JP6901187B2 - 薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラム - Google Patents

薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラム Download PDF

Info

Publication number
JP6901187B2
JP6901187B2 JP2020527534A JP2020527534A JP6901187B2 JP 6901187 B2 JP6901187 B2 JP 6901187B2 JP 2020527534 A JP2020527534 A JP 2020527534A JP 2020527534 A JP2020527534 A JP 2020527534A JP 6901187 B2 JP6901187 B2 JP 6901187B2
Authority
JP
Japan
Prior art keywords
drug
state
standby state
drone
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020527534A
Other languages
English (en)
Other versions
JPWO2020004367A1 (ja
Inventor
千大 和氣
千大 和氣
洋 柳下
洋 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nileworks Inc
Original Assignee
Nileworks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nileworks Inc filed Critical Nileworks Inc
Publication of JPWO2020004367A1 publication Critical patent/JPWO2020004367A1/ja
Application granted granted Critical
Publication of JP6901187B2 publication Critical patent/JP6901187B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight

Description

本願発明は、薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラムに関する。
一般にドローンと呼ばれる小型無人ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
準天頂衛星システムやRTK-GPS(Real Time Kinematic-Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
特許公開公報 特開2001−120151 特許公開公報 特開2017−163265
自律動作時であっても、高い安全性を維持できる薬剤散布システムを提供することができる。
上記目的を達成するため、本発明の一の観点に係る薬剤散布システムは、操縦器と、農業用機械と、がネットワークを通じて互いに接続されて互いに協調して動作する薬剤散布システムであって、前記薬剤散布システムは、互いに異なる複数の状態をとることが可能で、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、前記農業用機械は、薬剤を保管する薬剤タンクと、前記薬剤タンクに蓄えられる薬剤の量が所定値以下になっていることを検知する薬剤量検知部と、を備え、前記複数の状態は、前記農業用機械に薬剤の補充作業の開始命令が入力されるのを待機する薬剤準備スタンバイ状態と、前記薬剤タンクに薬剤を注入する薬剤準備状態と、前記農業用機械が薬剤散布を行う薬剤散布状態と、前記薬剤散布状態の後に遷移するスタンバイ状態と、を含み、前記薬剤準備状態における前記薬剤量検知部による検知に基づいて、前記薬剤準備状態から前記スタンバイ状態に遷移し、前記薬剤散布状態における前記薬剤量検知部による検知に基づいて、前記薬剤散布状態から前記スタンバイ状態に遷移する。
前記薬剤準備状態において前記薬剤量検知部により検知されると、前記薬剤散布状態に遷移せずに前記スタンバイ状態に遷移するように構成されていてもよい。
前記薬剤準備状態は、液体検知部が前記液体の補充の完了を検知する液体待機状態と、エア抜き検知部がエア抜き動作の完了を検知するエア抜き待機状態と、薬剤検知部が前記薬剤の補充の完了を検知する薬剤待機状態と、使用者が前記システムに前記薬剤散布の準備を開始させる旨の散布準備開始指令を入力可能な散布準備開始スタンバイ状態と、を含み、前記薬剤散布システムは、少なくとも前記液体待機状態、前記エア抜き待機状態、および前記薬剤待機状態に遷移した後に、前記散布準備開始スタンバイ状態に遷移し、前記散布準備開始スタンバイ状態における前記薬剤量検知部の検知に基づいて、前記薬剤散布システムは前記薬剤準備スタンバイ状態に遷移するように構成されていてもよい。
前記薬剤散布システムは、前記薬剤散布状態において前記薬剤量検知部により前記薬剤タンクの薬剤量が所定以下であることが検知されると、退避行動を取るように構成されていてもよい。
前記農業用機械はドローンであり、前記ドローンは、前記薬剤散布状態において飛行しながら薬剤を散布し、前記薬剤準備状態において前記薬剤量検知部により検知されると、前記薬剤散布システムは、前記ドローンを飛行させることなく前記スタンバイ状態に遷移するように構成されていてもよい。
本発明の別の観点に係る薬剤散布システムの制御方法は、操縦器と、農業用機械と、がネットワークを通じて互いに接続されて互いに協調して動作する薬剤散布システムの制御方法であって、前記薬剤散布システムは、互いに異なる複数の状態をとることが可能で、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、前記農業用機械は、薬剤を保管する薬剤タンクと、前記薬剤タンクに蓄えられる薬剤の量が所定値以下になっていることを検知する薬剤量検知部と、を備え、前記複数の状態は、前記農業用機械に薬剤の補充作業の開始命令が入力されるのを待機する薬剤準備スタンバイ状態と、前記薬剤タンクに薬剤を注入する薬剤準備状態と、前記農業用機械が薬剤散布を行う薬剤散布状態と、前記薬剤散布状態の後に遷移するスタンバイ状態と、を含み、前記薬剤準備状態における前記薬剤量検知部による検知に基づいて、前記薬剤準備状態から前記スタンバイ状態に遷移するステップと、前記薬剤散布状態における前記薬剤量検知部による検知に基づいて、前記薬剤散布状態から前記スタンバイ状態に遷移するステップと、を含む。
本発明のさらに別の観点に係る薬剤散布システムの制御プログラムは、操縦器と、農業用機械と、がネットワークを通じて互いに接続されて互いに協調して動作する薬剤散布システムの制御プログラムであって、前記薬剤散布システムは、互いに異なる複数の状態をとることが可能で、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、前記農業用機械は、薬剤を保管する薬剤タンクと、前記薬剤タンクに蓄えられる薬剤の量が所定値以下になっていることを検知する薬剤量検知部と、を備え、前記複数の状態は、前記農業用機械に薬剤の補充作業の開始命令が入力されるのを待機する薬剤準備スタンバイ状態と、前記薬剤タンクに薬剤を注入する薬剤準備状態と、前記農業用機械が薬剤散布を行う薬剤散布状態と、前記薬剤散布状態の後に遷移するスタンバイ状態と、を含み、前記薬剤準備状態における前記薬剤量検知部による検知に基づいて、前記薬剤準備状態から前記スタンバイ状態に遷移する命令と、前記薬剤散布状態における前記薬剤量検知部による検知に基づいて、前記薬剤散布状態から前記スタンバイ状態に遷移する命令と、をコンピュータに実行させる。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD−ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
自律動作時であっても、高い安全性を維持できる薬剤散布システムを提供する。
本願発明に係る薬剤散布システムの一部を構成するドローンの実施の形態を示す平面図である。 上記ドローンの正面図である。 上記ドローンの右側面図である。 上記ドローンの背面図である。 上記ドローンの斜視図である。 上記ドローンシステムの全体概念図である。 上記ドローンの制御機能を表した模式図である。 上記ドローンが有する薬剤散布システムの構成を表した模式図である。 上記薬剤散布システムを含むドローンシステムの構成要素である上記ドローン、操縦器、基地局、および営農支援クラウドがそれぞれ有する、状態遷移に関する機能部を示す機能ブロック図である。 上記ドローンの詳細な機能ブロック図である。 上記ドローンシステムが遷移する複数の状態を示す概略状態遷移図である。 上記ドローンシステムが遷移する、薬剤補充に関する概略状態遷移図である。 上記ドローンシステムが遷移する、離陸診断に関する概略状態遷移図である。 上記ドローンシステムが遷移する、上記ドローンシステムのシャットダウンに関する概略状態遷移図である。
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図および図9に示すように、ドローンシステム500は、ドローン100、操縦器401、基地局404、および営農支援クラウド405が、ネットワークNWを通じて互いに接続され、互いに協調して動作するシステムである。ドローン100は、農業用機械の例である。ドローンシステム500は、薬剤散布システムを含む。なお、ドローンシステム500は、すべての構成要素が互いに直接接続されていてもよいし、各構成要素が少なくとも1個の構成要素と直接接続され、当該直接接続されている構成要素を経由して別の構成要素と間接的に接続されている構成であってもよい。ドローンシステム500は、農業用機械システムの例である。ドローンシステム500を構成するドローン100および操縦器401の少なくとも一方は、薬剤の補充制御システムが状態遷移する条件を満たしているか否かを判定する。
操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御され、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっている。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操縦器を使用してもよい。非常用操縦器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器である。操縦器401とドローン100はWi-Fi等による無線通信を行う。
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できる(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農支援クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されている。営農支援クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農支援クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
図1に、ドローン100の実施例の平面図を、図2にその(進行方向側から見た)正面図を、図3にその右側面図を、図4に背面図を、図5に斜視図を示す。なお、本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼または飛行手段を有する飛行体全般を指すこととする。
回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
ドローン100は薬剤タンク104に保管される薬剤を、圃場に向かって空中から下方に向かって散布する。空中散布を行うドローン100によれば、地上散布機や使用者自身により地上から散布される場合に比べて、圃場に対して薬剤を緻密に散布することが可能である。そのため、地上から散布される場合のように、圃場内の領域に重複して散布されることがなく、均一に散布することができる。したがって、薬剤タンク104に保管される薬剤は、地上から散布される薬剤に比べて高濃度、例えば10倍程度の薬剤である。
図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表した模式図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行ってもよい。また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農支援クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、例えば充電式である。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されている。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであってもよい。バッテリー502は多重化されていてもよく、本実施形態では第1バッテリー502aおよび第2バッテリー502bを有する。第1バッテリー502aおよび第2バッテリー502bは、互いに同等のものであってもよいし、互いに異なるバッテリー容量を有してもよいし、異なる機能を有するものでもよい。
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信すると共に、必要な情報を操縦器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようになっている。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていてもよい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しており、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御されている。
