JP6900932B2 - 内燃機関のシリンダヘッド - Google Patents

内燃機関のシリンダヘッド Download PDF

Info

Publication number
JP6900932B2
JP6900932B2 JP2018080141A JP2018080141A JP6900932B2 JP 6900932 B2 JP6900932 B2 JP 6900932B2 JP 2018080141 A JP2018080141 A JP 2018080141A JP 2018080141 A JP2018080141 A JP 2018080141A JP 6900932 B2 JP6900932 B2 JP 6900932B2
Authority
JP
Japan
Prior art keywords
cylinder
intake
internal combustion
clearance
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018080141A
Other languages
English (en)
Other versions
JP2019190285A (ja
Inventor
慎太郎 堀田
慎太郎 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018080141A priority Critical patent/JP6900932B2/ja
Priority to DE102019109449.6A priority patent/DE102019109449A1/de
Priority to CN201910299901.8A priority patent/CN110388274B/zh
Priority to US16/383,665 priority patent/US10724425B2/en
Publication of JP2019190285A publication Critical patent/JP2019190285A/ja
Application granted granted Critical
Publication of JP6900932B2 publication Critical patent/JP6900932B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • F02B23/105Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder the fuel is sprayed directly onto or close to the spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関のシリンダヘッドに関する。
従来から、吸気弁によって開閉される吸気開口の周りにマスク部を設けることが提案されている(例えば、特許文献1、2)。斯かるマスク部は、排気開口側とは反対側(以下、「反排気開口側」ともいう)において吸気開口の外縁に沿って燃焼室内に向かって延びるように形成された壁面を備える。
斯かるマスク部の壁面は、吸気弁がリフトされたときに、吸気ポートから燃焼室内に吸入される吸気ガスの流路抵抗として機能し、吸気開口の反排気開口側に位置する領域を通って吸気ガスが燃焼室内に流入するのを禁止又は抑制する。これにより、燃焼室内に逆タンブル流が発生するのが抑制され、燃焼室内には強い正タンブル流を生成することができるようになる。
特開2011−132833号公報 特開昭63−113117号公報
ところで、従来から、内燃機関の一部の運転領域では複数の気筒のうち一部の気筒において混合気の燃焼を休止される気筒休止制御を行う内燃機関が知られている。斯かる内燃機関においては、気筒休止制御中に休止せしめられる休止気筒では、主に機関負荷が或る程度高いときに混合気の燃焼が行われると共に、機関負荷が低いときには混合気の燃焼が行われない。一方、気筒休止制御中でも稼働せしめられる稼働気筒では、機関負荷が低いときから混合気の燃焼が行われる。
また、一般に、燃焼室内に生じる吸気ガスの乱れが小さくなると、燃料が空気と混ざりにくくなるため混合気の燃焼期間が長くなる。燃焼期間が長くなると、燃焼室内で生じる燃焼の等容度が低下し、よって燃費の悪化や出力の低下を招く。
上述したように、休止気筒と稼働気筒とでは主に混合気の燃焼が行われる運転状態が異なる。したがって、燃費悪化や出力低下の抑制との観点からは、休止気筒では機関負荷が或る程度高いときに吸気ガスの乱れが大きくなるようにすることが必要であり、逆に、稼働気筒では機関負荷が或る程度低いときにも吸気ガスの乱れが大きくなるようにすることが必要である。しかしながら、上述した特許文献1、2に記載の内燃機関では、斯かる点は考慮されていない。
本発明は、上記課題に鑑みてなされたものであって、その目的は、気筒休止制御が行われる内燃機関において気筒休止制御の実行中も実行していないときにも燃焼室内に生じる吸気ガスの乱れを大きくすることにある。
本発明は、上記課題を解決するためになされたものであり、その要旨は以下のとおりである。
[1]複数の気筒を備えると共に、これら気筒は出力が必要とされる全運転領域において混合気の燃焼が行われる第1気筒群と、出力が必要とされる運転領域のうち一部の運転領域では混合気の燃焼が行われない第2気筒群とに分けられる、内燃機関において、各気筒の燃焼室に面すると共に吸気弁によって開閉される吸気開口と、各気筒の燃焼室に面すると共に排気弁によって開閉される排気開口と、前記排気開口側とは反対側において前記吸気開口の外縁に沿って前記燃焼室内に向かって延びる壁面を有するマスク部と、を備え、前記マスク部は、前記マスク部の壁面の前記吸気弁の縁部の通過面からのクリアランスが、前記第2気筒群の各気筒よりも前記第1気筒群の各気筒の方が小さくなるように構成される、内燃機関。
[2]前記第1気筒群の各気筒のマスク部は前記クリアランスが下記式(1)で算出されるCl未満になるように構成され、前記第2気筒群の各気筒のマスク部は前記クリアランスが下記式(1)で算出されるCl以上になるように構成され、
Cl=−(h・NEm+j・Pm+f)/2n−0.8 …(1)
上記式(1)において、NEmは出力点における回転速度(rpm)、Pmは出力点における吸気管圧(kPa)、h=0.0000788、j=−0.003585、f=0.6531914、n=−0.0621023である、上記[1]に記載の内燃機関。
[3]前記第2気筒群の各気筒のマスク部は前記クリアランスが下記式(2)で算出されるCh以下になるように構成される、上記[2]に記載の内燃機関。
