JP6908666B2 - Construction method of underground structure - Google Patents

Construction method of underground structure Download PDF

Info

Publication number
JP6908666B2
JP6908666B2 JP2019171003A JP2019171003A JP6908666B2 JP 6908666 B2 JP6908666 B2 JP 6908666B2 JP 2019171003 A JP2019171003 A JP 2019171003A JP 2019171003 A JP2019171003 A JP 2019171003A JP 6908666 B2 JP6908666 B2 JP 6908666B2
Authority
JP
Japan
Prior art keywords
box
shaped roof
concrete box
concrete
towing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019171003A
Other languages
Japanese (ja)
Other versions
JP2021046745A (en
Inventor
植村 誠
誠 植村
賢治郎 植村
賢治郎 植村
康彦 山下
康彦 山下
Original Assignee
植村 誠
誠 植村
賢治郎 植村
賢治郎 植村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 植村 誠, 誠 植村, 賢治郎 植村, 賢治郎 植村 filed Critical 植村 誠
Priority to JP2019171003A priority Critical patent/JP6908666B2/en
Publication of JP2021046745A publication Critical patent/JP2021046745A/en
Application granted granted Critical
Publication of JP6908666B2 publication Critical patent/JP6908666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、鉄道、道路などの下部地中に大幅員の地下構造物を横断方向に掘進建設する際に上部交通に支障を与えることなく施工することができる地下構造物の施工法に関するものである。 The present invention relates to a method for constructing an underground structure that can be constructed without hindering upper traffic when excavating and constructing a large number of underground structures in the lower ground such as a railroad or a road in the transverse direction. be.

鉄道、道路などの下部地中に大幅員の地下構造物を横断方向に掘進させるには、上部交通を支承するための防護工が必要となり、鋼管等を水平に並列させるパイプルーフを設けることなどがあげられる。 In order to dig a large number of underground structures in the lower ground such as railroads and roads in the crossing direction, protective work is required to support the upper traffic, and a pipe roof for horizontally paralleling steel pipes, etc. is required. Can be given.

しかし、先に別工事としてパイプルーフを形成し、その下や中を掘削して地下構造物を構築したり、また地下構造物をパイプルーフ下を掘進させるようにしたのでは、このパイプルーフが存在する分だけ土被りが厚くなる。しかも、パイプルーフ施工の防護工が地下構造物埋設の本工事と別工事となり、工費、工期が大である。 However, if a pipe roof was formed as a separate work first and excavated under and inside to construct an underground structure, or if the underground structure was dug under the pipe roof, this pipe roof would be The overburden becomes thicker as much as it exists. Moreover, the protection work for the pipe roof construction is separate from the main work for burying the underground structure, and the construction cost and construction period are large.

かかる不都合を解消するものとして、本発明者等は、下記特許文献に示すように箱形ルーフを圧入後、コンクリート函体を推進させる場合、函体の推進とともに切羽部の土砂を箱形ルーフと一緒に押し出すので、切羽部を掘削する作業を別途必要とせず、コスト削減と工期短縮を図ることができ、また、危険を伴う切羽部の掘削作業を省くことで安全性も向上でき、しかも、函体を推進するための反力抵抗を分散することで、大掛かりな設備を必要としない地下構造物の施工法を出願し、特許権を取得した。
特許第4134089号公報
In order to eliminate such inconvenience, the present inventors, as shown in the following patent documents, when the concrete box is propelled after the box-shaped roof is press-fitted, the earth and sand of the face portion is referred to as the box-shaped roof together with the propulsion of the box. Since it is extruded together, it is not necessary to excavate the face part separately, cost reduction and construction period can be shortened, and safety can be improved by omitting the dangerous excavation work of the face part. By distributing the reaction force resistance to propel the box, we applied for a construction method for underground structures that does not require large-scale equipment and obtained a patent right.
Japanese Patent No. 4134809

この工法はSFT工法(登録商標)と名付けられた。SFT工法は、(Simple and Face-Less Method of Construction of Tunnel)は、「シンプルで切羽の無いトンネルの構築工法」の略称である。 This method was named the SFT method (registered trademark). The SFT method (Simple and Face-Less Method of Construction of Tunnel) is an abbreviation for "a simple and face-less tunnel construction method."