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。また、6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、例えばIR(赤外線)レーザーを使用する。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されている。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器であることが望ましい。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操縦器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
図8に示すように、ドローン100が備える薬剤の補充制御システムは、薬剤を散布する農業用機械、特に本例では薬剤散布用ドローン100に備えられ、薬剤の吐出を精度よく制御すると共に、薬剤の吐出異常を検知する。
なお、本実施形態において、薬剤の「吐出異常」といった場合には、現実に薬剤の吐出異常を来たし、規定値を超える薬剤が吐出されている状態のほか、このような薬剤の吐出異常となる虞のある準備状態や、散布予定とは異なる薬剤が現実に散布され、又は散布される虞がある設定異常の状態を含む。
薬剤タンク104は上述の通り、散布される薬剤を保管するためのタンクである。
この薬剤タンク104には、薬剤を充填したり、保管している薬剤を出したりするための開閉可能な蓋が取り付けられている。この開閉可能な蓋には、開閉状態を検知可能な開閉センサー104aが取り付けられている。この開閉センサー104aは例えば、蓋に取り付けられたマグネットと、本体に取り付けられて、このマグネットの磁力や接触を感知する感知器によって構成することができる。これにより蓋の開閉状態を判別して、使用者に蓋の開閉状態を認識可能とし、蓋が開いたまま薬剤の散布が行われるといった事態を防ぐことができる。
また、薬剤タンク104には薬剤種別判別センサー104bが設けられている。薬剤種別判別センサー104bは、薬剤タンク104内に貯留されている薬剤の種別を判別することができる。
この薬剤種別判別センサー104bは例えば、薬剤タンク104内の薬剤の粘度や導電率、あるいはpHを測定することのできる装置によって構成され、測定された各項目の値と、薬剤ごとの基準となる値とを対比し、薬剤の種別を判別することができる。
なお、これに限らず、例えば薬剤タンク104としてカートリッジ式の薬剤タンクを用いれば、当該カートリッジ式の薬剤タンクに薬剤種別のデータを記録したIC等を付しておき、当該IC等から薬剤種別のデータを取得する手段を設けることで、薬剤の種別を判別することもできる。
ここで、薬剤は複数の種類のものが用いられる場合があるため、散布を予定している薬剤が薬剤タンク104内に保管されているかどうかを判別することは有用である。特に、薬剤の粒子径は種類に応じて異なるところ、散布を予定していた薬剤よりも粒子径の小さい薬剤を誤って散布してしまった場合には、ドリフト(薬剤の目的物以外への飛散、付着)を惹き起こす可能性が高く、看過できない。
また、薬剤タンク104には、薬剤の液切れを検知するための液切れセンサー511が取り付けられている。なお、薬剤の液切れには、薬剤がなくなった場合のほか、薬剤の量が所定の量以下になった場合を含み、任意に設定された量に応じて、薬剤の液切れを検知することができる。
なお、薬剤タンク104内における薬剤の蒸散検知機能や、温度・湿度の測定機能などを薬剤タンク104に設け、薬剤が適切な状態に管理されるようにするとよい。
ポンプ106は、薬剤タンク104内に保管されている薬剤を下流へ吐き出し、薬剤ホース105-1、105-2、105-3、105-4を介して各薬剤ノズル103-1、103-2、103-3、103-4へ送出する。
なお、薬剤は薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4へ送出されるところ、本実施形態の説明では、この送出経路に沿って薬剤が送出される方向を下流方向と称し、これとは逆の方向を上流方向と称することがある。なお、薬剤は一部、薬剤タンク104から三方弁122を介して再び薬剤タンク104へ送出されるが、この経路に関しては、三方弁122側を下流方向、薬剤タンク104側を上流方向と称している。
拡張タンク131は、三方弁122から送出された薬剤を一時的に貯留させ、薬剤タンク104に戻すためのタンクである。
三方弁122から拡張タンク131を介して薬剤タンク104に至る経路は、薬剤タンク104に注入されている水又は薬剤中の気泡を除去(脱泡)するための経路である。この経路を循環させると共に、拡張タンク131に一時的に貯留させることで水又は薬剤の脱泡を行うことができる。
逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤を一定方向のみに送出し、当該一定方向とは逆の方向への流入、即ち逆流を防ぐための弁である。この逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7は、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路において、薬剤の吐出を遮断する遮断機構の役割を果たしており、薬剤の吐出を遮断する役割を果たすことができれば、遮断機構として電磁弁など、他の機構のものを用いることもできる。
本例では、逆止弁121-1が薬剤タンク104とポンプ106の間であって、薬剤タンク104に設けられた薬剤吐出口近傍に設けられ、逆止弁121-2が三方弁122と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、逆止弁121-4、121-5、121−6、121−7が薬剤の外部への吐出口103a-1、103a-2、103a-3、103a-4に設けられ、逆止弁121-3が三方弁122と拡張タンク131の間に設けられている。逆止弁121-1は、薬剤タンク104から送出された薬剤を下流方向へ送出させ、薬剤タンク104へ逆流不能に制御している。また、逆止弁121-2は、ポンプ106から送出された薬剤を下流方向へ送出させ、ポンプ106へ逆流不能に制御している。また、逆止弁121-3は、三方弁122から送出された薬剤を拡張タンク131のある上流方向へ送出させ、三方弁122へ逆流不能に制御している。さらに、逆止弁121-4、121-5、121-6、121-7は、吐出口103a-1、103a-2、103a-3、103a-4から薬剤が外部へ吐出するのを遮断可能にしている。
なお、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7には、スイング式、リフト式、ウエハ式など、各種のものを用いることができ、特に特定のものに限られることはない。また、本例に関わらず、本例よりも多くの逆止弁を適宜の箇所に設けてもよい。
三方弁122は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられており、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路と、ポンプ106から拡張タンク131を介して薬剤タンク104へつながる経路の分岐点を構成しており、切替操作に応じて薬剤を各経路へ送出させる。三方弁122は、弁の例であり、例えば三方電磁弁である。
ここで、ポンプ106から薬剤ノズル103-1、103-2、103-3、103-4へつながる経路は、薬剤を薬剤ノズル103-1、103-2、103-3、103-4から吐出させ、薬剤を散布させるための経路である。
また、ポンプ106から拡張タンク131を介して薬剤タンク104へつながる経路は上述の通り、薬剤中の気泡を除去(脱泡)するための経路である。
流量センサー510は、ポンプ106と薬剤ノズル103-1、103-2、103-3、103-4の間に設けられ、薬剤ノズル103-1、103-2、103-3、103-4へ送出されている薬剤の流量を測定する。この流量センサー510によって測定された薬剤の流量に基づき、圃場403に散布した薬剤の量を把握することができる。
圧力センサー111-1、111-2は、取り付け位置における薬剤の吐出圧を測定する。
圧力センサー111-1は、ポンプ106の下流側であって、逆止弁121-2及び三方弁122の上流側に取り付けられ、下流へ吐き出される薬剤の吐出圧を測定する。
圧力センサー111-2は、逆止弁121-2の下流側であって、薬剤ノズル103-1、103-2、103-3、103-4の上流側に取り付けられ、下流へ吐き出される薬剤の吐出圧を測定する。
これらの圧力センサー111-1、111-2によって薬剤の吐出圧を測定することができることから、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7を閉弁させた状態で各圧力センサーの111-1、111-2によって測定された薬剤の吐出圧の経時的変化を取得し、これを正常時の薬剤の吐出圧の経時的変化と対比することで、薬剤の漏出異常を検知することができる。例えば、圧力センサー111-1、111-2によって取得された薬剤の吐出圧が経時的に下降線を描き、この下降線が誤差の範囲を超えて、正常時と異なる場合には、経路中に薬剤の漏出が発生している可能性があると推測することができる。
また、圧力センサー111-1、111-2ごとに判断することで、薬剤の漏出が発生している経路を大まかに特定することができる。即ち、本例であれば、圧力センサー111-1の測定値が正常である一方、圧力センサー111-2の測定値が異常であると判別される場合には、圧力センサー111-1よりも下流で薬剤の漏出が発生していると推測することができる。
ポンプ用センサー106aは、ポンプ106内において薬剤を薬剤タンク104から吸い込むと共に下流へ吐き出す回転子の回転数を測定する。
このポンプ用センサー106aによってポンプ106の回転子の回転数を測定した上、圧力センサー111-1、111-2によって測定された薬剤の吐出圧と対比し、正常時の比率と一致するか否かを判別することで、薬剤の漏出異常を検知することができる。即ち、正常時に比して、ポンプ106の回転数に応じた薬剤の吐出圧が得られていない場合には、薬剤の漏出が発生して、吐出圧が減少していると推測される。
ノズル種別判別センサー114-1、114-2、114-3、114-4は、薬剤の吐出口に取り付けられる薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。
散布される薬剤ごとの粒子径の違いから、薬剤ノズル103-1、103-2、103-3、103-4は通常、薬剤に応じて用いられるものが異なっている。そのため、薬剤ノズル103-1、103-2、103-3、103-4の種別が適切か否かを判別することで、誤った薬剤の散布を防ぐことができる。
具体的には例えば、吐出口に薬剤ノズル103-1、103-2、103-3、103-4と嵌合又は係合する機構を設けておき、薬剤ノズル103-1、103-2、103-3、103-4には、当該吐口側の嵌合又は係合機構に嵌合又は係合する機構であって、複数の薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状の機構を設ける。そして、吐出口に薬剤ノズル103-1、103-2、103-3、103-4を取り付けた際、薬剤ノズル103-1、103-2、103-3、103-4ごとに異なる形状を識別することにより、薬剤ノズル103-1、103-2、103-3、103-4の種別を判別することができる。
なお、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路の途中には、当該経路中に貯留する薬剤を外部へ排出するためのコック付きの排出口(図6中、「DRAIN」と表記)が設けられている。圃場403への薬剤の散布が終わった後などにおいて、薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路に溜まっている薬剤を排出させる場合には、この排出口より薬剤を排出させることができる。
なお、薬剤タンク104に薬剤を補充する過程、特に後述する液体待機状態(S31)およびエア抜き待機状態(S32)では、薬剤タンク104に水が注入される。薬剤吐出システムが有する、薬剤に関する各センサー、すなわち液切れセンサー511、圧力センサー511−1、511-2、および流量センサー510は、薬剤タンク104に水が入っている場合にも、同様に動作する。また、薬剤種別判別センサー104bは、薬剤タンク104に水が入っていることを判別することが可能である。
薬剤タンク104から薬剤ノズル103-1、103-2、103-3、103-4に至る経路には主に空気等の気体が存在している。薬剤を薬剤タンク104に補充する際、経路内の気体が薬剤中に混入し、規定量の薬剤を補充できない恐れがある。また、気体が混入されている状態で農業用機械が薬剤を吐出しようとすると、意図されていない気体が薬剤の代わりに吐出される恐れがあり、薬剤を圃場に正確に散布することは困難である。さらに、気体と薬剤とが不規則に吐出される場合、薬剤ノズル103に圧力が一定にかからなくなり、水圧の脈動が起こるため、薬剤の吐出量を正確に制御することは困難である。具体的には、気体が圧力により潰れて水圧が低下し、流量が下がったり、気体が放出された後に突如流量が上がったりしてしまう。当該経路の径に対して薬剤の粘度が高い場合には、特に顕著である。その結果、流量が下がって、吐出される薬剤の粒子径が計画された粒子径より小さくなると、風により飛散し、意図しない場所に薬剤を散布してしまう恐れがある。また逆に、流量が上がってしまった結果、計画された量よりも多くの薬剤を投下してしまう恐れもある。したがって、薬剤タンク104に薬剤を補充する際に、当該経路中の気体を効率よく外部に排出し、経路に薬剤が充満されることが望ましい。具体的には、薬剤の補充が適切に行われているかを段階的に監視し、薬剤補充の手順が適切なタイミングで使用者に報知されることが望ましい。
図9に示すドローンシステム500は、互いに異なる複数の状態を有する。ドローンシステム500は、状態ごとに定められる条件を充足することで条件に対応する別の状態に遷移する。「ドローンシステム500の状態」とは、別の状態に遷移するための条件を満たすことにより、その条件に対応した状態を示す概念であり、状態ごとにソフトウェアのシステム構成上互いに独立して構成されていてもよいし、複数の状態が同一のシステム構成中に構成されていてもよい。ドローンシステム500は、ある状態に属しているとき、当該状態ごとに定められる動作を行う。状態ごとに定められる条件を充足していない場合、ドローンシステム500は、当該状態に留まる。また、定められる条件が複数あり、複数の状態に遷移し得る状態があってもよい。