Ch=−(h・NEm+j・Pm+f)/2n+0.8 …(2)
[4]前記第1気筒群の各気筒のマスク部は前記クリアランスが1.8mm未満になるように構成され、前記第2気筒群の各気筒のマスク部は前記クリアランスが1.8mm以上になるように構成される、上記[1]に記載の内燃機関。
[5]前記第2気筒群の各気筒のマスク部は前記クリアランスが3.4mm以下になるように構成される、上記[2]に記載の内燃機関。
[6]前記吸気開口、前記排気開口及び前記マスク部が形成されたシリンダヘッドを更に備え、最も前記吸気弁のリフト方向側の前記壁面の縁部は、前記シリンダヘッドのシリンダブロックとの当接面上に位置する、上記[1]〜[5]のいずれか1つに記載の内燃機関。
[7]前記壁面は、前記吸気弁のリフト方向の各位置において、前記吸気弁の縁部の通過面からのクリアランスが周方向において一定になるように形成される、上記[1]〜[6]のいずれか1つに記載の内燃機関。
本発明によれば、気筒休止制御が行われる内燃機関において気筒休止制御の実行中も実行していないときにも燃焼室内に生じる吸気ガスの乱れが大きくされる。
図1は、内燃機関の概略的な構成図である。 図2は、一つの実施形態に係る内燃機関を概略的に示す部分断面図である。 図3は、一つの燃焼室の上面を概略的に示す底面図である。 図4は、図2の吸気開口近傍を拡大して示した拡大断面図である。 図5は、気筒休止制御が行われる運転領域を示す図である。 図6は、各燃焼室内に生じる乱れの強さ及び吸気弁のリフト量のクランク角推移である。 図7は、270°BTDC付近における燃焼室内に生じる吸気ガスの流れを概略的に示した図である。 図8は、壁面のクリアランスと、燃焼室内に生じる乱れの強さとの関係を示す図である。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
<内燃機関全体の説明>
まず、図1〜図4を参照して、一つの実施形態に係る内燃機関1の構成について説明する。図1は、一つの実施形態に係る内燃機関1の概略的な構成図であり、図2は一つの実施形態に係る内燃機関1を概略的に示す部分断面図である。図1に示したように、内燃機関1は、機関本体10、吸気系60、排気系70及び制御装置40を備える。
図2に示したように、機関本体10は、シリンダブロック11、シリンダヘッド12、ピストン13、コンロッド14を備える。
シリンダブロック11は、並んで配置された複数の気筒15を備える。特に、本実施形態の内燃機関1は、4つの気筒15#1〜15#4を備える。シリンダヘッド12は、当接面Aにおいてシリンダブロック11に当接するように配置され、シリンダブロック11に形成された気筒15の一方の端部を塞ぐように配置される。なお、本実施形態では、内燃機関1は、直列4気筒の内燃機関だが、複数の気筒を備えていれば、直列6気筒、V型6気筒等、様々な形式の内燃機関であってよい。
ピストン13は、シリンダブロック11内に形成された気筒15内を往復運動するように配置される。ピストン13は、ピストンピンを介してコンロッド14に連結される。コンロッド14は、クランクピンを介してクランクシャフト(図示せず)に連結され、ピストン13の往復運動をクランクシャフトの回転運度に変換するように作用する。また、シリンダブロック11の気筒15の壁面とシリンダヘッド12とピストン13とによって、混合気が燃焼する燃焼室16が形成される。
図3は、一つの燃焼室16の上面を概略的に示す底面図である。したがって、図3は、シリンダヘッド12の底面であって、一つの気筒15を塞ぐように位置する部分を概略的に示している。図4は、図2の吸気開口近傍を拡大して示した拡大断面図である。
図2に示したように、シリンダヘッド12には、吸気ポート21及び排気ポート22が形成される。図2及び図3に示したように、吸気ポート21は、燃焼室16に面すると共にシリンダヘッド12に形成された吸気開口23を介して燃焼室16に連通する。同様に、排気ポート22は、燃焼室16に面すると共にシリンダヘッド12に形成された排気開口24を介して燃焼室16に連通する。
図3に示したように、本実施形態では、各燃焼室16毎に、二つの吸気開口23及び二つの排気開口24が設けられる。二つの吸気開口23は、複数の気筒15が並んで配置される方向(以下、「気筒整列方向」ともいう)と同一方向に並んで配置される。同様に、二つの排気開口24は、気筒整列方向と同一方向に並んで配置される。各気筒の中心を通って気筒整列方向に延びる中央平面Pに対して一方側に二つの吸気開口23が配置され、他方側に二つの排気開口24が配置される。
なお、本明細書では、気筒整列方向と垂直な方向であって中央平面Pから吸気開口23へ向かう方向、すなわち排気開口24から吸気開口23に向かう方向を「反排気開口側」又は「反排気開口方向」と称し、気筒整列方向と垂直な方向であって中央平面Pから排気開口24へ向かう方向、すなわち吸気開口23から排気開口24に向かう方向を「排気開口側」又は「排気開口方向」と称する。
また、図3に示したように、各吸気開口23の縁部周りにはその全周に亘って、後述する吸気弁31が閉弁時に当接する吸気シート部25が設けられる。同様に、排気開口24の縁部周りにはその全周に亘って、後述する排気弁36が閉弁時に当接する排気シート部26が設けられる。吸気シート部25は、図4に示したように、シリンダヘッド12とは別体のバルブシートとして形成されてもよいし、シリンダヘッド12に直接形成されたシートであってもよい。
図2に示したように、シリンダヘッド12は、燃焼室16の上面が吸気側傾斜面27と排気側傾斜面28との二つの傾斜面を有するように形成される。吸気側傾斜面27は、吸気開口側の縁部から中央平面Pに向かって当接平面Aからの高さ(気筒15の軸線方向における当接平面Aからの長さ)が高なっていくように形成される。排気側傾斜面28は、排気開口側の縁部から中央平面Pに向かって当接平面Aからの高さが高くなっていくように形成される。したがって、燃焼室16の上面は中央平面Pにおいて最も高くなるように傾斜する。なお、燃焼室16の上面は、吸気開口側から中央へ向かって高さが高くなるような傾斜面と、排気開口側から中央へ向かって高さが高くなるような傾斜面とを備えていれば、必ずしも中央平面Pにおいて最も高くなるように形成されていなくてもよい。
また、シリンダヘッド12には、吸気開口23を開閉する吸気弁31と、排気開口24を開閉する排気弁36と、燃焼室16内の混合気を点火する点火プラグ41とが設けられる。また、シリンダヘッド12には、吸気ポート21内に燃料を噴射する燃料噴射弁42が設けられる。