SFT工法は、第1工程として図2に示すように鉄道などの上部交通の脇に土留鋼矢板2を打設して、発進坑3と到達坑4を築造し、前記発進坑3内に推進機5を設置してこれでルーフ用筒体である箱形ルーフ6を到達坑4に向けて圧入させる。箱形ルーフ6の上面には従来と同様にフリクションカッタープレート7を取り付けて、箱形ルーフ6とともに押し出す。 In the SFT method, as shown in FIG. 2, as the first step, a retaining steel sheet pile 2 is placed beside the upper traffic such as a railroad to construct a starting pit 3 and a reaching pit 4, and the SFT method is propelled in the starting pit 3. The machine 5 is installed, and the box-shaped roof 6 which is a cylinder for the roof is press-fitted toward the reaching pit 4. A friction cutter plate 7 is attached to the upper surface of the box-shaped roof 6 as in the conventional case, and is extruded together with the box-shaped roof 6.

この場合、箱形ルーフ6は図7に示すように推進させようとするコンクリート函体9の外形に対応するように四角形状に配置し、箱形ルーフ6で囲まれた切羽部には土留部材19を配設する。 In this case, the box-shaped roof 6 is arranged in a square shape so as to correspond to the outer shape of the concrete box 9 to be propelled as shown in FIG. 7, and the retaining member is attached to the face portion surrounded by the box-shaped roof 6. 19 is arranged.

図中17は腹起こし材、発進坑3側の土留鋼矢板2と到達坑4側の土留鋼矢板2とを結合するタイロット材18で固定する。20は発進台を示す。 In the figure, 17 is fixed by a timber 18 that joins the abdominal raising material, the earth retaining steel sheet pile 2 on the starting pit 3 side, and the earth retaining steel sheet pile 2 on the reaching pit 4 side. 20 indicates a starting platform.

さらに、到達坑4側に地山による反力体21を設け、この反力体21の前方をさらに掘削して立坑を築造し、この立坑内に反力坑22として反力壁23を設ける。 Further, a reaction force body 21 made of a ground is provided on the arrival shaft 4 side, a shaft is constructed by further excavating the front of the reaction force body 21, and a reaction force wall 23 is provided as a reaction force shaft 22 in the shaft.

次に第2工程の図4に示すようにコンクリート函体9を発進坑3の発進台に設置し、コンクリート函体9の後部にけん引ジャッキ24を取り付け、このけん引ジャッキ24に一端を取り付けたけん引ケーブル25の他端を、反力壁23に固定した定着装置26に定着する。 Next, as shown in FIG. 4 of the second step, the concrete box 9 is installed on the starting platform of the starting pit 3, the towing jack 24 is attached to the rear part of the concrete box 9, and one end is attached to the towing jack 24. The other end of the cable 25 is fixed to the fixing device 26 fixed to the reaction force wall 23.

そして、止め部材14でフリクションカッタープレート7を発進坑3側に固定する。このフリクションカッタープレート7により箱形ルーフ6およびコンクリート函体9と周辺土砂との縁切りを行う。 Then, the friction cutter plate 7 is fixed to the starting pit 3 side by the stopping member 14. The friction cutter plate 7 cuts the edges between the box-shaped roof 6 and the concrete box 9 and the surrounding earth and sand.

次に先行して押出した箱形ルーフ6の後端にコンクリート函体9の先端を接合し、または当接させて、第3工程として図5に示すようにけん引ジャッキ24を作動してけん引ケーブル25でコンクリート函体9を発進坑3から到達坑4に向けてけん引する。 Next, the tip of the concrete box 9 is joined or brought into contact with the rear end of the box-shaped roof 6 extruded in advance, and as a third step, the towing jack 24 is operated as shown in FIG. 5 to operate the towing cable. At 25, the concrete box 9 is towed from the starting pit 3 toward the reaching pit 4.

