JP6910171B2 - 電気化学素子の製造方法および電気化学素子 - Google Patents

電気化学素子の製造方法および電気化学素子 Download PDF

Info

Publication number
JP6910171B2
JP6910171B2 JP2017056732A JP2017056732A JP6910171B2 JP 6910171 B2 JP6910171 B2 JP 6910171B2 JP 2017056732 A JP2017056732 A JP 2017056732A JP 2017056732 A JP2017056732 A JP 2017056732A JP 6910171 B2 JP6910171 B2 JP 6910171B2
Authority
JP
Japan
Prior art keywords
layer
electrode layer
electrochemical element
metal substrate
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017056732A
Other languages
English (en)
Other versions
JP2018160369A (ja
Inventor
越後 満秋
満秋 越後
大西 久男
久男 大西
津田 裕司
裕司 津田
享平 真鍋
享平 真鍋
和徹 南
和徹 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017056732A priority Critical patent/JP6910171B2/ja
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to US16/495,231 priority patent/US20200014051A1/en
Priority to EP18771828.3A priority patent/EP3605693A4/en
Priority to PCT/JP2018/011442 priority patent/WO2018174168A1/ja
Priority to KR1020237029666A priority patent/KR20230129626A/ko
Priority to CA3057436A priority patent/CA3057436A1/en
Priority to KR1020197024330A priority patent/KR20190129841A/ko
Priority to CN201880019875.2A priority patent/CN110431698B/zh
Publication of JP2018160369A publication Critical patent/JP2018160369A/ja
Application granted granted Critical
Publication of JP6910171B2 publication Critical patent/JP6910171B2/ja
Priority to US18/095,636 priority patent/US20230147978A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、電気化学素子の製造方法および電気化学素子に関する。
従来の金属支持型の固体酸化物形燃料電池(SOFC)では、Fe−Cr系合金粉末を焼結して得た多孔質金属支持体の上に、アノード電極層を形成し、その上に電解質層を形成してSOFCを得ている。
Jong-Jin Choi and Dong-Soo Park, "Preparation of Metal-supported SOFC using Low Temperature Ceramic Coating Process", Proceedings of 11th European SOFC & SOE Forum, A1502, Chapter 09 - Session B15 - 14/117- 20/117 (1-4 July 2014)
しかしながら、非特許文献1に示されるように、低温域でジルコニア系電解質を形成するには、1300℃という高温で焼成処理したアノード電極層を準備する必要があった。このため、金属支持体の損傷が避けられず、また、金属支持体からセルを被毒する元素の拡散を防止するための高価なLST(LaSrTiO)拡散防止層を1200℃の焼成処理によって設ける必要が生じており、性能や信頼性・耐久性、加えてコストの点で問題があった。
本発明は上述の課題に鑑みてなされたものであり、その目的は、性能・信頼性・耐久性に優れ、かつ、低コストな電気化学素子を提供することを目的とする。
〔構成1〕
上記目的を達成するための電気化学素子の製造方法の特徴構成は、金属支持体と、前記金属支持体の上に形成された電極層とを有する電気化学素子の製造方法であって、前記金属支持体の上に表面粗さ(Ra)が1.0μm以下である領域を有する電極層を形成する電極層形成工程と、前記電極層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む点にある。
上記の特徴構成によれば、低温域での電解質層形成プロセスに適した電極層となり、高価なLST拡散防止層を設けることなく、金属支持体上に電極層と電解質層を有する電気化学素子を形成することが可能となる。また電極層と電解質層の密着強度が高く、信頼性・耐久性に優れた電気化学素子を製造することができる。
〔構成2〕
上記目的を達成するための電気化学素子の製造方法の特徴構成は、金属支持体と、前記金属支持体の上に形成された電極層と、前記電極層の上に形成された中間層とを有する電気化学素子の製造方法であって、前記電極層の上に表面粗さ(Ra)が1.0μm以下である領域を有する中間層を形成する中間層形成工程と、前記中間層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む点にある。
上記の特徴構成によれば、低温域での電解質層形成プロセスに適した中間層となり、高価なLST拡散防止層を設けることなく、金属支持体上に電極層と中間層と電解質層を有する電気化学素子を形成することが可能となる。また中間層と電解質層の密着強度が高く、信頼性・耐久性に優れた電気化学素子を製造することができる。
〔構成3〕
本発明に係る電気化学素子の製造方法の別の特徴構成は、前記電解質層が安定化ジルコニアを含有する点にある。
上記の特徴構成によれば、電解質層が安定化ジルコニアを含有するので、例えば、約650℃以上の高温域で使用可能な、性能に優れた電気化学素子を実現できる。
〔構成4〕