吸気弁31は、バルブステム32と、バルブステム32の一方の端部に固定された弁体33とを備える。吸気弁31は、バルブステム32が延在する方向、すなわち吸気弁31の軸線方向に摺動可能にシリンダヘッド12内に配置される。吸気弁31は、吸気動弁機構(図示せず)によってその軸線方向にリフトされる。吸気動弁機構は、吸気弁31の作用角、位相角及び最大リフト量の少なくとも一つを変更可能な可変動弁機構であってもよいし、これらを変更不能な動弁機構であってもよい。
同様に、排気弁36は、バルブステム37と、バルブステム37の一方の端部に固定された弁体38とを備える。排気弁36は、バルブステム37が延在する方向、すなわち排気弁36の軸線方向に摺動可能にシリンダヘッド12内に配置される。排気弁36は、排気動弁機構(図示せず)によってその軸線方向にリフトされる。排気動弁機構は、排気弁36の作用角、位相角及び最大リフト量の少なくとも一つを変更可能な可変動弁機構であってもよいし、これらを変更不能な動弁機構であってもよい。
点火プラグ41は、燃焼室16のほぼ中央において、燃焼室16の上面に位置するようにシリンダヘッド12に取り付けられる。
なお、本実施形態では吸気ポート21内に燃料を噴射する燃料噴射弁42が設けられているが、この燃料噴射弁42の代わりに或いはこの燃料噴射弁42に加えて、燃焼室16内に直接燃料を噴射する燃料噴射弁をシリンダヘッド12に設けてもよい。この場合、燃料噴射弁は、その噴孔が点火プラグ41に近接して位置するか又は二つの吸気開口23の間であって吸気開口23よりも反排気開口側に位置するように配置される。
また、本実施形態では燃焼室16に曝されるように点火プラグ41が設けられているが、点火プラグ41は設けられなくてもよい。この場合、燃焼室16にて混合気が自着火するように、燃焼室16内に直接燃料を噴射する燃料噴射弁からの燃料噴射が制御される。
吸気系60は、吸気枝管61、吸気管62、エアクリーナ63、排気ターボチャージャ80のコンプレッサ80c、インタークーラ65、及びスロットル弁66を備える。各気筒15の吸気ポート21はそれぞれ対応する吸気枝管61を介して吸気管62に連通しており、吸気管62はエアクリーナ63に連通している。吸気管62には、吸気管62内を流通する吸入空気を圧縮して吐出する排気ターボチャージャ80のコンプレッサ80cと、コンプレッサ80cによって圧縮された空気を冷却するインタークーラ65とが設けられている。スロットル弁66は、スロットル弁駆動アクチュエータによって回動せしめられることで、吸気通路の開口面積を変更することができる。なお、吸気ポート21、吸気枝管61及び吸気管62は、燃焼室16に吸気ガスを供給する吸気通路を形成する。
排気系70は、排気マニホルド71、排気管72、排気ターボチャージャ80のタービン80t、及び排気後処理装置73を備える。各気筒15の排気ポート22は、排気マニホルド71に連通しており、排気マニホルド71は排気管72に連通している。排気管72には、排気ターボチャージャ80のタービン80tが設けられている。タービン80tは、排気ガスのエネルギによって回転駆動せしめられる。タービン80tが回転駆動せしめられると、これに伴ってコンプレッサ80cが回転し、よって吸入空気が圧縮せしめられる。また、排気管72にはタービン80tの排気流れ方向下流側において排気後処理装置73が設けられている。排気後処理装置73は、排気ガスを浄化した上で外気中に排出するための装置であって、有害物質を浄化する各種の排気浄化触媒や有害物質を捕集するフィルタなどを備える。なお、排気ポート22、排気マニホルド71、及び排気管72は、燃焼室16から排気ガスを排出する排気通路を形成する。
制御装置は、電子制御ユニット(ECU)90と各種センサとを備える。ECU90は、デジタルコンピュータから構成され、双方向性バスを介して相互に接続されたメモリ、CPU(マイクロプロセッサ)、入力ポート及び出力ポートを備える。センサは、例えば、吸気管62内を流れる空気の流量を検出するエアフロメータ91、アクセルペダル92の出力に応じて出力電流が変化して機関負荷を検出する負荷センサ93、内燃機関1の回転速度を検出するクランク角センサ94等を含む。ECU90の入力ポートはこれらセンサに接続される。
一方、ECU90の出力ポートは、点火プラグ41、燃料噴射弁42、スロットル弁駆動アクチュエータ等のアクチュエータに接続される。ECU90からの駆動信号により、これらアクチュエータが制御される。
<気筒休止制御>
内燃機関1の制御装置は、出力が必要とされる運転領域のうち一部の運転領域において、燃焼室16内での混合気の燃焼を行わないようにする気筒休止制御を行う。以下では、この気筒休止制御について説明する。
気筒休止制御の実行中には、内燃機関1の一部の気筒15において燃焼室16内での混合気の燃焼が行われず、残りの気筒15において燃焼室16内での混合気の燃焼が行われる。例えば、気筒休止制御の実行中には、1番気筒15#1及び4番気筒15#4のみにおいて混合気の燃焼が行われ、2番気筒15#2及び3番気筒15#3においては混合気の燃焼が行われない。
以下では、気筒休止制御中には混合気の燃焼が行われない気筒群を「休止気筒群」と称し、気筒休止制御中であっても混合気の燃焼が行われる気筒群を「稼働気筒群」と称する。したがって、上述した例では、2番気筒15#2及び3番気筒15#3が休止気筒群の気筒であり、1番気筒15#1及び4番気筒15#4が稼働気筒群の気筒である。
気筒休止制御中の休止気筒群の気筒15では、気筒休止制御の実行中に吸気弁31及び排気弁36が閉弁されたまま維持される。このため、休止気筒群の気筒15には新たな混合気が供給されず、その結果、混合気の燃焼が行われない。休止気筒群の気筒15では、燃焼室内のガスが繰り返し断熱圧縮及び断熱膨張される。
図5は、気筒休止制御が行われる運転領域を示す図である。機関回転速度及び機関負荷から定まる機関運転状態が領域CS内にあるときには、気筒休止制御が行われる。一方、機関運転状態が領域CS内にないときには気筒休止制御は行われず、全ての気筒において混合気の燃焼が行われる。本実施形態では、クランク角センサ94によって検出された機関回転速度と負荷センサ93によって検出された機関負荷とに基づいて、気筒休止制御の実行及び中止が制御される。
なお、気筒休止制御は、内燃機関1の出力が必要とされる運転領域内の一部の領域CSにおいて行われる。したがって、内燃機関1を搭載した車両の減速中のように内燃機関1の出力が不用な運転領域においては行われなくてもよい。斯かる運転領域では、例えば、全ての気筒において燃料噴射弁42からの燃料の供給が停止される燃料カット制御が行われる。
<マスク部の構成>