ドローン100、操縦器401、基地局404、および営農支援クラウド405のいずれかに異常が生じている場合、ドローンシステム500全体の安全性を脅かす恐れがある。ドローンシステム500の状態を正しく判定し、その判定に応じて動作が規定されていることで、条件を充足しない場合にドローン100を飛行させたり薬剤を散布させたりすることがない。すなわち、ドローンシステム500を安全に稼働させることができる。特に、ドローン100を安全に飛行させ、薬剤を散布することができる。
●ドローンシステムの状態遷移を行うための構成
図9に示すように、ドローン100は、第1状態送信部111と、第1状態受信部112と、第1状態遷移判定部113と、第1主端末決定部114と、第1状態記憶部115と、を有する。また、操縦器401、基地局404、および営農支援クラウド405は、第1状態送信部111、第1状態受信部112、第1状態遷移判定部113、第1主端末決定部114、および第1状態記憶部115に対応する構成をそれぞれ有する。すなわち、操縦器401は、第2状態送信部411、第2状態受信部412、第2状態遷移判定部413、第2主端末決定部414、および第2状態記憶部415、を有する。基地局404は、第3状態送信部441、第3状態受信部442、第3状態遷移判定部443、第3主端末決定部444、および第3状態記憶部445を有する。営農支援クラウド405は、第4状態送信部451、第4状態受信部452、第4状態遷移判定部453、第4主端末決定部454、および第4状態記憶部455を有する。
第1乃至第4状態送信部111,411,441,451は、ドローンシステム500が現在属する状態の情報、ならびにドローン100、操縦器401、および基地局404それぞれの端末の状況を示す端末情報を、接続されている他の構成要素に送信する機能部である。他の構成要素は、ここでは、ドローン100、操縦器401、基地局404、又は営農支援クラウド405である。端末情報とは、例えばドローン100、操縦器401、基地局404それぞれの電源のオンオフ情報や、それぞれの電源容量などを示す数値である。また、端末情報とは、各構成要素間の接続状態、各構成要素の動作履歴およびメンテナンス履歴、各構成要素の故障情報、緊急停止を実行中であるか否かの情報、緊急停止を行った履歴、ならびに、薬剤タンク104に注入されている水又は薬剤の別、その量および注入履歴等を含んでいてもよい。
第1乃至第4状態送信部111,411,441,451は、営農支援クラウド405の状況を示すクラウド情報をさらに他の構成要素に送信してもよい。クラウド情報とは、例えば営農支援クラウド405に記憶されている情報が更新された履歴、すなわち、最終更新日時や、更新を行った端末の情報等を含んでいてもよい。
第1乃至第4状態受信部112,412,442,452は、ドローンシステム500が現在属する状態の情報、ならびにドローン100、操縦器401、および基地局404の状況を示す端末情報を、接続されている他の構成要素が有する第1乃至第4状態送信部111,411,441,451から受信する機能部である。また、第1乃至第4状態受信部112,412,442,452は、クラウド情報をさらに他の構成要素から受信してもよい。
すなわち、基地局404は、ドローンシステム500が現在属している状態をドローン100および操縦器401の少なくとも一方に送信する。また、基地局404は、ドローンシステム500が現在属している状態をドローン100および操縦器401の少なくとも一方から受信する。基地局404は、操縦器401および基地局404の接続状態、ドローン100および基地局404の接続状態、ならびに、操縦器401およびドローン100の接続状態のうち、少なくとも一個の接続状態を、ドローン100および操縦器401の少なくとも一方から受信する。
また、基地局404は、各構成要素と営農支援クラウド405との接続状態を、少なくとも1個の他の構成要素との間で送受信してもよい。
第1乃至第4状態送信部111,411,441,451および第1乃至第4状態受信部112,412,442,452によれば、各構成要素は、ドローンシステム500において接続されている他の構成要素の端末情報およびクラウド情報を互いに把握することができる。すなわち、各構成要素は、いずれの構成要素が協調から外れた場合にも、ドローンシステム500の状態を保持し、ドローンシステム500としての運用を円滑に継続できる。
また、操縦器401が端末情報およびクラウド情報を常に把握している構成によれば、使用者402はドローンシステム500の様子を常に把握することができる。
第1乃至第4状態遷移判定部113,413,443,453は、ドローンシステム500が現在属する状態を認識して、現在属する状態から別の状態に遷移するための条件が充足しているか否かを判定する機能部である。第1乃至第4状態遷移判定部113,413,443,453は、同じ条件に関する判断を行うことが可能であり、それぞれの状態遷移判定部は、他の状態遷移判定部の代替として動作することができる。
第1乃至第4状態遷移判定部113,413,443,453は、別の状態に遷移するための条件が充足しているか否かの判定を択一的に行う。すなわち、1個の状態遷移判定部が判定を行っている場合、他の状態遷移判定部は判定を行わない。以降の説明において、状態遷移の判定を行っている状態遷移判定部を有する構成要素を、「主端末」ともいう。この構成によれば、いずれかの構成要素の電源がオフになっている場合や、いずれかの構成要素間の接続が切断され、主端末としての動作ができない場合においても、別の構成要素が主端末として状態遷移の判定を行い、ドローンシステム500の状態を遷移させることができる。
第1乃至第4主端末決定部114,414,444,454は、第1乃至第4状態受信部112,412,442,452が受信する情報に基づいて、いずれの構成要素を主端末とするかを決定する機能部である。いずれの構成要素が主端末となるか、すなわち第1乃至第4状態遷移判定部113,413,443,453のうちいずれが状態遷移を判定するかは、あらかじめ優先順位が定められている。具体的には、各構成要素の電源が投入され、すべての構成要素が協調している場合、ドローン100が主端末となる。ドローン100の電源がオフ、又はドローン100の各構成要素との接続が切断され、主端末としての動作が不可能な場合、第1乃至第4主端末決定部114,414,444,454の決定により、操縦器401が主端末となる。なお、優先順位は一例であり、ドローン100が主端末として動作不能な場合、基地局404又は営農支援クラウド405が主端末となってもよい。また、優先順位は、固定されていてもよいし、変動してもよい。たとえば、優先順位は、ドローンシステム500が現在属している状態に応じて変動してもよい。
本実施形態においては、主端末決定部は各構成要素に設けられている。この構成によれば、いずれの構成要素の接続が切断され、協調が外れた場合であっても、主端末を決定することができる。なお、すべての構成要素が協調して動作している場合にはいずれか1の主端末決定部が主端末の決定を行えば足り、例えば、ドローン100に設けられている第1主端末決定部114が、ドローン100が主端末となる旨の決定を行えばよい。ドローン100が協調から外れた場合は、第2主端末決定部114がその旨の情報に基づいて、操縦器401が主端末となることを決定する。
第1乃至第4状態記憶部115,415,445,455は、ドローンシステム500が現在属する状態、およびドローン100、操縦器401、および基地局404の状況を示す端末情報を記憶する機能部である。第1状態記憶部115は、営農支援クラウド405の状況を示すクラウド情報をさらに記憶してもよい。
第1乃至第4状態記憶部115,415,445,455は、少なくとも一部が不揮発性の記憶領域、例えば不揮発性メモリによって構成されている。この構成によれば、各構成要素の電源がオフになっても、情報を記憶しておくことができる。電源の再投入時にも故障情報やメンテナンスの履歴が引き継がれているので、電源がオフになる前に起こった故障や異常に対しても確実に修理およびメンテナンスを行うことができ、ドローンシステム500を安全に使用することができる。
●薬剤の注入を管理するための構成
図10に示すように、ドローン100は、薬剤タンク104への薬剤の注入を管理するための構成として、液体検知部31と、エア抜き検知部32と、漏出異常検知部33と、補充検知部34と、を備える。薬剤タンク104への薬剤の注入にあたっては、まず薬剤タンク104に液体を注入し、この液体をポンプ106により循環させて薬剤タンク104および薬剤タンク104から薬剤ノズル103-1〜4に至る各経路の気体、主に空気を外部に排出するエア抜きを行った上で、薬剤タンク104に圃場へ散布する薬剤を注入する。
液体検知部31は、薬剤タンク104に液体の補充が完了していることを検知する機能部である。液体検知部31は、例えば薬剤タンク104内に所定量の液体が入っていることを、液面高さ又は重量等により検知する判定装置により実現できる。液体検知部31は、薬剤タンク104内の液体の量を計測する液面計、重量計、又は水圧センサー等を用い、薬剤が所定量となっていることをソフト的に判定する機能部であってもよい。
液体検知部31は、後述するエア抜き動作により液体が各経路に侵入した場合にも、薬剤タンク内に液体が残留する程度の量の液体が、薬剤タンク104に注入されていることを検知する。エア抜き動作により薬剤タンク104内の水位が下がり、薬剤タンク104内の液体が空になってしまうのを防ぐためである。液体検知部31が検知する液体の量は、薬剤タンク104から薬剤ノズル103に至る各経路の総容積よりも多い。液体検知部31は、例えば薬剤タンク104の上限の10%以上液体が注入されていることを検知してもよい。
液体検知部31が検知する液体は、例えば水であるが、圃場へ散布する薬剤であってもよいし、その他適宜の液体であってもよい。
エア抜き検知部32は、図8に示す薬剤タンク104および薬剤タンク104から薬剤ノズル103-1〜4に至る各経路の内部の空気を薬剤タンク104の外部に流出させるエア抜き動作が完了していることを検知する機能部である。エア抜き検知部32は、三方弁122が拡張タンク131側の経路を開放している場合、図6における薬剤タンク104から三方弁122までの経路(以下、「上流経路」ともいう。)においてエア抜きが完了していることを検知する。エア抜き検知部32は、三方弁122が薬剤ノズル103-1〜4側の経路を開放している場合、図6における三方弁122から薬剤ノズル103-1〜4までの経路(以下、「下流経路」ともいう。)においてエア抜きが完了していることを検知する。
エア抜き検知部32は、上流経路におけるエア抜きの検知では、ポンプ用センサー106aによって検知されるポンプ106の回転数と、圧力センサー111-1および流量センサー510の少なくとも一方の計測結果に基づいて、エア抜き動作が完了していることを検知する。下流経路においては、具体的には、エア抜き検知部32は、エア抜き動作が完了している場合における、ポンプ106の回転数に応じた圧力センサー111-1の値および流量センサー510の値の少なくとも一方の値を基準値として記憶している。エア抜き検知部32は、ポンプ106の回転数に応じた基準値と、圧力および流量の少なくとも一方の実測値とを比較する。その差が所定以内の場合、エア抜き検知部32は、エア抜き動作が完了していることを検知する。
エア抜き検知部32は、下流経路におけるエア抜きの検知においては、ポンプ用センサー106aによって検知されるポンプ106の回転数と、圧力センサー111-2および流量センサー510の少なくとも一方の計測結果に基づいて、エア抜き動作が完了していることを検知する。エア抜き検知部32は、エア抜き動作が完了している場合における、ポンプ106の回転数に応じた圧力センサー111-2の値をおよび流量センサー510の値の少なくとも一方の値を基準値として記憶し、実測値と比較してエア抜き動作の完了を検知する。また、圧力センサー111-1の値も下流経路におけるエア抜きの検知に利用してもよい。
なお、三方弁122が開放している経路により、ポンプ106の回転数に応じた圧力センサー111-1、111-2の値および流量センサー510の値は、それぞれ異なる。エア抜き検知部32は、三方弁122がいずれの経路を開放しているかの情報に基づいて、実測値と比較する基準値を決定する。
漏出異常検知部33は、薬剤散布に係わるドローン100の各構成に異常がないか否かを検知する機能部である。具体的には、漏出異常検知部33は、薬剤タンク104から薬剤ノズル103に至る経路上の異常がないか否かを診断する。経路の異常とは、すなわち配管経路自体、又は配管経路に配置されている遮断機構、具体的には逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7等の部材の異常を含む。漏出異常検知部33は、逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7を閉弁させた状態で各圧力センサーの111-1、111-2によって測定された液体の吐出圧の経時的変化を取得し、これを正常時の吐出圧の経時的変化と対比することで、液体の漏出異常を検知する。また、漏出異常検知部33は、ポンプ用センサー106aによってポンプ106の回転子の回転数を測定した上、圧力センサー111-1、111-2によって測定された液体の吐出圧と対比し、正常時の比率と一致するか否かを判別することで、液体の漏出異常を検知する。
補充検知部34は、薬剤タンク104に薬剤の補充が完了していることを検知する機能部である。補充検知部34は、例えば薬剤タンク104内に所定量の薬剤が入っていることを、液面高さ又は重量等により検知する判定装置により実現できる。また、補充検知部34は、薬剤タンク104内の薬剤の量を計測する液面計、重量計、又は水圧センサー等を用い、薬剤が所定量となっていることをソフト的に判定する機能部であってもよい。
補充検知部34は、薬剤が薬剤タンク104の上限まで注入されている場合に限らず、あらかじめ定められた所定量を検知することができる。例えば、補充検知部34は、薬剤タンク104の上限の10%以上薬剤が注入されていることを検知してもよい。