コンクリート函体9のけん引と同時に箱形ルーフ6も押出し、さらに切羽部の掘削は行わず、箱形ルーフ6を押し出すときに同時に箱形ルーフ6で囲まれた部分に配設し、タイロット材18で相互に結合して固定された土留部材19を押し出すことによりその前方の土砂も同時に押し出す。この場合、前記のようにフリクションカッタープレート7により箱形ルーフ6およびコンクリート函体9と周辺土砂との縁切りがなされているから、箱形ルーフ6およびコンクリート函体9はスムーズにけん引される。 The box-shaped roof 6 is also extruded at the same time as the concrete box 9 is towed, and the face portion is not excavated. By extruding the earth retaining member 19 which is connected to each other and fixed at the same time, the earth and sand in front of the earth retaining member 19 is also extruded at the same time. In this case, since the friction cutter plate 7 cuts the edges between the box-shaped roof 6 and the concrete box 9 and the surrounding earth and sand as described above, the box-shaped roof 6 and the concrete box 9 are towed smoothly.

このようにして第4工程として図6に示すように箱形ルーフ6とこの箱形ルーフ6に囲まれて同時に押出された土砂が到達坑4に到達したならば、到達坑4で箱形ルーフ6を撤去すると同時に、土砂を掘削して排土する。 In this way, as a fourth step, as shown in FIG. 6, when the box-shaped roof 6 and the earth and sand surrounded by the box-shaped roof 6 and extruded at the same time reach the reaching pit 4, the box-shaped roof is reached at the reaching pit 4. At the same time as removing 6, the earth and sand are excavated and discharged.

そして、さらにコンクリート函体9の先端が到達坑4に達するまでけん引してコンクリート函体9の全長の推進が完了する。 Then, the concrete box 9 is further towed until the tip of the concrete box 9 reaches the reaching pit 4, and the promotion of the entire length of the concrete box 9 is completed.

前記従来のSFT工法でけん引タイプでは、前進は到達側の反力体と函体後部をPC鋼線であるけん引ケーブル25で連結し、けん引ジャッキ24により行われる。 In the towing type by the conventional SFT method, the forward movement is performed by the towing jack 24 in which the reaction force body on the reaching side and the rear part of the box are connected by a towing cable 25 which is a PC steel wire.

コンクリート函体9はけん引ケーブル25の緊張力がコンクリート函体9および押し抜き部(箱形ルーフ6で囲まれた部分)の抵抗力を上回った時に動き出すため、函体けん引初期の縁切りや函体到達付近などの抵抗力が大きい時には急激な動きをすることがあり、このような急激な動きは下記の問題を引き起こす可能性がある。
(1)横断箇所周辺(特に上部)への悪影響
(2)函体けん引精度の低下
(3)現場周辺への騒音や振動問題
Since the concrete box 9 starts to move when the tension of the towing cable 25 exceeds the resistance of the concrete box 9 and the punched portion (the part surrounded by the box-shaped roof 6), the edge cutting and the box at the initial stage of towing the box When the resistance force is large, such as near the arrival point, a sudden movement may occur, and such a sudden movement may cause the following problems.
(1) Adverse effect on the area around the crossing point (especially the upper part) (2) Deterioration of box towing accuracy (3) Noise and vibration problems around the site

本発明の目的は前記従来例の不都合を解消し、箱形ルーフを圧入後、コンクリート函体を推進させるのに、函体の推進とともに切羽部の土砂を箱形ルーフと一緒に押し出す地下構造物の施工法において、函体けん引精度の向上、横断箇所周辺部への影響の低減、現場周辺部への騒音や振動が改善される地下構造物の施工法を提供することにある。 An object of the present invention is to solve the above-mentioned inconvenience of the conventional example, and to propel the concrete box body after press-fitting the box-shaped roof, an underground structure that pushes out the earth and sand of the face portion together with the box-shaped roof while propelling the box body. The purpose of the construction method is to provide a construction method for an underground structure that improves the accuracy of box towing, reduces the influence on the periphery of a crossing point, and improves noise and vibration on the periphery of the site.