図2〜図4に示したように、本実施形態のシリンダヘッド12は、吸気開口23の反排気開口側に設けられたマスク部50を備える。マスク部50は、燃焼室16の上面から燃焼室16内へ向かって突出するように形成される。マスク部50は、シリンダヘッド12と一体的に形成されてもよいし、別体として形成されてもよい。
マスク部50は、吸気開口23の外縁に沿って、且つ吸気開口23周りの吸気シート部25の外縁に沿って延びる壁面51を有する。特に、壁面51は、吸気開口23の気筒整列方向に延びる中央平面Dよりも反排気開口側の領域(図2にXで示した領域)内に全面的に又は部分的に延びるように形成される。すなわち、壁面51は、反排気開口側において吸気開口23の外縁に沿って燃焼室16内に向かって延びる。壁面51は、図2にXで示した領域のうち半分以上の領域に亘って延びるように形成されるのが好ましい。
また、壁面51は、吸気開口23の外縁近傍から燃焼室16内に向かって延びる。本実施形態では、壁面51は、吸気弁31のリフト方向においてシリンダヘッド12の当接面Aまで延びる。したがって、吸気弁31のリフト方向における壁面51の縁部(以下、「リフト方向側縁部」ともいう)52は、シリンダヘッド12の当接面A上に位置する。このように壁面51が当接面Aまで延びることはマスク部50が燃焼室16内へ向かって当接面Aまで突出することを意味する。このようにマスク部50が当接面Aまで突出することにより、シリンダヘッドの当接面Aからマスク部50が突出することは無く、よってシリンダブロック11へのシリンダヘッド12の組み付けを容易に行うことができる。
なお、壁面51は、吸気弁31のリフト方向において必ずしもシリンダヘッド12の当接面Aまで延びる必要はない。したがって、壁面51は、吸気弁31のリフト方向(軸線方向)における高さが、少なくとも部分的に、シリンダヘッド12の当接面Aに到達する高さよりも低くなるように形成されてもよい。この場合、壁面51は、例えば、吸気開口23の最も反排気開口側に位置する領域では当接面Aまで延び、吸気開口23の気筒整列方向側に位置する領域においては当接面Aまでは延びないように形成される。また、シリンダブロック11へのシリンダヘッド12の組み付けは難しくなるが、壁面51は当接面Aを超えて燃焼室16内へ向かって延びるように形成されてもよい。
加えて、本実施形態では、マスク部50の壁面51は、吸気弁31の縁部の通過面からのクリアランス(以下、単に「壁面のクリアランス」ともいう)CRが一定になるように形成される。したがって、マスク部50の壁面51は、吸気弁31の縁部の通過面と平行に延びるように形成される。なお、吸気弁31の縁部の通過面は、吸気弁31がリフトされることによって吸気弁31の弁体33が吸気弁31の軸線方向に移動する際に、弁体33の縁部の軌跡からなる面を意味する。
本実施形態では、壁面51のクリアランスCRは、休止気筒群の気筒15と、稼働気筒群の気筒15との間で異なる値とされる。具体的には、壁面51のクリアランスCRは、休止気筒群の気筒15よりも稼働気筒群の気筒15の方が小さい。
具体的には、本実施形態では、稼働気筒群の気筒15では、壁面51のクリアランスCRが下記式(1)で算出されるCl未満になるように構成され、休止気筒群の気筒15では壁面51のクリアランスCRが下記式(1)で算出されるCl以上であって、下記式(2)によって算出されるCh以下になるように構成される。
Cl=−(h・NEm+j・Pm+f)/2n−0.8 …(1)
Ch=−(h・NEm+j・Pm+f)/2n+0.8 …(2)
ここで、上記式(1)及び(2)において、NEmは出力点における回転速度(rpm)、Pmは出力点における吸気ポート21又は吸気枝管61内の圧力(吸気管圧)(kPa)、h=0.0000788、j=−0.003585、f=0.6531914、n=−0.0621023である。
そして、休止気筒群の気筒15では、壁面51のクリアランスCRが下記式(3)で算出されるCl2以上であって、下記式(4)によって算出されるCh2以下になるように構成されるのが好ましい。更に、休止気筒群の気筒15では、壁面51のクリアランスCRが下記式(5)で算出されるCl3以上であって、下記式(6)によって算出されるCh3以下になるように構成されるのが好ましい。
Cl2=−(h・NEm+j・Pm+f)/2n−0.4 …(3)
Ch2=−(h・NEm+j・Pm+f)/2n+0.4 …(4)
Cl3=−(h・NEm+j・Pm+f)/2n−0.2 …(5)
Ch3=−(h・NEm+j・Pm+f)/2n+0.2 …(6)
或いは、本実施形態では、稼働気筒群の気筒15では、壁面51のクリアランスCRが1.8mm未満になるように構成され、休止気筒群の気筒15では、壁面51のクリアランスCRが1.8mm以上であって3.4mm以下になるように構成される。そして、稼働気筒群の気筒15では、壁面51のクリアランスCRが1.4mm以下になるように構成されることが好ましく、1.0mm以下になるように構成されることが更に好ましい。一方、休止気筒群の気筒15では、壁面51のクリアランスCRが2.2mm以上であって3.0mm以下になるように構成されることが好ましく、2.4mm以上であって2.8mm以下になるように構成されることが更に好ましい。
一方、クリアランスCRは、吸気弁31のリフト方向の各位置において、吸気開口23の周方向において一定になるように形成される。したがって、壁面51は、吸気弁31のリフト方向の各位置において、吸気弁31の軸線を中心とした円弧状に形成される。
<作用・効果>
次に、図6〜図8を参照して、本実施形態における作用・効果を説明する。図6は、各燃焼室16内に生じるタンブル流のタンブル比及び吸気弁31のリフト量のクランク角推移である。図6の横軸は、圧縮上死点からの進角側の角度を示している。したがって、図6の0°BTDCはピストン13が圧縮上死点にある状態を、180°BTDCはピストン13が吸気下死点にある状態をそれぞれ示している。特に、図6は、内燃機関の出力が最大となる運転状態(出力点)におけるタンブル比のクランク角推移を示している。
また、図中の実線はシリンダヘッド12にマスク部を設けなかった場合における推移を示している。一方、図中の破線及び一点鎖線は、壁面51のクリアランスCRが高さ方向全体に亘って1.0mm及び1.8mmである(したがって、段差が設けられていない)場合における推移をそれぞれ示している。また、図6は、マスク部の壁面51の高さがHである場合の推移を示している。
