JP6858786B2 - 銅−セラミックス複合材料 - Google Patents

銅−セラミックス複合材料 Download PDF

Info

Publication number
JP6858786B2
JP6858786B2 JP2018544121A JP2018544121A JP6858786B2 JP 6858786 B2 JP6858786 B2 JP 6858786B2 JP 2018544121 A JP2018544121 A JP 2018544121A JP 2018544121 A JP2018544121 A JP 2018544121A JP 6858786 B2 JP6858786 B2 JP 6858786B2
Authority
JP
Japan
Prior art keywords
copper
composite material
ceramic substrate
ceramic
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018544121A
Other languages
English (en)
Other versions
JP2019515853A (ja
JP2019515853A5 (ja
Inventor
カイ ヘルプスト
カイ ヘルプスト
クリスチャン ムシェルクナウツ
クリスチャン ムシェルクナウツ
Original Assignee
ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー
ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー, ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー filed Critical ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー
Publication of JP2019515853A publication Critical patent/JP2019515853A/ja
Publication of JP2019515853A5 publication Critical patent/JP2019515853A5/ja
Application granted granted Critical
Publication of JP6858786B2 publication Critical patent/JP6858786B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5111Ag, Au, Pd, Pt or Cu
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface

Description

本発明は、銅−セラミックス複合材料、及び当該複合材料を備え、パワーエレクトロニクス部品に使用可能なモジュールに関する。
セラミックス回路支持体は、熱伝導性が高く、寸法安定性や機械的強度に優れ、絶縁強度も高いことから、ハイパワーエレクトロニクスの分野において特に興味を集めている。
セラミック基板を金属化するには、ダイレクト銅ボンディング(Direct−Copper−Bonding)(通常、DCB法と呼ばれる。)や、活性金属ろう付け法(Active−Metal−Brazing)(通常、AMB法と呼ばれる。)等の様々な方法が利用可能である。
セラミック基板の金属化後に得られる複合材料は、金属−セラミック基板又は金属−セラミックス複合材料とも呼ばれる。例えばDCB法により作製された場合には、「DCB基板」という用語がしばしば用いられる。
DCB法では、銅の融点が、酸素によって1083℃から共晶融点の1065℃まで低下することが利用される。セラミック基板の金属化前に銅箔を酸化するか、高温プロセス(例えば1065℃から1080℃の範囲内の温度)中に酸素を導入することによって、薄い共晶溶融層が形成される。この層をセラミック基板の表面と反応させることで、セラミックスと金属を強固に貼り付けることができる。
DCB法は、例えばUS3744120又はDE2319854に記載されている。
金属化は、例えばセラミック基板の片面のみに行ってもよいし(「単層ボンディング(Single−Layer−Bonding)」、SLB)、あるいはセラミック基板の両面に同時に行ってもよい(「2層ボンディング(Double−Layer−Bonding)」DLB)。また、基板の第1面を最初のSLB工程により金属化し、続けて反対側の面を更なるSLB工程により金属化することも可能である。
貼り付けた金属被膜を、例えばエッチング法により構造化して、導体路を形成することも知られている。
パワーエレクトロニクス用途の多くでは、金属−セラミックス複合材料は、大きな温度変化(例えば−40℃から+150℃の範囲内)が起こりうるような、強い温度変化ストレスにさらされる。
セラミック基板と金属被膜との熱膨張係数の違いから、温度変動の際に、これらの層の遷移部分には相当な機械的ストレスが発生し、最終的には、セラミックス表面からの金属の剥離が少なくとも部分的に起こりうる。金属層の周辺部分に巨視的レベルで特別な構造化を施すことで、引張及び圧縮ストレスを減少させて、耐熱衝撃性を高めることができることが知られている。DE4004844A1及びDE4318241A1には、周辺部の弱体化として縁部の凹みや孔を有する、セラミック基板の金属被膜が記載されている。
使用中に発生する温度変化ストレスは、セラミックスの割れを引き起こしうる。さらに、輸送の際、又は電気部品へ組み込む際に、機械的ストレスがかかることがあり、これも同様にセラミックスの割れを引き起こす。
温度変化ストレスや他の機械的ストレスによるセラミックスの割れをできる限り最小化するためには、金属−セラミックス複合材料のセラミック基板の機械的強度(例えば、非常に高い曲げ破壊強度)を非常に高くするべきである。
銅−セラミックス複合材料の電子分野の用途に関連するさらなる特性としては、優れた熱伝導性、優れた耐熱衝撃性、長期にわたる温度変化ストレスを受けても十分に強固なままであるような、金属被膜とセラミックス表面との非常に強固な結合や、ボンドワイヤーに対する銅層の優れた結合挙動が挙げられる。
DE102012110322では、金属−セラミックス複合材料のセラミック基板が、その粒子構造(すなわち、顕微鏡レベルの構造)についてさらに詳細に定義されている。セラミック基板は、酸化ジルコニウムで強化された酸化アルミニウムを含み、当該酸化アルミニウムの平均粒子サイズが2μmから8μmの範囲内であり、全粒子境界長に対するAl粒子の粒子境界長の比が>0.6である。DE102012110322によれば、この粒子構造が熱伝導性の改善に貢献している。
