JP6896404B2 - Exposure equipment and manufacturing method of articles - Google Patents

Exposure equipment and manufacturing method of articles Download PDF

Info

Publication number
JP6896404B2
JP6896404B2 JP2016233244A JP2016233244A JP6896404B2 JP 6896404 B2 JP6896404 B2 JP 6896404B2 JP 2016233244 A JP2016233244 A JP 2016233244A JP 2016233244 A JP2016233244 A JP 2016233244A JP 6896404 B2 JP6896404 B2 JP 6896404B2
Authority
JP
Japan
Prior art keywords
optical element
astigmatism
exposure apparatus
optical system
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016233244A
Other languages
Japanese (ja)
Other versions
JP2018091919A (en
JP2018091919A5 (en
Inventor
猛 中嶋
猛 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016233244A priority Critical patent/JP6896404B2/en
Priority to TW106134495A priority patent/TWI654662B/en
Priority to KR1020170157858A priority patent/KR102234255B1/en
Priority to CN201711200000.6A priority patent/CN108121170B/en
Publication of JP2018091919A publication Critical patent/JP2018091919A/en
Publication of JP2018091919A5 publication Critical patent/JP2018091919A5/ja
Application granted granted Critical
Publication of JP6896404B2 publication Critical patent/JP6896404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)

Description

本発明は、露光装置及び物品製造方法に関する。 The present invention relates to an exposure apparatus and a method for manufacturing an article.

半導体デバイスや液晶表示装置等の製造工程のうちリソグラフィ工程において、照明光学系によりマスク(レチクル)を照明して、感光性のレジスト層が塗布された基板に投影光学系を介してマスクのパターンの像を投影する露光装置が用いられている。 In the lithography process of the manufacturing process of semiconductor devices, liquid crystal display devices, etc., the mask (reticle) is illuminated by the illumination optical system, and the mask pattern is transferred to the substrate coated with the photosensitive resist layer via the projection optical system. An exposure apparatus that projects an image is used.

投影光学系の光学素子は露光光を吸収して光学素子内に温度分布が生じることで光学素子の屈折率分布や面形状が変化する。結像特性の観点から、光学素子の屈折率分布や面形状の変化によって発生しうるフォーカス差または非点収差(アス)等の収差などを低減させることが望ましい。 The optical element of the projection optical system absorbs the exposure light to generate a temperature distribution in the optical element, so that the refractive index distribution and the surface shape of the optical element change. From the viewpoint of imaging characteristics, it is desirable to reduce aberrations such as focus difference or astigmatism (astigmatism) that may occur due to changes in the refractive index distribution and surface shape of the optical element.

そこで、投影光学系内の部材が露光光を吸収することで生じた投影光学系内部全体の温度上昇に合わせて、投影光学系を収容する鏡筒内に温度調節された気体を供給することで、投影光学系内の温度分布変化を低減させる露光装置が知られている。 Therefore, by supplying a temperature-controlled gas into the lens barrel that houses the projection optical system in accordance with the temperature rise of the entire inside of the projection optical system caused by the members in the projection optical system absorbing the exposure light. , An exposure apparatus that reduces changes in temperature distribution in a projection optical system is known.

特許文献1には、投影光学系の瞳近傍に設置されているメニスカスレンズと凸面鏡との間に気体を供給するときに、露光に使用するマスクのパターンの情報に基づき、メニスカスレンズの温度分布と気体の流れの方向が合うように制御することが開示されている。 Patent Document 1 describes the temperature distribution of the meniscus lens and the temperature distribution of the meniscus lens based on the information of the mask pattern used for exposure when gas is supplied between the meniscus lens installed near the pupil of the projection optical system and the convex mirror. It is disclosed to control the direction of gas flow so as to match.

特開2016−95412号公報Japanese Unexamined Patent Publication No. 2016-95412

特許文献1では、レンズの温度が上昇した領域に気体を流してレンズを部分的に冷却しているため、投影光学系に高い照度の露光光が入射された場合には、レンズ全体の温度分布が十分に均一にならないことが想定される。その場合、特に、投影光学系の縦横方向の非点収差と斜め方向の非点収差の両方を許容範囲内に収めることが困難である。 In Patent Document 1, since gas is passed through a region where the temperature of the lens has risen to partially cool the lens, the temperature distribution of the entire lens is distributed when high-illuminance exposure light is incident on the projection optical system. Is not expected to be sufficiently uniform. In that case, in particular, it is difficult to keep both the astigmatism in the vertical and horizontal directions and the astigmatism in the oblique direction of the projection optical system within an allowable range.

そこで、本発明は、露光光の照度が高い場合でも、投影光学系における互いに方向が異なる複数の非点収差を許容範囲内に収めるための露光装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an exposure apparatus for keeping a plurality of astigmatisms having different directions in the projection optical system within an allowable range even when the illuminance of the exposure light is high.

上記課題を解決する本発明の一側面としての露光装置は、マスクのパターンを基板に投影する投影光学系を有する露光装置であって、前記投影光学系は、前記投影光学系の非点収差を調整するために位置又は形状が変更可能である第1光学素子と、前記投影光学系の瞳面又は瞳面の近傍に配置されている第2光学素子と、を有し、前記露光装置は、前記第1光学素子の位置又は形状を制御する制御部と、前記第2光学素子の温度分布を調整するために前記第2光学素子に気体を供給する供給部と、を有し、前記供給部は、前記第2光学素子の温度分布によって生じる第1方向の非点収差と前記第1方向とは異なる第2方向の非点収差との増減の方向が互いに逆になり、前記第1方向の非点収差が許容範囲内に収まるように、前記第2光学素子に気体を供給し、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子の位置又は形状を制御する。 The exposure device as one aspect of the present invention that solves the above problems is an exposure device having a projection optical system that projects a mask pattern onto a substrate, and the projection optical system causes non-point aberration of the projection optical system. The exposure apparatus comprises a first optical element whose position or shape can be changed for adjustment, and a second optical element arranged on or near the pupil surface of the projection optical system. The supply unit has a control unit that controls the position or shape of the first optical element, and a supply unit that supplies gas to the second optical element in order to adjust the temperature distribution of the second optical element. is pre SL becomes opposite to each other the direction of increase or decrease of the astigmatism of the second direction different from the first astigmatism to the first direction of the direction caused by the temperature distribution of the second optical element, wherein the first direction astigmatism so falls within the allowable range, the position or shape of the second gas is supplied to the optical element, the first optical element to fit astigmatic before Symbol second direction within the allowable range of To control.

本発明によれば、露光光の照度が高い場合でも、投影光学系における互いに方向が異なる複数の非点収差を許容範囲内に収めることができる。 According to the present invention, even when the illuminance of the exposure light is high, a plurality of astigmatisms having different directions in the projection optical system can be contained within an allowable range.

露光装置の構成図である。It is a block diagram of an exposure apparatus. 露光後のメニスカスレンズ15’の温度分布を示す図である。It is a figure which shows the temperature distribution of the meniscus lens 15'after exposure. ゼルニケ係数Z5、Z6項の温度分布を示す図である。It is a figure which shows the temperature distribution of the Zernike coefficient Z5, Z6 term. 凸面鏡15とメニスカスレンズ15’の周辺の構成を示す図である。It is a figure which shows the structure around the convex mirror 15 and the meniscus lens 15'. 鏡筒100の断面図である。It is sectional drawing of the lens barrel 100. 気体供給後の温度分布を示す図である。It is a figure which shows the temperature distribution after gas supply. 非点収差の補正方法を示すフルーチャートである。It is a flu chart which shows the correction method of astigmatism. 実施形態2の鏡筒、給気口及び排気口を示す図である。It is a figure which shows the lens barrel, the air supply port and the exhaust port of Embodiment 2.

以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1実施形態)
図1を参照しながら本実施形態の露光装置について説明する。図1は第1実施形態の露光装置の概略図である。露光装置は、例えば、液晶表示デバイスや有機ELデバイスなどのフラットパネルの製造工程におけるリソグラフィ工程にて使用されうる。特に本実施形態では、露光装置は、ステップ・アンド・スキャン方式にて、マスクに形成されているパターンの像をプレート上(基板上)に転写(露光)する走査型投影露光装置とする。図1では、鉛直方向であるZ軸に垂直な平面内で露光時のマスク9およびプレート19の走査方向にY軸を取り、Y軸に直交する非走査方向にX軸を取っている。プレート19は、例えば硝材製で、表面に感光剤(レジスト)が塗布されている被処理基板である。
(First Embodiment)
The exposure apparatus of this embodiment will be described with reference to FIG. FIG. 1 is a schematic view of the exposure apparatus of the first embodiment. The exposure apparatus can be used, for example, in a lithography process in a manufacturing process of a flat panel such as a liquid crystal display device or an organic EL device. In particular, in the present embodiment, the exposure apparatus is a scanning projection exposure apparatus that transfers (exposes) an image of a pattern formed on a mask onto a plate (on a substrate) by a step-and-scan method. In FIG. 1, the Y-axis is taken in the scanning direction of the mask 9 and the plate 19 at the time of exposure in a plane perpendicular to the Z-axis in the vertical direction, and the X-axis is taken in the non-scanning direction orthogonal to the Y-axis. The plate 19 is, for example, a substrate to be treated, which is made of a glass material and has a surface coated with a photosensitive agent (resist).

本実施形態の露光装置は、照明系ILと、投影光学系POと、投影光学系POの物体面OPに配置されたマスク(原版)9を走査する原版駆動機構と、投影光学系POの像面IPに配置された基板19を走査する基板駆動機構と、制御部Cを備える。 The exposure apparatus of this embodiment includes an illumination system IL, a projection optical system PO, an original plate drive mechanism that scans a mask (original plate) 9 arranged on an object surface OP of the projection optical system PO, and an image of the projection optical system PO. A substrate drive mechanism for scanning the substrate 19 arranged on the surface IP and a control unit C are provided.