360°BTDCから吸気行程が開始されると、図6に示したように、吸気弁31のリフト量が増大していき、これに伴って燃焼室16内には吸気ガスが流入する。吸気行程の開始時には燃焼室16内に流入する吸気ガスの流量がそれほど多くないため、燃焼室16内にはタンブル流は発生せず、よってタンブル比は低いままである。その後、吸気弁31のリフト量が増大すると共にピストン13の降下速度が上昇するとそれに伴って燃焼室16内に流入する吸気ガスの流量も増大し、燃焼室16内に生じるタンブル流のタンブル比も大きくなる。そして、270°BTDCにおいて、ピストン13の降下速度が最大になり、これに伴って燃焼室16内に生じるタンブル流のタンブル比も最大となる。
図6からわかるように、270°BTDC付近において、クリアランスが1.0mmのマスク部が設けられた場合のタンブル比は、マスク部が設けられていない場合及びクリアランスが1.8mmのマスク部が設けられた場合のタンブル比に比べて小さい。以下、図7を参照して、クリアランスが1.0mmのマスク部が設けられた場合のタンブル流のタンブル比が小さい理由について説明する。
図7は、270°BTDC付近における燃焼室16内に生じる吸気ガスの流れを概略的に示した図である。図7(A)はマスク部が設けられていない場合、図7(B)はクリアランスが1.8mmのマスク部が設けられている場合、図7(C)はクリアランスが1.0mmのマスク部が設けられている場合をそれぞれ示している。
図7(A)に示したようにマスク部が設けられていない場合や図7(B)に示したようにクリアランスが1.8mmのマスク部が設けられている場合には、吸気弁31のリフト量が大きいときには、吸気開口23の反排気開口側の領域においても吸気ガスに対する抵抗がそれほど大きくない。したがって、これらの場合、吸気ガスは、吸気開口23の排気開口側の領域に加えて、反排気開口側の領域を通って燃焼室16内に流入することになる。すなわち、吸気ガスが吸気開口23を通って燃焼室16に流入する際の実質的な流路面積は広い。この結果、燃焼室16内に流入する吸気ガスの全体的な流速は比較的速く、よって燃焼室16内に生じるタンブル流のタンブル比も大きくなる。
一方、図7(C)に示したようにクリアランスが1.0mmのマスク部が設けられている場合には、吸気開口23の反排気開口側の領域において吸気ガスに対する抵抗が大きい。したがって、この場合、吸気ガスはそのほとんどが吸気開口23の排気開口側の領域を通って流入し、反排気開口側の領域を通って流入する吸気ガスは少ない。すなわち、吸気ガスが吸気開口23を通って燃焼室16に流入する際の実質的な流路面積は図7(A)及び図7(B)に示した場合に比べて狭い。加えて、吸気開口23の実質的な流路面積が狭くて吸気ガスのほとんどが吸気開口23の排気開口側の領域Zを通って流入することから、この領域Zを通ろうとする吸気ガスの流量が増大し、結果的にこの領域Zにおいてチョークが生じる。したがって、この場合、燃焼室16内に流入する吸気ガスの全体的な流速は図7(A)や図7(B)に示した場合に比べて遅く、よって燃焼室16内に生じるタンブル流のタンブル比も小さい。
一方、図6からわかるように、吸気弁31のリフト量が低下していきマスク部の壁面51の高さH付近に到達してからは、マスク部が設けられていない場合には乱れ強さが急激に低下する。これは、吸気開口23の反排気開口側の領域から流入する吸気ガスがタンブル流の旋回方向とは逆方向(以下、「逆タンブル方向」ともいう)に流入することで、タンブル流の流れを阻害するためである。
一方、クリアランスが1.0mmのマスク部が設けられている場合には、吸気弁31のリフト量が高さH以下に低下すると、吸気開口23の反排気開口側の領域から吸気ガスの流入を抑制することができる。したがって、クリアランスが1.0mmのマスク部が設けられている場合には、吸気弁31のリフト量が高さH以下に低下したときに、逆タンブル方向の吸気ガスの流入を抑制することができ、よって図6に示したようにタンブル比の低下を抑制することができる。クリアランスが1.8mmのマスク部が設けられている場合には、吸気弁31のリフト量が高さH以下に低下したときのタンブル比の低下の程度が、マスク部が設けられていない場合とクリアランスが1.0mmのマスク部が設けられている場合との間の程度となる。
図8は、壁面51のクリアランスCRと、燃焼室16内に生じる乱れの強さとの関係を示す図である。図8(A)は、内燃機関の出力が最大となる運転状態における関係を示しており、一方、図8(B)は、内燃機関1の最も頻度の高い運転状態における関係を示している。
なお、図8に示したクリアランスCRと乱れ強さとの関係は、下記諸元の内燃機関1における関係である。すなわち、この内燃機関1は、ストローク/ボア比が1.14〜1.17、吸気弁31と気筒15の軸線との角度αが18°、排気弁36と気筒15の軸線との角度βが23°であり(図2参照)、吸気ポートTTR(タンブル比)が2.6〜2.8である。吸気ポートTTRは、吸気ポート21の形状に応じて変化する変数である。具体的には、吸気弁31のリフト量LをL/D=0.3(Dは吸気弁31のバルブ径)に設定し且つ燃焼室16内を−30kPaにて吸気ガスを吸入したときに燃焼室16内に生じるタンブル流のタンブル比を意味する。
また、この内燃機関1における出力点での機関回転速度は5600rpmであり、出力点での吸気ポート21又は吸気枝管61内の圧力(吸気管圧又は過給圧)が200kPaである。したがって、図8(A)は、機関回転速度が5600rpm、過給圧が200kPaであるときの関係を示している。
また、図8(A)において、白抜き菱形印は、吸気弁31の作用角が190°であって、吸気弁31の閉弁時期が吸気下死点よりも20°進角側(−20°ABDC)である場合を示している。また、白抜き四角印は、吸気弁31の作用角が190°であって、吸気弁31の閉弁時期が吸気下死点(0°ABDC)である場合を示している。黒塗り菱形印は、吸気弁31の作用角が200°であって、吸気弁31の閉弁時期が吸気下死点よりも20°進角側(−20°ABDC)である場合を示している。また、黒塗り四角印は、吸気弁31の作用角が200°であって、吸気弁31の閉弁時期が吸気下死点(0°ABDC)である場合を示している。
ここで、内燃機関1の休止気筒群の気筒15では、機関負荷等が低い場合には混合気の燃焼が停止せしめられる。したがって、内燃機関1の休止気筒群の気筒15では、機関負荷が或る程度高くて、出力点に近い運転状態でなければ、混合気の燃焼は行われない。逆に言うと、休止気筒群の気筒15では、稼働気筒群の気筒15と比べて、出力点に近い運転状態においてのみ混合気の燃焼が行われるといえる。したがって、内燃機関1の休止気筒群の気筒15では、出力点における燃焼室16内に生じる乱れの強さが大きくなるように壁面51のクリアランスCRを設定する必要がある。
