JP7061773B2 - Construction method of underground structure and friction reducing material used for it - Google Patents

Construction method of underground structure and friction reducing material used for it Download PDF

Info

Publication number
JP7061773B2
JP7061773B2 JP2020010539A JP2020010539A JP7061773B2 JP 7061773 B2 JP7061773 B2 JP 7061773B2 JP 2020010539 A JP2020010539 A JP 2020010539A JP 2020010539 A JP2020010539 A JP 2020010539A JP 7061773 B2 JP7061773 B2 JP 7061773B2
Authority
JP
Japan
Prior art keywords
box
friction
underground structure
shaped roof
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020010539A
Other languages
Japanese (ja)
Other versions
JP2021116595A (en
Inventor
陽太 富樫
誠 植村
賢治郎 植村
智哉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2020010539A priority Critical patent/JP7061773B2/en
Publication of JP2021116595A publication Critical patent/JP2021116595A/en
Application granted granted Critical
Publication of JP7061773B2 publication Critical patent/JP7061773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、本発明は、鉄道、道路等の下部地中に大幅員の地下構造物を横断方向に掘進建設する際に上部交通に支障を与えることなく施工することができる地下構造物の施工法およびそれに使用する摩擦低減材に関するものである。 INDUSTRIAL APPLICABILITY According to the present invention, the present invention can construct an underground structure that can be constructed without hindering upper traffic when excavating and constructing a large number of underground structures in the lower ground such as a railway or a road in the transverse direction. It relates to the method and the friction reducing material used in it.

鉄道、道路などの下部地中に大幅員の地下構造物を横断方向に掘進させるには、上部交通を支承するための防護工が必要となり、鋼管等を水平に並列させるパイプルーフを設けることなどがあげられる。 In order to dig a large number of underground structures in the lower ground such as railroads and roads in the crossing direction, protective work is required to support the upper traffic, and a pipe roof for horizontally paralleling steel pipes, etc. is required. Can be given.

しかし、先に別工事としてパイプルーフを形成し、その下や中を掘削して地下構造物を構築したり、また地下構造物をパイプルーフ下を掘進させるようにしたのでは、このパイプルーフが存在する分だけ土被りが厚くなる。しかも、パイプルーフ施工の防護工が地下構造物埋設の本工事と別工事となり、工費、工期が大である。 However, if a pipe roof was formed as a separate work first and then excavated under and inside to construct an underground structure, or if the underground structure was dug under the pipe roof, this pipe roof would be used. The overburden becomes thicker as much as it exists. Moreover, the protection work for the pipe roof construction is a separate work from the main work for burying the underground structure, and the construction cost and construction period are large.

かかる不都合を解消するものとして、下記特許文献1にもあるような箱形ルーフ工法が存在する。
特許第2789523号公報
As a solution to such inconvenience, there is a box-shaped roof construction method as described in Patent Document 1 below.
Japanese Patent No. 2789523

これは図10に示すように、鉄道等上部交通1の脇にもしくは鋼矢板2を打設して、発進立坑3と到達立坑4を築造し、該発進立坑3内に圧入機5を設置してこれで箱形ルーフ用筒体6を到達立坑4へ向けて圧入させ、防護工としてのルーフを形成するものである。 As shown in FIG. 10, a starting shaft 3 and a reaching shaft 4 are constructed by placing a steel sheet pile 2 on the side of the upper traffic 1 such as a railroad, and a press-fitting machine 5 is installed in the starting shaft 3. With this, the box-shaped roof cylinder 6 is press-fitted toward the reaching shaft 4 to form a roof as a protective work.

箱形ルーフ用筒体6は鋼管による略正方形断面の箱形筒体であり、上面に平板からなるフリクションカッタープレート(以下FCプレートと称する)7を載置している。(図14参照) The box-shaped roof cylinder 6 is a box-shaped cylinder having a substantially square cross section made of a steel pipe, and a friction cutter plate (hereinafter referred to as FC plate) 7 made of a flat plate is placed on the upper surface thereof. (See Fig. 14)

かかる箱形ルーフ用筒体6は単位筒体を1本ずつ圧入するものであり、図14に示すように端部に継手フランジ6cを形成し、この継手フランジ6c同士をボルト、ナット19で締結することにより1ピースずつ長さ方向に継ぎ足して発進立坑3から到達立坑4までの必要長を埋設し、さらにこうして埋設した1本目に対して2本目、3本目…と順次埋設して並列させる。図中17はボルト、ナット19での締結用の箱抜きである。 The box-shaped roof cylinder 6 is for press-fitting unit cylinders one by one. As shown in FIG. 14, a joint flange 6c is formed at an end portion, and the joint flanges 6c are fastened to each other with bolts and nuts 19. By doing so, the required length from the starting shaft 3 to the reaching shaft 4 is buried by adding one piece at a time in the length direction, and further, the second, third, and so on are sequentially buried in parallel with the first one buried in this way. In the figure, 17 is a box punch for fastening with bolts and nuts 19.

前記圧入機5は、この箱型ルーフ用筒体6のジャッキなどによる押出機構を有するものである。 The press-fitting machine 5 has an extrusion mechanism using a jack or the like for the box-shaped roof cylinder 6.