本発明に係る電気化学素子の特徴構成は、金属支持体の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する電極層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した点にある。
上記の特徴構成によれば、低温域での電解質層形成プロセスに適した電極層となり、高価なLST拡散防止層を設けることなく、金属支持体上に電極層と電解質層を有する電気化学素子を形成することが可能となる。また電極層と電解質層の密着強度が高く、信頼性・耐久性に優れた電気化学素子を構成することができる。
〔構成5〕
本発明に係る電気化学素子の特徴構成は、金属支持体上の電極層の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する中間層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した点にある。
上記の特徴構成によれば、低温域での電解質層形成プロセスに適した中間層となり、高価なLST拡散防止層を設けることなく、金属支持体上に電極層と中間層と電解質層を有する電気化学素子を形成することが可能となる。また中間層と電解質層の密着強度が高く、信頼性・耐久性に優れた電気化学素子を構成することができる。
電気化学素子の構成を示す概略図 電気化学素子の断面の電子顕微鏡写真
<第1実施形態>
以下、図1を参照しながら、本実施形態に係る電気化学素子Eおよび固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)について説明する。電気化学素子Eは、例えば、水素を含む燃料ガスと空気の供給を受けて発電する固体酸化物形燃料電池の構成要素として用いられる。なお以下、層の位置関係などを表す際、例えば電解質層4から見て対極電極層6の側を「上」または「上側」、電極層2の側を「下」または「下側」という場合がある。また、金属基板1における電極層2が形成されている側の面を「表側」、反対側の面を「裏側」という場合がある。
(電気化学素子)
電気化学素子Eは、図1に示される通り、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された中間層3と、中間層3の上に形成された電解質層4とを有する。そして電気化学素子Eは、更に、電解質層4の上に形成された反応防止層5と、反応防止層5の上に形成された対極電極層6とを有する。つまり対極電極層6は電解質層4の上に形成され、反応防止層5は電解質層4と対極電極層6との間に形成されている。電極層2は多孔質であり、電解質層4は緻密である。
(金属基板)
金属基板1は、電極層2、中間層3および電解質層4等を支持して電気化学素子Eの強度を保つ、支持体としての役割を担う。金属基板1の材料としては、電子伝導性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス、オーステナイト系ステンレス、ニッケル基合金などが用いられる。特に、クロムを含む合金が好適に用いられる。なお本実施形態では、金属支持体として板状の金属基板1が用いられるが、金属支持体としては他の形状、例えば箱状、円筒状などの形状も可能である。
なお、金属基板1は、支持体として電気化学素子を形成するのに充分な強度を有すれば良く、例えば、0.1mm〜2mm程度、好ましくは0.1mm〜1mm程度、より好ましくは0.1mm〜0.5mm程度の厚みのものを用いることができる。
金属基板1は、表側の面と裏側の面とを貫通して設けられる複数の貫通孔1aを有する。なお、例えば、貫通孔1aは、機械的、化学的あるいは光学的穿孔加工などにより、金属基板1に設けることができる。貫通孔1aは、金属基板1の裏側の面から表側の面へ気体を透過させる機能を有する。金属基板1に気体透過性を持たせるために、多孔質金属を用いることも可能である。例えば、金属基板1は、焼結金属や発泡金属等を用いることもできる。
金属基板1の表面に、拡散抑制層としての金属酸化物層1bが設けられる。すなわち、金属基板1と後述する電極層2との間に、拡散抑制層が形成されている。金属酸化物層1bは、金属基板1の外部に露出した面だけでなく、電極層2との接触面(界面)および貫通孔1aの内側の面にも設けられる。この金属酸化物層1bにより、金属基板1と電極層2との間の元素相互拡散を抑制することができる。例えば、金属基板1としてクロムを含有するフェライト系ステンレスを用いた場合は、金属酸化物層1bが主にクロム酸化物となる。そして、金属基板1のクロム原子等が電極層2や電解質層4へ拡散することを、クロム酸化物を主成分とする金属酸化物層1bが抑制する。金属酸化物層1bの厚さは、拡散防止性能の高さと電気抵抗の低さを両立させることのできる厚みであれば良い。例えばサブミクロンオーダーであることが好ましく、具体的には、平均的な厚さが0.3μm以上0.7μm以下程度であることがより好ましい。また、最小厚さは約0.1μm以上であることがより好ましい。
また、最大厚さが約1.1μm以下であることが好ましい。
金属酸化物層1bは種々の手法により形成されうるが、金属基板1の表面を酸化させて金属酸化物とする手法が好適に利用される。また、金属基板1の表面に、金属酸化物層1bをスパッタリング法やPLD法等のPVD法、CVD法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、金属酸化物層1bは導電性の高いスピネル相などを含んでも良い。
金属基板1としてフェライト系ステンレス材を用いた場合、電極層2や電解質層4の材料として用いられるYSZ(イットリア安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近い。従って、低温と高温の温度サイクルが繰り返された場合も電気化学素子Eがダメージを受けにくい。よって、長期耐久性に優れた電気化学素子Eを実現できるので好ましい。
(電極層)
電極層2は、図1に示すように、金属基板1の表側の面であって貫通孔1aが設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは、5μm〜50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通孔1aが設けられた領域の全体が、電極層2に覆われている。つまり、貫通孔1aは金属基板1における電極層2が形成された領域の内側に形成されている。換言すれば、全ての貫通孔1aが電極層2に面して設けられている。
電極層2の材料としては、例えばNiO−GDC、Ni−GDC、NiO−YSZ、Ni−YSZ、CuO−CeO2、Cu−CeO2などの複合材を用いることができる。これらの例では、GDC、YSZ、CeO2を複合材の骨材と呼ぶことができる。なお、電極層2は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1100℃より高い高温域での焼成を用いずに、良好な電極層2が得られる。そのため、金属基板1を傷めることなく、また、金属基板1と電極層2との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子を実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