図8(A)からわかるように、出力点における燃焼室16内に生じる乱れの強さは、吸気弁31の作用角や閉弁時期にかかわらず、壁面51のクリアランスCRが2.6mm程度のときに最大となる。したがって、出力点での機関回転数が5600rpmであって過給圧が200kPaとなる上記諸元の内燃機関では、壁面51のクリアランスCRが2.6mm程度のときに乱れ強さが最大になるといえる。
また、図8(A)からわかるように、出力点における燃焼室16内に生じる乱れの強さは、吸気弁31の作用角や閉弁時期にかかわらず、壁面51のクリアランスCRが1.8mm〜3.4mmの範囲内において、比較的大きい値であることがわかる。したがって、出力点での機関回転数が5600rpmであって過給圧が200kPaとなる上記諸元の内燃機関1では、壁面51のクリアランスCRが1.8mm〜3.4mmに設定されることが好ましく、2.2mm〜3.0mmに設定されることがより好ましく、2.4mm〜2.8mmに設定されることが更に好ましい。
見方を変えると、出力点での機関回転数が5600rpmであって過給圧が200kPaとなる上記諸元の内燃機関1では、壁面51のクリアランスCRは、出力点での乱れ強さが最大となる壁面51のクリアランスCRm(すなわち、2.6mm)から−0.8mm以上に設定されることが好ましく、−0.4mm以上に設定されることがより好ましく、−0.2mm以上に設定されることが更に好ましい。同様に、出力点での機関回転数が5600rpmであって過給圧が200kPaとなる上記諸元の内燃機関1では、壁面51のクリアランスCRは、出力点での乱れ強さが最大となる壁面51のクリアランスCRm(すなわち、2.6mm)から+0.8mm以下に設定されることが好ましく、+0.4mm以下に設定されることがより好ましく、+0.2mm以下に設定されることが更に好ましい。
ところで、出力点において圧縮上死点近傍において燃焼室16内に生じる乱れ強さu’は、応答曲面法を用いた解析により、下記式(7)で近似することができる。
u’=a・NE+b・IVA+c・LF+d・ε+e・IVC+f・CR+g・NE・IVA+h・NE・CR+i・Pm・TTR+j・Pm・CR+k・IVA・IVC+l・ε2+m・IVC2+n・CR2 …(7)
ここで、NEは機関回転速度(rpm)、IVAは吸気弁31の作用角(°)、LFは吸気弁31の最大リフト量(mm)、εは圧縮比、IVCは吸気弁の閉弁時期(°ABDC)、CRは吸気弁31の縁部の通過面からの壁面51のクリアランス(mm)、TTRは吸気ポートTTR(タンブル比)、Pmは吸気通路内の圧力(kPa)をそれぞれ表している。また、a〜nは定数であり、特に、h=0.0000788、j=−0.003585、n=−0.0621023である。
ここで、式(7)を変形すると、燃焼室16内に生じる乱れ強さu’は下記式(8)のように表すことができる。
Figure 0006900932
式(8)において、nは負の定数であることから、燃焼室16内に生じる乱れ強さu’はクリアランスCRに対して上に凸の2次関数として表されることがわかる。そして、式(8)より、燃焼室16内に生じる乱れ強さu’が最大となるクリアランスCRmは下記式(9)で表される。
Figure 0006900932
上記式(9)より、機関回転速度NEが高くなるほど出力点における乱れ強さu’が最大となるクリアランスCRmは大きくなることがわかる。同様に、式(9)より、出力点における吸気通路内の圧力Pmが高くなるほど出力点における乱れ強さu’が最大となるクリアランスCRmは小さくなることがわかる。
本実施形態では、休止気筒群の気筒15では、壁面51のクリアランスCRは、このようにして算出される出力点での乱れ強さが最大となる壁面51のクリアランスCRmに対して、上述したように±8mm以内、好ましくは±0.4mm以内、更に好ましくは±0.2mm以内に設定される(式(1)〜(6)を参照)。これにより、休止気筒群の気筒15では、出力点において燃焼室16内に生じる乱れの強さを大きいものにすることができる。
ここで、市販車に用いられる過給機を備える多くの内燃機関では、機関回転速度が5500〜6200rpmの範囲内であって吸気管内の圧力が200〜240kPaの範囲内にあるときに内燃機関の出力が最大となる。斯かる機関回転速度の範囲及び吸気管内圧力の範囲内では、乱れ強さu’が最大となるクリアランスCRは上記式(9)によって算出すると、約1.8mm〜約3.4mmである。したがって、斯かる観点からも、休止気筒群の気筒15では、壁面51のクリアランスCRは1.8mm以上であって、3.4mm以下であることが好ましい。上述したように、本実施形態では、休止気筒群の気筒15では、壁面51のクリアランスCRは1.8mm以上であって3.4mm以下とされることから、内燃機関の出力が最大となる運転状態において乱れ強さを大きいものとすることができる。
一方、内燃機関1の稼働気筒群の気筒15では、機関負荷等が低い場合にも混合気の燃焼が行われる。特に、一般的には内燃機関1は機関負荷が比較的低い状態で運転される頻度が高いことから、内燃機関1の稼働気筒群の気筒15では低い機関負荷で運転される頻度が高い。したがって、内燃機関1の稼働気筒群の気筒15では、機関負荷の低い運転状態、例えば内燃機関1の最も頻度の高い運転状態において、燃焼室16内に生じる乱れの強さが大きくなるように壁面51のクリアランスCRを設定する必要がある。
図8(B)に示したように、内燃機関1の最も頻度の高い運転状態では、壁面51のクリアランスCRが1mmを超えて大きくなるほど、燃焼室16内に生じる乱れの強さが小さくなる。したがって、内燃機関1の稼働気筒群の気筒15では、壁面51のクリアランスCRは小さいことが好ましい。
本実施形態では、内燃機関1の稼働気筒群の気筒15において、壁面51のクリアランスCRが上記式(1)で算出されるCl未満になるように構成される。或いは、本実施形態では、稼働気筒群の気筒15において、壁面51のクリアランスCRは、1.8mm未満、好ましくは1.4mm以下、更に好ましくは1.0mm以下になるように構成される。したがって、稼働気筒では、内燃機関1の最も頻度の高い運転状態において燃焼室16内に生じる乱れの強さを大きいものとすることができる。
1 内燃機関
10 機関本体
21 吸気ポート
22 排気ポート
23 吸気開口
24 排気開口
31 吸気弁
36 排気弁
41 点火プラグ
42 燃料噴射弁
50 マスク部
51 壁面

Claims (7)

  1. 複数の気筒を備えると共に、これら気筒は出力が必要とされる全運転領域において混合気の燃焼が行われる第1気筒群と、出力が必要とされる運転領域のうち一部の運転領域では混合気の燃焼が行われない第2気筒群とに分けられる、内燃機関において、
    各気筒の燃焼室に面すると共に吸気弁によって開閉される吸気開口と、