箱型ルーフ用筒体6の並べ方は図13に示すような門型の他、図示は省略するが一文字型、函型など後で配設する地下構造物に合わせて適宜選択される。 The arrangement of the box-shaped roof cylinders 6 is appropriately selected according to the underground structure to be arranged later, such as a gate type as shown in FIG. 13, a single character type, a box type, etc., although not shown.

次いで、図11に示すように発進坑3内に反力壁8、コンクリート函体による地下構造物9をセットし、反力壁8と地下構造物9との間には推進ジャッキ10を設け、地下構造物9の先端に刃口11を設けるとともに地下構造物9の先端と前記箱形ルーフ用筒体6との間に小ジャッキ12を介在させる。 Next, as shown in FIG. 11, a reaction force wall 8 and an underground structure 9 made of a concrete box are set in the starting pit 3, and a propulsion jack 10 is provided between the reaction force wall 8 and the underground structure 9. A cutting edge 11 is provided at the tip of the underground structure 9, and a small jack 12 is interposed between the tip of the underground structure 9 and the box-shaped roof cylinder 6.

図中13は箱形ルーフ用筒体6の支持材、14はフリクションカッタープレート7の止め部材でこれらは発進立坑3側に設け、一方、到達立坑4側に架台(受台)15を設ける。 In the figure, 13 is a support member for the box-shaped roof cylinder 6, 14 is a stop member for the friction cutter plate 7, and these are provided on the starting shaft 3 side, while a pedestal (pedestal) 15 is provided on the reaching shaft 4 side.

小ジャッキ12を伸長して地下構造物9を反力としてフリクションカッタープレート7を残しながら箱形ルーフ用筒体6を1本ずつ順次押し進め、全ての箱形ルーフ用筒体6が一通り前進したならば、小ジャッキ12を縮め今度は推進ジャッキ10を伸長して地下構造物9を掘進させる。図中16は推進ジャッキ10と地下構造物9との間に介在させるストラットを示す。 The small jack 12 was extended and the underground structure 9 was used as a reaction force to push forward the box-shaped roof cylinders 6 one by one while leaving the friction cutter plate 7, and all the box-shaped roof cylinders 6 moved forward. Then, the small jack 12 is shrunk and the propulsion jack 10 is extended this time to dig up the underground structure 9. 16 in the figure shows a strut interposed between the propulsion jack 10 and the underground structure 9.

このようにして箱形ルーフ用筒体6の前進と地下構造物9の前進とを交互に繰り返しながら図12に示すように到達立坑4に箱形ルーフ用筒体6の単位1ピース分が完全に出たならば、継手フランジ6c同士のボルト、ナット19による締結を解除して長さ方向に分割し、順次撤去する。 In this way, while alternately repeating the advance of the box-shaped roof cylinder 6 and the advance of the underground structure 9, as shown in FIG. 12, the unit 1 piece of the box-shaped roof cylinder 6 is completed in the reaching shaft 4. If this happens, the joint flanges 6c are not fastened together with the bolts and nuts 19, and the joint flanges 6c are divided in the length direction and removed in sequence.

そして、地下構造物9の先端が到達立坑4に達したならば、刃口11などを撤去し適宜裏込めグラウトを行って施工を完了する。 Then, when the tip of the underground structure 9 reaches the reaching shaft 4, the cutting edge 11 and the like are removed, and the backfill grout is performed as appropriate to complete the construction.

なお、地下構造物9はプレキャスト製のコンクリート函体を順次発進立坑3内に吊り降ろして接続していくようにしてもよいし、発進立坑3内でコンクリートを打設して必要長を増設するようにしてもよい。 In the underground structure 9, precast concrete boxes may be sequentially suspended and connected in the starting shaft 3, or concrete may be placed in the starting shaft 3 to increase the required length. You may do so.

また、該地下構造物9の推進方法に関しても到達立坑4側に反力壁およびセンターホール式の牽引ジャッキを設け、一端は地下構造物9に定着したPC鋼線による牽引部材をこの牽引ジャッキで引くことにより到達立坑4側から地下構造物9を引き込むようにすることもできる。 Further, regarding the propulsion method of the underground structure 9, a reaction force wall and a center hole type traction jack are provided on the reaching shaft 4 side, and one end thereof is a traction member made of PC steel wire fixed to the underground structure 9 with this traction jack. By pulling, the underground structure 9 can be pulled in from the reaching shaft 4 side.

前記のような箱形ルーフ工法を用いた地下構造物の施工法では、現場の直上に営業線を走らせたままで行われる。 In the construction method of the underground structure using the box-shaped roof construction method as described above, the construction method is carried out while the business line is running directly above the site.

そのため、線路下の地山内に箱形ルーフを設置して仮設防護したうえで、コンクリート函体(ボックスカルバート)を推進することで線路下横断構造物が築造される。 Therefore, a box-shaped roof is installed in the ground under the railroad track to temporarily protect it, and then a concrete box (box culvert) is propelled to construct a crossing structure under the railroad track.