本発明は、諸特性が改善された、特に機械的強度に優れた金属−セラミックス複合材料を提供することを目的とする。
本目的は、銅−セラミックス複合材料であって、
− 酸化アルミニウムを含むセラミック基板と、
− 前記セラミック基板上に存在する、銅又は銅合金からなる被膜と、を有し、
前記酸化アルミニウムの各粒子が、最大粒子径dK,max、dK,maxの長さを半分にする箇所においてdK,maxに直交する粒子径dK,ortho及び形状係数R=dK,ortho/dK,maxを有し、前記酸化アルミニウムは、前記各粒子の形状係数Rの算術平均として求められる平均粒子形状係数R(Al)が少なくとも0.4である、
上記銅−セラミックス複合材料により達成される。
楕円形粒子構造を有する粒子の形状系数Rに関する説明図である。 セラミック基板1が銅又は銅合金からなる被膜2を下面及び上面の両方に有する例示的な銅−セラミックス複合材料を示す模式図である。 セラミック基板1の複数の領域に銅又は銅合金からなる被膜2を設けた例示的な銅−セラミックス複合材料を示す模式図である。 粒子サイズの決定法を示す模式図である。 K−K−V1のセラミック基板表面のSEM像である。
銅−セラミックス複合材料のセラミック基板は、通常、小さな結晶子(粒子とも呼ぶ。)からなる多結晶材である。顕微鏡レベルでは、多結晶材は、粒子構造(例えば、粒子サイズ分布、粒子形状、質感等)という観点からさらに詳細に特徴づけることができる。
本発明では、驚くべきことに、セラミック基板のAl粒子を、セラミック基板の表面に平行な面への2次元投影において、実質的に円形又は丸い形状とすることにより、機械的強度の改善を実現することができることが明らかとなった。
機械的強度の改善は、特に曲げ破壊強度の改善として表される。本発明によれば、セラミックスの曲げ破壊強度の改善とは、3点曲げ試験における破壊に至るまでの力が増すことを意味する。例えばDIN EN843−1(2008)は、セラミックスの曲げ破壊強度の測定法として当業者に公知である。好ましくは、試料の形状は、試料が20×40×0.38mm又は20×40×0.63mmの寸法を有するという点で、DIN EN843−1(2008)の形状から逸脱する。
本発明において、耐熱衝撃性とは、銅−セラミック基板のセラミックスからの剥離に対する銅層の耐性又は耐久能力であり、当該耐性は、セラミックスに対する銅層の少なくとも1回の温度変化の後に定まる。耐熱衝撃性の改善とは、耐えられる温度変化の回数が増えることを意味する。
本発明によれば、ワイヤーボンディングの改善とは、ボンドワイヤーを銅−セラミックス複合材料の銅表面から分離するのに必要な力が増すことを意味する。
本発明によれば、銅接着力の改善とは、銅−セラミックス複合材料に対する銅の接着力であって、接着された銅箔を銅−セラミックス複合材料のセラミックス表面から剥がすのに必要な力が増すことである。例示的な測定方法は、DE102004012231B4(DE102004012231B4の図2及び図3)によって当業者に公知である。
個々のAl粒子の形状は、形状係数(Formfaktor)Rにより表すことができる。これは、dK,maxの長さを半分にする箇所においてdK,maxに直交する粒子径dK,orthoに対する最大粒子径dK,maxの比である(すなわち、R=dK,ortho/dK,max)。図1に、楕円形の粒子構造を持つ粒子についてこれを模式的に示す。
セラミック基板における酸化アルミニウムの平均粒子形状係数R(Al)は、Al粒子の形状係数Rの算術平均から求めることができる。例えば、酸化アルミニウム原料が細長い粒子を高い割合で含んでいる場合、当該酸化アルミニウムの平均粒子形状係数は、比較的低い値となるであろう。一方、平均粒子形状係数の値が1.0に近づくにつれ、丸く円形のAl粒子の割合が高くなる。
酸化アルミニウムの平均粒子形状係数R(Al)は、好ましくは≧0.60、より好ましくは≧0.80である。例えば事前に原料基板の製造において、酸化アルミニウム粒子の形状を設定することのできる好適な方法は、当業者に公知である。例えば、Al粒子の形状は、原料基板の製造における焼成時間及び焼成温度の影響を受ける。最終的な銅−セラミックス複合材料において上記の形状係数R(Al)を実現することのできるAl基板は、市販されているか、標準的な方法により得ることができる。
酸化アルミニウムの粒子サイズは、好ましくは0.01μmから25μmの範囲内、より好ましくは0.3μmから23μmの範囲内、さらに好ましくは0.5μmから20μmの範囲内である。本発明において、これらの値は、酸化アルミニウムの粒子サイズ分布の下限(粒子サイズがそれより小さくならない)及び上限(それを超えない)である。したがって、好ましい実施形態によれば、酸化アルミニウムは、上記の範囲外となる粒子を持たない。よって、酸化アルミニウムの最小及び最大粒子サイズをdmin(Al)及びdmax(Al)とすると、好ましくはdmin(Al)が≧0.01μmかつdmax(Al)が≦25μm、より好ましくはdmin(Al)が≧0.3μmかつdmax(Al)が≦23μm、さらに好ましくはdmin(Al)が≧0.5μmかつdmax(Al)が≦20μmである。酸化アルミニウムの粒子サイズをこの範囲内とすることにより、機械的強度及び熱伝導性のさらなる改善を実現することができる。
銅−セラミックス複合材料におけるAl粒子サイズは、好適なAl粒子サイズ分布を持つセラミックス出発原料を用いることにより望ましい値に設定することができる。そのようなセラミックス原料は、市販されているか、標準的な方法により得ることができる。任意でセラミックス出発原料を熱処理することにより、粒子サイズの微調整を行うことができる。
原則として当業者に公知であるが、粒子サイズ分布の測定は、粒子数(すなわち数分布)に基づくか、あるいは粒子の質量(すなわち質量分布)又は体積に基づいて行うことができる。本発明では、粒子サイズの分布を粒子数に基づいて求める。
好ましい実施形態によれば、セラミック基板の酸化アルミニウムは、粒子サイズの数分布において、5%以下の粒子の粒子サイズが0.1μm未満、より好ましくは0.3μm未満、さらに好ましくは0.5μm未満であり、及び/又は、少なくとも95%の粒子の粒子サイズが、15μm未満、より好ましくは10μm未満、さらに好ましくは7μm未満である。
一般に知られているが、粒子サイズ分布の特徴的な値として、特にd50、d及びd95がある。d50は、しばしば中央値とも呼ばれ、以下のように定義される:50%の粒子の径がd50よりも小さい。
同様に、dは、5%の粒子の径がdよりも小さいことを指し、d95は、95%の粒子の径がd95よりも小さいことを指す。
粒子サイズ分布の算術平均darithは、個々の粒子の粒子サイズの合計を粒子数で除することにより得られる。