前記目的を達成するため請求項1記載の本発明は、推進しようとするコンクリート函体の外形に対応するように箱形ルーフを下段、側部及び上段の矩形配列に組み配置して地中に圧入し、この箱形ルーフおよび箱形ルーフに囲まれている土砂を押抜部として、その後方にコンクリート函体を配置し、コンクリート函体のけん引とともに押抜部を一緒に押し出す地下構造物の施工法において、到達側に設ける反力体もしくは地山と押抜部との間に油圧ジャッキと鋼材によるスペーサーもしくはストラットからなり、油圧ジャッキをフリーとして油圧ジャッキのシリンダーが徐々に縮むことで緩衝させる緩衝装置を設け、コンクリート函体のけん引の際はこの緩衝装置を作動させることを要旨とするものである。 In order to achieve the above object, the present invention according to claim 1 arranges box-shaped roofs in a rectangular arrangement in the lower, side and upper stages so as to correspond to the outer shape of the concrete box to be propelled, and arranges them in the ground. An underground structure that is press-fitted and the concrete box is placed behind the box-shaped roof and the earth and sand surrounded by the box-shaped roof as the punching part, and the punching part is pushed out together with the towing of the concrete box. In the construction method, it consists of a hydraulic jack and a spacer or strut made of steel material between the reaction force body or the ground and the punched part provided on the reaching side, and the hydraulic jack is made free and the cylinder of the hydraulic jack gradually contracts to buffer it. The purpose is to provide a shock absorber and operate this shock absorber when towing a concrete box.

請求項1記載の本発明によれば、函体の急激な動きを抑制するため、押抜部と到達側反力体(もしくは地山)の間に緩衝装置を設けたもので、コンクリート函体のけん引の際はこの緩衝装置を作動させることで、けん引ケーブルの緊張力がコンクリート函体および押し抜き部(箱形ルーフ6で囲まれた部分)の抵抗力を上回った時にコンクリート函体が急激に動き出したとしてもその衝撃を押抜部の前で緩和し、現場周辺部への騒音や振動を防止することができる。 According to the first aspect of the present invention, in order to suppress the sudden movement of the box body, a shock absorber is provided between the punched portion and the reaction force body (or the ground) on the reaching side, and the concrete box body. By activating this shock absorber during towing, the concrete box suddenly becomes sharp when the tension of the towing cable exceeds the resistance of the concrete box and the punched part (the part surrounded by the box-shaped roof 6). Even if it starts to move, the impact can be mitigated in front of the punched part, and noise and vibration to the surrounding part of the site can be prevented.

なお、緩衝装置は油圧ジャッキと鋼材によるスペーサーもしくはストラットからなり、油圧ジャッキのシリンダーを伸ばした状態で配置する。 The shock absorber consists of a hydraulic jack and a spacer or strut made of steel, and the cylinder of the hydraulic jack is arranged in an extended state.

前記油圧ジャッキのシリンダーが函体および押抜部の前進に伴い徐々に縮むことによって緩衝部となる。 The cylinder of the hydraulic jack gradually contracts as the box body and the punching portion move forward, thereby serving as a buffering portion.

この時、函体の前進はシリンダー内の油圧によって制限されるため、急激な挙動を抑制することができる。 At this time, since the advance of the box is restricted by the oil pressure in the cylinder, sudden behavior can be suppressed.

油圧ジャッキが1ストローク分縮んだら鋼材(スペーサー・ストラット)を組み換え、再びシリンダーを伸ばした状態で配置し、以下函体が所定位置に到達するまで繰り返す。 When the hydraulic jack contracts by one stroke, the steel material (spacer strut) is recombined, the cylinder is placed in the extended state again, and the process is repeated until the box reaches the predetermined position.

以上述べたように本発明の地下構造物の施工法は、箱形ルーフを圧入後、コンクリート函体を推進させるのに、函体の推進とともに切羽部の土砂を箱形ルーフと一緒に押し出す地下構造物の施工法において、函体けん引精度の向上、横断箇所周辺部への影響の低減、現場周辺部への騒音や振動が改善され、特に鉄道下工事では、横断上部(軌道)への影響とともに、夜間施工時の周辺環境への騒音や振動の低減が有効である。 As described above, in the construction method of the underground structure of the present invention, after the box-shaped roof is press-fitted, the concrete box is propelled, and the earth and sand of the face portion is pushed out together with the box-shaped roof while the box is propelled. In the construction method of the structure, the box body towing accuracy is improved, the influence on the area around the crossing is reduced, the noise and vibration on the area around the site are improved, and especially in the construction under the railway, the influence on the upper part (track) of the crossing. At the same time, it is effective to reduce noise and vibration to the surrounding environment during nighttime construction.

