JP6041541B2 - Exposure apparatus and device manufacturing method - Google Patents

Exposure apparatus and device manufacturing method Download PDF

Info

Publication number
JP6041541B2
JP6041541B2 JP2012127531A JP2012127531A JP6041541B2 JP 6041541 B2 JP6041541 B2 JP 6041541B2 JP 2012127531 A JP2012127531 A JP 2012127531A JP 2012127531 A JP2012127531 A JP 2012127531A JP 6041541 B2 JP6041541 B2 JP 6041541B2
Authority
JP
Japan
Prior art keywords
optical system
reflecting mirror
convex
meniscus lens
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012127531A
Other languages
Japanese (ja)
Other versions
JP2013250541A5 (en
JP2013250541A (en
Inventor
善之 永井
善之 永井
恭一 宮▲崎▼
恭一 宮▲崎▼
蔵 安延
蔵 安延
春名 川島
春名 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012127531A priority Critical patent/JP6041541B2/en
Priority to TW102116193A priority patent/TWI490540B/en
Priority to CN201310208070.1A priority patent/CN103454769B/en
Priority to KR1020130062198A priority patent/KR20130136390A/en
Publication of JP2013250541A publication Critical patent/JP2013250541A/en
Publication of JP2013250541A5 publication Critical patent/JP2013250541A5/ja
Application granted granted Critical
Publication of JP6041541B2 publication Critical patent/JP6041541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • G02B13/26Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances for reproducing with unit magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0836Catadioptric systems using more than three curved mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、液晶表示素子や半導体素子を製造する際に用いられるフォトリソグラフィ工程において使用される露光装置及びその露光装置を使用するデバイス製造方法に関する。   The present invention relates to an exposure apparatus used in a photolithography process used when manufacturing a liquid crystal display element or a semiconductor element, and a device manufacturing method using the exposure apparatus.

近年、パソコンやテレビ等の表示装置において、液晶表示基板が多用されるようになってきている。液晶表示基板は、フォトリソグラフィ工程を用いてガラス基板上に透明薄膜電極を所望の形状にパターニングすることによって製作される。フォトリソグラフィ工程を行うために、予め所望のパターンが描画されているマスク上に露光光を照射し、投影光学系を介してマスク上のパターンをフォトレジストが塗布されたガラス基板などの基板の上に投影して基板を露光する投影露光装置が用いられている。液晶表示基板の製造には、ミラー・プロジェクション方式による投影露光装置が用いられている。   In recent years, liquid crystal display substrates have been frequently used in display devices such as personal computers and televisions. The liquid crystal display substrate is manufactured by patterning a transparent thin film electrode into a desired shape on a glass substrate using a photolithography process. In order to perform the photolithography process, exposure light is irradiated onto a mask on which a desired pattern is drawn in advance, and the pattern on the mask is applied to a substrate such as a glass substrate coated with photoresist through a projection optical system. A projection exposure apparatus that projects the light onto the substrate and exposes the substrate is used. In the manufacture of a liquid crystal display substrate, a projection exposure apparatus using a mirror projection method is used.

図4を用いて、特許文献1、2に示されている従来のミラー・プロジェクション方式の投影露光装置を説明する。照明光学系101は、照明光学系101内部に載置されている高圧水銀ランプから発せられた光を所望の形状に整形し、パターンが描画されているマスク2を照明する。照明光学系101からの光はマスク102を照明した後、投影光学系が格納されている鏡筒103内に入射する。鏡筒103内に入射した光は、平面反射ミラー131および凹面反射ミラー132により反射されて投影光学系の瞳の近傍に導かれる。投影光学系瞳の近傍には、メニスカスレンズ133および凸面反射ミラー134が設置されている。平面反射ミラー131および凹面反射ミラー132により反射された光は、メニスカスレンズ133を透過した後、凸面反射ミラー134により反射されてメニスカスレンズ133を再び透過する。メニスカスレンズ133を再び透過した光は、凹面反射ミラー132および平面反射ミラー131により再び反射されて、感光剤が塗布されている基板104に到達する。基板104の位置で、マスク102からの透過光および回折光が干渉し、マスク102のパターンを結像し、基板104を露光する。マスク102およびプレート104はそれぞれ不図示のマスクステージおよび基板ステージに設置され、マスクステージおよび基板ステージは同期させて走査しながら露光を行うことで、大画面の基板104に対する露光が可能となっている。   A conventional mirror projection type projection exposure apparatus disclosed in Patent Documents 1 and 2 will be described with reference to FIG. The illumination optical system 101 shapes the light emitted from the high-pressure mercury lamp placed inside the illumination optical system 101 into a desired shape, and illuminates the mask 2 on which the pattern is drawn. The light from the illumination optical system 101 illuminates the mask 102 and then enters the lens barrel 103 in which the projection optical system is stored. The light incident on the lens barrel 103 is reflected by the plane reflecting mirror 131 and the concave reflecting mirror 132 and guided to the vicinity of the pupil of the projection optical system. A meniscus lens 133 and a convex reflecting mirror 134 are installed in the vicinity of the projection optical system pupil. The light reflected by the plane reflecting mirror 131 and the concave reflecting mirror 132 passes through the meniscus lens 133, then is reflected by the convex reflecting mirror 134 and passes through the meniscus lens 133 again. The light transmitted again through the meniscus lens 133 is reflected again by the concave reflecting mirror 132 and the flat reflecting mirror 131 and reaches the substrate 104 on which the photosensitive agent is applied. The transmitted light and diffracted light from the mask 102 interfere with each other at the position of the substrate 104 to form an image of the pattern of the mask 102 and expose the substrate 104. The mask 102 and the plate 104 are respectively installed on a mask stage and a substrate stage (not shown), and exposure is performed while scanning the mask stage and the substrate stage in synchronization with each other, so that the exposure to the substrate 104 with a large screen is possible. .