飛行開始指令受信部51と、飛行計画確認部52と、ドローン判定部53と、外部環境判定部54と、基地局位置確認部55と、機体位置確認部56と、機首確認部57と、周辺確認部58と、機体目視確認部59と、を備える。
飛行開始指令受信部51は、使用者402から入力される飛行開始指令を受信する機能部である。飛行開始指令は、操縦器401からドローン100に送信される指令である。飛行開始指令は、使用者402の意思がドローン100に伝達されるための指令であるため、使用者402の動作を起点としてドローン100に送信される。
基地局位置確認部55は、ドローン100と接続されている基地局404の位置が所定の範囲内にあるか否かを確認する機能部である。
機体位置確認部56は、ドローン100が発着地点406に設置されているか否かを確認する機能部である。
機首確認部57は、ドローン100の機首の向きが正常な方向を向いているか否かを確認する機能部である。「機首の向きが正常である」とは、例えば薬液を散布する圃場がある方向に機首が向いていることを指す。
周辺確認部58は、ドローン100の周辺にドローン100周辺の所定範囲内に人や物などの障害物がないか否かを確認する機能部である。周辺確認部58は、例えばドローン100又は操縦器401等による報知および表示により、使用者402にドローン100周辺の障害物の有無の確認を促す機能部であってもよい。使用者402は、ドローン100の周辺を確認した後、障害物がなければその旨を入力する。また、使用者402は、障害物を発見した場合には適宜取り除く。なお、使用者402による周辺の確認結果の入力は、ドローン100に入力可能になっていてもよいし、操縦器401を介して入力可能になっていてもよい。
また、周辺確認部58は、ドローン100に搭載される適宜のカメラやセンサを用いて、ドローン100の周辺における障害物を探知し、所定範囲内に物体がないことを自動的に判定する機能部であってもよい。カメラは、例えばドローン100の周辺を360度撮影可能な360度カメラであってもよいし、互いに異なる方向を撮影可能な複数のカメラにより構成されていてもよい。センサは、例えば赤外線センサである。
機体目視確認部59は、ドローン100を使用者402が目視で確認することを促し、使用者402により確認結果を入力可能な機能部である。機体目視確認部59は、ドローン100又は操縦器401等による報知および表示により、使用者402にドローン100周辺の障害物の有無の確認を促す。使用者402は、ドローン100を目視で確認した後、異常を発見しない場合はその旨を入力する。また、使用者402は、異常を発見した場合には適宜修理等を行う。なお、使用者402による周辺の確認結果の入力は、ドローン100に入力可能になっていてもよいし、操縦器401を介して入力可能になっていてもよい。
機体目視確認部59は、操縦器401を通じて目視確認のポイント等を使用者402に報知してもよい。具体的に目視確認のポイントを指示することにより、使用者402は効率的にドローン100を点検することができる。
飛行計画確認部52は、ドローン100が、ドローン100の飛行計画に関する情報を正常に保有しているか否かを確認する機能部である。飛行計画は、例えば飛行中に薬液を散布する圃場の位置や、当該圃場内における飛行するルートを含む。飛行計画は、あらかじめドローン100に登録される情報であり、適宜書き換え可能である。また、飛行計画に含まれる飛行ルートは、指定される圃場の位置に基づいて自動的に算出される。なお、飛行ルートは、圃場の位置に基づいて一意に算出されるものであってもよいし、他の条件を考慮して飛行計画の策定の度ごとに算出される、異なる飛行ルートであってもよい。
ドローン判定部53は、ドローン100自体が有する各構成が正常の範囲内で動作していることを判定する機能部である。ドローン100自体が有する各構成とは、例えばバッテリー502やモーター102、各種センサー等である。
外部環境判定部54は、主にドローン100の外部環境がドローン100の飛行に適する環境であるかを判定する機能部である。外部環境とは、例えば各構成要素間を接続する電波の妨げになるような外乱の有無や、GPSの受信感度、気温、ドローン100の周囲の風速、天候、および地磁気の状況などを含む。ドローン100周囲の風速が所定以上の場合、ドローン100が風であおられたり、散布される薬剤が飛散したりするため、適切な飛行が困難になるためである。また、雨や雪等の降水がある場合、又は所定時間以内に降水現象が起こる可能性が高いことが予測される場合は、降水により薬剤が流れてしまい、圃場に定着しづらくなるため、散布を行わない方が好ましい。すなわち、降水があるか、所定時間内での降水の可能性が高いときにも、離陸を禁止してもよい。さらに、地磁気が乱れている場合にも各構成要素間を接続する電波の妨げになるため、離陸を禁止してもよい。さらにまた、GPSの通信が確立できている衛星の数を測定し、所定数以下の場合は離陸を禁止してもよい。所定数は、例えば5個であってもよい。GPSの通信が確立できている衛星数が少ない場合、飛行中に通信可能な衛星がさらに減ってしまうとGPSによる測定が不可能になるおそれがあるためである。外部環境判定部54は、いずれの理由により離陸せず待機しているのかを、使用者402に通知する。
●ホバリング中に行う診断のための構成
ドローン100は、ドローン100がホバリングしている時にドローン100が飛行に適した状況であるか否かを判定する、飛行準備部60をさらに有する。飛行準備部60は、特にドローン100が離陸直後に行うホバリングの間に診断を行うが、ドローン100が離陸して飛行を開始した後に適宜行うホバリング中に診断を行ってもよい。
飛行準備部60は、強風診断部61、推力診断部62、校正部63、重量推定部64、およびホバリング判定部65を備える。
ホバリング判定部65は、ドローン100がホバリングをしているか否かを判定、すなわちホバリング判定を行う機能部である。ホバリングとは、すなわち、水平面上において互いに直交するXおよびY座標、ならびにXY平面に直交する鉛直なZ座標を定義した場合において、ドローン100のXYZ座標に変化がない、又は狭い所定範囲内で揺動している状態を指す。また、ホバリングは、XYZ方向のいずれにも移動速度を有さない状態である。
ホバリング判定部65は、例えばRTK-GPSの測位座量がXYZ方向の全てにおいて変化がないことを検知する。また、ホバリング判定部65は、6軸ジャイロセンサー505のXYZ方向における測定値をそれぞれ二階積分して位置を算出し、XYZ方向における位置に所定時間変化がないことを検知する。さらに、ホバリング判定部65は、6軸ジャイロセンサー505のXYZ方向における測定値をそれぞれ積分して速度を算出し、ドローン100がXYZ方向における速度を有さないことを検知する。ホバリング判定部65は、上述のいずれか、もしくは複数の取得値を組み合わせることにより、ドローン100がホバリングしていることを判定する。
強風診断部61は、ドローン100に吹き付けている風を測定して、ドローン100の飛行が可能であるか否かを診断する機能部である。強風診断部61による風の測定は、例えば接触検知器により風によって発生する応力を測定することで風速を算出してもよいし、風杯型、風車型などの風速計により算出してもよい。
強風診断部61は、ドローン100がホバリングしている状態において、ドローン100の姿勢角を6軸ジャイロセンサー505により算出する。ドローン100に風が吹き付けている場合、風の強さに応じて風下側へ前傾した姿勢角となる。したがって、ドローン100の姿勢角が所定角度以上の場合、強風診断部61は、ドローン100に所定以上の強さの風が吹き付けている、と判定する。
また、強風診断部61は、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4b又は回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bのそれぞれの回転数を算出してもよい。ドローン100に風が吹き付けている場合、ドローン100に風下側へ傾こうとする力が働くため、8個の回転翼101のうち、風下側の2箇所に配置された回転翼の推力が増加、すなわち回転数が増加し、風上側の2箇所に配置された回転翼の推力が低下、すなわち回転数が低下する。したがって、モーター102又は回転翼101の回転数の配置位置による差異が所定以上の場合、強風診断部61は、ドローン100に所定以上の強さの風が吹き付けている、と判定する。強風診断部61は、上述の姿勢角による判定、および回転数の差異による判定のいずれか、又は双方の判定結果を組み合わせることにより、強風を検知する。
強風診断部61は、基地局404や周辺に飛行しているドローン100から風に関する情報を通信により受信して、当該ドローン100の飛行が可能か否かを判断してもよい。
ドローン100に吹き付けている風が所定以上の強さであるとき、強風診断部61はドローンシステム500にその旨を通知する。主端末の状態遷移判定部は、ドローンシステム500の状態をホバリング状態のまま待機させる。また、主端末の状態遷移判定部は、ドローンシステム500の状態を、後述する飛行開始スタンバイ状態(S4)に移行させ、ドローン100を着陸させてもよい。
推力診断部62は、飛行中のドローン100を飛行させる推力を測定して、ドローン100の推力が正常に発揮されているか否かを診断する機能部である。推力は、本実施の形態においては回転翼101により得られる。推力診断部62は、例えば回転翼101の回転を制御するモーター自身の内部に配置されている回転測定機能を指す。すなわち、推力測定部244は、モーターの回転数を測定することにより、モーターに制御される回転翼101の回転数を取得する。
また、推力診断部62は、回転翼101自身の回転数を測定してもよい。例えば、推力診断部62は、非接触式の回転計であってもよい。この場合、推力診断部62は、回転翼101の少なくとも1か所にレーザーを照射し、レーザーの回転翼101からの反射光を計測することで回転翼101の回転数を計数する。レーザーは、例えば赤外線レーザーである。
さらに、推力診断部62は、モーターに供給される電流を測定してもよい。
なお、推力診断部62は、ドローンの推力が回転翼以外の構成により実現される場合は、その推進器の稼働状態を測定する機能部であってもよい。例えば、ドローンがジェット噴射により推進される場合、推力診断部62は、ジェット噴射の圧力を測定する機能部であってもよい。
推力診断部62は、測定される推力と、フライトコントローラー501による命令値とを比較し、フライトコントローラー501からの命令から一定時間後における差異があらかじめ定められている閾値以内である場合には推力が適切に発揮されていると判断する。差異が閾値を超えている場合は、推力診断部62はドローンシステム500にその旨を通知する。主端末の状態遷移判定部は、ドローンシステム500の状態を、後述する飛行開始スタンバイ状態(S4)に移行させ、ドローン100を着陸させる。
校正部63は、ドローン100の高度を測定するためのセンサー、およびドローン100の速度を測定するためのセンサーの少なくとも1個の校正を行う。センサーの校正とは、センサーの0点のオフセット、および測定結果の数値が高い場合におけるゲインのずれを補正する校正を含む。校正部63による校正は、特にドローン100がホバリングしているときに行われる。
ドローン100の高度を測定するためのセンサーとは、例えばレーザーセンサー508、ソナー509、6軸ジャイロセンサー505、又はGPSモジュールRTK504-1,504-2を含む。すなわち、校正部63は、高度校正に関して、レーザーセンサー508、ソナー509、6軸ジャイロセンサー505、又はGPSモジュールRTK504-1,504-2の校正が可能である。
校正するセンサーがレーザーセンサー508、ソナー509の場合、校正部63は、地上に接地している状態におけるRTK−GPSの高さ方向の測位座標、すなわちZ座標と、ホバリングしていることが判定された時のRTK−GPSの高さ方向のZ座標と、の差が対地高度の真値として、レーザーセンサー508およびソナー509を校正する。
校正するセンサーが6軸ジャイロセンサー505の場合、校正部63は、ホバリングしていることが判定された時のレーザーセンサー508およびソナー509によって得られる高度が、対地高度の真値として6軸ジャイロセンサー505を校正する。
校正するセンサーがGPSモジュールRTK504-1,504-2の場合、校正部63は、ホバリングしていることが判定された時のレーザーセンサー508およびソナー509によって得られる高度が、対地高度の真値としてGPSモジュールRTK504-1,504-2によるRTK-GPSのZ方向の測位座標を校正する。
ドローンの速度を測定するためのセンサーとは、例えばGPSモジュールドップラー504-3又は6軸ジャイロセンサー505を含む。校正部63は、GPSモジュールドップラー504-3を用いてドローン100の移動速度を測定する。ドローン100は、離陸後のホバリング状態においては移動しておらず、移動速度はXYZ方向において0であるので、校正部63は、ホバリングしていることが判定された時のXYZ方向の移動速度が0となるようにGPSモジュールドップラー504-3の測定結果を校正する。また、校正部63は、加速度センサーによる計測値の1階積分値を用いてドローン100の移動速度を測定する。この場合、校正部63は、ホバリングしていることが判定された時のXYZ方向の移動速度が0となるように加速度センサーのXY方向の測定値を校正する。
重量推定部64は、ドローン100の重量を推定する機能部である。重量推定部64は、ホバリング中において、推力診断部62により計測される推力の値に基づいて、ドローン100の重量を推定することができる。
●薬剤量を検知するための構成
ドローン100は、ドローン100が着陸している時又は飛行中において薬剤タンク104内部に貯留されている薬剤量が所定以下になっているか否かを検知する、薬剤量検知部80をさらに有する。薬剤量検知部80は、補充検知部34の構成を共用することで実現してもよいし、独立した構成を備えていてもよい。なお、独立した構成である場合も、測定手段の例は補充検知部34と同様である。薬剤量検知部80は、薬剤量が所定以下になっていることを検知して、操縦器401等を介して使用者402にその旨を通知する。