酸化アルミニウムの粒子サイズの数分布は、好ましくはd95が≦15.0μm、より好ましくは4.0μmから15.0μmの範囲内、さらに好ましくは4.5μmから10.0μmの範囲内、なおさらに好ましくは5.0μmから8.0μmの範囲内である。酸化アルミニウムの粒子サイズ数分布のdは、好ましくは≧0.1μmであり;dは、より好ましくは0.1μmから2.5μmの範囲内、さらに好ましくは0.3μmから2.5μmの範囲内、なおさらに好ましくは0.5μmから2.0μmの範囲内である。これにより、銅−セラミックス複合材料におけるセラミック基板の機械的強度及び熱伝導性のさらなる最適化を実現することができる。
酸化アルミニウムの粒子サイズ数分布の好ましいd50は、例えば1.0μmから3.0μmの範囲内である。
本発明では、酸化アルミニウムの粒子サイズ数分布のd、d95及びd50値が、以下の条件を満たすように選択されることが好ましい:
9.5≧(d95−d)/d50≧0.7
粒子サイズ分布の対称性は、その分布の算術平均darithに対する中央値d50の比(すなわち、比d50/darith、以下、粒子サイズ数分布の対称性値Sとも呼ぶ。)により表すことができる。この比が1.0に近づくほど、粒子サイズ分布はより対称である。従って、好ましい実施形態によれば、酸化アルミニウムは、粒子サイズの数分布における中央値d50及び算術平均darithが、darithに対するd50の比(すなわちd50/darith)で0.75から1.10の範囲内、より好ましくは0.78から1.05の範囲内、さらに好ましくは0.80から1.00の範囲内である。これにより、銅−セラミックス複合材料におけるセラミック基板の機械的強度及び熱伝導性のさらなる最適化を実現することができる。例えば事前に原料基板の製造において、酸化アルミニウムにおける粒子サイズ分布の対称性を設定することのできる好適な方法は、当業者に公知である。例えば、粒子サイズ分布の対称性は、原料基板の製造における焼成時間及び焼成温度の影響を受ける。最終的な銅−セラミックス複合材料において上記の対称性値を実現することのできるAl基板は、市販されているか、標準的な方法により得ることができる。
粒子サイズ分布の広がりは、d95に対するdの比により表すことができる。好ましい実施形態によれば、酸化アルミニウムは、粒子サイズの数分布におけるd及びd95が、d95に対するdの比で0.1から0.4の範囲内、より好ましくは0.11から0.35の範囲内、さらに好ましくは0.12から0.30の範囲内である。これにより、金属−セラミックス複合材料におけるセラミック基板の機械的強度及び熱伝導性のさらなる最適化を実現することができる。
銅−セラミックス複合材料におけるセラミック基板の好適な厚さは、当業者に公知である。通常、セラミック基板は、その面積の少なくとも70%、より好ましくは少なくとも90%に渡って、厚さが0.2mmから1.2mmの範囲内である。セラミック基板の厚さは、例えば約0.38mmから約0.63mmである。
セラミック基板の厚さ(Dcer)及びセラミック基板における酸化アルミニウムの粒子サイズ数分布の中央値d50は、好ましくは、d50に対するDcerの比(すなわち、Dcer/d50)が、0.001から0.01の範囲内、より好ましくは0.002から0.009の範囲内、さらに好ましくは0.004から0.008の範囲内となるように選択される。このために、セラミック基板の厚さDcerを1箇所で求め、これを酸化アルミニウムの粒子サイズ数分布の中央値d50で除する。比Dcer/d50は、セラミック基板の面積の少なくとも70%、より好ましくは少なくとも90%に渡って、好ましくは0.05から0.40の範囲内である。
酸化アルミニウムは、任意で酸化ジルコニウム(ZrO)により強化されていてもよい。通常、このようなZrO強化Alは、全質量に対して酸化ジルコニウムを0.5重量%から30重量%の割合で含む。また、酸化ジルコニウムは、任意で1又は2種以上のドープ酸化物、特に酸化イットリウム、酸化カルシウム、酸化セリウム又は酸化マグネシウムにより、酸化ジルコニウム及び酸化アルミニウムの全質量に対して通常最大0.01重量%又は最大5重量%の割合でドープされていてもよい。
セラミック基板は、好ましくはAlを少なくとも65重量%含む。Alを強化するZrOが存在しない場合、セラミック基板は、Alを例えば少なくとも95重量%、より好ましくは96重量%含みうる。
ZrO強化酸化アルミニウムを用いる場合(上記のようにZrOは任意でドープされている。)、セラミック基板は、当該ZrO強化Alを例えば少なくとも96重量%、好ましくは少なくとも98重量%含みうる。
セラミック基板は、例えば、熱伝導性が≧20W/mK及び/又は曲げ破壊強度が≧400MPaであってよい。
セラミック基板は、単基板(Einzelsubstrat)として存在しうる。あるいは、セラミック基板は、当該セラミック基板を2つ以上の領域に分割する1又は2以上の(好ましくは直線の)選択的破壊線を有し、金属被膜(例えば、銅又は銅合金からなる被膜)がこれら領域の少なくとも1つに貼り付けられていてもよい。このような選択的破壊線を有する多数個取り基板(Mehrfachsubstrat)の構造としては、例えばDE4319944A1及びDE19927046A1を参照することができる。
金属−セラミックス複合材料におけるセラミック基板(単基板又は多数個取り基板のいずれであっても)の好適な寸法(長さx幅)は、当業者に公知である。例えば、セラミック基板は、長さx幅の寸法が(180mmから200mm)x(130mmから150mm)又は(180mmから200mm)x(270mmから290mm)であってよい。より小さい寸法、例えば(8mmから12mm)x(8mmから12mm)も可能である。
上記のように、セラミック基板上には銅又は銅合金の被膜が存在する。
セラミック基板の金属化には、ダイレクト銅ボンディング(通常DCB法と呼ばれる。)又は活性化金属ろう付け(通常AMB法と呼ばれる。)等の様々な方法を用いることができる。
銅又は銅合金の粒子サイズは、好ましくは10μmから300μmの範囲内、より好ましくは15μmから250μmの範囲内、さらに好ましくは20μmから210μmの範囲内である。この粒子サイズの範囲内において、銅又は銅合金は、銅−セラミックス複合材料が度重なる温度変化ストレスにさらされるような場合でも、セラミック基板への強い接着を示す。同時に、この粒子サイズの銅又は銅合金は、効率的なワイヤーボンディングを可能にする。優れたワイヤーボンディングを示す金属被膜は、ボンドワイヤーと強固な結合を形成して、望ましくないボンドワイヤーの脱落のリスクを最小化する。本発明において、これらの値は、銅又は銅合金の粒子サイズ分布の下限(粒子サイズがそれより小さくならない)及び上限(それを超えない)である。したがって、好ましい実施形態によれば、銅又は銅合金は、上記の範囲外となる粒子を持たない。よって、銅の最小及び最大粒子サイズをdmin(Cu)及びdmax(Cu)とすると、好ましくはdmin(Cu)が≧10μmかつdmax(Cu)が≦300μm、より好ましくはdmin(Cu)が≧15μmかつdmax(Cu)が≦250μm、さらに好ましくはdmin(Cu)が≧20μmかつdmax(Cu)が≦210μmである。