照明系ILは、例えば、光源LS、第1コンデンサーレンズ3、フライアイレンズ4、第2コンデンサーレンズ5、スリット規定部材6、結像光学系7、平面ミラー8を含みうる。光源LSは、例えば、水銀ランプ1と、楕円ミラー2とを含みうる。スリット規定部材6は、原版9の照明範囲(即ち、原版9を照明するスリット形状光の断面形状)を規定する。結像光学系7は、スリット規定部材6によって規定されるスリットを物体面に結像させるように配置されている。平面ミラー8は、照明系ILにおいて光路を折り曲げる。投影光学系POは、物体面OPに配置される原版9のパターンを像面IPに配置される基板19に投影し、これにより基板19が露光される。投影光学系POは、等倍結像光学系、拡大結像光学系および縮小結像光学系のいずれとしても構成されうる。しかし、投影光学系POは、等倍結像光学系として構成されることが好ましく、物体面側及び像面側で主光線が平行即ち物体面及び像面の双方において両テレセントリック性を有している。 The illumination system IL may include, for example, a light source LS, a first condenser lens 3, a fly-eye lens 4, a second condenser lens 5, a slit defining member 6, an imaging optical system 7, and a plane mirror 8. The light source LS may include, for example, a mercury lamp 1 and an elliptical mirror 2. The slit defining member 6 defines the illumination range of the original plate 9 (that is, the cross-sectional shape of the slit-shaped light that illuminates the original plate 9). The imaging optical system 7 is arranged so as to form a slit defined by the slit defining member 6 on the object surface. The plane mirror 8 bends an optical path in the illumination system IL. The projection optical system PO projects the pattern of the original plate 9 arranged on the object surface OP onto the substrate 19 arranged on the image plane IP, whereby the substrate 19 is exposed. The projection optical system PO can be configured as any of the same magnification imaging optical system, the magnifying imaging optical system, and the reduced imaging optical system. However, the projection optical system PO is preferably configured as a 1x magnification imaging optical system, and the main rays are parallel on the object surface side and the image surface side, that is, they have both telecentricity on both the object surface and the image surface. There is.

投影光学系POは、物体面OPから像面IPに至る光路に、物体面側から順に配置されたミラーとして、第1平面鏡13、第1凹面鏡14、凸面鏡15、第2凹面鏡16及び第2平面鏡17を有する。物体OPと第1平面鏡13との間の光路と第2平面鏡17と像面IPとの間の光路とは平行である。第1平面鏡13の鏡面を含む平面と第2平面鏡17の鏡面を含む平面とは、互いに90度の角度をなす。第1平面鏡13と第2平面鏡17とは、一体的に形成されていてもよい。第1凹面鏡14と第2凹面鏡16とは、一体的に構成されてもよい。投影光学系POは、物体面OPと第1平面鏡13との間の光路に配置されたシリンドリカルレンズ21及び22、平凹レンズ(又は平凸レンズ)12’を備える。投影光学系POは、また、第2平面鏡17と像面の間の光路に配置されたシリンドリカルレンズ23、24を備える。投影光学系POは、これらのレンズによる軸上色収差を補正するためにメニスカスレンズ(非球面レンズ)15’が凸面鏡15の前に配置されている。凸面鏡15の反射面が投影光学系の瞳面に相当する。凸面鏡15は投影光学系の瞳面に配置され、メニスカスレンズ15’は投影光学系の瞳面の近傍に配置されている。これらの光学素子は、露光時に不均一な温度分布が生じる。 The projection optical system PO is a first plane mirror 13, a first concave mirror 14, a convex mirror 15, a second concave mirror 16, and a second plane mirror as mirrors arranged in order from the object surface side in the optical path from the object surface OP to the image surface IP. Has 17. The optical path between the object OP and the first plane mirror 13 and the optical path between the second plane mirror 17 and the image plane IP are parallel. The plane including the mirror surface of the first plane mirror 13 and the plane including the mirror surface of the second plane mirror 17 form an angle of 90 degrees with each other. The first plane mirror 13 and the second plane mirror 17 may be integrally formed. The first concave mirror 14 and the second concave mirror 16 may be integrally configured. The projection optical system PO includes cylindrical lenses 21 and 22 arranged in an optical path between the object surface OP and the first plane mirror 13, and a plano-concave lens (or plano-convex lens) 12'. The projection optical system PO also includes cylindrical lenses 23 and 24 arranged in an optical path between the second plane mirror 17 and the image plane. In the projection optical system PO, a meniscus lens (aspherical lens) 15'is arranged in front of the convex mirror 15 in order to correct the axial chromatic aberration caused by these lenses. The reflective surface of the convex mirror 15 corresponds to the pupil surface of the projection optical system. The convex mirror 15 is arranged on the pupil surface of the projection optical system, and the meniscus lens 15'is arranged near the pupil surface of the projection optical system. These optical elements have a non-uniform temperature distribution during exposure.

シリンドリカルレンズ23、24は、物体面OPと第1平面鏡13との間の光路に沿う第1方向(z方向)と直交する第2方向(y方向)における投影光学系の投影倍率を調整する第1光学系を構成している。このシリンドリカルレンズ21及び22は、第1方向及び第2方向と直交する第3方向(x方向)における投影光学系の投影倍率を調整する第2光学系を構成している。平凹レンズ12’は、第1方向及び第2方向における投影光学系の投影倍率を調整する第3光学系を構成している。 The cylindrical lenses 23 and 24 adjust the projection magnification of the projection optical system in the second direction (y direction) orthogonal to the first direction (z direction) along the optical path between the object surface OP and the first plane mirror 13. It constitutes one optical system. The cylindrical lenses 21 and 22 constitute a second optical system that adjusts the projection magnification of the projection optical system in the third direction (x direction) orthogonal to the first direction and the second direction. The plano-concave lens 12'consists of a third optical system that adjusts the projection magnification of the projection optical system in the first direction and the second direction.

シリンドリカルレンズ21は、上面が平面、下面がx方向に曲率を持った凹シリンドリカル面であって、シリンドリカルレンズ22の上面まで5〜20mm程度の空気間隔を持つ。シリンドリカルレンズ22は、上面がx方向に曲率を持った凸シリンドリカル面、下面が凸球面であって、上面に凹球面、下面に平面を有する平凹レンズ12’の上面まで5〜20mm程度の空気間隔を持つ。シリンドリカルレンズ21又はシリンドリカルレンズ22はアクチュエータ31(駆動部)によりz方向に移動可能(駆動可能)に構成されている。シリンドリカルレンズ22に対して、シリンドリカルレンズ21をz方向に駆動することでx方向の倍率を補正する。また、アクチュエータ31により平凹レンズ12’をz方向に駆動することでx方向及びy方向に等方に倍率を補正する。 The cylindrical lens 21 is a concave cylindrical surface having a flat upper surface and a curvature on the lower surface in the x direction, and has an air spacing of about 5 to 20 mm to the upper surface of the cylindrical lens 22. The cylindrical lens 22 has a convex cylindrical surface having a curvature in the x direction on the upper surface, a convex spherical surface on the lower surface, a concave spherical surface on the upper surface, and an air spacing of about 5 to 20 mm to the upper surface of the plano-concave lens 12'having a flat surface on the lower surface. have. The cylindrical lens 21 or the cylindrical lens 22 is configured to be movable (driveable) in the z direction by an actuator 31 (driving unit). With respect to the cylindrical lens 22, the magnification in the x direction is corrected by driving the cylindrical lens 21 in the z direction. Further, by driving the plano-concave lens 12'in the z direction by the actuator 31, the magnification is corrected isotropically in the x direction and the y direction.

制御部Cは、例えばコンピューターなどで構成され、露光装置の各構成要素に回線を介して接続されて、プログラムなどに従って各構成要素の動作および調整などを制御しうる。制御部Cは、シリンドリカルレンズや平凹レンズを駆動するアクチュエータ(駆動部)を制御して、レンズの位置や形状又は双方を制御することができる。 The control unit C is configured by, for example, a computer or the like, is connected to each component of the exposure apparatus via a line, and can control the operation and adjustment of each component according to a program or the like. The control unit C can control the actuator (driving unit) that drives the cylindrical lens and the plano-concave lens to control the position and shape of the lens, or both.

シリンドリカルレンズ23は、上面に平面、下面に走査方向に曲率を持った凹シリンドリカル面を有し、シリンドリカルレンズ24の上面まで5〜20mm程度の空気間隔を持つ。シリンドリカルレンズ24は、上面に走査方向に曲率を持った凸シリンドリカル面、下面に平面を有する。シリンドリカルレンズ23又はシリンドリカルレンズ24はアクチュエータ32によりz方向に位置が変更可能(移動)に構成されている。アクチュエータ32によりシリンドリカルレンズ23をz方向に移動させることでy方向の倍率が補正できる。シリンドリカルレンズ21、22、23、24それぞれの厚み及び間隔は空間に保持したとき自重変形を起こさない範囲で、かつ空間保持機構、上下駆動機構が構成出来る範囲で任意である。シリンドリカル面は、屈折率が1.475近辺の合成石英の場合、曲率半径を47000mm程度にすると、1mmの移動で倍率を約10ppm変化する。しかし、各シリンドリカル面及び球面は基準高さ位置に置かれた3枚を通った像の大きさが3枚のレンズが無かった時と全く同じになるよう微小に変化させる必要がある。なお、シリンドリカル面の凹面と凸面、球面の凹面と凸面、は互いに逆であってもよい。なお、倍率補正手段としては、シリンドリカルレンズに限らず、平行平板の位置や形状又は双方を変更可能とし、平行平板を湾曲させる機構や、レンズの回転位置を調整する機構を用いてもよい。 The cylindrical lens 23 has a flat surface on the upper surface and a concave cylindrical surface having a curvature in the scanning direction on the lower surface, and has an air spacing of about 5 to 20 mm to the upper surface of the cylindrical lens 24. The cylindrical lens 24 has a convex cylindrical surface having a curvature in the scanning direction on the upper surface and a flat surface on the lower surface. The position of the cylindrical lens 23 or the cylindrical lens 24 can be changed (moved) in the z direction by the actuator 32. The magnification in the y direction can be corrected by moving the cylindrical lens 23 in the z direction by the actuator 32. The thickness and spacing of each of the cylindrical lenses 21, 22, 23, and 24 are arbitrary as long as they do not deform by their own weight when held in space, and the space holding mechanism and vertical drive mechanism can be configured. On the cylindrical surface, in the case of synthetic quartz having a refractive index of around 1.475, if the radius of curvature is set to about 47,000 mm, the magnification changes by about 10 ppm with a movement of 1 mm. However, each cylindrical surface and spherical surface need to be slightly changed so that the size of the image passed through the three lenses placed at the reference height position is exactly the same as when the three lenses were not present. The concave and convex surfaces of the cylindrical surface and the concave and convex surfaces of the spherical surface may be opposite to each other. The magnification correction means is not limited to the cylindrical lens, and a mechanism for bending the parallel plate plate or a mechanism for adjusting the rotation position of the lens may be used so that the position and shape of the parallel plate plate or both can be changed.

