JP6910495B2 - スート母材およびガラス光ファイバの作製方法 - Google Patents

スート母材およびガラス光ファイバの作製方法 Download PDF

Info

Publication number
JP6910495B2
JP6910495B2 JP2020068049A JP2020068049A JP6910495B2 JP 6910495 B2 JP6910495 B2 JP 6910495B2 JP 2020068049 A JP2020068049 A JP 2020068049A JP 2020068049 A JP2020068049 A JP 2020068049A JP 6910495 B2 JP6910495 B2 JP 6910495B2
Authority
JP
Japan
Prior art keywords
soot
blank
suit
optical fiber
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020068049A
Other languages
English (en)
Other versions
JP2020100563A (ja
Inventor
リ ミン−ジュン
リ ミン−ジュン
ルオ シアオミン
ルオ シアオミン
エドワード マッカーシー ジョセフ
エドワード マッカーシー ジョセフ
ペン ガオヂュー
ペン ガオヂュー
スコット ストーン ジェフリー
スコット ストーン ジェフリー
プシュカー タンドン
タンドン プシュカー
ヂョウ チュンフェン
ヂョウ チュンフェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2020100563A publication Critical patent/JP2020100563A/ja
Application granted granted Critical
Publication of JP6910495B2 publication Critical patent/JP6910495B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