電極層2は、気体透過性を持たせるため、その内部および表面に複数の細孔を有する。
すなわち電極層2は、多孔質な層として形成される。電極層2は、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1−空孔率)と表すことができ、また、相対密度と同等である。
(中間層)
中間層3は、図1に示すように、電極層2を覆った状態で、電極層2の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは4μm〜25μm程度とすることができる。このような厚さにすると、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層3の材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
中間層3は、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃より高い高温域での焼成を用いずに中間層3が得られる。そのため、金属基板1を傷めることなく、金属基板1と電極層2との元素相互拡散を抑制することができ、耐久性に優れた電気化学素子Eを実現できる。
また、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
中間層3としては、酸素イオン(酸化物イオン)伝導性を有することが好ましい。また、酸素イオン(酸化物イオン)と電子との混合伝導性を有すると更に好ましい。これらの性質を有する中間層3は、電気化学素子Eへの適用に適している。
(中間層の表面粗さ(Ra))
本実施形態では中間層3は、表面粗さ(Ra)が1.0μm以下である領域を有する。当該領域は、中間層3の表面全体でもよいし、一部の領域でもよい。中間層3が、表面粗さ(Ra)が1.0μm以下である領域を有することにより、中間層3と電解質層4の密着強度が高く、信頼性・耐久性に優れた電気化学素子Eを構成することができる。なお、中間層3は、表面粗さ(Ra)が0.5μm以下である領域を有するとより好ましく、0.3μm以下である領域を有すると更に好ましい。これは中間層3の表面粗さの平滑性が高くなる程、中間層3と電解質層4の密着強度がより高く、信頼性・耐久性に優れた電気化学素子Eを構成できるためである。
(電解質層)
電解質層4は、図1に示すように、電極層2および中間層3を覆った状態で、中間層3の上に薄層の状態で形成される。詳しくは電解質層4は、図1に示すように、中間層3の上と金属基板1の上とにわたって(跨って)設けられる。このように構成し、電解質層4を金属基板1に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
また電解質層4は、図1に示すように、金属基板1の表側の面であって貫通孔1aが設けられた領域より大きな領域に設けられる。つまり、貫通孔1aは金属基板1における電解質層4が形成された領域の内側に形成されている。
また電解質層4の周囲においては、電極層2および中間層3からのガスのリークを抑制することができる。説明すると、電気化学素子EをSOFCの構成要素として用いる場合、SOFCの作動時には、金属基板1の裏側から貫通孔1aを通じて電極層2へガスが供給される。電解質層4が金属基板1に接している部位においては、ガスケット等の別部材を設けることなく、ガスのリークを抑制することができる。なお、本実施形態では電解質層4によって電極層2の周囲をすべて覆っているが、電極層2および中間層3の上部に電解質層4を設け、周囲にガスケット等を設ける構成としてもよい。
電解質層4の材料としては、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)、LSGM(ストロンチウム・マグネシウム添加ランタンガレート)等を用いることができる。特にジルコニア系のセラミックスが好適に用いられる。電解質層4をジルコニア系セラミックスとすると、電気化学素子Eを用いたSOFCの稼働温度をセリア系セラミックスに比べて高くすることができる。例えば電気化学素子EをSOFCに用いる場合、電解質層4の材料としてYSZのような650℃程度以上の高温域でも高い電解質性能を発揮できる材料を用い、システムの原燃料に都市ガスやLPG等の炭化水素系の原燃料を用い、原燃料を水蒸気改質等によってSOFCのアノードガスとするシステム構成とすると、SOFCのセルスタックで生じる熱を原燃料ガスの改質に用いる高効率なSOFCシステムを構築することができる。
電解質層4は、エアロゾルデポジション法により形成することが好ましい。このような、低温域で使用可能な成膜プロセスにより、例えば1100℃を越える高温域での焼成を用いずに、緻密で気密性およびガスバリア性の高い電解質層4が得られる。そのため、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制することができ、性能・耐久性に優れた電気化学素子Eを実現できる。
電解質層4は、アノードガスやカソードガスのガスリークを遮蔽し、かつ、高いイオン伝導性を発現するために、緻密に構成される。電解質層4の緻密度は90%以上が好ましく、95%以上であるとより好ましく、98%以上であると更に好ましい。電解質層4は、均一な層である場合は、その緻密度が95%以上であると好ましく、98%以上であるとより好ましい。また、電解質層4が、複数の層状に構成されているような場合は、そのうちの少なくとも一部が、緻密度が98%以上である層(緻密電解質層)を含んでいると好ましく、99%以上である層(緻密電解質層)を含んでいるとより好ましい。このような緻密電解質層が電解質層の一部に含まれていると、電解質層が複数の層状に構成されている場合であっても、緻密で気密性およびガスバリア性の高い電解質層を形成しやすくできるからである。
(反応防止層)
反応防止層5は、電解質層4の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは4μm〜25μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。反応防止層5の材料としては、電解質層4の成分と対極電極層6の成分との間の反応を防止できる材料であれば良い。例えばセリア系材料等が用いられる。反応防止層5を電解質層4と対極電極層6との間に導入することにより、対極電極層6の構成材料と電解質層4の構成材料との反応が効果的に抑制され、電気化学素子Eの性能の長期安定性を向上できる。反応防止層5の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やエアロゾルデポジション法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(対極電極層)