なお、上述のようにシリンドリカルレンズを移動させると投影倍率を調整できるが、さらに、非点収差も調整することができる。例えば、y方向の投影倍率を調整する場合、上面に平面、下面に走査方向に曲率を持った凹シリンドリカル面を有するシリンドリカルレンズ23をz方向に移動させると、走査方向に直交する方向の屈折力は変化しないが走査方向には負の屈折力が生じる。このため、走査方向に対して垂直な方向の線像(H線)より投影光学系から遠くに離れた位置(下側)に、走査方向の線像(V線)が結像するようになる。つまり、第1光学系は、y方向の投影倍率の敏感度を有し、縦横方向(x、y方向)に発生する非点収差の敏感度を有している。第2光学系は、x方向の投影倍率の敏感度を有し、縦横方向に発生する非点収差の敏感度を有している。第3光学系は、x方向とy方向の投影倍率の敏感度を有し、縦横方向に発生する非点収差の敏感度は無い。よって、これらのレンズを駆動することにより、互いに直交する2方向における投影倍率を変化させずに、縦横方向の非点収差を発生させることができる。一例として、シリンドリカルレンズ21をZ方向に+1mm、シリンドリカルレンズ23をZ方向に+2mm、平凹レンズ12’をZ方向に+1mm駆動すると、x、y方向の投影倍率は変化させずに、縦横方向の非点収差を3um発生させる事が出来る。上述の機構によれば、非点収差の補正量はレンズの駆動量に比例する。よって、レンズ間に駆動時の干渉回避のスペースを設ければ、レンズ駆動量を大きくすることが出来て、非点収差補正量を大きくすることが出来る。 The projection magnification can be adjusted by moving the cylindrical lens as described above, but astigmatism can also be adjusted. For example, when adjusting the projection magnification in the y direction, when the cylindrical lens 23 having a flat surface on the upper surface and a concave cylindrical surface having a curvature in the scanning direction on the lower surface is moved in the z direction, a refractive power in a direction orthogonal to the scanning direction is obtained. Does not change, but a negative refractive power is generated in the scanning direction. Therefore, a line image (V line) in the scanning direction is formed at a position (lower side) farther from the projection optical system than the line image (H line) in the direction perpendicular to the scanning direction. .. That is, the first optical system has the sensitivity of the projection magnification in the y direction and the sensitivity of astigmatism generated in the vertical and horizontal directions (x, y directions). The second optical system has the sensitivity of the projection magnification in the x direction and the sensitivity of astigmatism generated in the vertical and horizontal directions. The third optical system has sensitivity of projection magnification in the x-direction and y-direction, and is not sensitive to astigmatism generated in the vertical and horizontal directions. Therefore, by driving these lenses, astigmatism in the vertical and horizontal directions can be generated without changing the projection magnifications in the two directions orthogonal to each other. As an example, when the cylindrical lens 21 is driven by +1 mm in the Z direction, the cylindrical lens 23 is driven by +2 mm in the Z direction, and the plano-concave lens 12'is driven by +1 mm in the Z direction, the projection magnifications in the x and y directions are not changed and the astigmatism in the vertical and horizontal directions is not changed. It is possible to generate astigmatism of 3 um. According to the mechanism described above, the amount of correction for astigmatism is proportional to the amount of driving of the lens. Therefore, if a space for avoiding interference during driving is provided between the lenses, the amount of driving the lens can be increased and the amount of astigmatism correction can be increased.

そのため、制御部Cにより、シリンドリカルレンズ21、22、23、24及び平凹レンズ12’のいずれかのレンズ(第1光学素子)の位置を制御する。これにより、x、y方向の投影倍率を所定の目標値とし、縦横方向の非点収差を許容範囲内にすることができる。なお、シリンドリカルレンズの代わりに、平行平板を用いた場合、平行平板の形状を制御することによって、投影倍率と非点収差を調整することができる。 Therefore, the control unit C controls the position of any one of the cylindrical lenses 21, 22, 23, 24 and the plano-concave lens 12'(first optical element). As a result, the projection magnification in the x and y directions can be set as a predetermined target value, and the astigmatism in the vertical and horizontal directions can be within an allowable range. When a parallel plate is used instead of the cylindrical lens, the projection magnification and astigmatism can be adjusted by controlling the shape of the parallel plate.

次に、メニスカスレンズ15’の温度分布について説明する。図2に、あるマスクのパターンを基板上に露光したときのメニスカスレンズ15’の温度分布を示す。なお、凸面鏡15の温度分布もメニスカスレンズ15’の温度分布とほぼ同様である。メニスカスレンズ15’の中心を挟んで、B軸方向の両側の周辺領域において高温部があり、メニスカスレンズ15’の中心を挟んで、C軸方向の両側の周辺領域に低温部がある。メニスカスレンズ15’の温度分布をゼルニケ関数で分解したときのZ5項、Z6項を、図3に示す。 Next, the temperature distribution of the meniscus lens 15'will be described. FIG. 2 shows the temperature distribution of the meniscus lens 15'when a certain mask pattern is exposed on a substrate. The temperature distribution of the convex mirror 15 is almost the same as the temperature distribution of the meniscus lens 15'. There are high temperature portions in the peripheral regions on both sides in the B-axis direction across the center of the meniscus lens 15', and low temperature portions in the peripheral regions on both sides in the C-axis direction across the center of the meniscus lens 15'. The Z5 and Z6 terms when the temperature distribution of the meniscus lens 15'is decomposed by the Zernike function are shown in FIG.

図3の左図はゼルニケ係数のZ5項形状の温度分布で、図3の右図はゼルニケ係数のZ6項形状の温度分布である。ゼルニケ係数のZ5項形状の温度分布では、メニスカスレンズ15’の中心を挟んで、X軸方向の両端付近において高温部があり、メニスカスレンズ15’の中心を挟んで、Z軸方向の両端付近において低温部がある。ゼルニケ係数のZ6項形状の温度分布では、メニスカスレンズ15’の中心を挟んで、B軸方向の両端付近において高温部があり、メニスカスレンズ15’の中心を挟んで、C軸方向の両端付近において低温部がある。なお、B軸、C軸はX軸又はZ軸から斜め45度に傾いた軸であり、互いに垂直な軸としている。 The left figure of FIG. 3 shows the temperature distribution of the Z5 term shape of the Zernike coefficient, and the right figure of FIG. 3 shows the temperature distribution of the Z6 term shape of the Zernike coefficient. In the Zernike coefficient Z5 shape temperature distribution, there are high temperature parts near both ends in the X-axis direction across the center of the meniscus lens 15', and near both ends in the Z-axis direction across the center of the meniscus lens 15'. There is a low temperature part. In the Z6 shape temperature distribution of the Zernike coefficient, there are high temperature parts near both ends in the B-axis direction across the center of the meniscus lens 15', and near both ends in the C-axis direction across the center of the meniscus lens 15'. There is a low temperature part. The B-axis and C-axis are axes inclined at an angle of 45 degrees from the X-axis or the Z-axis, and are perpendicular to each other.

メニスカスレンズ15’にZ5項の温度分布が生じると、Z5項の屈折率分布となり、Z5項の波面収差が生じる。Z5項の波面収差が生じると、マスクパターンの横線(H線)の焦点位置と、縦線(V線)の焦点位置がずれる。よって、H線の焦点位置とV線の焦点位置の差である、縦横方向の非点収差が発生する。また、メニスカスレンズ15’にZ6項の温度分布が生じると、Z6項の屈折率分布となり、Z6項の波面収差が生じる。Z6項の波面収差が生じると、マスクパターンのH線に対して45度傾いた右上斜め線(S線)の焦点位置と、H線に対して135deg傾いた左上斜め線(T線)の焦点位置がずれる。よって、S線の焦点位置とT線の焦点位置の差である、斜め方向の非点収差が発生する。ここで、斜め方向の非点収差を第1方向の非点収差とよび、縦横方向の非点収差を第2方向の収差とする。なお、上述の縦横方向と斜め方向は45度異なるが、第1方向と第2方向の角度差は45度に限定されず、互いに異なる方向であればよい。また、斜め方向の非点収差はZ6項に限らず、Z13項等も含んでもよく、縦横方向の非点収差はZ5項に限らず、Z12項等も含んでもよい。 When the temperature distribution of the Z5 term occurs in the meniscus lens 15', the refractive index distribution of the Z5 term is obtained, and the wavefront aberration of the Z5 term occurs. When the wavefront aberration of the Z5 term occurs, the focal position of the horizontal line (H line) and the focal position of the vertical line (V line) of the mask pattern deviate from each other. Therefore, astigmatism in the vertical and horizontal directions, which is the difference between the focal position of the H line and the focal position of the V line, occurs. Further, when the temperature distribution of the Z6 term occurs in the meniscus lens 15', the refractive index distribution of the Z6 term is obtained, and the wavefront aberration of the Z6 term occurs. When the wavefront aberration of the Z6 term occurs, the focal position of the upper right diagonal line (S line) tilted 45 degrees with respect to the H line of the mask pattern and the focal point of the upper left diagonal line (T line) tilted 135 deg with respect to the H line. The position shifts. Therefore, astigmatism in the oblique direction, which is the difference between the focal position of the S line and the focal position of the T line, occurs. Here, the astigmatism in the oblique direction is referred to as astigmatism in the first direction, and the astigmatism in the longitudinal and horizontal directions is referred to as astigmatism in the second direction. Although the vertical and horizontal directions and the diagonal directions are different by 45 degrees, the angle difference between the first direction and the second direction is not limited to 45 degrees and may be different directions. Further, the astigmatism in the oblique direction is not limited to the Z6 term and may include the Z13 term and the like, and the astigmatism in the vertical and horizontal directions may include not only the Z5 term but also the Z12 term and the like.