特開2006−78631号公報JP 2006-78631 A 特開2008−89832号公報JP 2008-89832 A

近年、液晶表示基板は大画面化の一途をたどっており、その要求に応えるために露光装置の露光領域も拡大してきている。露光領域が大きくなると単位面積当たりの光量が小さくなり、露光に要する時間が長くなり、露光装置としての生産性が落ちてしまう。このため、露光用光源である出力10KW程度の大型水銀ランプを複数本用いることで高い照度を保ち露光時間の増加の抑制を図っている。大型水銀ランプの数が増大することによって、露光工程中における露光装置の投影光学系内部では、非常に高い熱負荷がかかっている。具体的には、投影光学系を構成する光学部品に露光光の一部が吸収されて光学部品が蓄熱し、その熱が再び鏡筒内に放出されることにより、光学部品および光学部品周辺の気体の温度が上昇する。光学部品および光学部品周辺の気体の温度が上昇すると、気体の対流により、光学部品の表面近傍に気体の揺らぎが発生し、揺らいだ気体を通過する光線の進路のずれ(像の揺らぎ)が発生する。さらに、温度が上昇した気体は、投影光学系が搭載される鏡筒内上部に溜まり、鏡筒内部の気体は鉛直方向に温度勾配を持つ状態となる。   In recent years, liquid crystal display substrates have been getting larger screens, and the exposure area of exposure apparatuses has been expanded to meet the demand. When the exposure area is increased, the amount of light per unit area is reduced, the time required for exposure is increased, and the productivity of the exposure apparatus is reduced. For this reason, the use of a plurality of large mercury lamps having an output of about 10 KW, which is an exposure light source, maintains a high illuminance and suppresses an increase in exposure time. Due to the increase in the number of large mercury lamps, a very high heat load is applied inside the projection optical system of the exposure apparatus during the exposure process. Specifically, a part of the exposure light is absorbed by the optical components that make up the projection optical system, the optical components store heat, and the heat is released again into the lens barrel. The gas temperature rises. When the temperature of the optical component and the gas around the optical component rises, the gas convection causes a gas fluctuation near the surface of the optical component, resulting in a deviation in the path of the light beam that passes through the fluctuating gas (image fluctuation). To do. Furthermore, the gas whose temperature has increased accumulates in the upper part of the lens barrel on which the projection optical system is mounted, and the gas inside the lens barrel has a temperature gradient in the vertical direction.

図4に示したミラー・プロジェクション方式の露光装置においては、投影光学系の瞳となる凸面反射ミラー134の近傍で最も集光度が高く高温になる。したがって、メニスカスレンズ133と凸面反射ミラー134との間の空間が高温になり、空間が密閉構造でないために凸面反射ミラー134の近傍から上方に対流する気体の流れが発生し、像の揺らぎなどを誘発することがある。このように露光工程で生じる投影光学系内の気体の温度勾配や、光学部品の表面近傍の気体の揺らぎにより、結像性能が低下することが問題視されてきている。   In the mirror projection type exposure apparatus shown in FIG. 4, the condensing degree is the highest and the temperature is high in the vicinity of the convex reflection mirror 134 which becomes the pupil of the projection optical system. Therefore, the space between the meniscus lens 133 and the convex reflection mirror 134 becomes high temperature, and since the space is not a sealed structure, a gas flow that convects upward from the vicinity of the convex reflection mirror 134 is generated, and image fluctuations are caused. May trigger. Thus, it has been regarded as a problem that the imaging performance deteriorates due to the temperature gradient of the gas in the projection optical system generated in the exposure process and the fluctuation of the gas near the surface of the optical component.

そこで、本発明は、光路の一部の雰囲気が光路の他の部分に与える影響を低減した光学系を提供することを目的とする。   Therefore, an object of the present invention is to provide an optical system in which the influence of a part of the atmosphere of the optical path on the other part of the optical path is reduced.