しかし、近年では線路下横断工法における函体断面の大型化に伴って、函体推進・けん引力が増大していて、函体と地山の界面には大きい摩擦力が生じるため、多数のジャッキによる推力を確保する必要がある。 However, in recent years, with the increase in the size of the cross section of the box in the under-track cross-section method, the propulsion and traction force of the box has increased, and a large frictional force is generated at the interface between the box and the ground. It is necessary to secure the thrust by.

特に横断部に設置した箱形ルーフと函体とを置き換える施工法では、長期間横断部に設置されていた箱形ルーフ再推進時(函体推進時)において、周辺地山の圧密による摩擦抵抗によって想定外の推進力が必要となり、縁切り時や函体推進・けん引時に周囲地山へ影響(振動や騒音)を及ぼす場合があった。 In particular, in the construction method that replaces the box-shaped roof installed in the cross section and the box body, the frictional resistance due to the consolidation of the surrounding ground during the re-propulsion of the box-shaped roof installed in the cross section for a long period of time (during the box body propulsion). As a result, unexpected propulsive force was required, which may affect the surrounding ground (vibration and noise) during edge cutting, box propulsion, and towing.

本発明の目的は前記従来例の不都合を解消し、線路下横断構造物の施工において、函体推進・けん引時に生じる箱形ルーフとフリクションカッター(FC)プレートとの摩擦、または、函体周面とFCプレートとの摩擦を効果的に低減することで、縁切り時の推進・けん引力および、函体推進・けん引時の周囲地山への影響を低減させることができる地下構造物の施工法およびそれに使用する摩擦低減材を提供することにある。 An object of the present invention is to eliminate the inconvenience of the above-mentioned conventional example, and to eliminate the friction between the box-shaped roof and the friction cutter (FC) plate, which occurs during the propulsion and towing of the box body, or the peripheral surface of the box body in the construction of the crossing structure under the railroad track. By effectively reducing the friction between the FC plate and the FC plate, the propulsion / towing force at the time of edge cutting and the influence on the surrounding ground at the time of box propulsion / towing can be reduced. The purpose is to provide a friction reducing material used for it.

前記目的を達成するため本発明は、地下構造物の施工法としては、地下構造物として設置するコンクリート函体の推進の際の防護工として、設置する予定のコンクリート函体の外縁に合致するように、矩形断面の箱形筒体の鋼管である箱形ルーフをあらかじめ横断区間である発進立坑と到達立坑間に貫通させ、箱形ルーフの上にフリクションカッタープレートを載置 しておき、発進立坑にコンクリート函体を据え付けて、フリクションカッタープレートを残して箱形ルーフを押し出すと共にコンクリート函体を推進させ、押し出されて到達立坑にでる箱形ルーフを順次撤去して地中で箱形ルーフとコンクリート函体を置換設置する地下構造物の設置工法において、箱形ルーフとフリクションカッタープレートとの間に、剛な鉄などの金属の球体またはコロとそれをせん断破壊可能な被覆材としてモルタルで覆い、球体またはコロの径と一致した高さ、幅、奥行きをもつ六面体のブロック形状とした摩擦低減材を配置したことを要旨とするものである。 In order to achieve the above object, the present invention is to match the outer edge of the concrete box to be installed as a protective work when propulsion of the concrete box to be installed as the underground structure as a construction method of the underground structure. In addition, a box-shaped roof, which is a steel pipe of a box-shaped cylinder with a rectangular cross section, is passed through in advance between the starting shaft and the reaching shaft, which is a crossing section, and a friction cutter plate is placed on the box-shaped roof to place the starting shaft. A concrete box is installed in the concrete box, the box-shaped roof is pushed out while leaving the friction cutter plate, and the concrete box is propelled. In the installation method of the underground structure that replaces and installs the box, between the box-shaped roof and the friction cutter plate, a metal sphere or roller such as rigid iron and the roller are covered with mortar as a covering material that can be sheared. The gist is that a friction reducing material having a hexahedral block shape having a height, width, and depth that matches the diameter of the sphere or roller is placed.

地下構造物の施工法に使用する摩擦低減材としては、地下構造物として設置するコンクリート函体の推進の際の防護工である箱形ルーフとその上のフリクションカッタープレートとの間に間隔を存して配置する摩擦低減材であり、剛な鉄などの金属の球体またはコロとそれをせん断破壊可能な被覆材としてモルタルで覆い、球体またはコロの径と一致した高さ、幅、奥行きをもつ六面体のブロック形状としたことを要旨とするものである。 As a friction reducing material used in the construction method of underground structures, there is a space between the box-shaped roof, which is a protective work when propelling a concrete box to be installed as an underground structure, and the friction cutter plate on it. It is a friction reducing material that is placed in a friction-reducing material, and is covered with a metal sphere or roller such as rigid iron and a covering material that can be sheared and broken , and has a height, width, and depth that matches the diameter of the sphere or roller. The gist is that the block shape is a hexahedron .

本発明によれば、函体推進時では、その摩擦による強制変位を受けて被覆材がせん断破壊することで縁切り時の摩擦低減のほか、函体推進・けん引時に生じる摩擦を低減することができる。 According to the present invention, when the box body is propelled, the covering material is sheared and broken due to the forced displacement due to the friction, so that the friction at the time of edge cutting and the friction generated at the time of box body propulsion / towing can be reduced. ..