関連出願の説明
本出願は、その内容が引用され、その全体が参照することにより本書に組み込まれる、2014年4月8日に出願された米国特許出願第14/247,894号の優先権の利益を米国特許法第120条の下で主張するものである。
本発明は、一般に、コアケーンを配置するためにスートブランクに孔を開けるステップを含む、母材作製方法と、この母材から光ファイバを形成する方法に関する。
シングルモードの光ファイバ伝送システムでのデータ転送は、能力の極限に急速に近づいている。光ファイバの能力のさらなる成長を可能にする1つの解決策として、マルチコア光ファイバの使用が浮上した。マルチコア光ファイバは、空間分割多重化を用いて並列伝送を可能にする。マルチコア光ファイバは、「N」をマルチコア光ファイバにおけるコアの数とすると、伝送能力をN倍増加させる。
マルチコア光ファイバを製造するいくつかの従来の方法は、複雑であり、大量生産にあまり適していない。積層および線引きプロセスでは、典型的にはコアガラスロッドを積み重ねてガラス管内に挿入し、母材を形成する。このような方法は、一般に複雑であり、また基準化が容易ではない。別の方法では、ガラス基材内に孔を開けて、この孔の中にコアケーンを置く。しかしながら、ガラスロッド内に正確に孔を開けることは困難であり、また高価な高精度超音波ドリルマシンが必要である。このようなドリルマシンを用いた場合でさえ、孔を開けることができる距離は制限され、それにより母材のサイズは制限される。
一実施の形態によれば、光ファイバを形成する方法は、上部表面と、0.8g/cm3から1.6g/cm3の間のバルク密度とを有している、シリカベース被覆材料のスートブランクを形成するステップを含む。スートブランクの上部表面に、少なくとも1つの孔を開ける。この少なくとも1つの孔の中に、少なくとも1つのコアケーン部材を位置付ける。スートブランクおよび少なくとも1つのスートコアケーン部材を圧密化して、圧密化された母材を形成する。圧密化された母材を、光ファイバへと線引きする。
別の実施形態において、スートブランクを形成する方法は、シリカベーススート材料を用いてスート体を形成するステップを含む。スート体を部分的に圧密化して、上部表面と、0.8g/cm3から1.6g/cm3の間のバルク密度とを有している、スートブランクを形成する。スートブランクの上部表面内へと、複数の孔を開ける。
さらに別の実施形態において、マルチコア光ファイバを形成する方法は、シリカベース材料のスート体を形成するステップを含む。スート体を部分的に圧密化して、0.8g/cm3から1.6g/cm3の間のバルク密度と、表面密度が1.6g/cm3未満の上部表面と、上部表面の反対側の下部表面とを有する、スートブランクを形成する。下部表面に到達しない複数の孔を、上部表面に開ける。複数のコアケーンを、開けられた複数の孔の中に挿入する。スートブランクおよびコアケーンを圧密化して、圧密化された母材を形成する。圧密化された母材を、マルチコア光ファイバへと線引きする。
さらなる特徴および利点は以下の詳細な説明の中に明記され、ある程度は、その説明から当業者には容易に明らかになるであろうし、あるいは、以下の詳細な説明、請求項、並びに添付の図面を含め、本書で説明されたように実施形態を実施することにより認識されるであろう。
本書で開示される方法は、より容易に拡張可能であり、また母材および光ファイバ、特にマルチコア光ファイバを作製するための、この母材および光ファイバを製造する既知の方法よりも経済的で複雑でない製造プロセスをもたらす。
前述の一般的な説明および以下の詳細な説明は単なる例示であり、請求項の本質および特徴を理解するための概要または構成を提供することを意図したものであることを理解されたい。添付の図面はさらなる理解を提供するために含まれ、本明細書に組み込まれかつその一部を構成する。図面は1以上の実施形態を示し、その説明と共に、種々の実施形態の原理および動作を説明するのに役立つ。
本開示による光ファイバを形成する方法の工程フローチャート 本開示によるスート体の上部斜視図 図2のスート体から形成された、孔がその中に開けられているスートブランクの上部斜視図 コアケーンがその中に位置付けられている、図3のスートブランクの上部斜視図 本開示によるスート体の別の実施形態の上部斜視図 図5のスート体から形成された、孔がその中に開けられているスートブランクの上部斜視図 コアケーンおよびガラスロッドがその中に位置付けられている、図6のスートブランクの上部斜視図 図7に示されているスートブランクから形成された、本開示による母材の上部斜視図 図8に示されている母材から線引きされた、光ファイバの上部斜視図 4つの穿孔による正方形構成を含むスートブランクの上面図 8つの穿孔による2×4構成を含むスートブランクの上面図 7つの穿孔による六方格子構成を含むスートブランクの上面図 12の穿孔による環状構成を含むスートブランクの上面図
ここで本発明の好適な実施形態を詳細に参照し、その例を添付の図面に示す。可能な限り、図面を通じて、同じまたは同様の部分の参照に同じ参照番号を使用する。