本発明は、光路に沿って反射ミラー、凹面反射ミラー、メニスカスレンズ及び凸面反射ミラーがその順で配置された光学系であって、前記光学系は部材を備え、前記メニスカスレンズ、前記凸面反射ミラー及び前記部材によって、前記メニスカスレンズと前記凸面反射ミラーとの間に形成された空間を取り囲むことによって前記反射ミラーと前記凹面反射ミラーとの間の光路を含む空間と前記メニスカスレンズと前記凸面反射ミラーとの間に形成された空間とを分離することを特徴とする。 The present invention is an optical system in which a reflecting mirror, a concave reflecting mirror, a meniscus lens, and a convex reflecting mirror are arranged in this order along an optical path, and the optical system includes a member, and the meniscus lens, the convex reflecting mirror And a space including an optical path between the reflecting mirror and the concave reflecting mirror by surrounding the space formed between the meniscus lens and the convex reflecting mirror by the member, the meniscus lens, and the convex reflecting mirror. and wherein the formed space and benzalkonium be separated between.

本発明によれば、光路の一部の雰囲気が光路の他の部分に与える影響を低減した光学系を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical system which reduced the influence which the one part atmosphere of an optical path has on the other part of an optical path can be provided.

本発明の露光装置を示す概略図Schematic showing the exposure apparatus of the present invention 図1において、凸面反射ミラーの近傍を示す詳細図In FIG. 1, a detailed view showing the vicinity of the convex reflecting mirror 図1のうち、凸面反射ミラーの近傍を凹面反射ミラー32側から見た図The figure which looked at the vicinity of a convex reflective mirror among FIG. 1 from the concave reflective mirror 32 side. 従来の露光装置を示す概略図Schematic showing a conventional exposure apparatus

[露光装置]
以下に本発明の露光装置の実施形態について、図1を用いて説明する。マスク2を照明する照明光学系1は、光源である高圧水銀ランプ、楕円ミラー、整形光学系、NDフィルター、オプティカル・インテグレータ、コンデンサレンズなどの光学部品を内部に含んでいる。楕円ミラーは、高圧水銀ランプから発生した光を特定の方向に集光する。整形光学系は、楕円ミラーからの光分布を所望の形状に整形する。NDフィルターは、光強度を調節する。オプティカル・インテグレータは、マスク2面での光強度分布を均一化させる。コンデンサレンズは、オプティカル・インテグレータを通過した光を集光する。
[Exposure equipment]
An embodiment of the exposure apparatus of the present invention will be described below with reference to FIG. The illumination optical system 1 that illuminates the mask 2 includes optical components such as a high-pressure mercury lamp, an elliptical mirror, a shaping optical system, an ND filter, an optical integrator, and a condenser lens, which are light sources. The elliptical mirror collects light generated from the high-pressure mercury lamp in a specific direction. The shaping optical system shapes the light distribution from the elliptical mirror into a desired shape. The ND filter adjusts the light intensity. The optical integrator makes the light intensity distribution on the mask 2 surface uniform. The condenser lens collects light that has passed through the optical integrator.

照明光学系1から射出された露光光は、転写させるべきパターンが描画されたマスク(原板ともいう)2に照射される。マスク2を透過した光は、投影光学系3を介して基板(プレート)4上に到達し、マスク2上のパターンをプレート4上に転写してプレート4を露光する。プレート4上には予め感光剤が塗布してあり、露光前後に適切な処理を施すことによって、プレート4上に所望のパターンを作製することができる。   The exposure light emitted from the illumination optical system 1 is applied to a mask (also referred to as an original plate) 2 on which a pattern to be transferred is drawn. The light transmitted through the mask 2 reaches the substrate (plate) 4 through the projection optical system 3, and the pattern on the mask 2 is transferred onto the plate 4 to expose the plate 4. A photosensitive agent is applied on the plate 4 in advance, and a desired pattern can be formed on the plate 4 by performing appropriate processing before and after exposure.

投影光学系3内には、マスク2からプレート4に至る光路に沿って、平面反射ミラー(第1光学素子)31、凹面反射ミラー(第2光学素子)32、メニスカスレンズ(第3光学素子)33、凸面反射ミラー(第4光学素子)34がその順に配置される。本実施形態では、マスク2を経て投影光学系3に入射してきた光は、平面反射ミラー31で折り曲げられ、凹面反射ミラー32で反射された後、メニスカスレンズ33を透過し、凸面反射ミラー34に入射する。凸面反射ミラー34で反射された光は、メニスカスレンズ33を再度透過した後、凹面反射ミラー32、平面反射ミラー31で再度反射されてプレート4に入射する。平面反射ミラー31、凹面反射ミラー32、メニスカスレンズ33及び凸面反射ミラー34は、光路に沿って第1光学素子、第2光学素子、第3光学素子及び第4光学素子がその順に配置された光学系を構成している。   In the projection optical system 3, along the optical path from the mask 2 to the plate 4, a plane reflecting mirror (first optical element) 31, a concave reflecting mirror (second optical element) 32, and a meniscus lens (third optical element). 33, a convex reflecting mirror (fourth optical element) 34 is arranged in that order. In the present embodiment, the light incident on the projection optical system 3 through the mask 2 is bent by the plane reflection mirror 31, reflected by the concave reflection mirror 32, then transmitted through the meniscus lens 33, and is incident on the convex reflection mirror 34. Incident. The light reflected by the convex reflecting mirror 34 passes through the meniscus lens 33 again, and then is reflected again by the concave reflecting mirror 32 and the flat reflecting mirror 31 and enters the plate 4. The plane reflecting mirror 31, the concave reflecting mirror 32, the meniscus lens 33, and the convex reflecting mirror 34 are optical elements in which a first optical element, a second optical element, a third optical element, and a fourth optical element are arranged in that order along the optical path. The system is configured.