ドローン100の飛行中に薬剤量が所定以下であることが検知される時、薬剤量検知部80はその旨を第1乃至第4状態遷移判定部113、413、443、453の少なくとも1個に伝達し、ドローンシステム500を後述する着陸後スタンバイ状態(S7)に遷移させてもよい。言い換えれば、フライトコントローラ501によりドローン100に退避行動を取らせてもよい。ドローン100が着陸している時に薬剤量が所定以下であることが検知される時、薬剤量検知部80は、第1乃至第4状態遷移判定部113、413、443、453の少なくとも1個にその旨を伝達し、ドローン100を飛行させることなく、ドローンシステム500を後述する薬剤準備スタンバイ状態(S2)に遷移させる。
●ドローンシステムの状態遷移
図11に示すように、本実施形態におけるドローンシステム500は、停止状態(S0)と、初期チェック状態(S1)と、薬剤準備スタンバイ状態(S2)と、薬剤準備状態(S3)と、飛行開始スタンバイ状態(S4)と、離陸診断状態(S5)と、飛行散布状態(S6)と、着陸後スタンバイ状態(S7)と、メンテナンス状態(S8)と、シャットダウン状態(S9)と、を取り得る。
薬剤準備スタンバイ状態(S2)は、本発明の「スタンバイ状態」の例である。飛行散布状態(S6)は、本発明の「薬剤散布状態」の例である。本発明では飛行するドローンにより上空から圃場に向かって薬剤を散布する構成を想定して説明したが、本発明の技術的範囲は、陸上に存在する農業用機械が薬剤を散布する場合を含む。
停止状態(S0)は、ドローン100、操縦器401および基地局404の電源がオフになっている状態である。停止状態(S0)において各構成要素の電源がオンになると、ドローンシステム500は初期チェック状態(S1)に遷移する。各構成要素の電源は、それぞれ使用者402により手動でオンにできるようになっていてもよいし、使用者402がある1個の構成要素を操作することで、他の構成要素の電源がオンになるようになっていてもよい。例えば、使用者402が操縦器401の電源をオンにして専用のアプリケーションを起動することで、ドローン100および基地局404の電源がオンになるように構成されていてもよい。
初期チェック状態(S1)は、各構成要素の起動後に、各構成要素の動作が正常に行われているかどうかを確認する状態である。初期チェック状態では、例えば各構成要素に電源が投入されているか否かの確認や、各構成要素間の通信が正常に行われているか否かの確認が行われる。所定の確認事項がすべて正常であることが確認されると、ドローンシステム500は、薬剤準備スタンバイ状態(S2)に遷移する。
薬剤準備スタンバイ状態(S2)は、使用者402からの、ドローン100の薬剤タンク104に薬剤を注入する作業を開始する旨の指令、すなわち薬剤注入開始指令が入力されるのを待機している状態である。使用者402により入力される薬剤注入開始指令を受信すると、ドローンシステム500は、薬剤準備状態(S3)に遷移する。
薬剤準備状態(S3)は、使用者402により薬剤タンク104に薬剤を注入する作業が行われている間、ドローンシステム500が属する状態である。
図12に示すように、薬剤準備状態(S3)は、液体待機状態(S31)と、エア抜き待機状態(S32)と、散布系診断状態(S33)と、薬剤待機状態(S34)と、を含む。
液体待機状態(S31)は、薬剤タンク104に液体を注入することが可能な状態である。液体待機状態(S31)は、使用者からの薬剤注入開始指令に基づいて薬剤準備スタンバイ状態(S2)から遷移する状態である。液体待機状態(S31)において、ドローンシステム500は、薬剤タンク104に液体を注入する必要がある旨を、操縦器401を通じて使用者402に通知する。また、ドローン100は、液体検知部31により薬剤タンク104に十分な量の液体が注入されているか否かを判定する。この場合、ドローンシステム500は、薬剤タンク104に十分な量の液体が注入されていることを、操縦器401を通じて使用者に通知する。液体検知部31が検知する液体の量は、薬剤タンク104から薬剤ノズル103に至る各経路の総容積よりも多い。液体検知部31は、例えば薬剤タンク104の上限の10%以上液体が注入されていることを検知する。
さらに、ドローンシステム500は、注入が完了した後に薬剤タンク104の蓋を閉めるように、又はさらに蓋のロックを掛けるように、操縦器401を通じて使用者402に通知する。なお、蓋の開閉ならびにロックの施錠および開錠は、それぞれドローン100に設けられる機構により自動で行われてもよい。
液体待機状態(S31)において、液体検知部31が薬剤タンク104に液体が注入されたことを検知すると、ドローンシステム500は、エア抜き待機状態(S32)に遷移する。ドローンシステム500は、開閉センサー104aの判別結果を参照して、薬剤タンク104が有する蓋が閉じられ、又はさらに適宜のロック機構によりロックされていることを条件に、エア抜き待機状態(S32)に遷移してもよい。
エア抜き待機状態(S32)は、ポンプ106を駆動してエア抜きを行い、薬剤タンク104内および薬剤タンク104から薬剤ノズル103-1〜4に至る経路から空気が抜けるのを待機する状態である。エア抜き待機状態(S32)は、さらに上流エア抜き待機状態(S32-1)および下流エア抜き待機状態(S32-2)を有する。
上流エア抜き待機状態(S32-1)において、三方弁122は、拡張タンク131側に開放されている。薬剤タンク104内および上流経路中に存在している空気は、ポンプ106の駆動により、この経路を循環させると共に拡張タンク131に一時的に貯留され、除去される。エア抜き検知部32が上流経路におけるエア抜き動作の完了を検知すると、ドローンシステム500は、下流エア抜き待機状態(S32-2)に遷移する。
下流エア抜き待機状態(S32-2)において、三方弁122は、薬剤ノズル103-1〜4側に開放されている。主に下流経路中に存在している空気は、ポンプ106の駆動により移動する水に押されて、ノズル103から薬剤タンク104の外部に放出される。すなわち、下流経路における薬剤タンク104のエア抜きが行われる。エア抜き検知部32がエア抜き動作の完了を検知すると、ドローンシステム500は、薬剤待機状態(S34)に遷移する。
上流エア抜き待機状態(S32-1)および下流エア抜き待機状態(S32-2)は、全自動的に状態が遷移し、使用者402の行為に基づく条件はなくてよいが、上流エア抜き待機状態(S32-1)から下流エア抜き待機状態(S32-2)に遷移する旨を操縦器401から報知し、使用者402の確認入力に基づいて状態が遷移するものとしてもよい。また、全自動的に状態が遷移する場合にも、操縦器401を通じてドローンシステム500がいずれの状態にあるかを使用者402に通知するよう構成されていてもよい。
散布系診断状態(S33)は、薬剤散布に係わるドローン100の各構成に異常がないか否か診断する間、ドローンシステム500が属する状態である。具体的には、漏出異常検知部33が、薬剤タンク104から薬剤ノズル103に至る経路上の異常がないか否かを診断する。経路の異常とは、すなわち配管経路自体、又は配管経路に配置されている遮断機構、具体的には逆止弁121-1、121-2、121-3、121-4、121-5、121-6、121-7等の部材の異常を含む。
液体の漏出異常が検知される場合、いずれかの逆止弁121の故障又は経路中の損壊があることが想定される。異常が検知される場合、ドローンシステム500はその旨を使用者402に通知する。漏出異常が検知されない場合、ドローンシステム500は薬剤待機状態(S34)に遷移する。
薬剤タンク104および経路中に液体が注入されている状態において薬剤散布に関わる構成に異常がないかを診断する散布系診断状態(S33)を有する構成によれば、液体にかかる吐出圧を測定することができるため、液体を利用して漏出異常を検知することができる。
薬剤待機状態(S34)は、注水口の蓋のロックが解除されており、注水口から薬剤を注入することができる状態である。薬剤待機状態(S34)において、ドローンシステム500は、薬剤タンク104に薬剤を注入する必要がある旨を、操縦器401を通じて使用者402に通知する。ドローンシステム500は、補充検知部34により薬剤タンク104に十分な量の薬剤が注入されていることを判別し、操縦器401を通じてその旨を使用者402に通知する。
さらに、ドローンシステム500は、注入が完了した後に薬剤タンク104の蓋を閉めるように、又はさらに蓋のロックを掛けるように、操縦器401を通じて使用者に通知してもよい。
補充検知部34が薬剤タンク104に薬剤の補充が完了していることを検知すると、ドローンシステム500は、飛行開始スタンバイ状態(S4)に遷移する。
前述したように、空中散布を行うドローン100は、圃場に対して薬剤を緻密に散布することが可能であるため、地上散布機や使用者自身により地上から散布される一般的な薬剤に比べて、高濃度の薬剤を搭載する。すなわち、一般的な薬剤に比べて、高価であり、かつ人体や圃場に対して有害となる恐れがある。したがって、エア抜き動作により薬剤を排出すると、費用面および安全面で好ましくない。水によりエア抜き動作を行った上で薬剤を補充する本構成によれば、薬剤準備状態(S3)においてノズル103から排出される薬剤の量を抑えられるので、ドローン100への適用は特に有用である。
薬剤準備状態(S3)の各状態においても、第1乃至第4状態記憶部115,415,445,455は、ドローンシステム500が現在属する状態を記憶する。また、第1乃至第4状態記憶部115,415,445,455は、薬剤準備状態(S3)において既に遷移した状態の履歴を記憶し、記憶が保持されている状態において当該既に遷移した状態になった場合は、履歴を参照して当該状態における工程を省略する。言い換えれば、ドローンシステム500は、上に説明した工程を完了する他、既に遷移した履歴があることを条件に、薬剤準備状態(S3)の各状態から別の状態に遷移することができる。
第1乃至第4状態記憶部115,415,445,455は、液体待機状態(S31)から上流エア抜き待機状態(S32-1)に遷移する際に、液体注入履歴を「有」と記憶する。第1乃至第4状態記憶部115,415,445,455は、上流エア抜き待機状態(S32-1)から下流エア抜き待機状態(S32-2)に遷移する際に、上流エア抜き履歴を「有」と記憶する。第1乃至第4状態記憶部115,415,445,455は、下流エア抜き待機状態(S32-2)から散布系診断状態(S33)に遷移する際に、下流エア抜き履歴を「有」と記憶する。
薬剤準備状態(S3)において、ドローン100のバッテリー容量が所定以下になり、バッテリーの充電又はバッテリーの交換を行う必要が生じる場合がある。図11に示すように、薬剤準備状態(S3)においてバッテリー容量が所定以下になると、ドローンシステム500は、バッテリ切れルート(C)を介して着陸後スタンバイ状態(S7)に遷移し、バッテリーが交換された後、薬剤切れルート(B)を介して薬剤準備スタンバイ状態(S2)に遷移する。薬剤準備スタンバイ状態(S2)から薬剤準備状態(S3)に遷移すると、液体待機状態(S31)において、液体注入履歴、上流エア抜き履歴、又は下流エア抜き履歴が記憶されていない場合、薬剤タンク104に液体の注入を行うよう使用者402に通知する。液体注入履歴、上流エア抜き履歴、又は下流エア抜き履歴のうち少なくとも1の履歴が記憶されている場合、ドローンシステム500は、液体待機状態(S31)から上流エア抜き待機状態(S32-1)に遷移する条件が充足していると判断し、上流エア抜き待機状態(S32-1)に遷移する。
同様に、上流エア抜き待機状態(S32-2)において、上流エア抜き履歴、又は下流エア抜き履歴のうち少なくとも1の履歴が記憶されている場合、ドローンシステム500は、上流エア抜き待機状態(S32-1)から下流エア抜き待機状態(S32-2)に遷移する条件が充足していると判断し、下流エア抜き待機状態(S32-2)に遷移する。下流エア抜き待機状態(S32-2)において、下流エア抜き履歴が記憶されている場合、ドローンシステム500は、下流エア抜き待機状態(S32-2)から散布系診断状態(S33)に遷移する条件が充足していると判断し、散布系診断状態(S33)に遷移する。
このように、第1乃至第4状態記憶部115,415,445,455が、薬剤準備状態(S3)において既に遷移した状態の履歴を記憶し、記憶が保持されている状態において当該既に遷移した状態になった場合は、履歴を参照して当該状態における工程を省略する構成によれば、薬剤補充の途中でバッテリー切れ等により作業が中断された場合にも、適切な手順で薬剤を補充することができる。
飛行開始スタンバイ状態(S4)は、使用者402からの飛行開始指令が入力可能な状態である。飛行開始指令は、使用者402がドローン100のドローンの飛行開始を許可し、離陸を促す指令である。図11に示すように、飛行開始指令受信部51が、飛行開始指令を受信すると、ドローンシステム500は、ドローン100の離陸前に必要な離陸診断を行う離陸診断状態(S5)に移行する。
離陸診断状態(S5)は、ドローン100が離陸する前に、ドローン100が安全に飛行し、薬剤散布を行うための条件が整っているか診断する間、ドローンシステム500が属する状態である。
図13に示すように、離陸診断状態(S5)は、ドローン判定状態(S51)と、飛行計画確認状態(S52)と、外部環境判定状態(S53)と、を含む。
ドローン判定状態(S51)は、ドローン判定部53によりドローン100自体が有する各構成が正常の範囲内で動作していることが判定される間、ドローンシステム500が属する状態である。ドローン判定部53により各構成が正常の範囲内で動作していることが判定されると、ドローンシステム500は、飛行計画確認状態(S52)に遷移する。ドローン判定部53により異常が確認されると、操縦器401にその旨表示され、着陸後スタンバイ状態(S7)に遷移する。
飛行計画確認状態(S52)は、飛行計画確認部52により、ドローン100がドローン100の飛行計画に関する情報を正常に保有しているか否か確認される間、ドローンシステム500が属する状態である。飛行計画に関する情報が確認されると、ドローンシステム500は外部環境判定状態(S53)に遷移する。飛行計画に関する情報が正常に保有されていない場合、ドローンシステム500は飛行計画に関する情報を入手する動作を行う。この動作は、例えば営農支援クラウド405から当該情報を受信してもよい。また、薬剤散布を行う圃場の指定など使用者402による決定が必要な場合は、操縦器401を通じてその旨を使用者402に通知し、決定を促す。