次に、凸面鏡15又はメニスカスレンズ15’(第2光学素子)の温度調整について説明する。図4に、凸面鏡15及びメニスカスレンズ15’の周辺の構成を示す。図4の右側の図はY方向から見た図であり、図4の左側の図は、DD´における断面図を示す。Y軸方向の1点鎖線は光軸を示す。凸面鏡15とメニスカスレンズ15’は鏡筒100(保持部)に保持されている。図4のように、凸面鏡15とメニスカスレンズ15’の間は、閉空間102が形成されている。鏡筒100には、Z方向に延びる複数の穴103、104が設けられている。穴103は気体の給気口であり、穴104は気体の排気口である。図5にAA´を通る鏡筒100の断面図を示す。鏡筒100において、複数の給気口103A〜Gが貫通穴として設けられている。複数の給気口103A〜Gのそれぞれは同じZ方向に延びている。また、鏡筒100において、1点鎖線の交点にあるメニスカスレンズ15’の光軸に対して、給気口103A〜Gとは反対側に、貫通穴として排気口104A〜Gが設けられている。また、給気口から排気口へ向かう方向(Z方向)に給気口および排気口が鏡筒100内で延びている。例えば、給気口103Aは、給気口103Dとメニスカスレンズ15’の光軸を通る線に対して平行な方向(Z方向)に延びている。鏡筒100の下側において、複数の給気口103A〜GはX軸方向にほぼ等間隔で設けられている。複数の排気口104A〜Gは、鏡筒100の上側においてX軸方向にほぼ等間隔で設けられている。複数の給気口103A〜G、排気口104A〜Gは、凸面鏡15とメニスカスレンズ15’のX方向の直径全体を覆う位置まで設けられている。複数の103A〜Gには気体を供給する給気経路36が接続され、複数の排気口104A〜Gには気体を排気する排気経路37が接続されている。気体としては、空気、窒素などが好ましく、空気は閉空間内部の気体を置換する必要が無く、置換完了までの待ち時間が無いため露光装置をすぐに使用できる点で優れている。窒素は不活性ガスのため、鏡とレンズを曇らせない点で優れている。 Next, the temperature adjustment of the convex mirror 15 or the meniscus lens 15'(second optical element) will be described. FIG. 4 shows the peripheral configuration of the convex mirror 15 and the meniscus lens 15'. The figure on the right side of FIG. 4 is a view seen from the Y direction, and the figure on the left side of FIG. 4 shows a cross-sectional view in DD'. The alternate long and short dash line in the Y-axis direction indicates the optical axis. The convex mirror 15 and the meniscus lens 15'are held in the lens barrel 100 (holding portion). As shown in FIG. 4, a closed space 102 is formed between the convex mirror 15 and the meniscus lens 15'. The lens barrel 100 is provided with a plurality of holes 103 and 104 extending in the Z direction. The hole 103 is a gas air supply port, and the hole 104 is a gas exhaust port. FIG. 5 shows a cross-sectional view of the lens barrel 100 passing through AA'. In the lens barrel 100, a plurality of air supply ports 103A to G are provided as through holes. Each of the plurality of air supply ports 103A to G extends in the same Z direction. Further, in the lens barrel 100, exhaust ports 104A to G are provided as through holes on the side opposite to the air supply ports 103A to G with respect to the optical axis of the meniscus lens 15'at the intersection of the alternate long and short dash lines. .. Further, the air supply port and the exhaust port extend in the lens barrel 100 in the direction from the air supply port to the exhaust port (Z direction). For example, the air supply port 103A extends in a direction (Z direction) parallel to the line passing through the optical axis of the air supply port 103D and the meniscus lens 15'. On the lower side of the lens barrel 100, a plurality of air supply ports 103A to G are provided at substantially equal intervals in the X-axis direction. The plurality of exhaust ports 104A to G are provided on the upper side of the lens barrel 100 at substantially equal intervals in the X-axis direction. The plurality of air supply ports 103A to G and exhaust ports 104A to G are provided up to positions that cover the entire diameter of the convex mirror 15 and the meniscus lens 15'in the X direction. An air supply path 36 for supplying gas is connected to the plurality of 103A to G, and an exhaust path 37 for exhausting gas is connected to the plurality of exhaust ports 104A to G. As the gas, air, nitrogen, or the like is preferable, and air does not need to replace the gas inside the closed space, and there is no waiting time until the replacement is completed, so that the exposure apparatus can be used immediately. Since nitrogen is an inert gas, it is excellent in that it does not fog the mirror and lens.

給気経路36および排気経路37は、気体の流量や温度を調整する気体供給部35に接続され、気体供給部35によって気体の供給と排気が調整される。気体供給部35は一定温度に気体を温調する。なお、給気経路36および排気経路37は1系統でも複数の系統でもよく、1つの穴に1つの系統を設けてもよいし、1系統を分岐させて各穴に接続してもよい。複数の系統があれば、各系統で独立して気体の流量や温度を調整することができる。また、気体供給部35の動作は制御部Cによって制御される。 The air supply path 36 and the exhaust path 37 are connected to a gas supply unit 35 that adjusts the flow rate and temperature of the gas, and the gas supply and exhaust are adjusted by the gas supply unit 35. The gas supply unit 35 regulates the temperature of the gas to a constant temperature. The air supply path 36 and the exhaust path 37 may be one system or a plurality of systems, one system may be provided in one hole, or one system may be branched and connected to each hole. If there are multiple systems, the gas flow rate and temperature can be adjusted independently for each system. Further, the operation of the gas supply unit 35 is controlled by the control unit C.

矢印107は、給気口103A〜Gに流入する前の気体の流れを示す。複数の矢印は複数の給気口103A〜Gのそれぞれに対応する。気体供給部35によって温調された気体は複数の給気口103A〜Gから給気される。矢印108は、排気口104A〜Gから流出する気体の流れを示し、排気口104A〜Gから気体が排気される。このようにすることで、凸面鏡15とメニスカスレンズ15の間の閉空間102に気体の流れ109を作り、閉空間102内の温度を調整する。複数の給気口103A〜G、排気口104A〜Gは、凸面鏡15’とメニスカスレンズ15’のX方向の直径全体を覆う位置まで設けられている。つまり、給気口103A、103G、排気口104A、104Gが凸面鏡15’やメニスカスレンズ15’の外周付近に配置されている。そのため、凸面鏡15とメニスカスレンズ15’の表面の全域に、温調された気体を吹き付ける事が出来る。また、複数の給気口103A〜G、排気口104A〜Gは、Z方向に延びているので、向きが揃っている。さらに、給気の流量と、排気の流量は一致している。これにより、気体の流路はZ方向(1方向)に揃い、閉空間102において気体の流れが滞ることは無いため、気体は層流109で流れる。つまり、複数の給気口のそれぞれから互いに同じ方向に沿って凸面鏡15’やメニスカスレンズ15’の表面に気体を流す。 Arrow 107 indicates the flow of gas before it flows into the air supply ports 103A to G. The plurality of arrows correspond to each of the plurality of air supply ports 103A to G. The gas temperature-controlled by the gas supply unit 35 is supplied from the plurality of air supply ports 103A to G. Arrow 108 indicates the flow of gas flowing out from the exhaust ports 104A to G, and the gas is exhausted from the exhaust ports 104A to G. By doing so, a gas flow 109 is created in the closed space 102 between the convex mirror 15 and the meniscus lens 15, and the temperature in the closed space 102 is adjusted. The plurality of air supply ports 103A to G and exhaust ports 104A to G are provided up to positions that cover the entire diameter of the convex mirror 15'and the meniscus lens 15'in the X direction. That is, the air supply ports 103A and 103G and the exhaust ports 104A and 104G are arranged near the outer periphery of the convex mirror 15'and the meniscus lens 15'. Therefore, the temperature-controlled gas can be sprayed over the entire surface of the convex mirror 15 and the meniscus lens 15'. Further, since the plurality of air supply ports 103A to G and the exhaust ports 104A to G extend in the Z direction, the directions are aligned. Furthermore, the flow rate of the supply air and the flow rate of the exhaust gas match. As a result, the gas flow paths are aligned in the Z direction (one direction), and the gas flow does not stagnate in the closed space 102, so that the gas flows in the laminar flow 109. That is, gas is flowed from each of the plurality of air supply ports along the same direction to the surface of the convex mirror 15'and the meniscus lens 15'.

このように、凸面鏡15とメニスカスレンズ15’の間の閉空間102に温調された気体を供給し、凸面鏡15、メニスカスレンズ15’の表面に気体を流すことによって、凸面鏡15、メニスカスレンズ15’の温度分布を調整することができる。凸面鏡15とメニスカスレンズ15’の間の閉空間102に温調された気体を供給し続けた後、閉空間102に接する凸面鏡15とメニスカスレンズ15’の温度分布は、図6のようにZ軸に対して左右対称な温度分布となる。図6には、凸面鏡15とメニスカスレンズ15’の概略温度分布の図を示す。領域1が最も温度が低く、領域2は領域1よりも温度が高く、領域3が最も温度が高い領域である。凸面鏡15とメニスカスレンズ15’は露光によって熱をもっており、気体の給気口から遠ざかるにつれて、温度が高くなっている。給気口に近い領域では、低温の気体のガスによって温度が下がっているのが分かる。Z軸に対して左右対称な温度分布に近づくと、Z5項の波面収差が大きくなり、Z6項の波面収差が小さくなる。つまり、気体を供給しない場合よりも、縦横方向の非点収差が大きくなり、斜め方向の非点収差が小さくなり、縦横方向の非点収差と斜め方向の非点収差の増減の方向が互いに逆になる。高い照度で基板を露光する場合、投影光学系のレンズの温度ムラが大きくなり、収差が大きくなる。しかし、高い照度で基板を露光する場合でも、上述のように気体供給部35が気体の供給を制御することによって、斜め方向の非点収差が許容範囲内に収めることができる。具体的な一例としては、気体供給部35によって凸面鏡15とメニスカスレンズ15’の間の空間102に温調された気体を供給し続けた結果、斜め方向の非点収差の低減量は2.5μmであった。 In this way, the temperature-controlled gas is supplied to the closed space 102 between the convex mirror 15 and the meniscus lens 15', and the gas is allowed to flow on the surfaces of the convex mirror 15 and the meniscus lens 15', so that the convex mirror 15 and the meniscus lens 15' The temperature distribution of the lens can be adjusted. After continuing to supply the temperature-controlled gas to the closed space 102 between the convex mirror 15 and the meniscus lens 15', the temperature distribution of the convex mirror 15 and the meniscus lens 15' contacting the closed space 102 is the Z axis as shown in FIG. The temperature distribution is symmetrical with respect to the temperature distribution. FIG. 6 shows a diagram of the approximate temperature distribution of the convex mirror 15 and the meniscus lens 15'. The region 1 has the lowest temperature, the region 2 has a higher temperature than the region 1, and the region 3 has the highest temperature. The convex mirror 15 and the meniscus lens 15'have heat due to exposure, and the temperature rises as the distance from the gas air supply port increases. In the region near the air supply port, it can be seen that the temperature is lowered by the low-temperature gas. As the temperature distribution approaches symmetrical with respect to the Z axis, the wavefront aberration of the Z5 term increases and the wavefront aberration of the Z6 term decreases. That is, the astigmatism in the vertical and horizontal directions is larger and the astigmatism in the diagonal direction is smaller than when no gas is supplied, and the directions of increase and decrease of the astigmatism in the vertical and horizontal directions and the astigmatism in the diagonal direction are opposite to each other. become. When the substrate is exposed with high illuminance, the temperature unevenness of the lens of the projection optical system becomes large, and the aberration becomes large. However, even when the substrate is exposed with high illuminance, astigmatism in the oblique direction can be kept within an allowable range by controlling the gas supply by the gas supply unit 35 as described above. As a specific example, as a result of continuing to supply the temperature-controlled gas to the space 102 between the convex mirror 15 and the meniscus lens 15'by the gas supply unit 35, the amount of reduction in astigmatism in the oblique direction is 2.5 μm. Met.