本実施形態で紹介されているミラー・プロジェクション方式の露光装置の投影光学系3では、光路の上流側にメニスカスレンズ33が配置され、光路の下流側に凸面反射ミラー34が配置されている。ミラー・プロジェクション方式の露光装置の投影光学系3では、設計上、メニスカスレンズ33と凸面反射ミラー34とは投影光学系3の瞳の近傍に配置される。凸面反射ミラー34の近傍は最も集光度が高いため、発熱量も多い。凸面反射ミラー34の表面の反射膜に照射することによって反射膜で発生した熱がメニスカスレンズ33に伝搬しにくいように、メニスカスレンズ33と凸面反射ミラー34との間には空間39が形成されている。メニスカスレンズ33と凸面反射ミラー34とは鏡筒35で固定されており、空間39はメニスカスレンズ33、凸面反射ミラー34及び鏡筒35で取り囲まれている。したがって、反射膜部で発生した熱によって暖められた、空間39中の気体は、空間39から抜け出ることはなく、平面反射ミラー31と凹面反射ミラー32との間の光路で気体の揺らぎを発生させない。鏡筒35は、平面反射ミラー(第1光学素子)31と凹面反射ミラー(第2光学素子)との間の光路と空間39とを分離する部材を構成している。   In the projection optical system 3 of the mirror projection type exposure apparatus introduced in this embodiment, a meniscus lens 33 is disposed on the upstream side of the optical path, and a convex reflection mirror 34 is disposed on the downstream side of the optical path. In the projection optical system 3 of the mirror projection type exposure apparatus, the meniscus lens 33 and the convex reflection mirror 34 are arranged in the vicinity of the pupil of the projection optical system 3 by design. The vicinity of the convex reflecting mirror 34 has the highest degree of light condensing and therefore generates a large amount of heat. A space 39 is formed between the meniscus lens 33 and the convex reflection mirror 34 so that the heat generated in the reflection film is not easily propagated to the meniscus lens 33 by irradiating the reflection film on the surface of the convex reflection mirror 34. Yes. The meniscus lens 33 and the convex reflecting mirror 34 are fixed by a lens barrel 35, and the space 39 is surrounded by the meniscus lens 33, the convex reflecting mirror 34 and the lens barrel 35. Therefore, the gas in the space 39 that has been warmed by the heat generated in the reflection film portion does not escape from the space 39, and does not generate gas fluctuations in the optical path between the planar reflection mirror 31 and the concave reflection mirror 32. . The lens barrel 35 constitutes a member that separates the optical path between the plane reflecting mirror (first optical element) 31 and the concave reflecting mirror (second optical element) from the space 39.

鏡筒35の材質は、外部に熱が伝わりにくいように、断熱性の優れたものが選択される。凸面反射ミラー34を挟んでメニスカスレンズ33と反対側(光路の下流側)には、空間を介して光吸収部材36が配置されている。光吸収部材36は、凸面反射ミラー34の表面で反射せず、凸面反射ミラー34を透過してきた光を吸収する。凸面反射ミラー34と光吸収部材36との間に空間を介在させるのは、凸面反射ミラー34と光吸収部材36との熱膨張率の差を吸収し、また、光吸収部材36で発生した熱を凸面反射ミラー34に伝搬しにくくするためである。   The material of the lens barrel 35 is selected to have excellent heat insulation so that heat is not easily transmitted to the outside. On the opposite side of the meniscus lens 33 (on the downstream side of the optical path) with the convex reflection mirror 34 interposed therebetween, a light absorbing member 36 is disposed through a space. The light absorbing member 36 does not reflect on the surface of the convex reflection mirror 34, but absorbs light transmitted through the convex reflection mirror 34. The space is interposed between the convex reflecting mirror 34 and the light absorbing member 36 to absorb the difference in thermal expansion coefficient between the convex reflecting mirror 34 and the light absorbing member 36, and the heat generated in the light absorbing member 36. This is to make it difficult to propagate to the convex reflection mirror 34.