FCプレートと箱形ルーフの界面に球体またはコロだけを設置すれば、地盤と函体の界面摩擦はほとんどゼロにできるが、列車荷重や地圧の影響により、施工時の函体の挙動は極めて不安定になるが、球体またはコロがせん断破壊可能な被覆材の破片の上を、抵抗を受けながらころがることによって施工の不安定化を抑止する。 If only a sphere or roller is installed at the interface between the FC plate and the box-shaped roof, the interface friction between the ground and the box can be almost zero, but the behavior of the box during construction is extremely large due to the influence of train load and ground pressure. Although it becomes unstable, the destabilization of construction is suppressed by rolling on the fragments of the covering material in which the sphere or roller can be sheared and broken while receiving resistance.

また、摩擦低減材は、せん断破壊可能な被覆材で覆ったことでブロックまたは平板として形成することができ、箱形ルーフとフリクションカッタープレートとの間に配置するのに、球体またはコロが転がり出さずに安定して設置できる。 Also, the friction reducing material can be formed as a block or flat plate by covering it with a shear-breakable coating, and a sphere or roller rolls out to be placed between the box roof and the friction cutter plate. Can be installed stably without any need.

さらに、FCプレートと箱形ルーフは剛な鉄などの球体またはコロにより高さ方向の変位が生じないため、軌道・道路の変位における鉛直方向の変位も抑制できる。 Further, since the FC plate and the box-shaped roof are not displaced in the height direction due to a sphere such as rigid iron or a roller, the vertical displacement in the displacement of the track / road can be suppressed.

これに加えて摩擦による強制変位を受けてせん断破壊する被覆材としてモルタルは成形性や価格等で最適なものである。 In addition to this, mortar is optimal in terms of formability, price, etc. as a coating material that undergoes forced displacement due to friction and undergoes shear failure.

以上述べたように本発明の地下構造物の施工法およびそれに使用する摩擦低減材は、線路下横断構造物の施工において、函体推進・けん引時に生じる箱形ルーフとフリクションカッター(FC)プレートとの摩擦、または、函体周面とFCプレートとの摩擦を効果的に低減することで、縁切り時の推進・けん引力および、函体推進・けん引時の周囲地山への影響を低減させることができるものである。 As described above, the construction method of the underground structure of the present invention and the friction reducing material used thereof are the box-shaped roof and the friction cutter (FC) plate generated at the time of box propulsion / towing in the construction of the crossing structure under the railroad track. By effectively reducing the friction of the box body or the friction between the peripheral surface of the box body and the FC plate, the propulsion / traction force at the time of edge cutting and the influence on the surrounding ground during the box body propulsion / towing are reduced. Can be done.

本発明の地下構造物の施工法の第1実施形態を示す側面図である。It is a side view which shows 1st Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第2実施形態を示す側面図である。It is a side view which shows the 2nd Embodiment of the construction method of the underground structure of this invention. 図1のA-A線矢視図である。FIG. 1 is a view taken along the line AA of FIG. 本発明の地下構造物の施工法の第3実施形態を示す要部の正面図である。It is a front view of the main part which shows the 3rd Embodiment of the construction method of the underground structure of this invention. 図4のB-B線矢視図である。It is a BB line arrow view of FIG. 本発明の摩擦低減材の一例を示す斜視図である。It is a perspective view which shows an example of the friction reducing material of this invention. 本発明の摩擦低減材の他例を示す斜視図である。It is a perspective view which shows the other example of the friction reducing material of this invention. 本発明の地下構造物の施工法の1実施形態を示す摩擦低減材設置時から施工法の函体推進時の変化を示す説明図である。It is explanatory drawing which shows the change in the box body propulsion of the construction method from the time of installing the friction reducing material which shows one Embodiment of the construction method of the underground structure of this invention. ジャッキ推力と推進量の関係を示すグラフである。It is a graph which shows the relationship between a jack thrust and a propulsion amount. 箱形ルーフ工法による地下構造物の施工法の第1工程を示す側面図である。It is a side view which shows the 1st process of the construction method of the underground structure by the box-shaped roof construction method. 箱形ルーフ工法による地下構造物の施工法の第2工程を示す側面図である。It is a side view which shows the 2nd process of the construction method of the underground structure by the box-shaped roof construction method. 地下構造物の施工法の第3工程を示す側面図である。It is a side view which shows the 3rd process of the construction method of the underground structure. 箱形ルーフ用筒体の配列状態の1例を示す正面図である。It is a front view which shows an example of the arrangement state of a box-shaped roof cylinder. 箱形ルーフ用筒体の1例を示す部分斜視図である。It is a partial perspective view which shows an example of the cylinder for a box-shaped roof.

以下、図面について本発明の実施形態を詳細に説明する。図1は本発明の地下構造物の施工法の第1実施形態を示す縦断側面図で、図中6は箱形ルーフ用筒体、7はフリクションカッタープレート、9はコンクリート函体による地下構造物である。 Hereinafter, embodiments of the present invention will be described in detail with respect to the drawings. FIG. 1 is a vertical sectional side view showing a first embodiment of a construction method for an underground structure of the present invention. In the figure, 6 is a box-shaped roof cylinder, 7 is a friction cutter plate, and 9 is an underground structure made of a concrete box. Is.