このように、凸面鏡15やメニスカスレンズ15’の温度分布を全体的に均一にさせるのではなく、斜め方向の非点収差が小さくして、縦横方向の非点収差は大きくなることを許容するように、気体の流れを作り、温度分布を調整している。そのため、縦横方向の非点収差は許容範囲内にはなく、むしろ、気体を供給する前よりも大きくなってしまう場合がある。 In this way, instead of making the temperature distribution of the convex mirror 15 and the meniscus lens 15'overall uniform, the astigmatism in the oblique direction is reduced and the astigmatism in the longitudinal and horizontal directions is allowed to be increased. In addition, a gas flow is created and the temperature distribution is adjusted. Therefore, the astigmatism in the vertical and horizontal directions is not within the permissible range, but rather may be larger than before the gas is supplied.

次に、縦横方向の非点収差の補正方法を説明する。図7にその補正方法のフローチャートを示す。まず、制御部Cは気体供給部35を制御して、上述のように、凸面鏡15とメニスカスレンズ15’の間の閉空間102に温調された気体の供給を開始し、凸面鏡15、メニスカスレンズ15’の温度分布を調整する(S301)。気体を供給し続けている間、制御部Cは、投影光学系POがマスク9のパターンを基板19に投影し、基板19を露光するように、露光装置の各部を制御する。例えば、高い照度で基板を露光する場合、投影光学系のレンズ等の温度が高くなり、収差が許容範囲内に収まらないことがある。S301で気体を供給すると、投影光学系の斜め方向の非点収差は許容範囲内に収まっているが、縦横方向の非点収差が許容範囲内に収まらない。そこで、露光を終えた基板19を交換する毎に、又は、ロット毎に、縦横方向の非点収差を計測する(S302)。非点収差の計測は、例えば、基板を移動させる基板ステージ上に配置された、フォーカスセンサ40(計測部)を用いて行うことができる。そして、計測結果つまり計測された縦横方向の非点収差の発生量に基づいて、縦横方向の非点収差を許容範囲内に低減するための、シリンドリカルレンズ21、22、23、24及び平凹レンズ12’のいずれかのレンズの移動量を算出する(S303)。そして、算出されたレンズの移動量に基づいてレンズを駆動させる(S304)。すると、縦横方向の非点収差も斜め方向の非点収差も許容範囲内に収めることができる。そして、非点収差が許容範囲内となっている投影光学系を用いて、次の基板を露光する(S305)。 Next, a method for correcting astigmatism in the vertical and horizontal directions will be described. FIG. 7 shows a flowchart of the correction method. First, the control unit C controls the gas supply unit 35 to start supplying the temperature-controlled gas to the closed space 102 between the convex mirror 15 and the meniscus lens 15'as described above, and then starts supplying the temperature-controlled gas to the convex mirror 15 and the meniscus lens 15. The temperature distribution of 15'is adjusted (S301). While the gas is continuously supplied, the control unit C controls each part of the exposure apparatus so that the projection optical system PO projects the pattern of the mask 9 onto the substrate 19 and exposes the substrate 19. For example, when the substrate is exposed with high illuminance, the temperature of the lens or the like of the projection optical system becomes high, and the aberration may not be within the permissible range. When the gas is supplied in S301, the astigmatism in the oblique direction of the projection optical system is within the permissible range, but the astigmatism in the vertical and horizontal directions is not within the permissible range. Therefore, astigmatism in the vertical and horizontal directions is measured every time the exposed substrate 19 is replaced or every lot (S302). The measurement of astigmatism can be performed using, for example, a focus sensor 40 (measurement unit) arranged on a substrate stage for moving the substrate. Then, the cylindrical lenses 21, 22, 23, 24 and the plano-concave lens 12 for reducing the astigmatism in the vertical and horizontal directions within an allowable range based on the measurement result, that is, the measured amount of astigmatism in the vertical and horizontal directions. 'Calculate the amount of movement of any of the lenses (S303). Then, the lens is driven based on the calculated movement amount of the lens (S304). Then, both the astigmatism in the vertical and horizontal directions and the astigmatism in the oblique direction can be kept within the permissible range. Then, the next substrate is exposed using the projection optical system in which the astigmatism is within the permissible range (S305).

このように、露光時における第2光学素子の温度分布によって生じる第1方向の非点収差と第1方向とは異なる第2方向の非点収差との増減が互いに逆になるように、気体供給部が第2光学素子の表面に気体を流して第2光学素子の温度を調整する。さらに、第1方向の非点収差が許容範囲内に収まるように、気体供給部が第2光学素子の表面に気体を流して第2光学素子の温度を調整する。さらに、露光時における第2方向の非点収差が許容範囲内に収まるように第1光学素子の位置又は形状を制御する。これにより、照度が高い場合でも、投影光学系の第1方向の非点収差と第2方向の非点収差を許容範囲内に収めることができる。 In this way, the gas is supplied so that the increase and decrease of the astigmatism in the first direction caused by the temperature distribution of the second optical element at the time of exposure and the astigmatism in the second direction different from the first direction are opposite to each other. The unit flows gas on the surface of the second optical element to adjust the temperature of the second optical element. Further, the gas supply unit adjusts the temperature of the second optical element by flowing a gas on the surface of the second optical element so that the astigmatism in the first direction is within the permissible range. Further, the position or shape of the first optical element is controlled so that the astigmatism in the second direction at the time of exposure is within the permissible range. As a result, even when the illuminance is high, the astigmatism in the first direction and the astigmatism in the second direction of the projection optical system can be kept within an allowable range.

(第2実施形態)
つぎに、第3実施形態の露光装置について説明する。気体供給部35からの気体の給気口と排気口としては、鏡筒100に開けた穴に限らない。本実施形態では、多数の穴が設けられたパンチングプレートを鏡筒100の側面に取り付けたものを用いる。鏡筒100に開けた穴であれば、鏡筒100の製造が容易である。一方、パンチングプレートでは、温調の冷却ムラを効果的に低減できる。図8に、パンチングプレートを取り付けた鏡筒100の断面図を示す。鏡筒100のz軸方向の下側には、凸面鏡15やメニスカスレンズ15’の直径と同程度の長さの大きな開口が設けられ、その開口を覆うように、多数の穴204が設けられたパンチングプレート201が取り付けられている。また、鏡筒100のz軸方向の上側にも大きな開口が設けられ、その開口を覆うように、多数の穴203が設けられたパンチングプレート200が取り付けられている。パンチングプレート201の穴を介して凸面鏡15とメニスカスレンズ15’の間の閉空間102に気体を供給し、パンチングプレート200の穴を介して閉空間102から気体を排気する。このように、凸面鏡15やメニスカスレンズ15’の直径と同程度の長さの開口から気体を供給し、かつ、気体を排気することによって、凸面鏡15やメニスカスレンズ15’の表面全体に気体を流すことができる。そのため、凸面鏡15やメニスカスレンズ15’は、図6に示すような温度分布となり、気体を供給しない場合よりも、縦横方向の非点収差が大きくなり、斜め方向の非点収差が小さくなる。そのため、高い照度で基板を露光する場合でも、斜め方向の非点収差を許容範囲内に収めることができる。
(Second Embodiment)
Next, the exposure apparatus of the third embodiment will be described. The gas supply port and exhaust port from the gas supply unit 35 are not limited to the holes made in the lens barrel 100. In this embodiment, a punching plate provided with a large number of holes is attached to the side surface of the lens barrel 100. If the hole is made in the lens barrel 100, the lens barrel 100 can be easily manufactured. On the other hand, the punching plate can effectively reduce the cooling unevenness of the temperature control. FIG. 8 shows a cross-sectional view of the lens barrel 100 to which the punching plate is attached. A large opening having a length similar to the diameter of the convex mirror 15 and the meniscus lens 15'was provided on the lower side of the lens barrel 100 in the z-axis direction, and a large number of holes 204 were provided so as to cover the openings. A punching plate 201 is attached. Further, a large opening is provided on the upper side of the lens barrel 100 in the z-axis direction, and a punching plate 200 provided with a large number of holes 203 is attached so as to cover the opening. Gas is supplied to the closed space 102 between the convex mirror 15 and the meniscus lens 15'through the hole of the punching plate 201, and the gas is exhausted from the closed space 102 through the hole of the punching plate 200. In this way, by supplying gas from an opening having a length similar to the diameter of the convex mirror 15 or the meniscus lens 15'and exhausting the gas, the gas flows over the entire surface of the convex mirror 15 or the meniscus lens 15'. be able to. Therefore, the convex mirror 15 and the meniscus lens 15'have a temperature distribution as shown in FIG. 6, and astigmatism in the vertical and horizontal directions becomes larger and astigmatism in the oblique direction becomes smaller than when no gas is supplied. Therefore, even when the substrate is exposed with high illuminance, astigmatism in the oblique direction can be kept within an allowable range.