凸面反射ミラー34の反射面には、光を反射させるために反射膜が製膜されている。この反射膜の材質はアルミニウムなどの金属よりも誘電体が望ましい。誘電体を選択する理由は金属膜よりも誘電体の膜の方が光を照射した時の光吸収度が小さいためである。反射膜の材質として誘電体を選択した場合、金属膜と比較して凸面反射ミラー34の光反射面を反射せずに透過する光量が増加するため、凸面反射ミラー34を固定している鏡筒35が発熱する可能性がある。その結果、凸面反射ミラー34近傍の温度が上昇し、投影光学系3内部の光路中に気体の揺らぎが発生し、投影光学系3の結像性能を低下させてしまう。   A reflecting film is formed on the reflecting surface of the convex reflecting mirror 34 in order to reflect light. The reflective film is preferably made of a dielectric material rather than a metal such as aluminum. The reason for selecting the dielectric is that the light absorption of the dielectric film when irradiated with light is smaller than that of the metal film. When a dielectric is selected as the material of the reflection film, the amount of light that passes through the light reflection surface of the convex reflection mirror 34 without being reflected increases compared to the metal film, so the lens barrel that fixes the convex reflection mirror 34 is fixed. 35 may generate heat. As a result, the temperature in the vicinity of the convex reflecting mirror 34 rises, gas fluctuations occur in the optical path inside the projection optical system 3, and the imaging performance of the projection optical system 3 is degraded.

図2に、凸面反射ミラー34の近傍の拡大図を示す。光吸収部材36にはその内部に温度制御された液体(冷媒)を供給する液体供給部と内部から液体を排出する液体排出部とを含む冷媒用配管37が接続されており、光吸収部材36の過熱を防ぐために図2中の矢印の向きに冷媒を流すことができる。冷媒用配管37は投影光学系3の外部まで引き回されており、不図示のチラーなどを用いて冷媒の温度を一定に制御しながら循環させる。冷媒は常時循環させておいてもよいし、光吸収部材36の温度が或るしきい値よりも高くなった場合のみ循環させてもよい。冷媒用配管37を設けることにより、光吸収部材36の温度上昇を最小限に抑えることができ、投影光学系3の内部の光路中における気体の揺らぎを抑えることができる。光吸収部材36は、高い熱伝導率を有する物質、例えば、アルミニウムが用いられる。冷媒用配管37を流す冷媒は、例えばフッ素系の不活性液体である。   FIG. 2 shows an enlarged view of the vicinity of the convex reflecting mirror 34. The light absorbing member 36 is connected to a refrigerant pipe 37 including a liquid supply portion for supplying a temperature-controlled liquid (refrigerant) and a liquid discharging portion for discharging the liquid from the inside. In order to prevent overheating, the refrigerant can flow in the direction of the arrow in FIG. The refrigerant pipe 37 is routed to the outside of the projection optical system 3, and circulates while controlling the temperature of the refrigerant at a constant level using a chiller (not shown). The refrigerant may be circulated at all times, or may be circulated only when the temperature of the light absorbing member 36 becomes higher than a certain threshold value. By providing the refrigerant pipe 37, the temperature rise of the light absorbing member 36 can be minimized, and the fluctuation of gas in the optical path inside the projection optical system 3 can be suppressed. The light absorbing member 36 is made of a material having high thermal conductivity, such as aluminum. The refrigerant flowing through the refrigerant pipe 37 is, for example, a fluorine-based inert liquid.

次に図3を用いて、メニスカスレンズ33と凸面反射ミラー34との間の空間39の冷却方法について記載する。図3は空間39及び鏡筒35を凹面反射ミラー32側から見た断面図である。露光を続けていると、メニスカスレンズ33と凸面反射ミラー34の間の空間39の温度が次第に上昇してくる。その結果、空間39内に温度分布が生じ、像ずれや非点収差などが発生する。像ずれや非点収差などの発生を防止するために、鏡筒35には配管38が接続されており、配管38を介してメニスカスレンズ33と凸面反射ミラー34の間の空間39に、温度制御された空気や窒素などの気体を送ることができる。配管38は投影光学系3の外部から引き回されている。気体の流量を調節したり、鏡筒35内部への気体の噴出口の形状を調節したりすることで、メニスカスレンズ33と凸面反射ミラー34の間の空間39の温度管理を効果的に行うことが可能である。図3中の矢印は、メニスカスレンズ33と凸面反射ミラー34の間の空間39を効果的に気体が流れる様子を模式的に示している。配管38を流す気体は、例えば空気、不活性ガスである。   Next, a method for cooling the space 39 between the meniscus lens 33 and the convex reflecting mirror 34 will be described with reference to FIG. FIG. 3 is a sectional view of the space 39 and the lens barrel 35 as seen from the concave reflecting mirror 32 side. If the exposure is continued, the temperature of the space 39 between the meniscus lens 33 and the convex reflecting mirror 34 gradually increases. As a result, a temperature distribution is generated in the space 39, and image displacement, astigmatism, and the like occur. In order to prevent the occurrence of image shift, astigmatism, etc., a pipe 38 is connected to the lens barrel 35, and a temperature control is performed in a space 39 between the meniscus lens 33 and the convex reflecting mirror 34 via the pipe 38. Sent air or nitrogen gas. The pipe 38 is routed from the outside of the projection optical system 3. The temperature of the space 39 between the meniscus lens 33 and the convex reflecting mirror 34 can be effectively controlled by adjusting the flow rate of the gas or adjusting the shape of the gas outlet into the lens barrel 35. Is possible. The arrows in FIG. 3 schematically show how the gas effectively flows through the space 39 between the meniscus lens 33 and the convex reflecting mirror 34. The gas flowing through the pipe 38 is, for example, air or an inert gas.