好適な粒子サイズ分布を有する銅箔原料を用いることによって、銅−セラミックス複合材料における粒子サイズを望ましい値に設定することができる。そのような銅箔は、市販されているか、標準的な方法により得ることができる。任意で原料箔を熱処理することにより、粒子サイズの微調整を行うことができる。
好ましい実施形態によれば、銅又は銅合金は、粒子サイズの数分布において、5%以下の粒子の粒子サイズが15μm未満、好ましくは20μm未満、より好ましくは25μm未満であり、及び/又は、少なくとも95%の粒子の粒子サイズが、250μm未満、好ましくは230μm未満、より好ましくは200μm未満である。
銅又は銅合金の粒子サイズの数分布は、好ましくはd95が≦250μm、より好ましくは140μmから250μmの範囲内、さらに好ましくは140μmから230μmの範囲内、なおさらに好ましくは150μmから200μmの範囲内である。銅又は銅合金の粒子サイズ数分布のdは、好ましくは≧15μmであり;dは、より好ましくは15μmから80μmの範囲内、さらに好ましくは20μmから75μmの範囲内、なおさらに好ましくは25μmから70μmの範囲内である。これにより、銅又は銅合金の耐熱衝撃性及びボンディング挙動のさらなる最適化を実現することができる。
銅又は銅合金の粒子サイズ数分布の好ましいd50は、例えば55μmから115μmの範囲内である。
本発明において、銅又は銅合金の粒子サイズ数分布のd、d50及びd95値は、以下の条件を満たすように選択されることが好ましい:
4.0≧(d95−d)/d50≧0.5
好ましい実施形態によれば、銅又は銅合金は、粒子サイズの数分布における中央値d50及び算術平均darithが、darithに対するd50の比(すなわちd50/darith、以後、しばしば銅又は銅合金の粒子サイズ数分布の対称性値S(Cu)とも称する。)で0.75から1.10の範囲内、より好ましくは0.78から1.05の範囲内、さらに好ましくは0.80から1.00の範囲内である。これにより、耐熱衝撃性及びワイヤーボンディング特性のさらなる最適化を実現することができる。銅、例えば事前に原料銅箔における粒子サイズ分布の対称性を設定することのできる好適な方法は、当業者に公知である。例えば、銅箔における粒子サイズ分布の対称性は、好適な処理温度又はローラー処理の影響を受けうる。最終的な銅−セラミックス複合材料において上記の対称性値を実現することのできる原料銅箔は、市販されているか、標準的な方法により得ることができる。
好ましい実施形態によれば、銅又は銅合金は、粒子サイズの数分布におけるd及びd95が、d95に対するdの比で0.1から0.4の範囲内、より好ましくは0.11から0.35の範囲内、さらに好ましくは0.12から0.30の範囲内である。これにより、耐熱衝撃性及びワイヤーボンディング特性のさらなる最適化を実現することができる。
銅又は銅合金の平均粒子形状係数R(Cu)は、好ましくは≧0.40、より好ましくは≧0.60又は≧0.80である。上記のように、個々の粒子の形状は、形状係数Rにより表すことができる。これは、dK,maxの長さを半分にする箇所においてdK,maxに直交する粒子径dK,orthoに対する最大粒子径dK,maxの比である(すなわち、R=dK,ortho/dK,max)。銅の平均粒子形状係数R(Cu)は、粒子の形状係数Rの算術平均から求めることができる。銅、例えば事前に原料銅箔における粒子形状を設定することのできる好適な方法は、当業者に公知である。例えば、銅箔における粒子形状は、好適な処理温度又はローラー処理の影響を受けうる。最終的な銅−セラミックス複合材料において上記の平均粒子形状係数R(Cu)を実現することのできる原料銅箔は、市販されているか、標準的な方法により得ることができる。
銅−セラミックス複合材料における銅又は銅合金からなる被膜の好適な厚さは、当業者に公知である。下記のように、銅又は銅合金の一部は、例えば周辺弱体化部を形成するために、被膜のある部分、特に周辺領域で再び除去される。したがって、本発明では、金属被膜は様々な厚さを有しうるものである。通常、銅又は銅合金からなる被膜は、その面積の少なくとも70%に渡って、厚さが0.2mmから1.2mmの範囲内である。例えば、厚さは約300μmであってよい。
銅又は銅合金からなる被膜の厚さ(DCu)及び銅又は銅合金の粒子サイズ数分布の中央値d50は、好ましくはd50に対するDCuの比が0.05から0.40の範囲内となるように選択される。このために、銅又は銅合金の厚さDCuを被膜の1箇所で求め、これを銅又は銅合金の粒子サイズ数分布の中央値d50で除する。比DCu/d50は、銅又は銅合金からなる被膜の面積の少なくとも70%、より好ましくは少なくとも90%に渡って、好ましくは0.05から0.40の範囲内である。
被膜の銅は、好ましくは純度が≧99.50%、より好ましくは≧99.90%、さらに好ましくは≧99.95%あるいは≧99.99%である。
銅又は銅合金からなる被膜は、好ましくはDCB法によりセラミック基板に貼り付けられる。上記のように、通常のDCB法は、例えば以下の工程からなる:
− 銅箔を酸化して、表面に酸化銅層を形成する;
− 酸化銅層を形成した銅箔をセラミック基板に載せる;
− 複合材料を<1083℃の温度(例えば1065℃から1080℃の温度範囲内)で加熱する;
− 室温まで冷却する。
DCB法の結果として、スピネル結晶子(例えば、銅−アルミニウムスピネル)が、銅又は銅合金からなる被膜とセラミック基板の間に存在しうる。
銅又は銅合金からなる被膜は、例えばセラミック基板の片面のみに貼り付けられていてもよい。あるいは、セラミック基板の両面(すなわち上面及び下面)に銅又は銅合金からなる被膜が設けられていてもよい。図2に、セラミック基板1が銅又は銅合金からなる被膜2を下面及び上面の両方に有する、例示的な銅−セラミックス複合材料を示す。図3に、セラミック基板1の複数の領域のそれぞれに銅又は銅合金からなる被膜2を設けた例示的な銅−セラミックス複合材料を示す。下記のように、個々の金属化領域は、選択的破壊線(図3では図示せず。)により互いに分離されることで、当該選択的破壊線に沿った破壊により個別化されてもよい。