    各気筒の燃焼室に面すると共に排気弁によって開閉される排気開口と、
    前記排気開口側とは反対側において前記吸気開口の外縁に沿って前記燃焼室内に向かって延びる壁面を有するマスク部と、を備え、
    前記マスク部は、前記マスク部の壁面の前記吸気弁の縁部の通過面からのクリアランスが、前記第2気筒群の各気筒よりも前記第1気筒群の各気筒の方が小さくなるように構成される、内燃機関。
  2. 前記第1気筒群の各気筒のマスク部は前記クリアランスが下記式(1)で算出されるCl未満になるように構成され、前記第2気筒群の各気筒のマスク部は前記クリアランスが下記式(1)で算出されるCl以上になるように構成され、
    Cl=−(h・NEm+j・Pm+f)/2n−0.8 …(1)
    上記式(1)において、NEmは出力点における回転速度(rpm)、Pmは出力点における吸気管圧(kPa)、h=0.0000788、j=−0.003585、f=0.6531914、n=−0.0621023である、請求項1に記載の内燃機関。
  3. 前記第2気筒群の各気筒のマスク部は前記クリアランスが下記式(2)で算出されるCh以下になるように構成される、
    Ch=−(h・NEm+j・Pm+f)/2n+0.8 …(2)
    請求項2に記載の内燃機関。
  4. 前記第1気筒群の各気筒のマスク部は前記クリアランスが1.8mm未満になるように構成され、前記第2気筒群の各気筒のマスク部は前記クリアランスが1.8mm以上になるように構成される、請求項1に記載の内燃機関。
  5. 前記第2気筒群の各気筒のマスク部は前記クリアランスが3.4mm以下になるように構成される、請求項2に記載の内燃機関。
  6. 前記吸気開口、前記排気開口及び前記マスク部が形成されたシリンダヘッドを更に備え、
    最も前記吸気弁のリフト方向側の前記壁面の縁部は、前記シリンダヘッドのシリンダブロックとの当接面上に位置する、請求項1〜5のいずれか1項に記載の内燃機関。
  7. 前記壁面は、前記吸気弁のリフト方向の各位置において、前記吸気弁の縁部の通過面からのクリアランスが周方向において一定になるように形成される、請求項1〜6のいずれか1項に記載の内燃機関。
JP2018080141A 2018-04-18 2018-04-18 内燃機関のシリンダヘッド Active JP6900932B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018080141A JP6900932B2 (ja) 2018-04-18 2018-04-18 内燃機関のシリンダヘッド
DE102019109449.6A DE102019109449A1 (de) 2018-04-18 2019-04-10 Zylinderkopf für Verbrennungskraftmaschine
CN201910299901.8A CN110388274B (zh) 2018-04-18 2019-04-15 内燃机的汽缸盖
US16/383,665 US10724425B2 (en) 2018-04-18 2019-04-15 Cylinder head of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080141A JP6900932B2 (ja) 2018-04-18 2018-04-18 内燃機関のシリンダヘッド

Publications (2)

Publication Number Publication Date
JP2019190285A JP2019190285A (ja) 2019-10-31
JP6900932B2 true JP6900932B2 (ja) 2021-07-14

Family

ID=68105626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080141A Active JP6900932B2 (ja) 2018-04-18 2018-04-18 内燃機関のシリンダヘッド

Country Status (4)

Country Link
US (1) US10724425B2 (ja)
JP (1) JP6900932B2 (ja)
CN (1) CN110388274B (ja)
DE (1) DE102019109449A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200013588A1 (it) * 2022-06-27 2023-12-27 Fca Italy Spa Motore a combustione interna alimentato a idrogeno con schermatura delle valvole di aspirazione

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3041660C2 (de) * 1980-11-05 1985-07-11 Daimler-Benz Ag, 7000 Stuttgart Hubkolben-Brennkraftmaschine
JPH0629556B2 (ja) * 1986-10-31 1994-04-20 マツダ株式会社 エンジンの燃焼室構造
JPH0733766B2 (ja) * 1988-08-30 1995-04-12 トヨタ自動車株式会社 内燃機関の燃焼室
JPH04362263A (ja) * 1991-06-07 1992-12-15 Toyota Motor Corp 内燃機関の排気ガス再循環装置
US5601061A (en) * 1996-05-16 1997-02-11 Caterpillar Inc. Engine intake air deflector
JP3903657B2 (ja) * 1998-12-02 2007-04-11 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
US6318348B1 (en) * 2000-06-08 2001-11-20 Visteon Global Technologies, Inc. Stratified exhaust gas recirculation strategy for internal combustion engine
JP2003106158A (ja) * 2001-09-28 2003-04-09 Toyota Motor Corp 筒内噴射式火花点火内燃機関
GB0313988D0 (en) * 2003-06-17 2003-07-23 Ma Thomas T H Intake port for reverse tumble