対極電極層6は、電解質層4もしくは反応防止層5の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは、5μm〜50μmとすることができる。このような厚さにすると、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。対極電極層6の材料としては、例えば、LSCF、LSM等の複合酸化物を用いることができる。以上の材料を用いて構成される対極電極層6は、カソードとして機能する。
なお、対極電極層6の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(固体酸化物形燃料電池)
以上のように電気化学素子Eを構成することで、電気化学素子Eを固体酸化物形燃料電池の発電セルとして用いることができる。例えば、金属基板1の裏側の面から貫通孔1aを通じて水素を含む燃料ガスを電極層2へ供給し、電極層2の対極となる対極電極層6へ空気を供給し、例えば、600℃以上850℃以下の温度で作動させる。そうすると、対極電極層6において空気に含まれる酸素O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層4を通って電極層2へ移動する。電極層2においては、供給された燃料ガスに含まれる水素H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。以上の反応により、電極層2と対極電極層6との間に起電力が発生する。この場合、電極層2はSOFCの燃料極(アノード)として機能し、対極電極層6は空気極(カソード)として機能する。
(電気化学素子の製造方法)
次に、本実施形態に係る電気化学素子Eの製造方法について説明する。
(電極層形成ステップ)
電極層形成ステップでは、金属基板1の表側の面の貫通孔1aが設けられた領域より広い領域に電極層2が薄膜の状態で形成される。金属基板1の貫通孔はレーザー加工等によって設けることができる。電極層2の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
電極層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。
まず、電極層2の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作製し、金属基板1の表側の面に塗布する。そして電極層2を圧縮成形し(電極層平滑化工程)、1100℃以下で焼成する(電極層焼成工程)。電極層2の圧縮成形は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、電極層2の焼成は、800℃以上1100℃以下の温度で行うと好適である。また、電極層平滑化工程と電極層焼成工程の順序を入れ替えることもできる。
なお、中間層を有する電気化学素子を形成する場合では、電極層平滑化工程や電極層焼成工程を省いたり、電極層平滑化工程や電極層焼成工程を後述する中間層平滑化工程や中間層焼成工程に含めることもできる。
なお、電極層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
(拡散抑制層形成ステップ)
上述した電極層形成ステップにおける焼成工程時に、金属基板1の表面に金属酸化物層1b(拡散抑制層)が形成される。なお、上記焼成工程に、焼成雰囲気を酸素分圧が低い雰囲気条件とする焼成工程が含まれていると元素の相互拡散抑制効果が高く、抵抗値の低い良質な金属酸化物層1b(拡散抑制層)が形成されるので好ましい。電極層形成ステップを、焼成を行わないコーティング方法とする場合を含め、別途の拡散抑制層形成ステップを含めても良い。いずれにおいても、金属基板1の損傷を抑制可能な1100℃以下の処理温度で実施することが望ましい。また、後述する中間層形成ステップにおける焼成工程時に、金属基板1の表面に金属酸化物層1b(拡散抑制層)が形成されても良い。
(中間層形成ステップ)
中間層形成ステップでは、電極層2を覆う形態で、電極層2の上に中間層3が薄層の状態で形成される。中間層3の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
中間層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。
まず、中間層3の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作製し、金属基板1の表側の面に塗布する。そして中間層3を圧縮成形し(中間層平滑化工程)、1100℃以下で焼成する(中間層焼成工程)。中間層3の圧縮成形は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、中間層3の焼成は、800℃以上1100℃以下の温度で行うと好適である。このような温度であると、金属基板1の損傷・劣化を抑制しつつ、強度の高い中間層3を形成できるためである。また、中間層3の焼成を1050℃以下で行うとより好ましく、1000℃以下で行うと更に好ましい。これは、中間層3の焼成温度を低下させる程に、金属基板1の損傷・劣化をより抑制しつつ、電気化学素子Eを形成できるからである。なお、中間層平滑化工程と中間層焼成工程の順序を入れ替えることもできる。
なお、中間層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
(電解質層形成ステップ)
電解質層形成ステップでは、電極層2および中間層3を覆った状態で、電解質層4が中間層3の上に薄層の状態で形成される。
緻密で気密性およびガスバリア性能の高い、良質な電解質層4を1100℃以下の温度域で形成するためには、電解質層形成ステップをエアロゾルデポジション法で行うことが望ましい。その場合、エアロゾル化した電解質層4の材料粉末を金属基板1上の中間層3に向けて噴射し、電解質層4を形成する。
(反応防止層形成ステップ)
反応防止層形成ステップでは、反応防止層5が電解質層4の上に薄層の状態で形成される。反応防止層5の形成は、上述したように、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
(対極電極層形成ステップ)
対極電極層形成ステップでは、対極電極層6が反応防止層5の上に薄層の状態で形成される。対極電極層6の形成は、上述したように、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