以下、図面について本発明の実施形態を詳細に説明する。図1は本発明の地下構造物の施工法の1実施形態を示す縦断側面図で、図中6はルーフ用筒体である箱形ルーフ、9はコンクリート函体である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vertical sectional side view showing one embodiment of the construction method of the underground structure of the present invention. In the figure, 6 is a box-shaped roof which is a cylinder for a roof, and 9 is a concrete box.

箱形ルーフ6は推進しようとするコンクリート函体9の外形に対応するよう下段、側部及び上段の矩形配列に組み配置して地中に圧入し、この箱形ルーフ6および箱形ルーフに囲まれている土砂を押抜部8として、その後方にコンクリート函体9を配置し、コンクリート函体9のけん引とともに押抜部8を一緒に押し出す。 The box-shaped roof 6 is assembled and arranged in a rectangular arrangement in the lower, side, and upper stages so as to correspond to the outer shape of the concrete box 9 to be propelled, and press-fitted into the ground, and is surrounded by the box-shaped roof 6 and the box-shaped roof. A concrete box 9 is arranged behind the extruded portion 8 using the earth and sand that has been collected, and the extruded portion 8 is pushed out together with the towing of the concrete box 9.

なお、箱形ルーフ6は図2〜図6に示すように、鉄道などの上部交通1の脇に土留鋼矢板2を打設して、発進側34(発進坑3の場合もある)と到達側35(到達坑4の場合もある)を築造し、発進側34に推進機5を設置してこれでルーフ用筒体である箱形ルーフ6を到達側15に向けて圧入させ、箱形ルーフ6の上面にはフリクションカッタープレート7を取り付けて、箱形ルーフ6とともに押し出す。 As shown in FIGS. 2 to 6, the box-shaped roof 6 reaches the starting side 34 (may be the starting pit 3) by driving a retaining steel sheet pile 2 beside the upper traffic 1 of a railway or the like. A side 35 (which may be a reaching pit 4) is constructed, a propulsion device 5 is installed on the starting side 34, and a box-shaped roof 6 which is a roof cylinder is press-fitted toward the reaching side 15 to form a box shape. A friction cutter plate 7 is attached to the upper surface of the roof 6 and extruded together with the box-shaped roof 6.

この場合、箱形ルーフ6は図2に示すように推進させようとするコンクリート函体9の外形に対応するように四角形状に配置し、箱形ルーフ6で囲まれた切羽部には土留部材19を配設する。 In this case, the box-shaped roof 6 is arranged in a square shape so as to correspond to the outer shape of the concrete box 9 to be propelled as shown in FIG. 19 is arranged.

発進側34の土留部材19と到達側35の土留部材19とをタイロット材18で固定する。20は発進台を示す。 The earth retaining member 19 on the starting side 34 and the earth retaining member 19 on the reaching side 35 are fixed by the tie lot material 18. 20 indicates a starting platform.

さらに、到達側35に地山による反力体21を設け、この反力体21の前方をさらに掘削して立坑を築造し、この立坑内に反力壁23を設ける。なお、反力壁23は反力体21をそのまま利用してもよく、また、反力体21とは別体としてこれを構築してもよい。 Further, a reaction force body 21 made of a ground is provided on the reaching side 35, a shaft is constructed by further excavating the front of the reaction force body 21, and a reaction force wall 23 is provided in the shaft. The reaction force wall 23 may use the reaction force body 21 as it is, or may be constructed as a separate body from the reaction force body 21.

さらに、反力体21として特別に構成しなくても地山そのものを反力体として使用することもできる。 Further, the ground itself can be used as a reaction force body without being specially configured as a reaction force body 21.