なお、図3の配管38の構造では、空間39へ気体を供給する気体供給部、空間39から気体を排出する気体排出部の数を1つとしているが、これに限定されることなく、気体供給部、気体排出部の数を複数としてもよい。また、気体の流れが水平方向となっているが、これについても水平方向以外の方向に配置した場合においても一定の効果を得ることは言うまでもない。   In the structure of the pipe 38 in FIG. 3, the number of the gas supply unit that supplies the gas to the space 39 and the number of the gas discharge units that discharge the gas from the space 39 are one, but the present invention is not limited to this. A plurality of supply units and gas discharge units may be provided. Further, although the gas flow is in the horizontal direction, it goes without saying that a certain effect can be obtained even when the gas flow is arranged in a direction other than the horizontal direction.

[デバイス製造方法]
つぎに、本発明の一実施形態のデバイス(半導体デバイス、液晶表示デバイス等)の製造方法について説明する。ここでは、半導体デバイスの製造方法を例に説明する。
[Device manufacturing method]
Next, a method for manufacturing a device (semiconductor device, liquid crystal display device, etc.) according to an embodiment of the present invention will be described. Here, a method for manufacturing a semiconductor device will be described as an example.

半導体デバイスは、基板に集積回路を作る前工程と、前工程で作られた基板上の集積回路チップを製品として完成させる後工程を経ることにより製造される。前工程は、前述の露光装置を使用して感光剤が塗布された基板を走査露光する工程と、基板を現像する工程を含む。後工程は、アッセンブリ工程(ダイシング、ボンディング)と、パッケージング工程(封入)を含む。なお、液晶表示デバイスは、透明電極を形成する工程を経ることにより製造される。透明電極を形成する工程は、透明導電膜が蒸着されたガラス基板に感光剤を塗布する工程と、前述の露光装置を使用して感光剤が塗布されたガラス基板を走査露光する工程と、ガラス基板を現像する工程を含む。本実施形態のデバイス製造方法によれば、デバイスの生産性および品質の少なくとも一方において従来よりも有利である。   A semiconductor device is manufactured through a pre-process for producing an integrated circuit on a substrate and a post-process for completing an integrated circuit chip on the substrate produced in the pre-process as a product. The pre-process includes a step of scanning and exposing a substrate coated with a photosensitive agent using the above-described exposure apparatus, and a step of developing the substrate. The post-process includes an assembly process (dicing and bonding) and a packaging process (encapsulation). In addition, a liquid crystal display device is manufactured by passing through the process of forming a transparent electrode. The step of forming the transparent electrode includes a step of applying a photosensitive agent to a glass substrate on which a transparent conductive film is deposited, a step of scanning exposure of the glass substrate on which the photosensitive agent is applied using the above-described exposure apparatus, and a glass Developing the substrate. According to the device manufacturing method of this embodiment, at least one of the productivity and quality of the device is more advantageous than the conventional one.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

Claims (9)