母材および最終的に光ファイバを形成する方法の一実施の形態が、概して図1に描かれている。図2〜9は、図1に描かれている方法全体に亘る種々のステップでの、スート体10、スートブランク12、母材14、および光ファイバ16の形成を描いたものである。図1に描かれている実施形態において、光ファイバ16を形成する方法は、(1)スート体10を形成するステップ、および(2)スート体10を部分的に圧密化してスートブランク12を形成するステップを含む。(3)次いで孔20を、部分的に圧密化されたスートブランク12に開け、さらに(4)コアケーン22を孔20の中に挿入する。(5)次いでスートブランク12およびコアケーン22を圧密化して、ガラス母材14を形成する。(6)ガラス母材14を線引きして、光ファイバ16を形成する。本書で説明されるプロセスは、マルチコア光ファイバ16の形成に特に有用であるが、シングルコア光ファイバ16の作製にも使用することができる。マルチコア光ファイバ16は、空間分割多重化を通じて並列伝送を可能にするのに望ましい。Nをマルチコア光ファイバ16におけるコアの数とすると、ファイバ16の伝送能力はN倍増加する。従ってマルチコア光ファイバ16は、シングルコア光ファイバ16に対して伝送を強化することができる。
図2〜4は、スート加圧法により形成されたスート体10およびスートブランク12の実施形態を描いたものであり、また図5〜9は、外付け蒸着(「OVD」)法により形成されたスート体10およびスートブランク12の実施形態を描いたものである。本書で説明されるスートブランク12に孔を開ける方法は、以下でさらに説明するが、スート体10に対するこれらの形成方法のいずれかと共に使用することができる。
図2および5に描かれているように、スート体10は概して円筒状の形状であり、上部表面24、上部表面24の反対側の下部表面26、および上部表面24と下部表面26とを相互接続している周方向壁28、を備えている。スート体10は、光ファイバ16の被覆に適したシリカベース材料から作製されている。一実施の形態において、スート体10はSiO2材料である。代わりの実施形態では、SiO2材料を、F、B、Ge、Er、Ti、Al、Li、K、Rb、Cs、Cl、Br、Na、Nd、Bi、Sb、Yb、または、これらの組合せ、などの元素、あるいは光ファイバ16の被覆に使用するものとして知られている他の元素で、ドープしてもよい。
図2に示されているスート体10の実施形態は、スート加圧プロセスを用いて形成される。一般にスート加圧プロセスでは、粒子状スート材料をモールドキャビティ内に堆積させ、モールド内の粒子状スート材料に対して圧力を加えて、圧縮されたスート体10を形成する。スート加圧プロセスは通常25psig(0.17MPaG)から250psig(1.72MPaG)の圧力で実行され、また圧縮されたスート体10を形成するために粒子状スート材料を、半径方向に、軸方向に、横方向に、または任意の他の方法で、圧迫してもよい。スート加圧プロセスを用いて形成された、圧縮されたスート体10の初期バルク密度は、一般に0.8g/cm3である。圧縮されたスート体10は、以下でさらに説明するが、孔を開けるために好ましいバルク密度および表面密度に達するよう、部分的に圧密化することが好ましい。
図5に示されているスート体10の実施形態は、OVD法を用いて形成される。このプロセスでは一般に、不活性ロッドにシリカベーススート粒子を、不活性ロッドの外縁の周りに適用して積層させる。スート粒子は、塩化ケイ素などの超高純度の蒸気をバーナーに通過させることによって形成され、この蒸気が火炎の中で反応して細かいシリカベーススート粒子を形成し、これが次いで不活性ロッド上に堆積される。堆積中に不活性ロッドを回転させて、不活性ロッドの周りに均一なスート体10を形成する。堆積が完了した後に、不活性ロッドをスート体10から取り除くことが好ましく、図5に示されているようにスート体10の中心軸32を通る中心孔30が残される。OVD法の後のスート密度は、典型的にはおよそ0.5g/cm3である。スート体10のバルク密度を所望の範囲まで増加させるために、以下でさらに説明するが、スート体10を部分的に圧密化して、孔を開けるのに好ましいバルク密度および表面密度に到達させることが好ましい。気相軸付け(「VAD」)法または他の既知のプロセスなど、スート体10を形成する代わりの形成方法を使用することも可能である。
スート加圧プロセス、OVD法、VAD法、または他の既知のプロセスを用いた、初期形成の後、孔を開ける前に、スート体10を部分的に圧密化して、スートブランク12の既定のバルク密度に到達させることが好ましい。部分的な圧密化は、随意的にはヘリウム雰囲気下で、スート体10の形成に使用された材料に対する標準の焼結ピーク温度よりも低い温度まで、スート体10を加熱するものを含む。露出時間および温度は、スート体10のサイズ次第で、またシリカベーススート材料内の任意のドーパントの、組成または存在次第で変化する。特定の実施形態において、スート体10の密度が、スート体10の形成方法により、部分的に圧密化しなくても所望範囲内であった場合には、別個の部分的圧密化ステップは不必要であり、本開示によるスートブランク12の形成に必要ない。
本開示によるスート体10の直径は40mmから200mmの間であることが好ましく、長さは10cmから100cmであることが好ましい。一般に、個々の粒子間にガラスネックを形成することによって強化される多孔質スート材料で、部分的に圧密化されたスートブランク12を生成するためには、このおおよそのサイズ範囲のスート体10で、部分的圧密化の温度範囲は1時間から3時間の間の時間に対し700℃から1300℃であることが好ましい。いくつかの実施形態では、スート体10を部分的圧密化温度で既定時間の間保持してスートブランク12を形成した後に、スートブランク12を室温よりも高くかつ部分的圧密化温度よりも低い温度で、スートブランク12をさらに圧密化しかつスートブランク12をすぐに室温に戻した場合よりもゆっくり冷却することができる時間の間、保持する。