電気接触部を形成するために、銅又は銅合金からなる被膜を少なくとも部分的に構造化することができる。金属被膜の構造化は、公知の方法、特に(例えばエッチングマスクを用いた)エッチング法により行うことができる。
エッチング法では、銅又は銅合金を、いくつかの小領域において完全に除去して、セラミック基板の表面を当該小領域において露出させる。さらに、銅又は銅合金からなる被膜は、1又は2以上の凹部(好ましくは円形凹部)を有していてもよく、これは、エッチング法により凹部を導入する領域の銅又は銅合金を一部のみ除去することにより得てもよく、この領域においてセラミック基板の表面は、依然として銅又は銅合金に被覆されている。それに代えて、又はそれに加えて、銅又は銅合金をセラミックス表面まで完全にエッチングしてもよい。銅又は銅合金からなる被膜の好ましくは周辺領域におけるこのような凹部の可能な配置に関しては、例えばDE4004844C1及びDE4318241A1が参照される。
銅又は銅合金の粒子特性とセラミック基板の酸化アルミニウムの粒子特性を調和させることによって、銅−セラミックス複合材料の特性のさらなる改善を実現することができる。
好ましい実施形態によれば、d50(Cu)に対するd50(Al)の比は、0.008から0.055の範囲内、好ましくは0.010から0.045の範囲内である。これにより、銅−セラミックス複合材料における銅−セラミックス接着及び耐熱衝撃性のさらなる最適化を実現することができる。
好ましい実施形態によれば、銅又は銅合金は、粒子サイズの数分布における中央値d50、算術平均darith及び対称性値S(Cu)=d50/darithを有し、酸化アルミニウムは、粒子サイズの数分布における中央値d50、算術平均darith及び対称性値S(Al)=d50/darithを有し、S(Cu)及びS(Al)が以下の条件を満たす:
0.7≦S(Al)/S(Cu)≦1.4。
より好ましくは、S(Cu)及びS(Al)が以下の条件を満たし:
0.74≦S(Al)/S(Cu)≦1.35;
さらに好ましくは以下の条件を満たす:
0.80≦S(Al)/S(Cu)≦1.25。
これにより、銅−セラミックス複合材料の耐熱衝撃性を改善することができる。
より好ましい実施形態によれば、酸化アルミニウムの平均粒子形状係数R(Al)及び銅又は銅合金の平均粒子形状係数R(Cu)が、以下の条件を満たす:
0.5≦R(Al)/R(Cu)≦2.0。
さらにより好ましくは、形状係数の比は、
0.75≦R(Al)/R(Cu)≦1.5であり、
なおより好ましくは、
0.80≦R(Al)/R(Cu)≦1.20
である。
これにより、銅−セラミックス複合材料の耐熱衝撃性のさらなる最適化を実現することができる。
好ましい実施形態によれば、酸化アルミニウムは、粒子サイズがdmin(Al)からdmax(Al)の範囲内であり、銅又は銅合金は、粒子サイズがdmin(Cu)からdmax(Cu)の範囲内であり、dmax(Cu)に対するdmin(Al)の比及びdmin(Cu)に対するdmax(Al)の比が、以下の条件(i)及び(ii)を満たす:
(i) dmin(Al)/dmax(Cu)≧1x10−5
(ii) 2.5≧dmax(Al)/dmin(Cu)。
max(Cu)に対するdmin(Al)の比及びdmin(Cu)に対するdmax(Al)の比は、さらに好ましくは以下の条件(i)及び(ii)を満たし:
(i) dmin(Al)/dmax(Cu)≧0.001;
(ii) 1.5≧dmax(Al)/dmin(Cu);
最も好ましくは以下の条件(i)及び(ii)を満たす:
(i) dmin(Al)/dmax(Cu)≧0.002;
(ii) 1.0≧dmax(Al)/dmin(Cu)。
特に好ましい実施形態によれば、
(i) 0.005≧dmin(Al)/dmax(Cu)≧0.002;かつ
(ii) 1.0≧dmax(Al)/dmin(Cu)≧0.05である。
これにより、度重なる温度変化ストレスにも耐える、金属被膜とセラミック基板との間の強い接着を実現することができる。
上記のように、銅の最小及び最大粒子サイズをdmin(Cu)及びdmax(Cu)とすると、好ましくはdmin(Cu)が≧10μmかつdmax(Cu)が≦300μm、より好ましくはdmin(Cu)が≧15μmかつdmax(Cu)が≦250μm、さらに好ましくはdmin(Cu)が≧20μmかつdmax(Cu)が≦210μmである。
本発明によれば、さらに、少なくとも1種の上記の金属−セラミックス複合材料及び1又は2以上のボンドワイヤーを含むモジュールが提供される。1又は2以上のボンドワイヤーは、通常、銅又は銅合金からなる被膜に接合される。ワイヤーを金属被膜に接合する好適な方法は、当業者に公知である。モジュールは、さらに1又は2以上の電子部品、例えば1又は2以上のチップを含みうる。
本発明において、セラミック基板の酸化アルミニウムの粒子構造及び金属被膜の銅又は銅合金の粒子構造は、以下のようにして測定される:
(セラミック基板の酸化アルミニウムの粒子サイズ分布)
セラミック基板の表面の走査顕微鏡写真(SEM像)を撮影する。研磨切片の形態の特別な試料調製は不要である。SEM像は、セラミック基板の銅で覆われていた箇所をエッチングにより露出させて撮影する。
粒子サイズは、直線交差法により求める。直線交差法は、当業者に公知であり、例えばASTM112−13に記載されている。
ラインパターンが少なくとも50個のAl粒子と交差するような倍率を選択する。セラミック基板が化学組成の異なる粒子、例えばZrO粒子を含む場合は、これらはSEM像では二次電子コントラストによりAl粒子と簡単に見分けることができるので、その後の算出には含めない。
本発明においては、光学顕微鏡写真上でx方向に2本の平行線を引き、y方向に2本の平行線を引いた。これらのラインにより、画像はそれぞれ幅の等しい3つの帯に分割される。図4にこれを模式的に示す。粒子がラインの1本と長さLにわたって交差した場合、この長さLを粒子サイズとする。このようにして、ラインの1本と交差する各粒子の粒子サイズが得られる。2本のラインの交点では、1つの粒子に対して2つの値が得られ、これらはどちらも粒子サイズ分布の測定に用いられる。
交差した粒子の粒子サイズから結果として粒子サイズ分布が得られ、そこからd、d50及びd95値や算術平均darithを求めることができる。
上記のように、また当業者に公知であるように、しばしば中央値とも呼ばれるd50は、以下に相当する:50%の粒子の直径がd50よりも小さい。同様に、dとは、5%の粒子の直径がdよりも小さくなる値であり、d95とは、95%の粒子の直径がd95よりも小さくなる値である。
粒子サイズ分布の算術平均は、個々の粒子の粒子サイズの合計を交差した粒子の数で除することにより得られる。
(銅又は銅合金の粒子サイズ分布)