次に第2工程の図4に示すようにコンクリート函体9を発進台20に設置し、コンクリート函体9の後部にけん引ジャッキ24を取り付け、このけん引ジャッキ24に一端を取り付けたけん引ケーブル25の他端を、反力壁23に固定した定着装置26に定着する。 Next, as shown in FIG. 4 of the second step, the concrete box 9 is installed on the starting platform 20, the towing jack 24 is attached to the rear part of the concrete box 9, and the towing cable 25 having one end attached to the towing jack 24. The other end is fixed to the fixing device 26 fixed to the reaction force wall 23.

そして、止め部材14でフリクションカッタープレート7を発進側34側に固定する。(図5参照)このフリクションカッタープレート7により箱形ルーフ6およびコンクリート函体9と周辺土砂との縁切りを行う。 Then, the friction cutter plate 7 is fixed to the starting side 34 side by the stopping member 14. (See FIG. 5) The friction cutter plate 7 cuts the edges between the box-shaped roof 6 and the concrete box 9 and the surrounding earth and sand.

次に先行して押出した箱形ルーフ6の後端にコンクリート函体9の先端を接合し、または当接させて、第3工程として図5に示すようにけん引ジャッキ24を作動してけん引ケーブル25でコンクリート函体9を発進側34から到達側35に向けてけん引する。 Next, the tip of the concrete box 9 is joined or brought into contact with the rear end of the box-shaped roof 6 extruded in advance, and as a third step, the towing jack 24 is operated as shown in FIG. 5 to operate the towing cable. At 25, the concrete box 9 is towed from the starting side 34 toward the reaching side 35.

箱形ルーフ6および箱形ルーフ6に囲まれている土砂を押抜部8として、コンクリート函体9のけん引と同時に押抜部8も押し出す。 The earth and sand surrounded by the box-shaped roof 6 and the box-shaped roof 6 is used as the punching portion 8, and the punching portion 8 is pushed out at the same time as the concrete box 9 is towed.

このようにコンクリート函体9のけん引と同時に押抜部8を押し出す前に、到達側35に設ける反力体21もしくは地山と押抜部8との間に緩衝装置30を設け、コンクリート函体9のけん引の際はこの緩衝装置30を作動させることする。 In this way, before pushing out the punched portion 8 at the same time as towing the concrete box 9, a shock absorber 30 is provided between the reaction force 21 provided on the reaching side 35 or the ground and the punched portion 8, and the concrete box is provided. At the time of towing of 9, the shock absorber 30 is operated.

該緩衝装置30は、油圧ジャッキ31と鋼材によるスペーサーもしくはストラット33からなる。 The shock absorber 30 includes a hydraulic jack 31 and a spacer or strut 33 made of a steel material.

スペーサーもしくはストラット33はH形鋼等の鋼材により、水平枠状に組んだものであり、組立により適宜、その長さを増していくことができる。 The spacer or strut 33 is assembled in a horizontal frame shape from a steel material such as H-shaped steel, and its length can be increased as appropriate by assembly.

また、油圧ジャッキ31は図示は省略するが、操作盤、ポンプに連結され、また、横方向(コンクリート函体9の幅方向)に複数台を並べる。 Although not shown, the hydraulic jack 31 is connected to the operation panel and the pump, and a plurality of hydraulic jacks 31 are arranged in the horizontal direction (the width direction of the concrete box 9).

緩衝装置30は反力体21もしくは地山と押抜部8との間で、下方位置、例えば、下段に位置する箱形ルーフ6の先端に当接するようにするのが望ましい。 It is desirable that the shock absorber 30 abuts between the reaction force 21 or the ground and the punching portion 8 at a lower position, for example, the tip of the box-shaped roof 6 located at the lower stage.

前記コンクリート函体9のけん引と同時に押抜部8を押す場合、前記のようにフリクションカッタープレート7により箱形ルーフ6およびコンクリート函体9と周辺土砂との縁切りがなされているから、箱形ルーフ6およびコンクリート函体9はスムーズにけん引される。 When the punching portion 8 is pushed at the same time as the towing of the concrete box 9, the box-shaped roof 6 and the edge of the concrete box 9 and the surrounding earth and sand are cut by the friction cutter plate 7 as described above. 6 and the concrete box 9 are towed smoothly.