外部環境判定状態(S53)は、外部環境判定部54により主にドローン100の外部環境がドローン100の飛行に適する環境であるか判定される間、ドローンシステム500が属する状態である。外部環境判定部54により外部環境が飛行に適すると判定されると、ドローンシステム500は離陸し、飛行散布状態(S6)に遷移する。飛行開始指令の後であって離陸の直前に離陸診断状態(S5)を有することで、薬剤注入等の他の作業中に発生した異常も確実に検知することができるため、別のタイミングで診断を行う構成及び診断を行わない構成に比べて高い安全性を担保できる。
外部環境判定部54により、外部環境がドローン100の飛行に適さないと判定されると、ドローン100は着陸したまま待機する。また、操縦器401にその旨が表示される。外部環境は、短時間での変動が激しいファクターであるので、別の状態に遷移するのではなく、外部環境が飛行に適する状況になるのを待機するのが好適である。
ドローンシステム500は、離陸診断状態(S5)において、使用者402による確認を促し、使用者402が確認した旨の情報を入力することを状態遷移の1条件としてもよい。
ドローンシステム500は、離陸診断状態(S5)において、非常用操縦器の電源容量を確認してもよい。非常用操縦器の電源容量が所定以下の場合、飛行散布状態(S6)において緊急停止指令を送信することができず、安全性を損なうおそれがあるためである。非常用操縦器の電源容量が所定以下の場合は、操縦器401にその旨表示し、非常用操縦器のバッテリを交換する等の措置を使用者402に促す。また、操縦器401自身の電源容量についても同様である。
飛行散布状態(S6)は、ドローン100が飛行し、圃場に薬剤散布を行っている間、ドローンシステム500が属する状態である。ドローン100が着陸すると、着陸後スタンバイ状態(S7)に遷移する。
飛行散布状態(S6)において操縦器401又は非常用操縦器により緊急停止指令が送信されると、ドローン100は退避行動を取る。退避行動とは、例えば、最短のルートで直ちに所定の帰還地点まで移動する、「緊急帰還」を含む。所定の帰還地点とは、あらかじめフライトコントローラー501に記憶させた地点であり、例えば発着地点406である。発着地点406とは、例えば使用者402がドローン100に近づくことが可能な陸上の地点であり、使用者402は発着地点406に到達したドローン100を点検したり、手動で別の場所に運んだりすることができる。
また、退避行動は、着陸動作を含む。「着陸動作」とは、通常の着陸動作をする「通常着陸」、通常の着陸より速く下降して着陸する「緊急着陸」、および、すべての回転翼を停止させてドローン100をその場から下方に落下させる「緊急停止」を含む。なお、「緊急着陸」には、通常の着陸より速く下降して、通常時と同様の姿勢制御を行いながら通常の着陸を行う場合と同様の地点に着陸する動作だけでなく、姿勢制御の精度が悪く、姿勢を多少崩しながらも着陸を成立させる動作も含める。具体例の一つとして全モーターの回転数をゆっくり均等に減少させることで、真下にではないものの精度よく下降しながら着陸することができる。
ドローン100は、少なくとも飛行散布状態(S6)において、操縦器401から操縦器401の電源容量を受信する。ドローン100は、操縦器401の電源容量が所定以下の場合には退避行動をとる。操縦器401の電源容量が低下している場合、使用者402の飛行に関する指令をドローン100に伝達することができず、ドローン100の安全な飛行が困難になる。したがって、操縦器401の電源容量が低下している場合は、ドローン100のバッテリー502の容量が充分である場合にも、ドローン100に退避行動を取らせるとよい。
また、同様に、非常用操縦器の電源容量が所定以下の場合も、ドローン100に退避行動を取らせるとよい。
ドローンシステム500は、操縦器401又は非常用操縦器からの緊急停止命令を受信すると、緊急停止状態(S11)に遷移する。ドローンシステム500は、緊急停止命令を受領して緊急停止状態(S11)に遷移した旨の受領情報を操縦器401に送信する。この構成によれば、使用者402は、ドローンシステム500が使用者402の意図通りに緊急停止状態(S11)に遷移したことを操縦器401の表示により知ることができる。
着陸後スタンバイ状態(S7)は、着陸後に作業を切り替える準備をしている間、ドローンシステム500が属する状態である。着陸後スタンバイ状態(S7)は、ドローン100が着陸している状態において使用者402からの動作指令に基づいて複数の状態に遷移可能な状態である。
着陸後スタンバイ状態(S7)において、使用者402から薬剤散布を行う圃場を切り替える動作命令(以下、「圃場切替命令」ともいう。)を受信すると、ドローンシステム500は、指定圃場切替ルート(D)を経由して飛行開始スタンバイ状態(S4)に遷移する。
着陸後スタンバイ状態(S7)において、使用者402からメンテナンスを行う動作指令を受信すると、ドローンシステム500は、メンテナンス状態(S8)に遷移する。
着陸後スタンバイ状態(S7)において、使用者402から薬剤補充を行う動作指令を受信すると、ドローンシステム500は、薬剤準備スタンバイ状態(S2)に遷移する。また、薬剤タンク104の薬剤の貯留量が所定以下の場合に、自動で薬剤準備スタンバイ状態(S2)に遷移してもよい。また、薬剤の貯留が所定以下であることを使用者402に通知し、薬剤準備スタンバイ状態(S2)に遷移するか否かを、使用者402の入力に基づいて決定するように構成されていてもよい。
着陸後スタンバイ状態(S7)において、使用者402からバッテリー502の交換を行う旨の動作命令(以下、「バッテリー交換命令」ともいう。)を受信すると、ドローンシステム500はシャットダウン状態(S9)に遷移する。また、バッテリー502の蓄電量が所定以下の場合に、自動でシャットダウン状態(S9)に遷移してもよい。また、バッテリー502の蓄電量が所定以下であることを使用者402に通知し、シャットダウン状態(S9)に遷移するか否かを、使用者402の入力に基づいて決定するように構成されていてもよい。
着陸後スタンバイ状態(S7)において、薬剤散布作業を中断する旨の動作命令(以下、「中断命令」ともいう。)を受信すると、ドローンシステム500は、メンテナンス状態(S8)に遷移する。
着陸後スタンバイ状態(S7)を有するドローンシステム500によれば、ある圃場について薬剤散布を終えたドローン100が、引き続き別の圃場への薬剤散布や薬剤補充を行う場合にも、円滑に次の動作に移行することができる。具体的には、圃場の切替えおよび薬剤補充を行う場合に、シャットダウン状態(S9)や停止状態(S0)、初期チェック状態(S1)等の他の状態を経由することなく、飛行開始スタンバイ状態(S4)および薬剤準備スタンバイ状態(S2)に直接遷移することができる。
メンテナンス状態(S8)は、ドローン100がドローン100自体のメンテナンスを行っている間、ドローンシステム500が属する状態である。メンテナンスとは、例えば自動でドローン100の外筐体を洗浄する動作を含む。また、ドローン100の薬剤の経路を洗浄する動作を含む。
メンテナンスには、複数種類の動作がプログラムされ、選択的に行うことができる。例えば、メンテナンスには、ドローン100が実施可能なすべてのメンテナンスを行うフルメンテナンスと、ドローン100の使用を一時中断する場合に必要な最低限のメンテナンスを行う簡易メンテナンスと、が含まれる。簡易メンテナンスでは、例えば薬剤の経路の洗浄等が行われる。散布を中断する場合、薬剤経路における薬剤の固化や分離、沈殿などがすぐに起こるため、再開後に適切な散布ができない恐れがある。したがって、簡易メンテナンスの場合にも、薬剤経路の洗浄が最低限必要である。
いずれのメンテナンスを行うかは、着陸後スタンバイ状態(S7)において選択される。着陸後スタンバイ状態(S7)において入力される中断命令は、一時中断命令および長期中断命令を含む。一時中断命令は、例えば使用者402が休憩を取る場合、すなわち1時間程度以内の中断をする場合等に入力される。長期中断命令は、例えば日をまたいで動作を再開する予定の場合、すなわち、中断が数時間から数日に及ぶ場合等に入力される。ドローンシステム500が一時中断命令を受信する場合、簡易メンテナンスを行う。したがって、長期中断命令に比べて早期に薬剤散布作業を再開するため、一部のメンテナンスをすれば足りる。一方、ドローンシステム500が長期中断命令を受信する場合、フルメンテナンスを行う。複数種類のメンテナンスを選択的に実行できる構成によれば、省電力化、および時間の節約等が可能である。
メンテナンス状態(S8)におけるメンテナンスが終了すると、ドローンシステム500は、シャットダウン状態(S9)に遷移する。
シャットダウン状態(S9)は、ドローン100、操縦器401及び基地局404の相互の接続を解除し、ドローン100、操縦器401及び基地局404の電源をシャットダウンする間、ドローンシステム500が属する状態である。
図14に示すように、シャットダウン状態(S9)は、ドローンシャットダウン状態(S91)と、一部協調状態(S92)と、他端末シャットダウン状態(S93)と、を含む。
ドローンシャットダウン状態(S91)は、ドローン100がシャットダウン、すなわち電源がオフされるのに必要な準備を行い、ドローン100がシャットダウンするまでの間、ドローンシステム500が属する状態である。ドローンシャットダウン状態(S91)において、ドローン100は、第1状態記憶部115に記憶されている情報を不揮発性の記憶部に格納する。また、ドローン100は、第1状態送信部111により、第1状態記憶部115に記憶されている情報を営農支援クラウド405に送信する。
ドローン100は、操縦器401及び基地局404との接続を解除し、各構成要素との協調を解除する。そして、ドローン100はシャットダウンされる。
ドローン100がシャットダウンされると、ドローンシステム500は、一部協調状態(S92)に遷移する。ここで、ドローン100が主端末であった場合、ドローン100のシャットダウンと共に、主端末は他の構成要素、例えば操縦器401に移行する。
主端末の移行は、ドローン100のシャットダウン前に、第1主端末決定部114により操縦器401を主端末に決定してもよい。また、第2主端末決定部414がドローン100の電源がオフになっていることを検知して、操縦器401を主端末に決定してもよい。
一部協調状態(S92)は、ドローン100がシャットダウンされ、他の構成要素は互いに協調している状態である。一部協調状態(S92)は、ドローン100のバッテリー502を交換可能である。
一部協調状態(S92)は、バッテリー502を着脱した後動作を再開するか、他端末もシャットダウンして動作を停止するかを使用者402の入力により選択することができる。一部協調状態(S92)において、バッテリー502が交換された後、ドローン100を再度起動して動作を再開する旨の命令(以下、「再起動命令」ともいう。)が入力されると、ドローンシステム500は、初期チェック状態(S1)に遷移する。
一部協調状態(S92)において、再起動命令が所定時間入力されない場合、又は、他端末に関してもシャットダウンを行う旨の命令が入力される場合、ドローンシステム500は、他端末シャットダウン状態(S93)に遷移する。
他端末シャットダウン状態(S93)は、操縦器401及び基地局404がシャットダウンするまでの間、ドローンシステム500が属する状態である。操縦器401及び基地局404は、第2および第3状態送信部411、441により、第2および第3状態記憶部415、445にそれぞれ記憶されている情報を営農支援クラウド405に送信してもよい。
ドローン100、操縦器401及び基地局404が全てシャットダウンされると、ドローンシステム500は停止する。すなわち、ドローンシステム500は、停止状態(S0)に遷移する。
●バッテリー切れルート
図11に示すように、薬剤準備状態(S3)、離陸診断状態(S5)又は飛行散布状態(S6)において、ドローン100のバッテリー502の蓄電量が所定以下になっていることが検知されると、ドローンシステム500はバッテリー切れルート(C)を経由して着陸後スタンバイ状態(S7)に遷移する。着陸後スタンバイ状態(S7)においてバッテリー502の蓄電量所定以下であるとき、ドローンシステム500はシャットダウン状態(S9)に移行し、バッテリー502が交換可能な状態になる。バッテリーを複数搭載している場合は、ある1個のバッテリーにおいて蓄電量の低下が検出されるとき、別のバッテリーを使用して状態遷移を行ってもよい。
●薬剤切れルート
図11に示すように、薬剤準備状態(S3)、飛行散布状態(S6)、又は着陸後スタンバイ状態(S7)において、薬剤タンク104内の薬剤が所定以下であることが検知されると、ドローンシステム500は薬剤切れルート(B)を経由して薬剤準備スタンバイ状態(S2)に遷移する。
薬剤準備状態(S3)、すなわちドローン100が着陸している状態において、薬剤量検知部80により薬剤タンク104の薬剤が所定以下であることが検知されたときは、飛行散布状態(S6)に遷移せずに、離陸前に薬剤準備スタンバイ状態(S2)に遷移することができる。薬剤準備状態(S3)において薬剤タンク104に薬剤が充分入っていた場合は、ドローン100の飛行散布状態(S6)又は飛行散布後の着陸後スタンバイ状態(S7)において薬剤量が所定以下になる可能性がある。したがって、ドローン100は飛行散布状態(S6)から退避行動を取り、着陸して着陸後スタンバイ状態(S7)に遷移した上で、薬剤準備スタンバイ状態(S2)に遷移する。このように、ドローンシステム500は、薬剤切れを検知して2個の異なる状態から薬剤準備スタンバイ状態(S2)に遷移することができるので、薬剤切れとなった場合にも冗長な状態遷移をすることなく円滑に次の状態に遷移することができる。
ドローン、操縦器、基地局、および営農支援クラウドが互いに接続され、協調して動作する本発明に係るドローンシステムによれば、いずれかの構成要素と他の構成要素との接続が切断されたり、いずれかの構成要素の電源がオフになっていたりする場合にも、ドローンシステムの状態を保持し、ドローンシステムとしての運用を円滑に継続することができる。
なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、噴霧機、および噴霧機能を備える農業用機械に適用可能である。自律飛行を行うドローンにも有用である。
(本願発明による技術的に顕著な効果)
本発明にかかる薬剤の制御補充システムにおいては、薬剤の散布を行なう農業用機械において、薬剤の散布の安全性を高めることができる。