部分的圧密化の後のスートブランク12の好適なバルク密度は、0.8g/cm3から1.6g/cm3の間である。より好適なバルク密度の範囲は1.0g/cm3から1.6g/cm3であり、さらに好適にはバルク密度は1.2g/cm3から1.5g/cm3の間である。別の好適なバルク密度は、1.2g/cm3である。スートブランク12に孔20を開けるのを助けるための、スートブランク12の好適な表面密度は1.6g/cm3未満であり、またさらに好適なスートブランク12の表面密度は1.5g/cm3未満である。本書で説明されるバルク密度および表面密度は、孔を開けるための十分な本体強度および機械的強度を提供すると同時に、完全に圧密化されたガラスよりも孔を開けるのが容易な材料となるように意図されており、完全に圧密化されたガラス母材で可能となるものよりも深くかつより正確な孔20をスートブランク12に開けることができる。
スートブランク12を形成し、さらに随意的には部分的に圧密化した後、図3および6に描かれている実施形態に示されているように、コアケーン22を収容するための複数の孔20を、スートブランク12の上部表面24に既定の構成で開ける。これらの実施形態では4つの孔20をスートブランク12の上部表面24に開けて、4つの伝送経路を有するマルチコア光ファイバ16のための4つのコアケーン22を収容する。コアケーンを収容するためにスートブランク12に開けられた孔20の直径は、5mmから20mmであることが好ましい。穿孔20は、スートブランク12の下部表面26を貫通して延在するものではなく、コアケーン22を支持するために孔20の下の場所に、スートブランク12の少なくとも小さい部分を残すことが好ましい。
図4および7に描かれている実施形態に示されているように、スートブランク12の上部表面24に孔20を開けた後、この穿孔20の中にコアケーン22を挿入する。本開示の実施形態において使用されるコアケーン22は、円形の断面を有するものであることが好ましい。本開示において使用されるコアケーン22は、好適にはシリカベース材料で作製され、その少なくとも一部は少なくとも部分的に圧密化され、さらにその少なくとも一部は光ファイバ用の透過性コアガラスである。コアケーン22は随意的に、透過性ガラスで形成された内部部分34と、被覆材料で形成された外部部分36とを含む。コアケーン22用の透過性ガラスの形成に、通常ゲルマニウムがドープ剤として使用される。あるいはコアケーン22の外部部分36は、圧密化されていないスート被覆材料でもよい。さらに本開示で使用されるコアケーン22は、母材14を形成する前に完全に圧密化されるかどうかに関わらず、スート加圧、OVD法、VAD法、またはコアケーン22を形成するための任意の他の既知のプロセスなど、任意の既知のプロセスを用いて形成され得る。コアケーン22の形成のために、任意の既知の代わりのものを使用してもよい。本開示で使用されるコアケーン22は、マルチモードファイバ用途、偏波保持ファイバ用途、フォトニック結晶ファイバ用途の他、シングルモードマルチコアファイバ用途およびシングルコアファイバ用途のためにも設計され得る。図4および7に描かれている実施形態において使用されるコアケーン22は、穿孔20よりも少なくとも若干小さい直径をさらに有し、スートブランク12の上部表面24の穿孔20の中にコアケーン22を挿入するのを可能にする。
コアケーン22を収容するために開けられた孔20に加え、図6に描かれている実施形態に示されているように、さらなる孔40を応力ロッド、金属ロッド、導電性または遮蔽性のワイヤまたは粉末、あるいは半導体ロッドまたは粉末の挿入のために、上部表面24に開けてもよい。本書で説明されるスートブランク12の穿孔方法は、このさらなる孔40または様々なサイズの孔を開けることによって、容易に種々の光ファイバ設計および既定の配置に適応することができる。孔20、40は、意図される最終用途に望ましいどのような既定配置ででも上部表面24に開けることができる。さらなる孔40は圧密化の前に充填してもよいし、あるいは開口したままにして、圧密化の後に充填してもよい。
OVD法を用いてスート体10を形成する、図5〜9に描かれている実施形態では、さらなるガラスロッド42を中心孔30の中に挿入する。ガラスロッド42は、スート体10の形成に使用されるスート材料と同じ材料であることが好ましい。ガラスロッド42は、スート体10を構成する被覆材料の充填材として機能し、また一般にコアケーン22と同じ材料または構造ではないが、所望であれば中心孔30をさらなるコアケーン22の挿入のために用いることも可能である。