(第3実施形態)
つぎに、第3実施形態の露光装置について説明する。第1実施形態では、縦横方向の非点収差を計測していた。本実施形態では、マスクのパターンの情報と積算露光量から、縦横方向の非点収差の変化量を計算する。
(Third Embodiment)
Next, the exposure apparatus of the third embodiment will be described. In the first embodiment, astigmatism in the vertical and horizontal directions was measured. In the present embodiment, the amount of change in astigmatism in the vertical and horizontal directions is calculated from the mask pattern information and the integrated exposure amount.

まず、実験により、基板の積算露光量に対する縦横方向の非点収差の変化の係数(露光履歴係数)を求める。具体的には、照明光学系ILの光路から分岐された光を検出する積算露光量計を用いる。照明光学系ILの光路から分岐された光の照度と基板上の光の照度との対応関係は予め求められている。連続して露光した期間に積算露光量計で計測された照度を累積し、前記対応関係に基づいて基板上の積算露光量を間接的に求める。また、連続して露光した時、積算露光量を計測しつつ、縦横方向の非点収差の変化をフォーカスセンサ40で測定する。そして、制御部Cは、それらの測定データを用いて基板の積算露光量に対する縦横方向の非点収差の変化の係数を求める。この露光履歴係数は制御部Cのメモリに記憶される。そして、実際に基板を露光する時は、図7のS302の計測の代わりに、制御部Cは、求めた露光履歴係数と、マスクのパターンの情報と、実際に基板を露光する時の積算露光量を用いて、縦横方向の非点収差の変化量を計算する。そして、制御部Cは、縦横方向の非点収差を補正するために必要な、シリンドリカルレンズ等の駆動量を計算する。そして、制御部Cは、計算された駆動量に基づいて、レンズを駆動する駆動部を制御する。 First, the coefficient of change in astigmatism in the vertical and horizontal directions (exposure history coefficient) with respect to the integrated exposure amount of the substrate is obtained by an experiment. Specifically, an integrated exposure meter that detects the light branched from the optical path of the illumination optical system IL is used. The correspondence between the illuminance of the light branched from the optical path of the illumination optical system IL and the illuminance of the light on the substrate is required in advance. The illuminance measured by the integrated exposure meter is accumulated during the continuous exposure period, and the integrated exposure amount on the substrate is indirectly obtained based on the correspondence. Further, when continuously exposed, the focus sensor 40 measures the change in astigmatism in the vertical and horizontal directions while measuring the integrated exposure amount. Then, the control unit C obtains a coefficient of change in astigmatism in the vertical and horizontal directions with respect to the integrated exposure amount of the substrate by using these measurement data. This exposure history coefficient is stored in the memory of the control unit C. Then, when actually exposing the substrate, instead of the measurement in S302 of FIG. 7, the control unit C uses the obtained exposure history coefficient, mask pattern information, and integrated exposure when actually exposing the substrate. The amount is used to calculate the amount of change in astigmatism in the vertical and horizontal directions. Then, the control unit C calculates the driving amount of the cylindrical lens or the like required to correct the astigmatism in the vertical and horizontal directions. Then, the control unit C controls the drive unit that drives the lens based on the calculated drive amount.

本実施形態の方法によれば、基板を移動させて基板を露光している間など、フォーカスセンサで収差の測定が出来ない期間に、縦横方向の非点収差の変化を予測することができ、レンズを駆動して収差を補正することが出来る。よって、1基板処理中又は1ショット露光中における縦横方向の非点収差の変化も補正することが出来る。 According to the method of the present embodiment, it is possible to predict a change in astigmatism in the vertical and horizontal directions during a period in which the focus sensor cannot measure aberrations, such as while moving the substrate to expose the substrate. Aberrations can be corrected by driving the lens. Therefore, it is possible to correct changes in astigmatism in the vertical and horizontal directions during processing on one substrate or during one-shot exposure.

(物品の製造方法)
次に、前述の露光装置を利用した物品(半導体IC素子、液晶表示素子、カラーフィルタ、MEMS等)の製造方法を説明する。物品は、前述の露光装置を使用して、感光剤が塗布された基板(ウェハ、ガラス基板等)を露光する工程と、その基板(感光剤)を現像する工程と、現像された基板を他の周知の加工工程で処理することにより製造される。他の周知の工程には、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等が含まれる。本製造方法によれば、従来よりも高品位の物品を製造することができる。
(Manufacturing method of goods)
Next, a method of manufacturing an article (semiconductor IC element, liquid crystal display element, color filter, MEMS, etc.) using the above-mentioned exposure apparatus will be described. Articles include a step of exposing a substrate (wafer, glass substrate, etc.) coated with a photosensitizer using the above-mentioned exposure apparatus, a step of developing the substrate (photosensitizer), and the developed substrate. Manufactured by processing in a well-known processing process. Other well-known steps include etching, resist stripping, dicing, bonding, packaging and the like. According to this manufacturing method, it is possible to manufacture a high-quality article as compared with the conventional one.

以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。なお、露光装置内の制御部Cが演算や制御を行うことを前提に説明したが、制御部としては露光装置外にある制御部を用いても構わない。また、凸面鏡15の近傍にメニスカスレンズ15’を1つ配置する例を説明したが、レンズを複数配置してもよい。この場合、複数のレンズ間の空間に気体を供給して、上述のようにレンズの温度分布を調整する。また、要求される露光精度が低い場合には、メニスカスレンズを配置しなくてもよい。この場合、気体供給部は凸面鏡の表面に気体を流して凸面鏡の温度分布を調整することになる。また、反射型投影光学系について説明したが、屈折型投影光学系にも適用できる。屈折型投影光学系の場合、瞳面の近傍に配置されたレンズに温調された気体を流して、1方向の非点収差を発生させ、別の方向の非点収差を別の光学素子で補正する。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and modifications can be made within the scope of the gist thereof. Although the description has been made on the premise that the control unit C in the exposure apparatus performs calculations and controls, a control unit outside the exposure apparatus may be used as the control unit. Further, although an example in which one meniscus lens 15'is arranged in the vicinity of the convex mirror 15 has been described, a plurality of lenses may be arranged. In this case, gas is supplied to the space between the plurality of lenses to adjust the temperature distribution of the lenses as described above. Further, when the required exposure accuracy is low, it is not necessary to arrange the meniscus lens. In this case, the gas supply unit causes the gas to flow on the surface of the convex mirror to adjust the temperature distribution of the convex mirror. Moreover, although the reflection type projection optical system has been described, it can also be applied to the refraction type projection optical system. In the case of a refraction type projection optical system, a temperature-controlled gas is passed through a lens arranged near the pupil surface to generate astigmatism in one direction, and astigmatism in the other direction is caused by another optical element. to correct.

Claims (32)