Claims (6)

  1. 操縦器と、
    農業用機械と、
    がネットワークを通じて互いに接続されて互いに協調して動作する薬剤散布システムであって、
    前記薬剤散布システムは、互いに異なる複数の状態をとることが可能で、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、
    前記農業用機械は、
    薬剤を保管する薬剤タンクと、
    前記薬剤タンクに蓄えられる薬剤の量が所定値以下になっていることを検知する薬剤量検知部と、
    を備え、
    前記複数の状態は、
    前記農業用機械に薬剤の補充作業の開始命令が入力されるのを待機する薬剤準備スタンバイ状態と、
    前記薬剤タンクに薬剤を注入する薬剤準備状態と、
    使用者が前記薬剤散布システムに薬剤散布の準備を開始させる旨の散布準備開始指令を入力可能な散布準備開始スタンバイ状態と、
    前記農業用機械が前記薬剤散布を行う薬剤散布状態と、
    前記薬剤散布状態の後に遷移する着陸後スタンバイ状態と、
    を含み、
    前記薬剤準備状態は、
    液体検知部が前記薬剤の補充の完了を検知する液体待機状態と、
    エア抜き検知部がエア抜き動作の完了を検知するエア抜き待機状態と、
    薬剤検知部が前記薬剤の補充の完了を検知する薬剤待機状態と、
    を含み、
    前記薬剤準備状態における前記薬剤量検知部による検知に基づいて、前記薬剤準備状態から前記薬剤準備スタンバイ状態に遷移し、
    前記薬剤散布状態における前記薬剤量検知部による検知に基づいて、前記薬剤散布状態から着陸して前記着陸後スタンバイ状態に遷移した上で、前記薬剤準備スタンバイ状態に遷移
    前記薬剤散布システムは、少なくとも前記液体待機状態、前記エア抜き待機状態、および前記薬剤待機状態に遷移した後に、前記散布準備開始スタンバイ状態に遷移し、
    前記散布準備開始スタンバイ状態における前記薬剤量検知部の検知に基づいて、前記薬剤準備スタンバイ状態に遷移する、
    薬剤散布システム。
  2. 前記薬剤準備状態において前記薬剤量検知部により検知されると、前記薬剤散布状態に遷移せずに前記薬剤準備スタンバイ状態に遷移する、請求項1記載の薬剤散布システム。
  3. 前記薬剤散布システムは、前記薬剤散布状態において前記薬剤量検知部により前記薬剤タンクの薬剤量が所定以下であることが検知されると、退避行動を取る、
    請求項1又は2記載の薬剤散布システム。
  4. 前記農業用機械はドローンであり、前記ドローンは、前記薬剤散布状態において飛行しながら薬剤を散布し、前記薬剤準備状態において前記薬剤量検知部により検知されると、前記薬剤散布システムは、前記ドローンを飛行させることなく前記薬剤準備スタンバイ状態に遷移する、請求項1乃至のいずれかに記載の薬剤散布システム。
  5. 操縦器と、
    農業用機械と、
    がネットワークを通じて互いに接続されて互いに協調して動作する薬剤散布システムの制御方法であって、
    前記薬剤散布システムは、互いに異なる複数の状態をとることが可能で、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、
    前記農業用機械は、
    薬剤を保管する薬剤タンクと、
    前記薬剤タンクに蓄えられる薬剤の量が所定値以下になっていることを検知する薬剤量検知部と、
    を備え、
    前記複数の状態は、
    前記農業用機械に薬剤の補充作業の開始命令が入力されるのを待機する薬剤準備スタンバイ状態と、
    前記薬剤タンクに薬剤を注入する薬剤準備状態と、
    使用者が前記薬剤散布システムに薬剤散布の準備を開始させる旨の散布準備開始指令を入力可能な散布準備開始スタンバイ状態と、
    前記農業用機械が前記薬剤散布を行う薬剤散布状態と、
    前記薬剤散布状態の後に遷移する着陸後スタンバイ状態と、
    を含み、
    前記薬剤準備状態は、
    液体検知部が前記薬剤の補充の完了を検知する液体待機状態と、
    エア抜き検知部がエア抜き動作の完了を検知するエア抜き待機状態と、
    薬剤検知部が前記薬剤の補充の完了を検知する薬剤待機状態と、
    を含み、
    前記薬剤準備状態における前記薬剤量検知部による検知に基づいて、前記薬剤準備状態から前記薬剤準備スタンバイ状態に遷移するステップと、
    前記薬剤散布状態における前記薬剤量検知部による検知に基づいて、前記薬剤散布状態から着陸して前記着陸後スタンバイ状態に遷移した上で、前記薬剤準備スタンバイ状態に遷移するステップと、
    前記薬剤散布システムは、少なくとも前記液体待機状態、前記エア抜き待機状態、および前記薬剤待機状態に遷移した後に、前記散布準備開始スタンバイ状態に遷移するステップと、
    前記散布準備開始スタンバイ状態における前記薬剤量検知部の検知に基づいて、前記薬剤準備スタンバイ状態に遷移するステップと、
    を含む、薬剤散布システムの制御方法。
  6. 操縦器と、
    農業用機械と、
    がネットワークを通じて互いに接続されて互いに協調して動作する薬剤散布システムの制御プログラムであって、
    前記薬剤散布システムは、互いに異なる複数の状態をとることが可能で、前記状態ごとに定められる条件を充足することで前記条件に対応する別の状態に遷移し、
    前記農業用機械は、
    薬剤を保管する薬剤タンクと、
    前記薬剤タンクに蓄えられる薬剤の量が所定値以下になっていることを検知する薬剤量検知部と、
    を備え、
    前記複数の状態は、
    前記農業用機械に薬剤の補充作業の開始命令が入力されるのを待機する薬剤準備スタンバイ状態と、
    前記薬剤タンクに薬剤を注入する薬剤準備状態と、
    使用者が前記薬剤散布システムに薬剤散布の準備を開始させる旨の散布準備開始指令を入力可能な散布準備開始スタンバイ状態と、
    前記農業用機械が前記薬剤散布を行う薬剤散布状態と、
    前記薬剤散布状態の後に遷移する着陸後スタンバイ状態と、
    を含み、
    前記薬剤準備状態は、
    液体検知部が前記薬剤の補充の完了を検知する液体待機状態と、
    エア抜き検知部がエア抜き動作の完了を検知するエア抜き待機状態と、
    薬剤検知部が前記薬剤の補充の完了を検知する薬剤待機状態と、
    を含み、
    前記薬剤準備状態における前記薬剤量検知部による検知に基づいて、前記薬剤準備状態から前記薬剤準備スタンバイ状態に遷移する命令と、
    前記薬剤散布状態における前記薬剤量検知部による検知に基づいて、前記薬剤散布状態から着陸して前記着陸後スタンバイ状態に遷移した上で、前記薬剤準備スタンバイ状態に遷移する命令と、
    前記薬剤散布システムは、少なくとも前記液体待機状態、前記エア抜き待機状態、および前記薬剤待機状態に遷移した後に、前記散布準備開始スタンバイ状態に遷移する命令と、
    前記散布準備開始スタンバイ状態における前記薬剤量検知部の検知に基づいて、前記薬剤準備スタンバイ状態に遷移する命令と、
    をコンピュータに実行させる、薬剤散布システムの制御プログラム。
JP2020527534A 2018-06-28 2019-06-25 薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラム Active JP6901187B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018123321 2018-06-28
JP2018123321 2018-06-28
PCT/JP2019/025091 WO2020004367A1 (ja) 2018-06-28 2019-06-25 薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラム

Publications (2)

Publication Number Publication Date
JPWO2020004367A1 JPWO2020004367A1 (ja) 2020-12-17
JP6901187B2 true JP6901187B2 (ja) 2021-07-14

Family

ID=68986597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527534A Active JP6901187B2 (ja) 2018-06-28 2019-06-25 薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラム

Country Status (2)

Country Link
JP (1) JP6901187B2 (ja)
WO (1) WO2020004367A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112425589A (zh) * 2020-11-12 2021-03-02 重庆凯创荣智能科技有限公司 一种无人机专用农药喷洒结构及使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608260B2 (ja) * 1996-04-17 1997-05-07 ヤンマー農機株式会社 作業車両における運行制御装置
JPH11168930A (ja) * 1997-12-15 1999-06-29 Yanmar Agricult Equip Co Ltd 薬剤散布装置
JP2006001485A (ja) * 2004-06-21 2006-01-05 Yanmar Co Ltd 無人ヘリコプターの監視装置
US20080128528A1 (en) * 2006-11-28 2008-06-05 Alongi Salvatore A Fluid spraying system
JP5320235B2 (ja) * 2009-09-24 2013-10-23 アグリテクノ矢崎株式会社 土壌消毒機
JP2013021945A (ja) * 2011-07-19 2013-02-04 Chuo Green System:Kk 噴霧システム
JP5861132B2 (ja) * 2011-09-05 2016-02-16 アグリテクノ矢崎株式会社 土壌消毒機
JP5874940B1 (ja) * 2014-08-06 2016-03-02 八洲電業株式会社 飛行体、及びバッテリユニット収納システム
JP6621140B2 (ja) * 2016-02-16 2019-12-18 株式会社ナイルワークス 無人飛行体による薬剤散布方法、および、プログラム

Also Published As

Publication number Publication date
WO2020004367A1 (ja) 2020-01-02
JPWO2020004367A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
JP7025738B2 (ja) ドローンシステム
JP6803592B2 (ja) ドローンシステム、ドローン、操縦器、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP6829453B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6749626B2 (ja) 薬剤の吐出制御システム、方法、及びコンピュータプログラム
JP6913978B2 (ja) 故障検知システム、方法、及びコンピュータプログラム
JP6777923B2 (ja) ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JPWO2019168042A1 (ja) ドローン、その制御方法、および、プログラム
WO2019168045A1 (ja) ドローン、その制御方法、および、制御プログラム
WO2019168080A1 (ja) フールプルーフ性を向上した農業用ドローン
JP6889502B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
JP6901187B2 (ja) 薬剤散布システム、薬剤散布システムの制御方法、および、薬剤散布システム制御プログラム
JP6837254B2 (ja) ドローンシステム、ドローン、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP6746157B2 (ja) 薬剤の補充制御システム、噴霧機、ドローン、薬剤補充システムの制御方法、および、薬剤補充システム制御プログラム
JP6746126B2 (ja) 薬剤の漏出防止システム及び方法
JPWO2019189077A1 (ja) ドローン、その制御方法、および、プログラム
JP6996792B2 (ja) 薬剤の吐出制御システム、その制御方法、および、制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210610

R150 Certificate of patent or registration of utility model

Ref document number: 6901187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350