銅又は銅合金からなる被膜の表面の光学顕微鏡写真を撮る(被覆された基板表面と平行)。研磨切片の形態の特別な試料調製は不要である。
粒子サイズは、直線交差法により求める。直線交差法は、当業者に公知であり、例えばASTM112−13に記載されている。
ラインパターンが少なくとも50個の粒子と交差するような倍率を選択する。
直線交差法によるさらなる評価に関しては、上記の酸化アルミニウムについての記載を参照しうる。
このように、銅又は銅合金の粒子サイズ及びAlの粒子サイズは、どちらも被覆された基板表面と平行な面又は前者と同一面において求められる。
(個々の粒子の形状係数、平均粒子形状係数)
(酸化アルミニウム)
粒子サイズ分布の測定に用いたSEM像を用いる。
個々の粒子の形状係数を求めるため、以下の手順を用いる:
最も長い寸法dK,maxを求める。続いて、dK,maxの長さを半分にする箇所においてdK,maxに直交する粒子径dK,orthoを求める。個々の粒子Rの形状係数は、dK,maxに対するdK,orthoの比、すなわちR=dK,ortho/dK,maxとして得られる。
図1に、楕円形の粒子構造を持つ粒子についてこれを模式的に示す。粒子の形状の2次元投影が円形に近づくにつれ、粒子の形状係数の値は1.0に近づく。したがって、形状係数は、粒子の真円度(Kreisfoermigkeit)/円形度(rundheit)の尺度でもある。
SEM像の少なくとも50個の粒子について、形状係数を求める。通常、直線交差法の際にラインと交差した粒子を評価する。
そして、酸化アルミニウムの平均粒子形状係数は、個々のAl粒子の形状係数の算術平均(すなわち、個々の形状係数の合計を試験した粒子数で除したもの)として得られる。
(銅、銅合金)
粒子サイズ分布の測定に用いた光学顕微鏡写真を用いる。
銅又は銅合金の個々の粒子の形状係数及び平均粒子形状係数の測定に関しては、上記のAlについての記載を参照することができる。
銅又は銅合金の粒子形状係数及びAlの粒子形状係数は、どちらも被覆された基板表面と平行な面又は前者と同一面において求める。
本発明の銅−セラミック基板の製造に好ましく用いられるボンディング法を以下に記載する:
本発明において、銅被膜をセラミック基板に貼り付けるために好ましく用いられる典型的な方法は、例えば文書US3744120、US3994430、EP0085914A又はDE2319854Aにより公知であり、これらの対応する開示は、本発明に参照により援用される。
これらに記載される製造方法のすべて、例えばダイレクト銅ボンディング法(DCB法)では、本質的に均一な酸化銅層が得られるように、最初に銅箔を酸化するのが一般的である。次いで、得られた銅箔をセラミック基板上に配置し、セラミック基板と銅箔の複合材料を約1025℃から1083℃の範囲内の処理温度、すなわちボンディング温度に加熱すると、その結果として金属化セラミック基板が得られる。ボンディング後、銅箔は被膜となる。最後に、得られる金属化セラミック基板を冷却する。
セラミック基板と銅箔の接合は、加熱炉、通常はボンディング炉で行う。しばしばトンネル窯とも呼ばれるこのボンディング炉は、特に、長いトンネル状の炉内空間(マッフルとも呼ばれる。)と、加熱装置により加熱された炉内空間で処理される材料を輸送するための輸送装置とを有し、当該輸送装置は、例えば柔軟で耐熱性のあるコンベアベルトである輸送部を備える。セラミック基板は、銅箔と共にコンベアベルトの支持体上に配置され、次いでコンベアベルトによってボンディング炉の加熱領域に通されて、所望のボンディング温度に達する。ボンディング法の最後に、得られた本発明に係るセラミック基板と銅箔の複合材料を再び冷却する。
この方法は、原則として、片面が金属化されたセラミック基板の製造に用いられ、両面が金属化された基板の製造にも用いられる。両面が金属化された基板の製造は、通常、2段階ボンディング法、すなわち2段階の単層法(SLB法)により行われる。本発明においては、2段階ボンディング法を用いるのが好ましい。
本発明に係る両面が金属化されたセラミック基板を製造するための2段階ボンディング法では、炉に2回通すことで、セラミック基板の両面の銅箔にセラミックスが接合される。
このために、最初にセラミック基板を支持体に載置し、次いで上面、すなわち支持体とは反対側を銅箔で覆う。熱の作用によりセラミック基板のこの面に金属層が接合され、次いで得られたものを冷却する。
続いて、基板を裏返し、第2のボンディング工程により同様にして他の面に金属層、すなわち銅箔を設ける。
単基板(Einzel−Teil−Karten)又は複数の単基板に割ることができる大型基板(Grosskarten)を製造することが可能である。
以下の実施例では、セラミック基板におけるAl粒子の形状係数が、どのように銅−セラミックス複合材料の機械的強度に影響するのかを示す。
セラミック基板における酸化アルミニウムの形状係数が異なる3種の銅−セラミックス試料をDCB法により作製した。
銅−セラミックス複合材料1、以下「K−K−V1」と称する(本発明)
銅−セラミックス複合材料2、以下「K−K−V2」と称する(本発明)
銅−セラミックス複合材料3、以下「K−K−V3」と称する(比較試料)
これら3種の銅−セラミックス複合材料のそれぞれについて、セラミック基板の上面及び下面の両方に銅被膜を設けた。まず、SLB法により銅被膜をセラミック基板の片面に貼り付けた。次いで、SLB法によりさらなる銅被膜をセラミック基板の反対側の面に設けて、セラミックスの2面のそれぞれに銅箔を貼り付けた銅−セラミック基板を形成した。次いで、各試料について、2面の銅被膜の1面をエッチング法により構造化(全試料で同一の構造化)した。3つの実施例のすべてにおいて、基板はAlを96重量%有していたが、その粒子構造は異なっていた。
3種の銅−セラミックス複合材料は、セラミック基板が以下の寸法:
セラミック基板の厚さ:0.38mm;
セラミック基板の長さx幅:190x140mmであった。
各例の銅被膜は、厚さが0.3mmであった。
図5に、K−K−V1のセラミック基板表面のSEM像を示す。これを用いて、Alの粒子構造を測定した。
試料K−K−V1からK−K−V3のAlの平均形状係数R(Al)を表1に示す。
3種の試料のそれぞれについて、銅−セラミックス複合材料におけるセラミック基板の曲げ破壊強度を測定した。
曲げ破壊強度の測定では、破壊に至る力を3点曲げにより測定した。測定はDIN EN843−1(2008)に基づくが、試料の幾何学的形状は、試料が20×40×0.38mm又は20×40×0.63mmの寸法を有するという点で、DIN EN843−1(2008)とは異なる。
結果を以下の表1に要約する。
Figure 0006858786
実施例に実証されるように、丸く又は円形の粒子の割合が高い、本発明に係るAl粒子構造によって、機械的強度の改善を実現することができる。