図8に示されている実施形態は、図7に示されているスートブランク12から形成された、圧密化された母材14である。図8に示されている実施形態は、正方形の4ファイバ構成とガラスロッド42で塞がれた中心孔30とを有する、圧密化されたガラス母材14である。コアケーン22と、さらに随意的にはガラスロッド42、または他の応力ロッド、金属ロッド、導電性または遮蔽性のワイヤまたは粉末、または半導体ロッドまたは粉末を挿入した後に、スートブランク12およびコアケーン22を圧密化して、圧密化されたガラス母材14を形成する。スートブランク12およびコアケーン22を圧密化するために、スートブランク12およびコアケーン22を最終的な焼結温度まで加熱し、さらにスートブランク12およびコアケーン22のガラス焼結を可能にするのに十分な時間の間、その温度で保持する。特定の実施形態では、スートブランク12のヘリウムパージまたは塩素乾燥などの予備ステップを、スートブランク12を焼結温度まで加熱する前に実行する。さらに特定の実施形態では、圧密化された母材14を、(室温よりも高く、焼結温度よりも低い)高い温度で焼結後に保持し、これにより圧密化された母材14の冷却を遅らせる。
図9に描かれている実施形態は、リドロー炉内で母材14を引き伸ばすなど、既知のファイバ線引き方法を用いて図8に描かれている母材14から線引きされた、光ファイバ16である。得られた光ファイバ16は、オーバークラッド46内に埋め込まれた4つの透過性コア44を有する、マルチコア光ファイバ16である。母材14の直径は線引きプロセスで減少してファイバ16の長さが伸び、また母材14内のコアケーン22の直径は線引きプロセスを通じて減少して透過性コア44を形成する。
孔20を開ける際、スートブランク12の上部表面24での孔20の配置には多くの構成が可能であり、またその構成はスートブランク12を生成した後に決めてもよい。穿孔20の種々のサンプル構成が図10A〜10Dに示されている。図10A〜10Dに示されている例は、加圧成形されたスートブランク12において示されている(不活性ロッドを取り除くことによる孔30を含んでいない)。図10Aは、4つの穿孔20による正方形構成を描いたものである。図10Bは、8つの穿孔20による2×4構成を描いたものである。図10Cは、7つの穿孔20による六方格子構成を描いたものである。図10Dは、12の穿孔20による環状構成を描いたものである。本書で説明される方法を用いて、選択された光ファイバ16の形成に対する要望通りに、代わりの構成を容易に生成することができる。
一例において、OVD法を用いて3,000gのSiO2粒子状材料を不活性ロッドに適用し、その積層後の密度を0.591g/cm3とする。長さ4インチ(10.16cm)および直径63mmのスート体10を、OVD法を用いて積層された粒子状材料から切断し、不活性ロッドを取り除いた。3,000gのスート体10をヘリウムベース雰囲気中で、1275℃の温度で3時間の間保持することにより部分的に圧密化して、部分的に圧密化されたスートブランク12を形成し、次いでスートブランク12を950℃で、さらに4時間の間保持した。部分的圧密化後の、スートブランク12の表面密度は1.2g/cm3であり、バルクブランクの密度は1.04g/cm3であった。部分的に圧密化されたスートブランク12に、4つの孔20を正方形構成で開け、この各穿孔20はスートブランク12の中心軸32から1インチ(2.54cm)であり、かつ他の穿孔20から1インチ(2.54cm)であった。各穿孔20の直径は11mmであり、またスートブランク12内に3.5インチ(8.89cm)の深さで開けられた。1つのシングルモードファイバのコアケーン22が各穿孔20の中に挿入され、このとき各コアケーン22の直径は10mmであった。ガラスロッド42を、不活性ロッドを取り除くことによって残された中心孔30の中に挿入して、中心孔30を塞いだ。スートブランク12、コアケーン22、およびガラスロッド42を、圧密化のために焼結炉内に置いた。圧密化プロセスは、60分のヘリウムパージと、その後の120分の塩素乾燥プロセスを含むものであった。乾燥が一旦完了すると、60分間で1125℃への初期傾斜が開始された。1125℃への初期傾斜の後に、焼結炉の温度を1450℃に設定し、このとき下方供給速度は60分間、4.5mm/分であった。1450℃で60分間保持した後に、圧密化された母材14を焼結炉の高温ゾーンから外へと上昇させ、さらに950℃の温度で1時間保持し、次いで焼結炉から引き出して冷却した。母材14を次いでリドロー炉内で、直径15mmのマルチコア光ファイバ16へと引き伸ばした。
請求項の精神または範囲から逸脱することなく、種々の改変および変形が作製可能であることは当業者には明らかであろう。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
光ファイバを形成する方法において、
上部表面と、0.8g/cm3から1.6g/cm3の間のバルク密度とを有している、シリカベース被覆材料のスートブランクを形成するステップ、
前記スートブランクの前記上部表面に、少なくとも1つの孔を開けるステップ、
前記少なくとも1つの孔の中に、少なくとも1つのコアケーン部材を位置付けるステップ、
前記スートブランクおよび前記少なくとも1つのスートコアケーン部材を圧密化して、圧密化された母材を形成するステップ、および、
前記圧密化された母材を、光ファイバへと線引きするステップ、
を含むことを特徴とする方法。
実施形態2
前記スートブランクを形成するステップが、
シリカベーススート材料を、既定のスート体へと圧縮するステップ、および、
0.8g/cm3から1.6g/cm3の間のバルク密度を有している前記スートブランクを形成するよう、前記圧縮されたスート体を部分的に圧密化するステップ、
を含むことを特徴とする実施形態1記載の方法。
実施形態3