以上の様にして、電気化学素子Eを製造することができる。すなわち本実施形態に係る電気化学素子の製造方法は、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された中間層3と、中間層3の上に電解質層4とを有する電気化学素子の製造方法であって、電極層2の上に表面粗さ(Ra)が1.0μm以下である中間層3を形成する中間層形成工程と、
中間層3の上にエアロゾル化した金属酸化物粉末を噴射して電解質層4を形成する電解質層形成工程とを含む。
なお電気化学素子Eにおいて、中間層3と反応防止層5とは、何れか一方、あるいは両方を備えない形態とすることも可能である。すなわち、電極層2と電解質層4とが接触して形成される形態、あるいは電解質層4と対極電極層6とが接触して形成される形態も可能である。この場合に上述の製造方法では、中間層形成ステップ、反応防止層形成ステップが省略される。なお、他の層を形成するステップを追加したり、同種の層を複数積層したりすることも可能であるが、いずれの場合であっても、1100℃以下の温度で行うことが望ましい。
<実施例>
厚さ0.3mm、直径25mmの円形のcrofer22APUの金属板に対して、中心から半径2.5mmの領域にレーザー加工により貫通孔1aを複数設けて、金属基板1を作製した。なお、この時、金属基板1の表面の貫通孔1aはレーザー加工により設けた。
次に、60重量%のNiO粉末と40重量%のGDC粉末を混合し、有機バインダーと有機溶媒(分散媒)を加えてペーストを作製した。そのペーストを用いて、金属基板1の中心から半径3mmの領域に電極層2を積層した。なお、電極層2の形成にはスクリーン印刷を用いた。そして電極層2を積層した金属基板1に対して、950℃で焼成処理を行った(電極層形成ステップ、拡散抑制層形成ステップ)。
次に、GDCの微粉末に有機バインダーと有機溶媒(分散媒)を加えてペーストを作製した。そのペーストを用いて、スクリーン印刷により、電極層2を積層した金属基板1の中心から半径5mmの領域に中間層3を積層した。次に、中間層3を積層した金属基板1に対して、300MPaの圧力でCIP成形した後、1000℃で焼成処理を行うことで、表面が平坦な中間層3を形成した(中間層形成ステップ)。
以上のステップで得られた電極層2の厚さは約20μmであり、中間層3の厚さは約10μmであった。また、このように電極層2と中間層3を積層した状態での金属基板1のHeリーク量は、0.2MPaの圧力下で11.5mL/分・cm2であった。
続いて、モード径が約0.7μmの8YSZ(イットリア安定化ジルコニア)粉末を13L/minの流量のドライエアでエアロゾル化した。エアロゾルを圧力を250Paとしたチャンバー内に導入して、電極層2と中間層3を積層させた金属基板1に対して、中間層3を覆うように15mm×15mmの範囲で噴射し、電解質層4を形成した(エアロゾルデポジション法)。なお、その際、金属基板1は加熱しなかった(電解質層形成ステップ)。
以上のステップで得られた電解質層4の厚さは3〜4μm程度であった。このように電極層2と中間層3と電解質層4を積層した状態での金属基板1のHeリーク量を0.2MPaの圧力下で測定したところ、Heリーク量は検出下限(1.0mL/分・cm2)未満であった。つまり、中間層3までを積層した状態でのHeリーク量に比べ、電解質層4を積層した状態でのHeリーク量は大幅に小さくなり、検出限界を下回るものとなった。従って、形成された電解質層4は、緻密でガスバリア性能の高い、良質なものであることが確認された。
次に、GDCの微粉末に有機バインダーと有機溶媒(分散媒)を加えてペーストを作製した。そのペーストを用いて、スクリーン印刷により、電気化学素子Eの電解質層4の上に、反応防止層5を形成した。
その後、反応防止層5を形成した電気化学素子Eに対して、1000℃で焼成処理を行うことで、反応防止層5を形成した(反応防止層形成ステップ)。
更に、GDC粉末とLSCF粉末とを混合し、有機バインダーと有機溶媒(分散媒)を加えてペーストを作製した。そのペーストを用いて、スクリーン印刷により、反応防止層5の上に対極電極層6を形成した。最後に、対極電極層6を形成した電気化学素子Eを900℃にて焼成し(対極電極層形成ステップ)、電気化学素子Eを得た。
得られた電気化学素子Eについて、電極層2に水素ガス、対極電極層6に空気を供給して固体酸化物形燃料電池セルとしての開回路電圧(OCV)を測定した。結果は、750℃で1.07Vであった。
また、この電気化学素子Eの断面の電子顕微鏡写真を図2に示す。電子顕微鏡写真から分かるように、中間層3の電解質層に面する側の表面粗さ(Ra)が1.0μm以下の平滑な表面の上に緻密な電解質層が形成され、性能の良好な固体酸化物形燃料電池セル(電気化学素子E)が得られていることが分かる。
同様に作成した5つのサンプルについて、中間層3の表面粗さ(Ra)を、レーザー顕微鏡により測定した。結果を表1に示す。
Figure 0006910171
何れのサンプルも、中間層3の表面粗さ(Ra)は1.0μm以下であり、中間層3の上に良好な電解質層4が形成可能なサンプルである。
次に、中間層3の上に良好な電解質層4が形成できず、750℃で1V以上の開回路電圧(OCV)が得るに至らなかった電解質層4の形成が困難であったサンプルについて、中間層3の表面粗さ(Ra)を、レーザー顕微鏡により測定した。結果を表2に示す。
Figure 0006910171
何れのサンプルも、中間層3の表面粗さ(Ra)は1.0μmより大きな値となった。
以上の結果から、中間層3の表面粗さ(Ra)を1.0μm以下とすることで、良好な電解質層の形成が可能なことが示された。
<第2実施形態>
本実施形態に係る電気化学素子Eは、中間層3を備えない形態、すなわち電極層2と電解質層4とが接触して形成される形態とされる。したがって電気化学素子Eの製造方法では、中間層形成ステップが省略される。
本実施形態に係る電気化学素子Eは、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された電解質層4とを有する。そして電気化学素子Eは、更に、電解質層4の上に形成された反応防止層5と、反応防止層5の上に形成された対極電極層6とを有する。つまり対極電極層6は電解質層4の上に形成され、反応防止層5は電解質層4と対極電極層6との間に形成されている。電極層2は多孔質であり、電解質層4は緻密である。
本実施形態では電極層2は、表面粗さ(Ra)が1.0μm以下である領域を有する。当該領域は、電極層2の表面全体でもよいし、一部の領域でもよい。電極層2が、表面粗さ(Ra)が1.0μm以下である領域を有することにより、電極層2と電解質層4の密着強度が高く、信頼性・耐久性に優れた電気化学素子Eを構成することができる。なお、電極層2は、表面粗さ(Ra)が0.5μm以下である領域を有するとより好ましく、0.3μm以下である領域を有すると更に好ましい。これは電極層2の表面粗さの平滑性が高くなる程、電極層2と電解質層4の密着強度がより高く、信頼性・耐久性に優れた電気化学素子Eを構成できるためである。
(電気化学素子の製造方法)