光路に沿って反射ミラー、凹面反射ミラー、メニスカスレンズ及び凸面反射ミラーがその順で配置された光学系であって、
前記光学系は部材を備え、
前記メニスカスレンズ、前記凸面反射ミラー及び前記部材によって、前記メニスカスレンズと前記凸面反射ミラーとの間に形成された空間を取り囲むことによって前記反射ミラーと前記凹面反射ミラーとの間の光路を含む空間と前記メニスカスレンズと前記凸面反射ミラーとの間に形成された空間とを分離することを特徴とする光学系。
An optical system in which a reflecting mirror, a concave reflecting mirror, a meniscus lens, and a convex reflecting mirror are arranged in that order along the optical path,
The optical system includes a member,
A space including an optical path between the reflecting mirror and the concave reflecting mirror by surrounding the space formed between the meniscus lens and the convex reflecting mirror by the meniscus lens, the convex reflecting mirror and the member; the optical system characterized by a Turkey to separate the space formed between the meniscus lens and the convex reflecting mirror.
前記取り囲まれた空間に温度制御された気体を供給する気体供給部と前記取り囲まれた空間から前記気体を排出する気体排出部とを備える請求項に記載の光学系。 The optical system according to claim 1 , further comprising: a gas supply unit that supplies a gas whose temperature is controlled to the enclosed space; and a gas discharge unit that discharges the gas from the enclosed space. 前記凸面反射ミラーの反射面は、誘電体の膜で構成されていることを特徴とする請求項1又は2に記載の光学系。The optical system according to claim 1, wherein the reflection surface of the convex reflection mirror is formed of a dielectric film. 光路に沿って反射ミラー、凹面反射ミラー、メニスカスレンズ及び凸面反射ミラーがその順で配置された光学系であって、An optical system in which a reflecting mirror, a concave reflecting mirror, a meniscus lens, and a convex reflecting mirror are arranged in that order along the optical path,
前記光学系は、前記反射ミラーと前記凹面反射ミラーとの間の光路を含む空間と前記メニスカスレンズと前記凸面反射ミラーとの間に形成された空間とを分離する部材を備え、The optical system includes a member that separates a space including an optical path between the reflection mirror and the concave reflection mirror and a space formed between the meniscus lens and the convex reflection mirror,
前記凸面反射ミラーの反射面は、誘電体の膜で構成されていることを特徴とする光学系。An optical system, wherein a reflection surface of the convex reflection mirror is formed of a dielectric film.
前記メニスカスレンズは前記凸面反射ミラーよりも前記光路の上流側に配置され、
前記光学系は、前記光路の前記凸面反射ミラーの下流側に前記凸面反射ミラーを透過した光を吸収する光吸収部材を備えることを特徴とする請求項1乃至のいずれか1項に記載の光学系。
The meniscus lens is disposed on the upstream side of the optical path with respect to the convex reflection mirror,
The said optical system is equipped with the light absorption member which absorbs the light which permeate | transmitted the said convex reflection mirror in the downstream of the said convex reflection mirror of the said optical path, The Claim 1 thru | or 4 characterized by the above-mentioned. Optical system.
前記光吸収部材の内部に温度制御された液体を供給する液体供給部と前記光吸収部材の内部から前記液体を排出する液体排出部とを備えることを特徴とする請求項に記載の光学系。 The optical system according to claim 5 , further comprising: a liquid supply unit that supplies a temperature-controlled liquid into the light absorption member; and a liquid discharge unit that discharges the liquid from the light absorption member. . 前記メニスカスレンズと前記凸面反射ミラーとは前記光学系の瞳の近傍に配置されており、前記メニスカスレンズを通過した光は、前記凸面反射ミラーにより反射され、再び前記メニスカスレンズを通過して前記凹面反射ミラーに入射することを特徴とする請求項1乃至のいずれか1項に記載の光学系。 The meniscus lens and the convex reflecting mirror are disposed in the vicinity of the pupil of the optical system, and the light that has passed through the meniscus lens is reflected by the convex reflecting mirror, passes through the meniscus lens again, and is concave. The optical system according to any one of claims 1 to 6 , wherein the optical system is incident on a reflection mirror . マスクに形成されたパターンを投影光学系を介して基板に投影して前記基板を露光する露光装置であって、
前記投影光学系は、請求項1乃至請求項7のいずれか1項に記載の光学系を含むことを特徴とする露光装置。
An exposure apparatus that projects a pattern formed on a mask onto a substrate via a projection optical system to expose the substrate,
An exposure apparatus comprising: the optical system according to claim 1.
請求項8に記載の露光装置を用いて基板を露光する工程と、
前記露光された基板を現像する工程と、
を含むことを特徴とするデバイス製造方法。
Exposing the substrate using the exposure apparatus according to claim 8;
Developing the exposed substrate;
A device manufacturing method comprising:
JP2012127531A 2012-06-04 2012-06-04 Exposure apparatus and device manufacturing method Active JP6041541B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012127531A JP6041541B2 (en) 2012-06-04 2012-06-04 Exposure apparatus and device manufacturing method
TW102116193A TWI490540B (en) 2012-06-04 2013-05-07 An optical system, an exposure apparatus, and a manufacturing apparatus
CN201310208070.1A CN103454769B (en) 2012-06-04 2013-05-30 The method of optical system, exposure device and manufacture device
KR1020130062198A KR20130136390A (en) 2012-06-04 2013-05-31 Optical system, exposure apparatus, and method for manufacturing a device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127531A JP6041541B2 (en) 2012-06-04 2012-06-04 Exposure apparatus and device manufacturing method

Publications (3)

Publication Number Publication Date
JP2013250541A JP2013250541A (en) 2013-12-12
JP2013250541A5 JP2013250541A5 (en) 2015-07-23
JP6041541B2 true JP6041541B2 (en) 2016-12-07

Family

ID=49737318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127531A Active JP6041541B2 (en) 2012-06-04 2012-06-04 Exposure apparatus and device manufacturing method

Country Status (4)

Country Link
JP (1) JP6041541B2 (en)
KR (1) KR20130136390A (en)
CN (1) CN103454769B (en)
TW (1) TWI490540B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463087B2 (en) * 2014-11-14 2019-01-30 キヤノン株式会社 Exposure apparatus and article manufacturing method
JP6386896B2 (en) * 2014-12-02 2018-09-05 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP6896404B2 (en) * 2016-11-30 2021-06-30 キヤノン株式会社 Exposure equipment and manufacturing method of articles