箱形ルーフ用筒体6を用いる箱形ルーフ工法については、前記従来例を示す図10~図14で説明した通りであり、箱形ルーフ用筒体6を発進坑3と到達坑4との間の地中に水平に圧入して並列させ、発進坑3にでる箱形ルーフ用筒体6の端部に地下構造物を配設し、箱形ルーフと地下構造物を推進する地下構造物の構築方法である。 The box-shaped roof construction method using the box-shaped roof cylinder 6 is as described with reference to FIGS. 10 to 14 showing the conventional example, and the box-shaped roof cylinder 6 is provided with the starting pit 3 and the reaching pit 4. An underground structure that is horizontally pressed into the ground between them and placed in parallel, and an underground structure is placed at the end of the box-shaped roof cylinder 6 that goes out to the starting pit 3, and the box-shaped roof and the underground structure are promoted. How to build.

鉄道等上部交通1の脇にもしくは鋼矢板2を打設して、発進立坑3と到達立坑4を築造し、該発進立坑3内に圧入機5を設置してこれで箱形ルーフ用筒体6を到達立坑4へ向けて圧入させ、防護工としてのルーフを形成するものである。 A starting shaft 3 and a reaching shaft 4 are constructed by placing a steel sheet pile 2 on the side of the upper traffic 1 such as a railroad, and a press-fitting machine 5 is installed in the starting shaft 3 to form a box-shaped roof cylinder. 6 is press-fitted toward the reaching shaft 4 to form a roof as a protective work.

箱形ルーフ用筒体6は図14に示すように鋼管による略正方形断面の箱形筒体であり、上に平板からなるフリクションカッター(FC)プレート7を載置している。 As shown in FIG. 14, the box-shaped roof cylinder 6 is a box-shaped cylinder having a substantially square cross section made of a steel pipe, on which a friction cutter (FC) plate 7 made of a flat plate is placed.

箱形ルーフ用筒体6は単位筒体を1本ずつ圧入するものであり、端部に継手フランジ6cを形成し、また、その後方に箱抜き17を形成してこの継手フランジ6c同士をボルト、ナット19で締結することにより1ピースずつ長さ方向に継ぎ足して到達坑4から発進坑3までの必要長を埋設し、さらにこうして埋設した1本目に対して2本目、3本目…と順次埋設して並列させる。 The box-shaped roof cylinder 6 is for press-fitting unit cylinders one by one, and a joint flange 6c is formed at the end, and a box punch 17 is formed behind the joint flange 6c to bolt the joint flanges 6c to each other. By fastening with nuts 19, the required length from the reaching pit 4 to the starting pit 3 is buried by adding one piece at a time in the length direction, and then the second, third, and so on are buried in order for the first pit buried in this way. And parallelize.

なお、フリクションカッタープレート7は先頭部のみ箱形ルーフ用筒体6に溶接等で固定し、あとは溶接でつないでいき、箱形ルーフ用筒体6の圧入ととともにその上を覆うように伸ばしていく。 The friction cutter plate 7 is fixed to the box-shaped roof cylinder 6 by welding or the like only at the head portion, and then connected by welding, and is stretched so as to cover the box-shaped roof cylinder 6 by press-fitting. To go.

本発明は、箱形筒体であり、上に平板からなるフリクションカッター(FC)プレート7を載置するに際して、箱形ルーフ用筒体6とフリクションカッタープレート7との間に摩擦低減材20を設置した。 The present invention is a box-shaped cylinder, and when a friction cutter (FC) plate 7 made of a flat plate is placed on the box-shaped cylinder, a friction reducing material 20 is provided between the box-shaped roof cylinder 6 and the friction cutter plate 7. installed.

フリクションカッタープレート7は先頭部のみ箱形ルーフ用筒体6に溶接で固定し、あとは溶接でつないでいき、箱形ルーフ用筒体6の圧入ととともにその上を覆うように伸ばしていくが、摩擦低減材20を挟み込ませるため、フリクションカッタープレート7と箱形ルーフ用筒体6とは隙間を確保し、前記溶接もこの隙間幅確保できるようにフリクションカッタープレート7を浮かした状態で行う。 Only the front part of the friction cutter plate 7 is fixed to the box-shaped roof cylinder 6 by welding, and then the friction cutter plate 7 is connected by welding, and is extended so as to cover the box-shaped roof cylinder 6 by press-fitting. In order to sandwich the friction reducing material 20, a gap is secured between the friction cutter plate 7 and the box-shaped roof cylinder 6, and the welding is also performed with the friction cutter plate 7 floating so that the gap width can be secured.

この摩擦低減材20は、剛な鉄などの球体21をせん断破壊可能な被覆材としてモルタル22で覆ったもので、図6に示すようにモルタル22で球体21の径と一致した高さ、幅、奥行きをもつ六面体のブロック形状とした。 The friction reducing material 20 is made by covering a sphere 21 such as rigid iron with a mortar 22 as a covering material capable of shear failure. As shown in FIG. 6, the height and width of the mortar 22 match the diameter of the sphere 21. , A hexahedron block shape with depth.