前記圧縮されたスート体を部分的に圧密化するステップが、前記圧縮されたスート材料を、前記スート材料のための標準の焼結温度よりも低い温度に曝すステップを含むことを特徴とする実施形態2記載の方法。
実施形態4
前記スートブランクを形成するステップが、
少なくとも1つのロッドの周りにシリカベーススート材料を適用して、スート体を生成するステップ、および、
0.8g/cm3から1.6g/cm3の間のバルク密度を有している前記スートブランクを形成するよう、前記スート体を部分的に圧密化するステップ、
を含むことを特徴とする実施形態1記載の方法。
実施形態5
前記スートブランクの前記バルク密度が1.0g/cm3から1.5g/cm3であることを特徴とする実施形態1から4いずれか1項記載の方法。
実施形態6
前記スートブランクの前記バルク密度が1.2g/cm3から1.5g/cm3であることを特徴とする実施形態1から5いずれか1項記載の方法。
実施形態7
前記スートブランクの前記バルク密度が1.2g/cm3であることを特徴とする実施形態1から6いずれか1項記載の方法。
実施形態8
前記スートブランクの、直径が40mmから200mmであり、かつ長さが10cmから100cmであることを特徴とする実施形態1から7いずれか1項記載の方法。
実施形態9
前記少なくとも1つの孔を開けるステップが、5mmから20mmの直径を有する少なくとも1つの孔を開けるステップを含むことを特徴とする実施形態1から8いずれか1項記載の方法。
実施形態10
前記スートブランクの前記上部表面に少なくとも1つの孔を開けるステップが、4つの孔を正方形パターンで開けるステップを含むことを特徴とする実施形態1から9いずれか1項記載の方法。
実施形態11
前記スートブランクの前記上部表面に少なくとも1つの孔を開けるステップが、7つの孔を六方格子パターンで開けるステップを含むことを特徴とする実施形態1から10いずれか1項記載の方法。
実施形態12
前記スートブランクの前記上部表面に少なくとも1つの孔を開けるステップが、12の孔を環状パターンで開けるステップを含むことを特徴とする実施形態1から11いずれか1項記載の方法。
実施形態13
スートブランク形成方法において、
シリカベーススート材料を用いてスート体を形成するステップ、
上部表面と、0.8g/cm3から1.6g/cm3の間のバルク密度とを有している、前記スートブランクを形成するよう、前記スート体を部分的に圧密化するステップ、および、
前記スートブランクの前記上部表面内へと、複数の孔を開けるステップ、
を含むことを特徴とする方法。
実施形態14
前記スート体を形成するステップが、外付け蒸着法と、気相軸付け法と、スート加圧プロセスとから成る群から選択された、少なくとも1つのプロセスを実行するステップを含むことを特徴とする実施形態13記載のスートブランク形成方法。
実施形態15
前記スートブランクを形成するよう前記スート体を部分的に圧密化するステップが、前記スート体を標準の焼結ピーク温度よりも低い温度で、バルク密度が1.0g/cm3から1.5g/cm3の間でありかつ表面密度が1.6g/cm3未満であるスートブランクを形成するのに十分な時間の間、保持するステップを含むことを特徴とする実施形態13または14記載のスートブランク形成方法。
実施形態16
前記スート体を、前記標準の焼結ピーク温度よりも低い温度で、バルク密度が1.2g/cm3から1.5g/cm3の間でありかつ表面密度が1.6g/cm3未満であるスートブランクを形成するのに十分な時間の間、保持することを特徴とする実施形態15記載のスートブランク形成方法。
実施形態17
前記スート体を形成するステップが、2,500gから3,500gの間の前記スート材料を用いて前記スート体を形成するステップを含むことを特徴とする実施形態13から16いずれか1項記載のスートブランク形成方法。
実施形態18
前記スート体を部分的に圧密化するステップが、前記スート体をヘリウム雰囲気中で700℃から1300℃の間の温度まで加熱するステップを含むことを特徴とする実施形態13から17いずれか1項記載のスートブランク形成方法。
実施形態19
マルチコア光ファイバを形成する方法において、
シリカベース材料のスート体を形成するステップ、
前記スート体を予備圧密化して、0.8g/cm3から1.6g/cm3の間のバルク密度と、表面密度が1.6g/cm3未満の上部表面と、上部表面の反対側の下部表面とを有する、スートブランクを形成するステップ、
前記下部表面に到達しない複数の孔を、前記上部表面に開けるステップ、
複数のコアケーンを、開けられた前記複数の孔の中に挿入するステップ、
圧密化された母材を形成するよう、前記スートブランクおよび前記コアケーンを、圧密化するステップ、および、
前記圧密化された母材を、マルチコア光ファイバへと線引きするステップ、
を含むことを特徴とする方法。
実施形態20
前記スートブランクを前記圧密化するステップが、
ヘリウム雰囲気下で前記スートブランクをパージするステップ、
前記スートブランクを、塩素存在下で乾燥させるステップ、
第1の保持温度まで、前記スートブランクの周りに温度傾斜を与えるステップ、
前記スートブランクの周りの温度を、第2の焼結温度まで増加させるステップ、および、
前記スートブランクの周りの温度を、第3の冷却温度まで減少させるステップ、
を含むことを特徴とする実施形態19記載の方法。
12 スートブランク
14 母材
16 光ファイバ
20、40 孔
22 コアケーン
24 上部表面
26 下部表面