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690528A (en) * 1983-10-05 1987-09-01 Nippon Kogaku K. K. Projection exposure apparatus
JPS61144020A (en) * 1984-12-18 1986-07-01 Canon Inc Exposure equipment
JPH0845824A (en) * 1994-08-03 1996-02-16 Toshiba Corp Exposure device
JP3521416B2 (en) * 1995-10-06 2004-04-19 株式会社ニコン Projection exposure equipment
JPH09180985A (en) * 1995-12-25 1997-07-11 Nikon Corp Projection exposure system
JP2001290279A (en) * 2000-04-04 2001-10-19 Canon Inc Scanning exposure device
WO2003105203A1 (en) * 2002-06-11 2003-12-18 株式会社ニコン Exposure system and exposure method
JP3944008B2 (en) * 2002-06-28 2007-07-11 キヤノン株式会社 Reflective mirror apparatus, exposure apparatus, and device manufacturing method
US6809888B1 (en) * 2003-04-16 2004-10-26 Ultratech, Inc. Apparatus and methods for thermal reduction of optical distortion
US7304715B2 (en) * 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102004060184A1 (en) * 2004-12-14 2006-07-06 Carl Zeiss Smt Ag Extreme ultraviolet mirror arrangement used in the semiconductor industry comprises a mirror substrate supporting dielectric layers and an electrically insulating heat transfer layer and a substrate support
DE102005017262B3 (en) * 2005-04-12 2006-10-12 Xtreme Technologies Gmbh Collector mirror for plasma-based short-wave radiation sources
US7959310B2 (en) * 2006-09-13 2011-06-14 Carl Zeiss Smt Gmbh Optical arrangement and EUV lithography device with at least one heated optical element, operating methods, and methods for cleaning as well as for providing an optical element
JP2008292761A (en) * 2007-05-24 2008-12-04 Canon Inc Exposure apparatus and method for manufacturing device
JP5118407B2 (en) * 2007-07-31 2013-01-16 キヤノン株式会社 Optical system, exposure apparatus, and device manufacturing method
JP2009162951A (en) * 2007-12-28 2009-07-23 Canon Inc Catadioptric projection optical system and exposure device having the same
JP2009192569A (en) * 2008-02-12 2009-08-27 Canon Inc Exposure apparatus and method for manufacturing device
EP2136250A1 (en) * 2008-06-18 2009-12-23 ASML Netherlands B.V. Lithographic apparatus and method
JP5398185B2 (en) * 2008-07-09 2014-01-29 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP5587578B2 (en) * 2008-09-26 2014-09-10 ギガフォトン株式会社 Extreme ultraviolet light source device and pulse laser device
JP2010128301A (en) * 2008-11-28 2010-06-10 Canon Inc Exposure apparatus
JP5495547B2 (en) * 2008-12-25 2014-05-21 キヤノン株式会社 Processing apparatus and device manufacturing method
JP2011039172A (en) * 2009-08-07 2011-02-24 Canon Inc Exposure apparatus and device manufacturing method
JP5595001B2 (en) * 2009-10-06 2014-09-24 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
CN102243444B (en) * 2010-05-14 2013-04-10 北京京东方光电科技有限公司 Exposure equipment, mask plate and exposure method

Also Published As

Publication number Publication date
KR20130136390A (en) 2013-12-12
TWI490540B (en) 2015-07-01
JP2013250541A (en) 2013-12-12
CN103454769B (en) 2016-05-04
TW201350902A (en) 2013-12-16
CN103454769A (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5487110B2 (en) Microlithography projection exposure apparatus
US9348235B2 (en) Exposure apparatus and method of manufacturing device
JP2011039172A (en) Exposure apparatus and device manufacturing method
JP5637702B2 (en) Exposure apparatus and device manufacturing method
JP5223921B2 (en) Illumination optical system, exposure apparatus, and exposure method
JP2013524492A (en) Optical system, exposure apparatus, and wavefront correction method
JP6041541B2 (en) Exposure apparatus and device manufacturing method
TWI501045B (en) Optical arrangement in an optical system, in particular in a microlithographic projection exposure apparatus
JP4202996B2 (en) Lithographic apparatus and device manufacturing method
US9523926B2 (en) Exposure apparatus and device manufacturing method
US9366977B2 (en) Semiconductor microlithography projection exposure apparatus
JP2006177740A (en) Multilayer film mirror and euv exposure apparatus
JP5517847B2 (en) Exposure apparatus and device manufacturing method using the same
KR20160091115A (en) Light source device used in exposure apparatus
US7053989B2 (en) Exposure apparatus and exposure method
JP2007266098A (en) Neutral density filter, tablet plate and exposure apparatus
KR20100115702A (en) Integrator and light irradiation apparatus
JP7358106B2 (en) Optical devices, projection optical systems, exposure devices, and methods for manufacturing articles
JP2009043810A (en) Exposure apparatus
JP2009194159A (en) Optical unit, illumination optical system, exposure apparatus and device manufacturing method
KR20160091116A (en) Exposure apparatus
JP2014157892A (en) Exposure apparatus and process of manufacturing device using the same
CN118584651A (en) Optical device, projection optical system, exposure device, and article manufacturing method
JP2014007268A (en) Exposure equipment, and manufacturing method of device using the same
KR100842750B1 (en) Exposure apparatus including dual illuminations

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161108

R151 Written notification of patent or utility model registration

Ref document number: 6041541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151