前記油圧ジャッキ31はこれを油圧力をフリーとし、油圧ジャッキ31のシリンダーが油圧力により伸長することなく、コンクリート函体9および押抜部8の前進に伴い徐々に縮むことによって緩衝部となる。 The hydraulic jack 31 makes the hydraulic jack 31 free of hydraulic pressure, and the cylinder of the hydraulic jack 31 does not extend due to the hydraulic pressure, but gradually contracts as the concrete box 9 and the punching portion 8 move forward to serve as a cushioning portion.

この時コンクリート函体9の前進はシリンダー内の油圧によって制限されるため、急激な挙動を抑制することができる。 At this time, since the advance of the concrete box 9 is restricted by the oil pressure in the cylinder, abrupt behavior can be suppressed.

油圧ジャッキ31が1ストローク分縮んだら鋼材(スペーサーもしくはストラット33)を組み換え、再び油圧ジャッキ31(シリンダー)を伸ばした状態で配置し、以下コンクリート函体9が所定位置に到達するまで繰り返す。 When the hydraulic jack 31 contracts by one stroke, the steel material (spacer or strut 33) is recombined, the hydraulic jack 31 (cylinder) is placed again in an extended state, and the process is repeated until the concrete box 9 reaches a predetermined position.

このようにして第4工程として図6に示すように箱形ルーフ6とこの箱形ルーフ6に囲まれて同時に押出された土砂が到達坑4に到達したならば、到達坑4で箱形ルーフ6を撤去すると同時に、土砂を掘削して排土する。 In this way, as a fourth step, as shown in FIG. 6, when the box-shaped roof 6 and the earth and sand surrounded by the box-shaped roof 6 and extruded at the same time reach the reaching pit 4, the box-shaped roof is reached at the reaching pit 4. At the same time as removing 6, the earth and sand are excavated and discharged.

そして、さらにコンクリート函体9の先端が到達坑4に達するまでけん引してコンクリート函体9の全長の推進が完了する。 Then, the concrete box 9 is further towed until the tip of the concrete box 9 reaches the reaching pit 4, and the promotion of the entire length of the concrete box 9 is completed.

本発明の地下構造物の施工法の1実施形態を示す縦断側面図である。It is a longitudinal side view which shows one Embodiment of the construction method of the underground structure of this invention. SFT工法の第1工程の縦断側面図である。It is a vertical sectional side view of the 1st process of the SFT method. SFT工法の第2工程の縦断側面図である。It is a longitudinal side view of the 2nd process of the SFT method. SFT工法の第3工程の縦断側面図である。It is a longitudinal side view of the 3rd process of the SFT method. SFT工法の第4工程の縦断側面図である。It is a longitudinal side view of the 4th process of the SFT method. SFT工法の第5工程の縦断側面図である。It is a longitudinal side view of the 5th process of the SFT method. 箱形ルーフの配置状態を示す正面図である。It is a front view which shows the arrangement state of a box-shaped roof. 箱形ルーフの配置状態を示す正面図である。It is a front view which shows the arrangement state of a box-shaped roof.

1 上部交通 2 土留鋼矢板
3 発進坑 4 到達坑
5 推進機 6 箱形ルーフ
6a,6b 継手 7 フリクションカッタープレート
8 押抜部 9 コンクリート函体
10 土砂 13 支持材
14 止め部材 15 受台
16 ストラット 17 腹起こし材
18 タイロット材 19 土留部材
20 発進台 21 反力体
22 反力坑 23 反力壁
24 けん引ジャッキ 25 けん引ケーブル
26 定着装置 30 緩衝装置
31 油圧ジャッキ 33 スペーサーもしくはストラット
34 発進側 35 到達側
1 Upper traffic 2 Retaining steel sheet pile 3 Starting pit 4 Reaching pit 5 Propulsion machine 6 Box-shaped roof 6a, 6b Joint 7 Friction cutter plate 8 Punching part 9 Concrete box 10 Earth and sand 13 Support material 14 Stopping member 15 Cradle 16 Strut 17 Raising material 18 Tylot material 19 Retaining member 20 Starting platform 21 Reaction force body 22 Reaction force pit 23 Reaction force wall 24 Towing jack 25 Towing cable 26 Fixing device 30 Buffering device 31 Hydraulic jack 33 Spacer or strut 34 Starting side 35 Reaching side