なお、摩擦低減材20の成形に際しては型枠内に球体21を収め、その後モルタル22を型枠に充填し、硬化後脱型すればよい。 When molding the friction reducing material 20, the sphere 21 may be housed in the mold, then the mortar 22 may be filled in the mold, and the mold may be removed after curing.

かかるブロック形状による摩擦低減材20はこれを間隔を存してフリクションカッタープレート7と箱形ルーフ用筒体6の間に配置する。 The friction reducing material 20 having such a block shape is arranged between the friction cutter plate 7 and the box-shaped roof cylinder 6 at intervals.

また、他の実施形態として複数の球体21をモルタル22で覆ったブロックとして摩擦低減材20を構成することもできる。 Further, as another embodiment, the friction reducing material 20 can be configured as a block in which a plurality of spheres 21 are covered with mortar 22.

さらに、摩擦低減材20は図4に示すような、小球による球体21を多数ならべてモルタル22中に埋め込み、全体をプレート形状としてもよい。 Further, as shown in FIG. 4, the friction reducing material 20 may be formed by arranging a large number of spheres 21 made of small spheres and embedding them in the mortar 22 to form a plate as a whole.

他の実施形態として、図7に示すように球体21の代わりに、剛なものとして、鋼鉄製の棒体によるコロ23を使用することもできる。 As another embodiment, instead of the sphere 21 as shown in FIG. 7, a roller 23 made of a steel rod can be used as a rigid one.

この場合もモルタル22でコロ23の径と一致した高さ、幅、奥行きをもつ六面体の形状と場合の他、コロ23の長さを長いものとしてこれをモルタル22で覆って全体を長い棒状にしてもよい。 In this case as well, in addition to the case where the mortar 22 has a hexahedron shape having a height, width, and depth that match the diameter of the roller 23, the length of the roller 23 is assumed to be long, and this is covered with the mortar 22 to form a long rod. You may.

長い棒状とした摩擦低減材20は、横並びでならぶ箱形ルーフ用筒体6の上に横断するように間隔を存して置かれ、フリクションカッタープレート7で挟み込まれる。 The long rod-shaped friction reducing material 20 is placed at intervals on the box-shaped roof cylinders 6 arranged side by side at intervals, and is sandwiched between the friction cutter plates 7.

図1に示すように、コンクリート函体による地下構造物9をセットし、箱形ルーフ用筒体6の前進と地下構造物9の前進とを交互に繰り返しながら箱形ルーフ用筒体6の単位1ピース分が到達坑(図示せず)に出たならば順次撤去し、そして地下構造物9の先端が到達立坑4に達したならば適宜裏込めグラウトを行って施工を完了するが、摩擦低減材20の変化を図8に示す。 As shown in FIG. 1, a unit of the box-shaped roof cylinder 6 is set by setting the underground structure 9 made of a concrete box, and alternately repeating the advance of the box-shaped roof cylinder 6 and the advance of the underground structure 9. If one piece comes out to the reaching shaft (not shown), remove it in sequence, and if the tip of the underground structure 9 reaches the reaching shaft 4, perform backfill grout as appropriate to complete the construction, but friction The change of the reduction material 20 is shown in FIG.

摩擦低減材20は、初期状態からコンクリート函体による地下構造物9の推進によって側方の強制変位を受け、モルタル22がせん断破壊する。 From the initial state, the friction reducing material 20 receives forced lateral displacement due to the propulsion of the underground structure 9 by the concrete box, and the mortar 22 undergoes shear failure.

すなわち、コンクリート函体による地下構造物9の発進前には多数設置した摩擦低減材料20によって軌道の鉛直方向が支持されるだけでなく、推進時には、球体21の転がりによって、コンクリート函体と地盤に生じる摩擦を低減できる。 That is, not only is the vertical direction of the track supported by the friction reducing materials 20 installed in large numbers before the start of the underground structure 9 by the concrete box, but also during propulsion, the rolling of the sphere 21 causes the concrete box and the ground. The friction that occurs can be reduced.

これにより、函体推進時のジャッキ推力を既存の方法よりも低減できる。なお、剛な球により、高さ方向の変位が生じない条件で函体推進できるため、軌道変位は生じない条件で施工が可能である。 As a result, the jack thrust at the time of propelling the box can be reduced as compared with the existing method. Since the rigid sphere can propel the box under the condition that the displacement in the height direction does not occur, the construction can be performed under the condition that the track displacement does not occur.

図9に従来のFCプレートとルーフが接する場合と本発明を用いた場合のジャッキ推力と推進量uの関係を示す。 FIG. 9 shows the relationship between the jack thrust and the propulsion amount u when the conventional FC plate and the roof are in contact with each other and when the present invention is used.

鋼鉄どうしの摩擦係数は約27°であるが、40cm径の鉄球が鋼鉄面を転がる場合の摩擦係数は0.001°であり、鉄球のみを設置すれば、函体推進に必要なジャッキの推力を0.004%に低減できる。 The coefficient of friction between steels is about 27 °, but the coefficient of friction when an iron ball with a diameter of 40 cm rolls on the steel surface is 0.001 °. Can be reduced to 0.004%.