マスクのパターンを基板に投影する投影光学系を有する露光装置であって、
前記投影光学系は、
前記投影光学系の非点収差を調整するために位置又は形状が変更可能である第1光学素子と、
前記投影光学系の瞳面又は瞳面の近傍に配置されている第2光学素子と、を有し、
前記露光装置は、
前記第1光学素子の位置又は形状を制御する制御部と、
前記第2光学素子の温度分布を調整するために前記第2光学素子に気体を供給する供給部と、を有し、
前記供給部は、前記第2光学素子の温度分布によって生じる第1方向の非点収差と前記第1方向とは異なる第2方向の非点収差との増減の方向が互いに逆になり、前記第1方向の非点収差が許容範囲内に収まるように、前記第2光学素子に気体を供給し、
前記制御部は、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子の位置又は形状を制御する、ことを特徴とする露光装置。
An exposure apparatus having a projection optical system that projects a mask pattern onto a substrate.
The projection optical system is
A first optical element whose position or shape can be changed to adjust the astigmatism of the projection optical system,
It has a pupil surface of the projection optical system or a second optical element arranged in the vicinity of the pupil surface, and has.
The exposure apparatus is
A control unit that controls the position or shape of the first optical element,
It has a supply unit that supplies gas to the second optical element in order to adjust the temperature distribution of the second optical element.
In the supply unit, the directions of increase and decrease of the astigmatism in the first direction caused by the temperature distribution of the second optical element and the astigmatism in the second direction different from the first direction are opposite to each other, and the first A gas is supplied to the second optical element so that the astigmatism in one direction is within the permissible range.
The control unit is an exposure apparatus characterized in that the position or shape of the first optical element is controlled so that the astigmatism in the second direction falls within an allowable range.
前記投影光学系は、前記第2光学素子を保持する保持部を有し、
前記供給部は、前記保持部に設けられた複数の給気口のそれぞれから互いに同じ方向に沿って前記第2光学素子の表面に気体を流す、ことを特徴とする請求項1に記載の露光装置。
The projection optical system has a holding portion for holding the second optical element.
The exposure according to claim 1, wherein the supply unit causes gas to flow from each of the plurality of air supply ports provided in the holding unit to the surface of the second optical element along the same direction as each other. apparatus.
前記保持部において、前記複数の給気口のそれぞれは同じ方向に延びている、ことを特徴とする請求項2に記載の露光装置。 The exposure apparatus according to claim 2, wherein in the holding portion, each of the plurality of air supply ports extends in the same direction. 前記保持部において、
前記第2光学素子の光軸に対して前記給気口とは反対側に複数の排気口が設けられ、
前記複数の給気口および前記複数の排気口が同じ方向に延びている、ことを特徴とする請求項2又は3に記載の露光装置。
In the holding part
A plurality of exhaust ports are provided on the side opposite to the air supply port with respect to the optical axis of the second optical element.
The exposure apparatus according to claim 2 or 3, wherein the plurality of air supply ports and the plurality of exhaust ports extend in the same direction.
前記制御部により前記第1光学素子の位置又は形状を制御することにより、前記投影光学系の互いに垂直な方向の投影倍率の調整が可能であり、かつ、前記第2方向の非点収差の調整が可能である、ことを特徴とする請求項1乃至4の何れか1項に記載の露光装置。 By controlling the position or shape of the first optical element by the control unit, it is possible to adjust the projection magnification in the direction perpendicular to each other of the projection optical system, and to adjust the astigmatism in the second direction. The exposure apparatus according to any one of claims 1 to 4, wherein the exposure apparatus can be used. 前記投影光学系の前記第2方向の非点収差を計測する計測部、を有し、
前記計測部による計測結果に基づき、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子の位置又は形状を制御する、ことを特徴とする請求項1乃至5の何れか1項に記載の露光装置。
It has a measuring unit for measuring astigmatism in the second direction of the projection optical system.
Any of claims 1 to 5, wherein the position or shape of the first optical element is controlled so that the astigmatism in the second direction falls within an allowable range based on the measurement result by the measuring unit. The exposure apparatus according to item 1.
前記制御部は、前記投影光学系による前記基板の露光履歴に基づいて、前記第2方向の非点収差を許容範囲内に収めるために必要な前記第1光学素子の駆動量を算出し、算出された駆動量に基づいて前記第1光学素子の駆動を制御する、ことを特徴とする請求項1乃至5の何れか1項に記載の露光装置。 The control unit calculates and calculates the driving amount of the first optical element required to keep the astigmatism in the second direction within an allowable range based on the exposure history of the substrate by the projection optical system. The exposure apparatus according to any one of claims 1 to 5, wherein the driving of the first optical element is controlled based on the driven amount. 前記第2方向は前記第1方向に対して45度異なる方向である、ことを特徴とする請求項1乃至7の何れか1項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 7, wherein the second direction is a direction different from the first direction by 45 degrees. 前記投影光学系は、凹面鏡と、凸面鏡と、前記凹面鏡と前記凸面鏡の間に配置され、前記凸面鏡との間に空間を形成するように保持されているレンズと、を有し、
前記第2光学素子は凸面鏡又はレンズである、ことを特徴とする請求項1乃至8の何れか1項に記載の露光装置。
The projection optical system includes a concave mirror, a convex mirror, and a lens arranged between the concave mirror and the convex mirror and held so as to form a space between the concave mirror and the convex mirror.
The exposure apparatus according to any one of claims 1 to 8, wherein the second optical element is a convex mirror or a lens.
前記供給部は、前記凸面鏡と前記レンズとの間の空間に気体を供給する、ことを特徴とする請求項9に記載の露光装置。 The exposure apparatus according to claim 9, wherein the supply unit supplies gas to the space between the convex mirror and the lens. マスクのパターンを基板に投影する投影光学系を有する露光装置であって、
前記投影光学系は、
前記投影光学系の非点収差を調整するために位置又は形状が変更可能である第1光学素子と、
前記投影光学系の瞳面又は瞳面の近傍に配置されている第2光学素子と、を有し、
前記露光装置は、
前記第1光学素子の位置又は形状を制御する制御部と、
前記第2光学素子の温度分布を調整するために前記第2光学素子に気体を供給する供給部と、を有し、
前記供給部は、前記第2光学素子の温度分布によって生じる第1方向の非点収差が許容範囲内に収まり、前記第1方向に交差する第2方向の非点収差が大きくなるように、前記第2光学素子に気体を供給し、
前記制御部は、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子の位置又は形状を制御する、ことを特徴とする露光装置。
An exposure apparatus having a projection optical system that projects a mask pattern onto a substrate.
The projection optical system is
A first optical element whose position or shape can be changed to adjust the astigmatism of the projection optical system,
It has a pupil surface of the projection optical system or a second optical element arranged in the vicinity of the pupil surface, and has.
The exposure apparatus is
A control unit that controls the position or shape of the first optical element,
It has a supply unit that supplies gas to the second optical element in order to adjust the temperature distribution of the second optical element.
In the supply unit, the astigmatism in the first direction caused by the temperature distribution of the second optical element is within an allowable range, and the astigmatism in the second direction intersecting the first direction is increased. Supply gas to the second optical element,
The control unit is an exposure apparatus characterized in that the position or shape of the first optical element is controlled so that the astigmatism in the second direction falls within an allowable range.
前記制御部により前記第1光学素子の位置又は形状を制御することにより、前記投影光学系の互いに垂直な方向の投影倍率の調整が可能であり、かつ、前記第2方向の非点収差の調整が可能である、ことを特徴とする請求項11に記載の露光装置。By controlling the position or shape of the first optical element by the control unit, it is possible to adjust the projection magnification in the direction perpendicular to each other of the projection optical system, and to adjust the astigmatism in the second direction. The exposure apparatus according to claim 11, wherein the exposure apparatus can be used. 前記投影光学系の前記第2方向の非点収差を計測する計測部、を有し、It has a measuring unit for measuring astigmatism in the second direction of the projection optical system.
前記計測部による計測結果に基づき、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子の位置又は形状を制御する、ことを特徴とする請求項11又は12に記載の露光装置。The 11th or 12th claim, wherein the position or shape of the first optical element is controlled so that the astigmatism in the second direction falls within an allowable range based on the measurement result by the measuring unit. Exposure device.
前記制御部は、前記投影光学系による前記基板の露光履歴に基づいて、前記第2方向の非点収差を許容範囲内に収めるために必要な前記第1光学素子の駆動量を算出し、算出された駆動量に基づいて前記第1光学素子の駆動を制御する、ことを特徴とする請求項11乃至13の何れか1項に記載の露光装置。The control unit calculates and calculates the driving amount of the first optical element required to keep the astigmatism in the second direction within an allowable range based on the exposure history of the substrate by the projection optical system. The exposure apparatus according to any one of claims 11 to 13, wherein the driving of the first optical element is controlled based on the driven amount. 前記第2方向は前記第1方向に対して45度異なる方向である、ことを特徴とする請求項11乃至14の何れか1項に記載の露光装置。The exposure apparatus according to any one of claims 11 to 14, wherein the second direction is a direction different from the first direction by 45 degrees. 前記投影光学系は、凹面鏡と、凸面鏡と、前記凹面鏡と前記凸面鏡の間に配置され、前記凸面鏡との間に空間を形成するように保持されているレンズと、を有し、The projection optical system includes a concave mirror, a convex mirror, and a lens arranged between the concave mirror and the convex mirror and held so as to form a space between the concave mirror and the convex mirror.
前記第2光学素子は凸面鏡又はレンズである、ことを特徴とする請求項11乃至15の何れか1項に記載の露光装置。The exposure apparatus according to any one of claims 11 to 15, wherein the second optical element is a convex mirror or a lens.
前記供給部は、前記凸面鏡と前記レンズとの間の空間に気体を供給する、ことを特徴とする請求項16に記載の露光装置。The exposure apparatus according to claim 16, wherein the supply unit supplies gas to a space between the convex mirror and the lens. マスクのパターンを基板に投影する投影光学系を有する露光装置であって、
前記投影光学系は、
前記投影光学系の非点収差を調整するために駆動可能な第1光学素子と、
露光時に不均一な温度分布が生じる第2光学素子と、を有し、
前記露光装置は、
前記第1光学素子を駆動する駆動部と、
前記第2光学素子の温度分布を調整するために前記第2光学素子に気体を供給する供給部と、を有し、
前記供給部は、前記第2光学素子の温度分布によって生じる第1方向の非点収差と前記第1方向とは異なる第2方向の非点収差との増減の方向が互いに逆になり、前記第1方向の非点収差が許容範囲内に収まるように、前記第2光学素子に気体を供給し、
前記駆動部は前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子を駆動することを特徴とする露光装置。
An exposure apparatus having a projection optical system that projects a mask pattern onto a substrate.
The projection optical system is
A first optical element that can be driven to adjust the astigmatism of the projection optical system,
It has a second optical element that produces a non-uniform temperature distribution during exposure.
The exposure apparatus is
A drive unit that drives the first optical element and
It has a supply unit that supplies gas to the second optical element in order to adjust the temperature distribution of the second optical element.
In the supply unit, the directions of increase and decrease of the astigmatism in the first direction caused by the temperature distribution of the second optical element and the astigmatism in the second direction different from the first direction are opposite to each other, and the first A gas is supplied to the second optical element so that the astigmatism in one direction is within the permissible range.
The driving unit is an exposure apparatus characterized in that the first optical element is driven so that astigmatism in the second direction is within an allowable range.
前記駆動部により前記第1光学素子を駆動することにより、前記投影光学系の互いに垂直な方向の投影倍率の調整が可能であり、かつ、前記第2方向の非点収差の調整が可能である、ことを特徴とする請求項18に記載の露光装置。By driving the first optical element by the driving unit, it is possible to adjust the projection magnification of the projection optical system in the direction perpendicular to each other, and to adjust the astigmatism in the second direction. The exposure apparatus according to claim 18, wherein the exposure apparatus is characterized by the above. 前記投影光学系の前記第2方向の非点収差を計測する計測部、を有し、It has a measuring unit for measuring astigmatism in the second direction of the projection optical system.
前記計測部による計測結果に基づき、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子が駆動される、ことを特徴とする請求項18又は19に記載の露光装置。The exposure apparatus according to claim 18 or 19, wherein the first optical element is driven so that the astigmatism in the second direction is within an allowable range based on the measurement result by the measuring unit. ..
前記投影光学系による前記基板の露光履歴に基づいて、前記第2方向の非点収差を許容範囲内に収めるために必要な前記第1光学素子の駆動量が算出され、算出された駆動量に基づいて、前記駆動部は前記第1光学素子を駆動する、ことを特徴とする請求項18乃至20の何れか1項に記載の露光装置。Based on the exposure history of the substrate by the projection optical system, the driving amount of the first optical element required to keep the astigmatism in the second direction within the allowable range is calculated, and the driving amount is calculated. The exposure apparatus according to any one of claims 18 to 20, wherein the driving unit drives the first optical element. 前記第2方向は前記第1方向に対して45度異なる方向である、ことを特徴とする請求項18乃至21の何れか1項に記載の露光装置。The exposure apparatus according to any one of claims 18 to 21, wherein the second direction is a direction different from the first direction by 45 degrees. 前記投影光学系は、凹面鏡と、凸面鏡と、前記凹面鏡と前記凸面鏡の間に配置され、前記凸面鏡との間に空間を形成するように保持されているレンズと、を有し、The projection optical system includes a concave mirror, a convex mirror, and a lens arranged between the concave mirror and the convex mirror and held so as to form a space between the concave mirror and the convex mirror.
前記第2光学素子は凸面鏡又はレンズである、ことを特徴とする請求項18乃至22の何れか1項に記載の露光装置。The exposure apparatus according to any one of claims 18 to 22, wherein the second optical element is a convex mirror or a lens.
前記供給部は、前記凸面鏡と前記レンズとの間の空間に気体を供給する、ことを特徴とする請求項23に記載の露光装置。The exposure apparatus according to claim 23, wherein the supply unit supplies gas to the space between the convex mirror and the lens. マスクのパターンを基板に投影する投影光学系を有する露光装置であって、
前記投影光学系は、
前記投影光学系の非点収差を調整するために駆動可能な第1光学素子と、
露光時に不均一な温度分布が生じる第2光学素子と、を有し、
前記露光装置は、
前記第1光学素子を駆動する駆動部と、
前記第2光学素子の温度分布を調整するために前記第2光学素子に気体を供給する供給部と、を有し、
前記供給部は、前記第2光学素子の温度分布によって生じる第1方向の非点収差が許容範囲内に収まり、前記第1方向に交差する第2方向の非点収差が大きくなるように、前記第2光学素子に気体を供給し、
前記駆動部は、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子を駆動する、ことを特徴とする露光装置。
An exposure apparatus having a projection optical system that projects a mask pattern onto a substrate.
The projection optical system is
A first optical element that can be driven to adjust the astigmatism of the projection optical system,
It has a second optical element that produces a non-uniform temperature distribution during exposure.
The exposure apparatus is
A drive unit that drives the first optical element and
It has a supply unit that supplies gas to the second optical element in order to adjust the temperature distribution of the second optical element.
In the supply unit, the astigmatism in the first direction caused by the temperature distribution of the second optical element is within an allowable range, and the astigmatism in the second direction intersecting the first direction is increased. Supply gas to the second optical element,
The driving unit is an exposure apparatus characterized in that the first optical element is driven so that astigmatism in the second direction is within an allowable range.
前記駆動部により前記第1光学素子を駆動することにより、前記投影光学系の互いに垂直な方向の投影倍率の調整が可能であり、かつ、前記第2方向の非点収差の調整が可能である、ことを特徴とする請求項25に記載の露光装置。By driving the first optical element by the driving unit, it is possible to adjust the projection magnification of the projection optical system in the direction perpendicular to each other, and to adjust the astigmatism in the second direction. The exposure apparatus according to claim 25. 記投影光学系の前記第2方向の非点収差を計測する計測部、を有し、
前記計測部による計測結果に基づき、前記第2方向の非点収差が許容範囲内に収まるように前記第1光学素子が駆動される、ことを特徴とする請求項25又は26に記載の露光装置。
Measuring unit for measuring the astigmatism of the second direction before Symbol projection optical system has a
The exposure apparatus according to claim 25 or 26, wherein the first optical element is driven so that the astigmatism in the second direction falls within an allowable range based on the measurement result by the measuring unit. ..
前記投影光学系による前記基板の露光履歴に基づいて、前記第2方向の非点収差を許容範囲内に収めるために必要な前記第1光学素子の駆動量が算出され、算出された駆動量に基づいて、前記駆動部は前記第1光学素子を駆動する、ことを特徴とする請求項25乃至27の何れか1項に記載の露光装置。Based on the exposure history of the substrate by the projection optical system, the driving amount of the first optical element required to keep the astigmatism in the second direction within the allowable range is calculated, and the driving amount is calculated. The exposure apparatus according to any one of claims 25 to 27, wherein the driving unit drives the first optical element. 前記第2方向は前記第1方向に対して45度異なる方向である、ことを特徴とする請求項25乃至28の何れか1項に記載の露光装置。The exposure apparatus according to any one of claims 25 to 28, wherein the second direction is a direction different from the first direction by 45 degrees. 前記投影光学系は、凹面鏡と、凸面鏡と、前記凹面鏡と前記凸面鏡の間に配置され、前記凸面鏡との間に空間を形成するように保持されているレンズと、を有し、The projection optical system includes a concave mirror, a convex mirror, and a lens arranged between the concave mirror and the convex mirror and held so as to form a space between the concave mirror and the convex mirror.
前記第2光学素子は凸面鏡又はレンズである、ことを特徴とする請求項25乃至29の何れか1項に記載の露光装置。The exposure apparatus according to any one of claims 25 to 29, wherein the second optical element is a convex mirror or a lens.
前記供給部は、前記凸面鏡と前記レンズとの間の空間に気体を供給する、ことを特徴とする請求項30に記載の露光装置。The exposure apparatus according to claim 30, wherein the supply unit supplies gas to a space between the convex mirror and the lens. 物品を製造する製造方法であって、
請求項1乃至31の何れか1項に記載の露光装置を用いて基板を露光する工程と、
該露光された基板を現像する工程と、
該現像された基板を加工することによって前記物品を製造する工程と、を有することを特徴とする製造方法。
It is a manufacturing method for manufacturing articles.
A step of exposing a substrate using the exposure apparatus according to any one of claims 1 to 31.
The process of developing the exposed substrate and
A manufacturing method comprising a step of manufacturing the article by processing the developed substrate.
JP2016233244A 2016-11-30 2016-11-30 Exposure equipment and manufacturing method of articles Active JP6896404B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016233244A JP6896404B2 (en) 2016-11-30 2016-11-30 Exposure equipment and manufacturing method of articles
TW106134495A TWI654662B (en) 2016-11-30 2017-10-06 Exposure device and article manufacturing method
KR1020170157858A KR102234255B1 (en) 2016-11-30 2017-11-24 Exposure apparatus, and method of manufacturing article
CN201711200000.6A CN108121170B (en) 2016-11-30 2017-11-27 Exposure apparatus and method for manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016233244A JP6896404B2 (en) 2016-11-30 2016-11-30 Exposure equipment and manufacturing method of articles