次に、本実施形態に係る電気化学素子Eの製造方法について説明する。本実施形態に係る電気化学素子Eは中間層3を有さない。したがって本実施形態に係る電気化学素子Eの製造法では、電極層形成ステップ(拡散抑制層形成ステップ)、電解質層形成ステップ、反応防止層形成ステップ、対極電極層形成ステップが、順に行われる。
(電極層形成ステップ)
電極層形成ステップでは、金属基板1の表側の面の貫通孔1aが設けられた領域より広い領域に電極層2が薄膜の状態で形成される。金属基板1の貫通孔はレーザー加工等によって設けることができる。電極層2の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
電極層形成ステップを低温焼成法で行う場合には、具体的には以下の例のように行う。
まず、電極層2の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作製し、金属基板1の表側の面に塗布する。そして電極層2を圧縮成形し(電極層平滑化工程)、1100℃以下で焼成する(電極層焼成工程)。電極層2の圧縮成形は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、電極層2の焼成は、800℃以上1100℃以下の温度で行うと好適である。このような温度であると、金属基板1の損傷・劣化を抑制しつつ、強度の高い電極層2を形成できるためである。また、電極層2の焼成を1050℃以下で行うとより好ましく、1000℃以下で行うと更に好ましい。これは、電極層2の焼成温度を低下させる程に、金属基板1の損傷・劣化をより抑制しつつ、電気化学素子Eを形成できるからである。
なお、電極層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
以上の様にして、電気化学素子Eを製造することができる。すなわち本実施形態に係る電気化学素子の製造方法は、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された電解質層4を有する電気化学素子の製造方法であって、金属基板1の上に表面粗さ(Ra)が1.0μm以下である電極層2を形成する電極層形成工程と、電極層2の上にエアロゾル化した金属酸化物粉末を噴射して電解質層4を形成する電解質層形成工程とを含む。
<実施例>
厚さ0.3mm、直径25mmの円形のcrofer22APUの金属板に対して、中心から半径2.5mmの領域にレーザー加工により貫通孔1aを複数設けて、金属基板1を作製した。なお、この時、金属基板1の表面の貫通孔1aはレーザー加工により設けた。
次に、60重量%のNiO粉末と40重量%のYSZ粉末を混合し、有機バインダーと有機溶媒(分散媒)を加えてペーストを作製した。そのペーストを用いて、金属基板1の中心から半径3mmの領域に電極層2を積層した。なお、電極層2の形成にはスクリーン印刷を用いた。
次に、電極層2を積層した金属基板1に対して、300MPaの圧力でCIP成形した後、1050℃で焼成処理を行った(電極層形成ステップ、拡散抑制層形成ステップ)。
以上のステップで得られた電極層2の厚さは約20μmであった。また、このように電極層2を積層した状態での金属基板1のHeリーク量は、0.1MPaの圧力下で4.3mL/分・cm2であった。
続いて、モード径が約0.7μmの8YSZ(イットリア安定化ジルコニア)粉末を4L/minの流量のドライエアでエアロゾル化した。エアロゾルを圧力を60Paとしたチャンバー内に導入して、電極層2を積層させた金属基板1に対して、電極層2を覆うように15mm×15mmの範囲で噴射し、電解質層4を形成した(エアロゾルデポジション法)。なお、その際、金属基板1は加熱しなかった(電解質層形成ステップ)。
以上のステップで得られた電解質層4の厚さは5〜6μm程度であった。このように電極層2と電解質層4を積層した状態での金属基板1のHeリーク量を0.2MPaの圧力下で測定したところ、Heリーク量は検出下限(1.0mL/分・cm2)未満であった。従って、形成された電解質層4は、緻密でガスバリア性能の高い、良質なものであることが確認された。
次に、GDCの微粉末に有機バインダーと有機溶媒(分散媒)を加えてペーストを作製した。そのペーストを用いて、スクリーン印刷により、電気化学素子Eの電解質層4の上に、反応防止層5を形成した。
その後、反応防止層5を形成した電気化学素子Eに対して、1000℃で焼成処理を行うことで、反応防止層5を形成した(反応防止層形成ステップ)。
更に、GDC粉末とLSCF粉末とを混合し、有機バインダーと有機溶媒を加えてペーストを作製した。そのペーストを用いて、スクリーン印刷により、反応防止層5の上に対極電極層6を形成した。最後に、対極電極層6を形成した電気化学素子Eを900℃にて焼成し(対極電極層形成ステップ)、電気化学素子Eを得た。
得られた電気化学素子Eについて、電極層2に水素ガス、対極電極層6に空気を供給して固体酸化物形燃料電池セルとしての開回路電圧(OCV)を測定した。結果は、750℃で1.05Vであった。
同様に作成した別のサンプルについて、電極層2の表面粗さ(Ra)を、レーザー顕微鏡により測定した。結果を表2に示す。
Figure 0006910171
サンプル6の電極層2の表面粗さ(Ra)は1.0μm以下であり、電極層2の上に良好な電解質層4、反応防止層5、対極電極層6が形成可能なサンプルである。
以上の結果から、電極層2の表面粗さ(Ra)を1.0μm以下とすることで、良好な電解質層の形成が可能なことが示された。
(他の実施形態)
(1)上記の実施形態では、電気化学素子Eを固体酸化物形燃料電池に用いたが、電気化学素子Eは、固体酸化物形電解セルや、固体酸化物を利用した酸素センサ等に利用することもできる。
(2)上記の実施形態では、金属基板1を支持体とする金属支持型の固体酸化物形燃料電池に用いたが、本願は、電極層2もしくは対極電極層6を支持体とする電極支持型の固体酸化物形燃料電池や電解質層4を支持体とする電解質支持型の固体酸化物形燃料電池に利用することもできる。それらの場合は、電極層2もしくは対極電極層6、または、電解質層4を必要な厚さとして、支持体としての機能が得られるようにすることができる。
(3)上記の実施形態では、電極層2の材料として例えばNiO−GDC、Ni−GDC、NiO−YSZ、Ni−YSZ、CuO−CeO2、Cu−CeO2などの複合材を用い、対極電極層6の材料として例えばLSCF、LSM等の複合酸化物を用いた。このように構成された電気化学素子Eは、電極層2に水素ガスを供給して燃料極(アノード)とし、対極電極層6に空気を供給して空気極(カソード)とし、固体酸化物形燃料電池セルとして用いることが可能である。この構成を変更して、電極層2を空気極とし、対極電極層6を燃料極とすることが可能なように、電気化学素子Eを構成することも可能である。すなわち、電極層2の材料として例えばLSCF、LSM等の複合酸化物を用い、対極電極層6の材料として例えばNiO−GDC、Ni−GDC、NiO−YSZ、Ni−YSZ、CuO−CeO2、Cu−CeO2などの複合材を用いる。このように構成した電気化学素子Eであれば、電極層2に空気を供給して空気極とし、対極電極層6に水素ガスを供給して燃料極とし、電気化学素子Eを固体酸化物形燃料電池セルとして用いることができる。
