a mass of magnetic slurry containing the magnetorheological fluid and abrasive grains is inclined with respect to the axis orthogonal to the main surface of the glass substrate. The end surface of the glass substrate is brought into contact with the lump of the magnetic slurry to polish the side wall surface of the end surface of the glass substrate and the chamfered surface interposed between the main surface of the glass substrate and the side wall surface. The manufacturing method of the glass substrate for magnetic discs characterized by including an end surface grinding | polishing process.
前記端面研磨処理では、前記磁気発生手段の回転方向を加工途中段階で変更することを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。   2. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein in the end face polishing process, the rotation direction of the magnetism generating means is changed in the middle of processing. 前記ガラス基板の主表面と直交する軸に対する前記磁気発生手段の回転軸の傾斜角度は、3度〜7度の範囲内であることを特徴とする請求項1又は2に記載の磁気ディスク用ガラス基板の製造方法。   3. The magnetic disk glass according to claim 1, wherein an inclination angle of a rotation axis of the magnetism generating unit with respect to an axis orthogonal to the main surface of the glass substrate is in a range of 3 degrees to 7 degrees. A method for manufacturing a substrate. 前記端面研磨処理の前に、前記ガラス基板の端面に面取面と側壁面の両方の面を形成する研削処理を行うことを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。   4. The magnetic disk according to claim 1, wherein a grinding process for forming both a chamfered surface and a side wall surface on the end surface of the glass substrate is performed before the end surface polishing process. A method for producing a glass substrate. 請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。

5. A method for producing a magnetic disk, comprising forming at least a magnetic recording layer on the glass substrate for a magnetic disk produced by the method for producing a glass substrate for a magnetic disk according to claim 1.

JP2013202849A 2013-09-29 2013-09-29 Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk Pending JP2015069668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202849A JP2015069668A (en) 2013-09-29 2013-09-29 Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202849A JP2015069668A (en) 2013-09-29 2013-09-29 Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk

Publications (1)

Publication Number Publication Date
JP2015069668A true JP2015069668A (en) 2015-04-13

Family

ID=52836179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202849A Pending JP2015069668A (en) 2013-09-29 2013-09-29 Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk

Country Status (1)

Country Link
JP (1) JP2015069668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751961A (en) * 2015-12-28 2020-02-04 Hoya株式会社 Annular glass blank and method for producing same, method for producing annular glass substrate, and method for producing glass substrate for magnetic disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751961A (en) * 2015-12-28 2020-02-04 Hoya株式会社 Annular glass blank and method for producing same, method for producing annular glass substrate, and method for producing glass substrate for magnetic disk

Similar Documents

Publication Publication Date Title
JP6215770B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
JP5860195B1 (en) Glass substrate for magnetic disk
JP6490842B2 (en) Grinding tool, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
JP6156967B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and glass substrate end surface polishing apparatus
JP6577501B2 (en) Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk
JP2016126808A (en) Method for manufacturing substrate for magnetic disk and end surface polishing device
JP2018200743A (en) Method for manufacturing glass substrate as base of glass substrate for a magnetic disk, method for manufacturing glass substrate for magnetic disk and fixed abrasive grindstone
JP2015069668A (en) Manufacturing method of magnetic disk glass substrate and manufacturing method of magnetic disk
JP6170557B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, grinding wheel
WO2014104377A1 (en) Method for manufacturing glass substrates for magnetic disks and method for manufacturing magnetic disks
JP7113157B1 (en) Magnetic disk and substrate for magnetic disk
JP6353524B2 (en) Substrate manufacturing method
JP2015069675A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
CN105580077B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP2015069687A (en) Method of manufacturing glass substrate for magnetic disk and method of manufacturing the magnetic disk
JPWO2014104376A1 (en) Manufacturing method of glass substrate for magnetic disk