Claims (7)

  1. 銅−セラミックス複合材料であって、
    − セラミック基板であって、酸化ジルコニウムを有さない酸化アルミニウムを少なくとも95重量%、又は、ZrO強化酸化アルミニウムを少なくとも96重量%含む、セラミック基板と、
    − 前記セラミック基板上に直接存在する銅又は銅合金からなる被膜と、を有し、
    前記ZrO強化酸化アルミニウムは全質量に対して酸化ジルコニウムを0.5重量%から30重量%の割合で含み、
    前記酸化アルミニウムの各粒子が、最大粒子径dK,max、dK,maxの長さを半分にする箇所においてdK,maxに直交する粒子径dK,ortho及び形状係数R=dK,ortho/dK,maxを有し、前記酸化アルミニウムは、前記各粒子の形状係数Rの算術平均として求められる平均粒子形状係数R(Al)が少なくとも0.8である、
    上記銅−セラミックス複合材料。
  2. 前記酸化ジルコニウムが、酸化イットリウム、酸化カルシウム、酸化セリウム又は酸化マグネシウムにより、酸化ジルコニウム及び酸化アルミニウムの全質量に対して最大5重量%の割合でドープされている、請求項1に記載の銅−セラミックス複合材料。
  3. 前記酸化アルミニウムは、粒子サイズが0.01μmから25μmの範囲内、より好ましくは0.3μmから23μmの範囲内、さらに好ましくは0.5μmから20μmである、請求項1又は請求項2に記載の銅−セラミックス複合材料。
  4. 銅又は銅合金からなる前記被膜が、DCB法によって前記セラミック基板に貼り付けられる、請求項1から請求項3のいずれか1項に記載の銅−セラミックス複合材料。
  5. 銅又は銅合金からなる前記被膜が、少なくとも部分的に電気接触部を形成する構造化部を有する、請求項1から請求項4のいずれか1項に記載の銅−セラミックス複合材料。
  6. 銅又は銅合金からなる前記被膜は、その面積の少なくとも70%に渡って、厚さが0.2mmから1.2mmの範囲内であり;及び/又は、前記セラミック基板は、その面積の少なくとも70%に渡って、厚さが0.2mmから1.2mmの範囲内である、請求項1から請求項5のいずれか1項に記載の銅−セラミックス複合材料。
  7. 請求項1から請求項6のいずれか1項に記載の銅−セラミックス複合材料を少なくとも1種と、1又は2以上のボンドワイヤーとを含むモジュール。
JP2018544121A 2016-02-26 2017-02-16 銅−セラミックス複合材料 Active JP6858786B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16157594.9 2016-02-26
EP16157594 2016-02-26
PCT/EP2017/053450 WO2017144332A1 (de) 2016-02-26 2017-02-16 Kupfer-keramik-verbund