Claims (5)

  1. 光ファイバを形成する方法において、
    上部表面と、0.8g/cm3から1.6g/cm3の間のバルク密度とを有している、シリカベース被覆材料のスートブランクを形成するステップ、
    前記スートブランクの前記上部表面に、穿孔して少なくとも1つの孔を開けるステップであって、当該孔は前記上部表面に対向する下部表面まで延在しない深さを有する、ステップ、
    前記少なくとも1つの孔の中に、少なくとも1つのコアケーン部材を位置付けるステップ、
    前記スートブランクおよび前記少なくとも1つのコアケーン部材を圧密化して、圧密化された母材を形成するステップ、および、
    前記圧密化された母材を、光ファイバへと線引きするステップ、
    を含むことを特徴とする方法。
  2. 前記スートブランクを形成するステップが、
    少なくとも1つのロッドの周りにシリカベーススート材料を適用して、スート体を生成するステップ、および、
    0.8g/cm3から1.6g/cm3の間のバルク密度を有している前記スートブランクを形成するよう、前記スート体を部分的に圧密化するステップ、
    を含むことを特徴とする請求項1記載の方法。
  3. 前記スートブランクを形成するステップが、
    シリカベーススート材料を、既定のスート体へと圧縮するステップ、および、
    0.8g/cm3から1.6g/cm3の間のバルク密度を有している前記スートブランクを形成するよう、前記圧縮されたスート体を部分的に圧密化するステップ、
    を含むことを特徴とする請求項1記載の方法。
  4. 前記圧縮されたスート体を部分的に圧密化するステップが、前記圧縮されたスート材料を、前記スート材料のための標準の焼結温度よりも低い温度に曝すステップを含むことを特徴とする請求項3記載の方法。
  5. 前記スートブランクの前記バルク密度が1.0g/cm3から1.5g/cm3であることを特徴とする請求項1から4いずれか1項記載の方法。
JP2020068049A 2014-04-08 2020-04-06 スート母材およびガラス光ファイバの作製方法 Active JP6910495B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/247,894 US20150284286A1 (en) 2014-04-08 2014-04-08 Method for making preforms and optical fibers
US14/247,894 2014-04-08
JP2016561661A JP6732659B2 (ja) 2014-04-08 2015-04-02 スート母材およびガラス光ファイバの作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016561661A Division JP6732659B2 (ja) 2014-04-08 2015-04-02 スート母材およびガラス光ファイバの作製方法