US7434564B2 (en) * 2004-08-19 2008-10-14 Avl List Gmbh Internal combustion engine
JP2006077586A (ja) * 2004-09-07 2006-03-23 Honda Motor Co Ltd 気筒休止内燃機関
JP4506442B2 (ja) * 2004-12-03 2010-07-21 日産自動車株式会社 内燃機関
US20100037840A1 (en) * 2006-10-02 2010-02-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US8082908B2 (en) * 2008-01-18 2011-12-27 Ward Michael A V 2-valve, 2-plug, 2-intake lean burn engine with squish flow with about 2/3 the combustion chamber under the exhaust valve
DE102008035594A1 (de) * 2008-07-31 2010-02-04 Volkswagen Ag Brennkraftmaschine mit Brennraumeinlegeelement
JP2010261314A (ja) * 2009-04-30 2010-11-18 Nissan Motor Co Ltd 内燃機関の吸気弁マスク構造
JP5363969B2 (ja) * 2009-12-22 2013-12-11 富士重工業株式会社 筒内噴射エンジン
EP2474714B1 (en) * 2010-12-23 2013-04-03 C.R.F. Società Consortile per Azioni Internal combustion engine with wall masking the curtain area of the intake valves
US9038592B2 (en) * 2013-04-16 2015-05-26 Deere & Company Cylinder head comprising a shroud
JP6176005B2 (ja) * 2013-09-06 2017-08-09 トヨタ自動車株式会社 内燃機関の制御装置
JP6294730B2 (ja) * 2014-03-31 2018-03-14 ダイハツ工業株式会社 内燃機関
JP2016128669A (ja) * 2015-01-09 2016-07-14 マツダ株式会社 エンジンの燃焼室構造
JP6365382B2 (ja) * 2015-04-07 2018-08-01 トヨタ自動車株式会社 内燃機関
JP2016223303A (ja) * 2015-05-27 2016-12-28 トヨタ自動車株式会社 内燃機関
JP6288014B2 (ja) * 2015-09-08 2018-03-07 トヨタ自動車株式会社 内燃機関
WO2017119300A1 (ja) * 2016-01-06 2017-07-13 本田技研工業株式会社 内燃機関
JP6428715B2 (ja) * 2016-07-06 2018-11-28 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
CN110388274B (zh) 2021-12-14
JP2019190285A (ja) 2019-10-31
US10724425B2 (en) 2020-07-28
DE102019109449A1 (de) 2019-10-24
US20190323417A1 (en) 2019-10-24
CN110388274A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
JP5009920B2 (ja) 内燃エンジンの運転方法
JP6061812B2 (ja) エンジンのブローバイガス還元装置のための故障検出装置
JP2009216084A (ja) 特にディーゼル型の直接噴射過給内燃機関における二重吸気弁リフトによる残留燃焼ガス掃気方法
JP2019190286A (ja) 内燃機関のシリンダヘッド
US20090217905A1 (en) Direct injection type of diesel engine
JP2009041540A (ja) ガソリンエンジンの制御装置
JP6900932B2 (ja) 内燃機関のシリンダヘッド
JPS6026185Y2 (ja) 内燃機関の吸気装置
JP4238682B2 (ja) 混合気を圧縮自着火させる自着火運転が可能な2サイクル式内燃機関
JP6128091B2 (ja) ディーゼルエンジンおよびその製造方法
JP6835235B2 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP2008303744A (ja) 内燃機関の制御装置
JP4232636B2 (ja) 内燃機関の制御装置
CN111836956B (zh) 用于控制内燃发动机装置的方法
JP5888605B2 (ja) 内燃機関の制御装置
US9885293B2 (en) Control apparatus of engine
JP2006348809A (ja) 内燃機関
JP2009121336A (ja) 内燃機関
JP7032891B2 (ja) エンジン制御装置
JP2014214638A (ja) ターボ過給機付エンジン装置
JP2006233961A (ja) 自然吸気式内燃機関
JPS639627A (ja) 2サイクル内燃機関
Mamala et al. Device for control the valvetrain and cylinder pressure of a spark-ignition engine
WO2018203360A1 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP2004176620A (ja) 2サイクル運転可能な頭上弁式多気筒エンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R151 Written notification of patent or utility model registration

Ref document number: 6900932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151