Publications (3)

Publication Number Publication Date
JP2019515853A JP2019515853A (ja) 2019-06-13
JP2019515853A5 JP2019515853A5 (ja) 2020-05-14
JP6858786B2 true JP6858786B2 (ja) 2021-04-14

Family

ID=55443148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018544121A Active JP6858786B2 (ja) 2016-02-26 2017-02-16 銅−セラミックス複合材料

Country Status (7)

Country Link
US (1) US11584696B2 (ja)
EP (1) EP3419949B1 (ja)
JP (1) JP6858786B2 (ja)
KR (1) KR102250917B1 (ja)
CN (1) CN108698935B (ja)
HU (1) HUE053549T2 (ja)
WO (1) WO2017144332A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016203058B3 (de) * 2016-02-26 2017-05-18 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund und Modul
DE102016203112B4 (de) 2016-02-26 2019-08-29 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
CN113929486B (zh) * 2020-06-29 2022-12-09 比亚迪股份有限公司 一种陶瓷覆铜板及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766634A (en) 1972-04-20 1973-10-23 Gen Electric Method of direct bonding metals to non-metallic substrates
US3744120A (en) 1972-04-20 1973-07-10 Gen Electric Direct bonding of metals with a metal-gas eutectic
US3994430A (en) 1975-07-30 1976-11-30 General Electric Company Direct bonding of metals to ceramics and metals
DE3204167A1 (de) 1982-02-06 1983-08-11 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zum direkten verbinden von metallstuecken mit oxidkeramiksubstraten
DE4004844C1 (de) 1990-02-16 1991-01-03 Abb Ixys Semiconductor Gmbh Verfahren zur Herstellung einer strukturierten Kupfermetallisierung auf einem Keramiksubstrat
DE4318241C2 (de) 1993-06-02 1995-06-29 Schulz Harder Juergen Metallbeschichtetes Substrat mit verbesserter Widerstandsfähigkeit gegen Temperaturwechselbeanspruchung
DE4319944C2 (de) 1993-06-03 1998-07-23 Schulz Harder Juergen Mehrfach-Substrat sowie Verfahren zu seiner Herstellung
JP2000239542A (ja) * 1999-02-18 2000-09-05 Matsushita Electric Ind Co Ltd 粉体組成物及びその製造方法、並びに、熱伝導基板及びその製造方法
DE19927046B4 (de) 1999-06-14 2007-01-25 Electrovac Ag Keramik-Metall-Substrat als Mehrfachsubstrat
JP3929660B2 (ja) * 1999-10-29 2007-06-13 京セラ株式会社 絶縁性アルミナ質基板およびアルミナ質銅貼回路基板
JP4206915B2 (ja) * 2002-12-27 2009-01-14 三菱マテリアル株式会社 パワーモジュール用基板
DE102004012231B4 (de) 2004-03-09 2006-03-23 Curamik Electronics Gmbh Metall-Keramik-Substrat
JP2010120801A (ja) 2008-11-19 2010-06-03 Panasonic Corp セラミックス基板
EP2415728B1 (en) 2009-04-03 2017-05-10 Sumitomo Metal (SMI) Electronics Devices. Inc. Sintered ceramic and substrate comprising same for semiconductor device
JP5081332B2 (ja) * 2010-05-31 2012-11-28 西村陶業株式会社 熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびled発光モジュール
JP2012026863A (ja) 2010-07-23 2012-02-09 Toray Ind Inc フィルムの検査装置、検査方法、及び製造方法
JP5534610B2 (ja) 2011-03-31 2014-07-02 Jx日鉱日石金属株式会社 Cu−Co−Si系合金条
JP2013032265A (ja) 2011-07-01 2013-02-14 Maruwa Co Ltd 半導体装置用アルミナジルコニア焼結基板及びその製造方法
WO2013008920A1 (ja) * 2011-07-14 2013-01-17 株式会社東芝 セラミックス回路基板
WO2013015355A1 (ja) * 2011-07-28 2013-01-31 株式会社東芝 酸化物系セラミックス回路基板の製造方法および酸化物系セラミックス回路基板
DE102012110322B4 (de) * 2012-10-29 2014-09-11 Rogers Germany Gmbh Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
CN104072186B (zh) 2013-03-27 2016-03-30 比亚迪股份有限公司 一种陶瓷覆铜板的制备方法
JP6076486B2 (ja) 2014-02-26 2017-02-08 日本碍子株式会社 半導体用複合基板のハンドル基板
DE102016203112B4 (de) 2016-02-26 2019-08-29 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
DE102016203030A1 (de) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund

Also Published As

Publication number Publication date
JP2019515853A (ja) 2019-06-13
US11584696B2 (en) 2023-02-21
CN108698935A (zh) 2018-10-23
KR102250917B1 (ko) 2021-05-12
WO2017144332A1 (de) 2017-08-31
EP3419949A1 (de) 2019-01-02
KR20180111938A (ko) 2018-10-11
US20190055167A1 (en) 2019-02-21
HUE053549T2 (hu) 2021-07-28
CN108698935B (zh) 2021-05-25
EP3419949B1 (de) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5598522B2 (ja) 回路基板及びこれを用いた半導体モジュール、回路基板の製造方法
CN109071365B (zh) 铜-陶瓷复合物
CN108367994B (zh) 铜陶瓷基板、制备铜陶瓷基板的铜半成品及制备铜陶瓷基板的方法
JP6858786B2 (ja) 銅−セラミックス複合材料
JP6817320B2 (ja) 銅−セラミックス複合材料
JP6829261B2 (ja) 銅−セラミック複合材
JP6817319B2 (ja) 銅/セラミック複合材
JP2022087102A (ja) 金属半製品を製造する方法、金属-セラミック基板を製造する方法および金属-セラミック基板
JP6777752B2 (ja) 銅−セラミックス複合材料

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210324

R150 Certificate of patent or registration of utility model

Ref document number: 6858786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250