Publications (2)

Publication Number Publication Date
JP2020100563A JP2020100563A (ja) 2020-07-02
JP6910495B2 true JP6910495B2 (ja) 2021-07-28

Family

ID=52988454

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016561661A Active JP6732659B2 (ja) 2014-04-08 2015-04-02 スート母材およびガラス光ファイバの作製方法
JP2020068049A Active JP6910495B2 (ja) 2014-04-08 2020-04-06 スート母材およびガラス光ファイバの作製方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016561661A Active JP6732659B2 (ja) 2014-04-08 2015-04-02 スート母材およびガラス光ファイバの作製方法

Country Status (5)

Country Link
US (1) US20150284286A1 (ja)
EP (1) EP3129328B1 (ja)
JP (2) JP6732659B2 (ja)
CN (1) CN106458695B (ja)
WO (1) WO2015157073A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10053386B2 (en) * 2014-04-25 2018-08-21 Corning Incorporated Method for forming optical fiber and preforms
US11733449B2 (en) 2020-08-10 2023-08-22 Corning Incorporated Ultra-low-loss coupled-core multicore optical fibers
EP4212488A1 (de) 2022-01-18 2023-07-19 Heraeus Quarzglas GmbH & Co. KG Verfahren und halbzeug zur herstellung einer mehrkernfaser
EP4212489A1 (de) 2022-01-18 2023-07-19 Heraeus Quarzglas GmbH & Co. KG Verfahren und halbzeug zur herstellung einer mehrkernfaser

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201633A (ja) * 1985-03-04 1986-09-06 Sumitomo Electric Ind Ltd マルチコア光フアイバの製造方法
JPS61251534A (ja) * 1985-05-01 1986-11-08 Sumitomo Electric Ind Ltd マルチコア光フアイバの製造方法
US4767430A (en) * 1985-08-15 1988-08-30 Corning Glass Works Optical fiber-device interconnection and method
JP2599511B2 (ja) * 1991-03-28 1997-04-09 国際電信電話株式会社 希土類元素ド−プ石英ガラスの製造方法
US5149349A (en) * 1991-07-11 1992-09-22 Corning Incorporated Method of making polarization retaining fiber with an elliptical core, with collapsed apertures
AU2003226893A1 (en) * 2002-03-18 2003-09-29 Crystal Fibre A/S Preform, method of its production, and use thereof in production of microstructured optical fibres
US20070062337A1 (en) * 2003-06-30 2007-03-22 Guojun Dai Method and apparatus for drilling preforms for holey optical fibers
US8468852B2 (en) * 2009-12-03 2013-06-25 Corning Incorporated Soot pressing for optical fiber overcladding
JP5735468B2 (ja) * 2012-08-31 2015-06-17 株式会社フジクラ 光ファイバおよびその製造方法、光ファイバ母材の製造方法
JP6036386B2 (ja) * 2013-02-20 2016-11-30 住友電気工業株式会社 マルチコア光ファイバ母材製造方法

Also Published As

Publication number Publication date
EP3129328B1 (en) 2020-06-17
WO2015157073A1 (en) 2015-10-15
EP3129328A1 (en) 2017-02-15
CN106458695A (zh) 2017-02-22
JP6732659B2 (ja) 2020-07-29
JP2017510539A (ja) 2017-04-13
JP2020100563A (ja) 2020-07-02
CN106458695B (zh) 2019-03-01
US20150284286A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6910495B2 (ja) スート母材およびガラス光ファイバの作製方法
JP6764346B2 (ja) 光ファイバおよびプリフォーム形成方法
US4561871A (en) Method of making polarization preserving optical fiber
US20050084222A1 (en) Preform for producing an optical fiber and method therefor
US20100104869A1 (en) Photonic Crystal Fibers and Methods for Manufacturing the Same
EP2150502B1 (en) Method to produce microstructured optical fibers comprising voids
JP2013177269A (ja) 光ファイバ母材の製造方法
US20160075590A1 (en) Production method of optical fiber preform, and production method of optical fiber
WO2003078338A2 (en) Preform, method of its production, and use thereof in production of microstructured optical fibres
EP0738239B1 (en) Optical preform with controlled and deeply placed radial bonded interface layer
JP6151310B2 (ja) 光ファイバ用母材の製造方法、及び、光ファイバの製造方法
EP2166385A2 (en) Microstructure optical fiber and method for making same
JP4245889B2 (ja) 光ファイバ母材の作製方法
JP6198225B2 (ja) フォトニッククリスタル光ファイバ母材の製造方法
JP5644692B2 (ja) 光ファイバ母材製造方法
JP5835823B1 (ja) マルチコア光ファイバ母材の製造方法
CN107406296B (zh) 用于将芯杆插入到具有间隔件的外包覆管中的方法
JP6136164B2 (ja) 光ファイバおよびその製造方法
JP2019081682A (ja) 光ファイバの製造方法
JP2007070168A (ja) ガラス母材の製造方法
US20190300420A1 (en) Optical fiber manufacturing method
JP2005320197A (ja) 光ファイバ母材の製造装置、光ファイバ母材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6910495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150