Claims (1)

推進しようとするコンクリート函体の外形に対応するように箱形ルーフを下段、側部及び上段の矩形配列に組み配置して地中に圧入し、この箱形ルーフおよび箱形ルーフに囲まれている土砂を押抜部として、その後方にコンクリート函体を配置し、コンクリート函体のけん引とともに押抜部を一緒に押し出す地下構造物の施工法において、到達側に設ける反力体もしくは地山と押抜部との間に油圧ジャッキと鋼材によるスペーサーもしくはストラットからなり、油圧ジャッキをフリーとして油圧ジャッキのシリンダーが徐々に縮むことで緩衝させる緩衝装置を設け、コンクリート函体のけん引の際はこの緩衝装置を作動させることを特徴とする地下構造物の施工法。 The box-shaped roofs are assembled and arranged in a rectangular arrangement on the lower, side and upper stages so as to correspond to the outer shape of the concrete box to be propelled, and press-fitted into the ground, surrounded by the box-shaped roof and the box-shaped roof. In the construction method of the underground structure where the concrete box is placed behind the punched part and the punched part is pushed out together with the towing of the concrete box, the reaction force body or the ground provided on the reaching side It consists of a hydraulic jack and a spacer or strut made of steel material between the punched part, and a shock absorber is provided to buffer the concrete box by gradually shrinking the cylinder of the hydraulic jack as a free hydraulic jack. A construction method for underground structures characterized by operating the device.
JP2019171003A 2019-09-20 2019-09-20 Construction method of underground structure Active JP6908666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171003A JP6908666B2 (en) 2019-09-20 2019-09-20 Construction method of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171003A JP6908666B2 (en) 2019-09-20 2019-09-20 Construction method of underground structure

Publications (2)

Publication Number Publication Date
JP2021046745A JP2021046745A (en) 2021-03-25
JP6908666B2 true JP6908666B2 (en) 2021-07-28

Family

ID=74877994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171003A Active JP6908666B2 (en) 2019-09-20 2019-09-20 Construction method of underground structure

Country Status (1)

Country Link
JP (1) JP6908666B2 (en)

Also Published As

Publication number Publication date
JP2021046745A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP4317843B2 (en) Construction method for underground structures
JP2008223397A (en) Construction method for underground structure
JP4350113B2 (en) Box roof used in the construction method of underground structures
JP2009235831A (en) Configuration of underground structure and construction method thereof
JP6908666B2 (en) Construction method of underground structure
JP3887383B2 (en) Construction method for underground structures
JP7177233B2 (en) Start Reaction Force Structure and Method for Concrete Box or Open Shield Machine
JP4134089B2 (en) Construction method for underground structures
JP5874890B2 (en) How to install the box structure
JP6982603B2 (en) Box-shaped roof construction method
JP5054164B2 (en) Construction method for underground structures
JP6441871B2 (en) Box roof deflection reduction method for box roof method
JP6714060B2 (en) Construction method of underground structure
JP6212087B2 (en) Construction method for underground structures
JP6445478B2 (en) Construction method for underground structures
JP6113778B2 (en) Construction method for underground structures
JP6139613B2 (en) Construction method for underground structures
JP6510432B2 (en) Construction method of underground structure
JP5885229B2 (en) Reaction force device
JP7061773B2 (en) Construction method of underground structure and friction reducing material used for it
JP2876435B2 (en) How to build underground structures
JP6081512B2 (en) Construction method for underground structures
CN110359916B (en) Construction method for underground structure
JP7084515B1 (en) Construction method of underground structure
JP5223090B2 (en) Tunnel construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210701

R150 Certificate of patent or registration of utility model

Ref document number: 6908666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250