Publications (3)

Publication Number Publication Date
JP2018091919A JP2018091919A (en) 2018-06-14
JP2018091919A5 JP2018091919A5 (en) 2019-12-26
JP6896404B2 true JP6896404B2 (en) 2021-06-30

Family

ID=62227916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016233244A Active JP6896404B2 (en) 2016-11-30 2016-11-30 Exposure equipment and manufacturing method of articles

Country Status (4)

Country Link
JP (1) JP6896404B2 (en)
KR (1) KR102234255B1 (en)
CN (1) CN108121170B (en)
TW (1) TWI654662B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116669B2 (en) * 2018-11-22 2022-08-10 サンアプロ株式会社 Photoacid generator and resin composition for photolithography
JP7278137B2 (en) * 2019-04-18 2023-05-19 キヤノン株式会社 Stage apparatus, lithographic apparatus, and method of manufacturing article
US11474439B2 (en) * 2019-06-25 2022-10-18 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and method of manufacturing article
JP7358106B2 (en) * 2019-07-31 2023-10-10 キヤノン株式会社 Optical devices, projection optical systems, exposure devices, and methods for manufacturing articles
JP2024043177A (en) * 2022-09-16 2024-03-29 株式会社Screenホールディングス Optical device, exposure device, and exposure method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027743A (en) * 1996-07-11 1998-01-27 Canon Inc Projection aligner, device manufacturing method and aberration correcting optical system
US6411426B1 (en) * 2000-04-25 2002-06-25 Asml, Us, Inc. Apparatus, system, and method for active compensation of aberrations in an optical system
US7158215B2 (en) * 2003-06-30 2007-01-02 Asml Holding N.V. Large field of view protection optical system with aberration correctability for flat panel displays
JPWO2007091463A1 (en) * 2006-02-07 2009-07-02 株式会社ニコン Catadioptric imaging optical system, exposure apparatus, and device manufacturing method
KR20080046765A (en) * 2006-11-23 2008-05-28 삼성전자주식회사 Optical system for manufacturing semiconductor device
JP2008292801A (en) * 2007-05-25 2008-12-04 Canon Inc Exposure apparatus and method
JP5398185B2 (en) * 2008-07-09 2014-01-29 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP5595001B2 (en) * 2009-10-06 2014-09-24 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP5595015B2 (en) * 2009-11-16 2014-09-24 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP6041541B2 (en) * 2012-06-04 2016-12-07 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2013251482A (en) * 2012-06-04 2013-12-12 Canon Inc Exposure device, adjustment method of exposure device, manufacturing method for device using the same
JP6463087B2 (en) * 2014-11-14 2019-01-30 キヤノン株式会社 Exposure apparatus and article manufacturing method
JP6748482B2 (en) * 2016-05-25 2020-09-02 キヤノン株式会社 Exposure apparatus and method for manufacturing article

Also Published As

Publication number Publication date
CN108121170A (en) 2018-06-05
TWI654662B (en) 2019-03-21
KR102234255B1 (en) 2021-04-01
CN108121170B (en) 2020-06-26
JP2018091919A (en) 2018-06-14
KR20180062370A (en) 2018-06-08
TW201822249A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
JP6896404B2 (en) Exposure equipment and manufacturing method of articles
US7433015B2 (en) Lithographic apparatus and device manufacturing method
US7088426B2 (en) Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US6788389B2 (en) Production method of projection optical system
KR102169893B1 (en) Exposure apparatus and method of manufacturing article
TWI430042B (en) Catadioptric projection objective with pupil mirror, projection exposure apparatus and projection exposure method
EP1712955A2 (en) Optical unit and exposure apparatus having the same
KR101124776B1 (en) Exposure apparatus and method of manufacturing device
US8634061B2 (en) Exposure apparatus and device manufacturing method
WO2015041335A1 (en) Projection optical system, method for adjusting projection optical system, exposure apparatus, exposure method, and device production method
JP2007027438A (en) Projection optical system, aligner, and method of manufacturing device
KR102372650B1 (en) Projection optical system, exposure apparatus, method of manufacturing article, and adjusting method
JP6463087B2 (en) Exposure apparatus and article manufacturing method
JP2003203853A (en) Aligner and its method, and manufacturing method for microdevice
TWI397781B (en) Optical system, exposure apparatus and apparatus manufacturing method
JP4147574B2 (en) Wavefront aberration measurement method, projection optical system adjustment method and exposure method, and exposure apparatus manufacturing method
JP2007250723A (en) Evaluation method and regulation method of imaging optical system, exposure device and exposure method
KR20090046727A (en) Exposure apparatus and device fabrication method
JP5288838B2 (en) Exposure equipment
US20130278910A1 (en) Projection optical assembly, projection optical assembly adjustment method, exposure device, exposure method, and device manufacturing method
JP2002139406A (en) Mask for measuring optical characteristic, method of measuring optical characteristic and production method of exposer
JP2007165845A (en) Exposure method and apparatus, and method of manufacturing device
CN117950275A (en) Exposure method, exposure apparatus, and method for manufacturing article
JP2010205925A (en) Aligner, adjustment method, and method of manufacturing device
CN117950274A (en) Exposure method, exposure apparatus, and method for manufacturing article

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R151 Written notification of patent or utility model registration

Ref document number: 6896404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151