モルタルの破片の上を鉄球が転がる場合は、モルタルの圧縮強さによって転がり摩擦係数を調整することができ、図9のようにジャッキの推力を効果的に低減できる。なお、モルタルの圧縮強さは高強度で200MPa、低強度なものでは、10MPa以下にすることも可能である。 When the iron ball rolls on the mortar fragments, the rolling friction coefficient can be adjusted by the compressive strength of the mortar, and the thrust of the jack can be effectively reduced as shown in FIG. The compressive strength of the mortar can be 200 MPa at high strength and 10 MPa or less at low strength.

図2は推進しようとする地下構造物9の外形に対応するように箱形ルーフ6を下段、側部及び上段の矩形配列に組み配置して、地中に圧入した後、前記箱形ルーフ6の端部に地下構造物9の先端部を配置して地下構造物9推進や牽引とともに箱形ルーフ6および内部の土砂と一緒に押し出す地下構造物の施工法に本発明を適用する場合である。 In FIG. 2, the box-shaped roof 6 is assembled and arranged in a rectangular arrangement on the lower, side, and upper stages so as to correspond to the outer shape of the underground structure 9 to be propelled, and after being press-fitted into the ground, the box-shaped roof 6 This is a case where the present invention is applied to a construction method of an underground structure in which the tip portion of the underground structure 9 is arranged at the end of the underground structure 9 and pushed out together with the box-shaped roof 6 and the internal earth and sand together with the propulsion and towing of the underground structure 9. ..

フリクションカッタープレート7は地下構造物9の推進や牽引と同時に箱形ルーフ6を押出す際にこれを残置することで、箱形ルーフ6や地下構造物9と周辺土砂との縁切りを行い、土砂はフリクションカッタープレートともどもコンクリート函体内に取り込む。 The friction cutter plate 7 is left behind when the box-shaped roof 6 is extruded at the same time as the propulsion and towing of the underground structure 9, thereby cutting the edges between the box-shaped roof 6 and the underground structure 9 and the surrounding earth and sand. Is taken into the concrete box together with the friction cutter plate.

この場合は、フリクションカッタープレート7は下の段に横並びになる箱形ルーフ6の下側にも配置されるが、前記摩擦低減材20はこの下の段の箱形ルーフ6とフリクションカッタープレート7との間にも配置される。 In this case, the friction cutter plate 7 is also arranged on the lower side of the box-shaped roof 6 arranged side by side on the lower stage, but the friction reducing material 20 is the box-shaped roof 6 and the friction cutter plate 7 on the lower stage. It is also placed between and.

また、図示は省略するが地下構造物9の外形に対応するよう下段、側部及び上段の矩形配列に組み配置して矩形に並ぶ箱形ルーフ6の側部側においてもフリクションカッタープレート7との間に摩擦低減材20を配置してもよい。 Further, although not shown, the friction cutter plate 7 is also used on the side side of the box-shaped roof 6 which is arranged in a rectangular arrangement in the lower, side, and upper stages so as to correspond to the outer shape of the underground structure 9. A friction reducing material 20 may be arranged between them.

更に他の実施形態として、摩擦低減材20として、剛な鉄などの球体またはコロと覆うせん断破壊可能な被覆材としてモルタル22の代わりに、発泡スチロールのような合成樹脂、もしくはベントナイト等の粘土を使用することも可能である。 As yet another embodiment, as the friction reducing material 20, a synthetic resin such as Styrofoam or clay such as bentonite is used instead of the mortar 22 as a covering material capable of shear breakage covering a sphere such as rigid iron or a roller. It is also possible to do.

1…上部交通 2…鋼矢板
3…発進立坑 4…到達立坑
5…圧入機 6…箱形ルーフ用筒体
6c…継手フランジ 7…フリクションカッタープレート
8…反力壁 9…地下構造物
10…推進ジャッキ 11…刃口
12…小ジャッキ 13…支持材
14…止め部材 15…受台
16…ストラット 17…箱抜き
19…ボルト、ナット 20…摩擦低減材料
21…球体 22…モルタル
23…コロ
1 ... Upper traffic 2 ... Steel sheet pile 3 ... Starting shaft 4 ... Reaching shaft 5 ... Press-fitting machine 6 ... Box-shaped roof cylinder 6c ... Joint flange 7 ... Friction cutter plate 8 ... Reaction force wall 9 ... Underground structure 10 ... Propulsion Jack 11 ... Blade edge 12 ... Small jack 13 ... Support material 14 ... Stopping member 15 ... Cradle 16 ... Strut 17 ... Boxing 19 ... Bolts, nuts 20 ... Friction reduction material 21 ... Sphere 22 ... Mortal 23 ... Coro

Claims (2)