なお、上記の実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能である。また本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
電気化学素子および固体酸化物形燃料電池セルとして利用可能である。
1 :金属基板(金属支持体)
1a :貫通孔
2 :電極層
3 :中間層
4 :電解質層
5 :反応防止層
6 :対極電極層
E :電気化学素子

Claims (5)

  1. 金属支持体と、前記金属支持体の上に形成された電極層とを有する電気化学素子の製造方法であって、
    前記金属支持体の上に表面粗さ(Ra)が1.0μm以下である領域を有する電極層を形成する電極層形成工程と、
    前記電極層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む、電気化学素子の製造方法。
  2. 金属支持体と、前記金属支持体の上に形成された電極層と、前記電極層の上に形成された中間層とを有する電気化学素子の製造方法であって、
    前記電極層の上に表面粗さ(Ra)が1.0μm以下である領域を有する中間層を形成する中間層形成工程と、
    前記中間層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む、電気化学素子の製造方法。
  3. 前記電解質層が安定化ジルコニアを含有する請求項1または2に記載の電気化学素子の製造方法。
  4. 金属支持体の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する電極層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した電気化学素子。
  5. 金属支持体上の電極層の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する中間層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した電気化学素子。
JP2017056732A 2017-03-22 2017-03-22 電気化学素子の製造方法および電気化学素子 Active JP6910171B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2017056732A JP6910171B2 (ja) 2017-03-22 2017-03-22 電気化学素子の製造方法および電気化学素子
EP18771828.3A EP3605693A4 (en) 2017-03-22 2018-03-22 MANUFACTURING PROCESS OF ELECTROCHEMICAL ELEMENT AND ELECTROCHEMICAL ELEMENT
PCT/JP2018/011442 WO2018174168A1 (ja) 2017-03-22 2018-03-22 電気化学素子の製造方法および電気化学素子
KR1020237029666A KR20230129626A (ko) 2017-03-22 2018-03-22 전기 화학 소자의 제조 방법 및 전기 화학 소자
US16/495,231 US20200014051A1 (en) 2017-03-22 2018-03-22 Manufacturing Method for Electrochemical Element and Electrochemical Element
CA3057436A CA3057436A1 (en) 2017-03-22 2018-03-22 Manufacturing method for electrochemical element and electrochemical element
KR1020197024330A KR20190129841A (ko) 2017-03-22 2018-03-22 전기 화학 소자의 제조 방법 및 전기 화학 소자
CN201880019875.2A CN110431698B (zh) 2017-03-22 2018-03-22 电化学元件的制造方法和电化学元件
US18/095,636 US20230147978A1 (en) 2017-03-22 2023-01-11 Manufacturing Method for Electrochemical Element and Electrochemical Element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056732A JP6910171B2 (ja) 2017-03-22 2017-03-22 電気化学素子の製造方法および電気化学素子

Publications (2)

Publication Number Publication Date
JP2018160369A JP2018160369A (ja) 2018-10-11
JP6910171B2 true JP6910171B2 (ja) 2021-07-28

Family

ID=63584465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056732A Active JP6910171B2 (ja) 2017-03-22 2017-03-22 電気化学素子の製造方法および電気化学素子

Country Status (7)

Country Link
US (2) US20200014051A1 (ja)
EP (1) EP3605693A4 (ja)
JP (1) JP6910171B2 (ja)
KR (2) KR20190129841A (ja)
CN (1) CN110431698B (ja)
CA (1) CA3057436A1 (ja)
WO (1) WO2018174168A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618217B2 (en) 2013-10-30 2020-04-14 Branch Technology, Inc. Cellular fabrication and apparatus for additive manufacturing
GB202213357D0 (en) 2022-09-13 2022-10-26 Ceres Ip Co Ltd Electrochemical cell