地下構造物として設置するコンクリート函体の推進の際の防護工として、設置する予定のコンクリート函体の外縁に合致するように、矩形断面の箱形筒体の鋼管である箱形ルーフをあらかじめ横断区間である発進立坑と到達立坑間に貫通させ、箱形ルーフの上にフリクションカッタープレートを載置 しておき、発進立坑にコンクリート函体を据え付けて、フリクションカッタープレートを残して箱形ルーフを押し出すと共にコンクリート函体を推進させ、押し出されて到達立坑にでる箱形ルーフを順次撤去して地中で箱形ルーフとコンクリート函体を置換設置する地下構造物の設置工法において、箱形ルーフとフリクションカッタープレートとの間に、剛な鉄などの金属の球体またはコロとそれをせん断破壊可能な被覆材としてモルタルで覆い、球体またはコロの径と一致した高さ、幅、奥行きをもつ六面体のブロック形状とした摩擦低減材を配置したことを特徴とする地下構造物の設置工法。 As a protective work when propelling a concrete box to be installed as an underground structure, a box-shaped roof, which is a steel tube of a box-shaped cylinder with a rectangular cross section, is crossed in advance so as to match the outer edge of the concrete box to be installed. Penetrate between the starting shaft and the reaching shaft, which is a section, place the friction cutter plate on the box-shaped roof, install the concrete box on the starting shaft, and push out the box-shaped roof leaving the friction cutter plate. In the installation method of the underground structure where the concrete box is propelled together, the box-shaped roof that is extruded and goes out to the reaching shaft is sequentially removed, and the box-shaped roof and the concrete box are replaced and installed in the ground, the box-shaped roof and friction A hexahedral block with a height, width, and depth that matches the diameter of the sphere or roller, with a metal sphere or roller such as rigid iron and a mortar covering it as a shear-breakable coating between the cutter plate. An underground structure installation method characterized by arranging a friction-reducing material in a shape . 地下構造物として設置するコンクリート函体の推進の際の防護工である箱形ルーフとその上のフリクションカッタープレートとの間に間隔を存して配置する摩擦低減材であり、剛な鉄などの金属の球体またはコロとそれをせん断破壊可能な被覆材としてモルタルで覆い、球体またはコロの径と一致した高さ、幅、奥行きをもつ六面体のブロック形状としたことを特徴とする地下構造物の設置工法に使用する摩擦低減材。

It is a friction reducing material that is placed with a gap between the box-shaped roof, which is a protective work when propelling a concrete box to be installed as an underground structure, and the friction cutter plate on it, such as rigid iron. An underground structure characterized by covering a metal sphere or roller with mortar as a covering material capable of shear fracture, and forming a hexahedral block shape having a height, width, and depth matching the diameter of the sphere or roller. Friction reduction material used in the installation method.

JP2020010539A 2020-01-27 2020-01-27 Construction method of underground structure and friction reducing material used for it Active JP7061773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020010539A JP7061773B2 (en) 2020-01-27 2020-01-27 Construction method of underground structure and friction reducing material used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020010539A JP7061773B2 (en) 2020-01-27 2020-01-27 Construction method of underground structure and friction reducing material used for it

Publications (2)

Publication Number Publication Date
JP2021116595A JP2021116595A (en) 2021-08-10
JP7061773B2 true JP7061773B2 (en) 2022-05-02

Family

ID=77174245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020010539A Active JP7061773B2 (en) 2020-01-27 2020-01-27 Construction method of underground structure and friction reducing material used for it

Country Status (1)

Country Link
JP (1) JP7061773B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060079A (en) 2017-09-25 2019-04-18 株式会社大阪防水建設社 Pipe body propulsion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261097A (en) * 1987-04-14 1988-10-27 株式会社奥村組 Pipe for pipe roof and method of burying underground structure by said pipe
JP2732007B2 (en) * 1993-02-01 1998-03-25 厚一 植村 How to build underground structures
JP2631636B2 (en) * 1995-02-24 1997-07-16 厚一 植村 Underground structure construction method and construction apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060079A (en) 2017-09-25 2019-04-18 株式会社大阪防水建設社 Pipe body propulsion device

Also Published As

Publication number Publication date
JP2021116595A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
KR101269597B1 (en) Underground structure construction method
JP6148709B2 (en) Road surface lining method in propulsion type open shield method
JP7061773B2 (en) Construction method of underground structure and friction reducing material used for it
JP6510620B1 (en) Construction method of underground structure and push-in jack used therefor
JP5188383B2 (en) Box thrust transmission member and method of constructing underground structure using the same
JP3382183B2 (en) Construction method for underground structure and roof cylinder used therefor
JP6982603B2 (en) Box-shaped roof construction method
JP3887383B2 (en) Construction method for underground structures
JP5874890B2 (en) How to install the box structure
JP4134089B2 (en) Construction method for underground structures
JP5054164B2 (en) Construction method for underground structures
JP2021181751A (en) Reaction force structure and method for launching concrete box or open shield machine
JP3116098B2 (en) Construction method for underground structures
JP6441871B2 (en) Box roof deflection reduction method for box roof method
JP6908666B2 (en) Construction method of underground structure
JP2021177029A (en) Method of constructing underground structure with box-shaped roof
JP6276300B2 (en) Open shield method
JP6212087B2 (en) Construction method for underground structures
JP6445478B2 (en) Construction method for underground structures
JP6113778B2 (en) Construction method for underground structures
JP7082225B1 (en) Construction method of underground structure
JP7084515B1 (en) Construction method of underground structure
JP6967123B1 (en) How to build a box-shaped roof stand
JP6121504B1 (en) Road lining method
JPH08232574A (en) Method and equipment for building underground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7061773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150