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997874B2 (ja) * 2002-09-25 2007-10-24 日産自動車株式会社 固体酸化物形燃料電池用単セル及びその製造方法
US20070184322A1 (en) * 2004-06-30 2007-08-09 Hong Huang Membrane electrode assembly in solid oxide fuel cells
JP2007012361A (ja) * 2005-06-29 2007-01-18 Nissan Motor Co Ltd 固体酸化物形燃料電池
JP5041195B2 (ja) * 2005-09-21 2012-10-03 大日本印刷株式会社 固体酸化物形燃料電池
US20070072070A1 (en) * 2005-09-26 2007-03-29 General Electric Company Substrates for deposited electrochemical cell structures and methods of making the same
JP2008086910A (ja) * 2006-10-02 2008-04-17 Toyota Motor Corp 水素分離膜−電解質膜接合体の製造方法
JP5341321B2 (ja) * 2007-06-28 2013-11-13 本田技研工業株式会社 固体高分子型燃料電池用電解質膜・電極構造体
WO2009084404A1 (ja) * 2007-12-28 2009-07-09 Honda Motor Co., Ltd. 電解質・電極接合体及びその製造方法
JP2010218759A (ja) * 2009-03-13 2010-09-30 Tokyo Electric Power Co Inc:The 金属支持型固体酸化物形燃料電池及びその製造方法
EP2325931A1 (de) * 2009-11-18 2011-05-25 Plansee Se Anordnung für eine Brennstoffzelle sowie Verfahren zu deren Herstellungen
EP2333883A1 (de) * 2009-11-18 2011-06-15 Forschungszentrum Jülich Gmbh (FJZ) Anode für eine Hochtemperatur-Brennstoffzelle sowie deren Herstellung
JP5484155B2 (ja) * 2010-03-30 2014-05-07 株式会社日本触媒 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル。
JP5772125B2 (ja) * 2010-03-31 2015-09-02 大日本印刷株式会社 固体酸化物形燃料電池及びその製造方法
JP5704990B2 (ja) * 2011-03-29 2015-04-22 株式会社日本触媒 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル
JP2013065518A (ja) * 2011-09-20 2013-04-11 Honda Motor Co Ltd 金属支持型電解質・電極接合体及びその製造方法
EP3780199A1 (en) * 2014-09-19 2021-02-17 Osaka Gas Co., Ltd. Electrochemical element, solid oxide fuel cell, and methods for producing the same
JP6463203B2 (ja) * 2015-03-31 2019-01-30 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム

Also Published As

Publication number Publication date
CA3057436A1 (en) 2018-09-27
CN110431698B (zh) 2023-06-02
KR20230129626A (ko) 2023-09-08
CN110431698A (zh) 2019-11-08
KR20190129841A (ko) 2019-11-20
JP2018160369A (ja) 2018-10-11
EP3605693A4 (en) 2021-01-06
EP3605693A1 (en) 2020-02-05
WO2018174168A1 (ja) 2018-09-27
US20200014051A1 (en) 2020-01-09
US20230147978A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP6800297B2 (ja) 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
US11189839B2 (en) Metal-supported electrochemical element, solid oxide fuel cell and method of manufacturing such metal-supported electrochemical element
JP6671132B2 (ja) 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP6644363B2 (ja) 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
US20230147978A1 (en) Manufacturing Method for Electrochemical Element and Electrochemical Element
JP6910170B2 (ja) 金属支持型電気化学素子用の電極層付基板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および製造方法
JP6779351B2 (ja) 金属支持型電気化学素子、固体酸化物形燃料電池および金属支持型電気化学素子の製造方法
JP6779352B2 (ja) 金属支持型電気化学素子、固体酸化物形燃料電池および金属支持型電気化学素子の製造方法
JP2023144948A (ja) 固体酸化物形電解セル、固体酸化物形電解セルの製造方法、固体酸化物形電解モジュール、電気化学装置及びエネルギーシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6910171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150