JP6850558B2 - 輻射式空調システム - Google Patents

輻射式空調システム Download PDF

Info

Publication number
JP6850558B2
JP6850558B2 JP2016139710A JP2016139710A JP6850558B2 JP 6850558 B2 JP6850558 B2 JP 6850558B2 JP 2016139710 A JP2016139710 A JP 2016139710A JP 2016139710 A JP2016139710 A JP 2016139710A JP 6850558 B2 JP6850558 B2 JP 6850558B2
Authority
JP
Japan
Prior art keywords
thermal valve
return temperature
terminal
temperature
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016139710A
Other languages
English (en)
Other versions
JP2018009750A (ja
Inventor
浩文 井田
浩文 井田
中山 功
功 中山
香也子 濱中
香也子 濱中
和幸 小林
和幸 小林
真典 上田
真典 上田
裕周 大矢
裕周 大矢
眞柄 隆志
隆志 眞柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Corona Corp
Original Assignee
Tokyo Electric Power Co Inc
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Corona Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2016139710A priority Critical patent/JP6850558B2/ja
Publication of JP2018009750A publication Critical patent/JP2018009750A/ja
Application granted granted Critical
Publication of JP6850558B2 publication Critical patent/JP6850558B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、熱源機で生成された温水又は冷水を用いて輻射端末において暖房又は冷房を実行可能な輻射式空調システムに関するものである。
従来よりこの種のヒートポンプ式空調システムにおいては、特許文献1記載のように、熱源機から導入管路(往き管路)を介し供給される複数の輻射端末(床暖房パネル)への温水又は冷水を、対応する各熱動弁の開閉によって調整するものがあった。このシステムにおいては、輻射端末からの温水又は冷水の戻り温度が予め設定された目標戻り温度に到達したら、対応する熱動弁が閉じ状態に制御される。
特開2015−17748号公報
ところで、一般に、輻射端末は、ファン等で室内空気を循環させる他の熱交換端末とは異なり、室内空気との熱交換量が比較的小さい。したがって、前記した従来のものにおいて前記戻り温度が前記目標戻り温度に達し熱動弁が閉じられる際、輻射端末の周辺は比較的暖かく(暖房時)又は涼しく(冷房時)ても、室内全体としては暖かさ又は涼しさが不十分なままとなり、ユーザにとって十分な暖房感又は冷房感が得られないおそれがあった。
上記課題を解決するために、本発明の請求項1では、温水又は冷水を生成する熱源機と、前記熱源機で生成され導入管路を介して供給された前記温水又は冷水を用いて室内側空気に対する放熱又は吸熱により暖房又は冷房を行うとともに、放熱又は吸熱後の前記温水又は冷水を導出管路を介し前記熱源機へと還流させる、少なくとも1つの輻射端末を含む複数の熱交換端末と、を有し、前記導入管路は、1つの共通往き管と、前記共通往き管よりも下流側に分岐して接続され、前記複数の熱交換端末それぞれへ向かう複数の個別往き管と、前記複数の個別往き管それぞれに配置され、対応する前記個別往き管をそれぞれ開閉可能な複数の熱動弁とを備え、前記導出管路は、1つの共通戻り管と、前記共通戻り管よりも上流側に集結して接続され、前記複数の熱交換端末それぞれから戻る複数の個別戻り管と、前記複数の個別戻り管それぞれに配置され、対応する前記個別戻り管における前記温水又は冷水の戻り温度をそれぞれ検出する複数の戻り温度検出手段とを備え、前記複数の熱動弁は、前記複数の戻り温度検出手段の検出結果に基づき、熱動弁制御手段によって個別に開閉動作を制御される、輻射式空調システムにおいて、前記熱動弁制御手段は、前記輻射端末に関わる前記熱動弁において、当該輻射端末に関わる前記熱動弁が開き状態とされた後所定の熱動弁開放時間が経過する前に前記戻り温度検出手段により検出された対応する前記個別戻り管の前記戻り温度が予め設定された目標戻り温度に到達する、負荷が小さい場合にはし、その後前記熱動弁開放時間が経過したときに、当該熱動弁を閉じ状態に制御すること、及び、若しくは、当該輻射端末に関わる前記熱動弁が前記開き状態とされた後に前記戻り温度が前記目標戻り温度に到達しない状態のまま前記熱動弁開放時間が経過する、負荷が大きい場合には、その後前記戻り温度が前記目標戻り温度に到達したときに、当該熱動弁を閉じ状態に制御すること、により、当該熱動弁が前記開き状態とされた後に前記熱動弁開放時間が経過していて、かつ、前記開き状態において前記戻り温度が前記目標戻り温度に到達している場合に、当該熱動弁を閉じ状態に制御するものである。
また、請求項2では、前記熱動弁制御手段は、前記輻射端末の暖房運転又は冷房運転を開始した直後においては、当該輻射端末に関わる前記熱動弁が前記開き状態とされた後に前記戻り温度が前記目標戻り温度に到達しない状態のまま前記熱動弁開放時間が経過し、その後前記戻り温度が前記目標戻り温度に到達したときに、当該熱動弁を閉じ状態に制御するものである。
また、請求項3では、前記熱動弁制御手段は、前記輻射端末の暖房運転又は冷房運転を開始した後、所定の運転時分が経過した後においては、当該輻射端末に関わる前記熱動弁が前記開き状態とされた後前記熱動弁開放時間が経過する前に前記戻り温度が前記目標戻り温度に到達し、その後前記熱動弁開放時間が経過したときに、当該熱動弁を閉じ状態に制御するものである。
また、請求項4では、前記熱動弁制御手段は、前記輻射端末の前記暖房時において前記目標戻り温度が高いほど当該輻射端末に関わる前記熱動弁の前記熱動弁開放時間を長くするか、又は、前記輻射端末の前記冷房時において前記目標戻り温度が低いほど当該輻射端末に関わる前記熱動弁の前記熱動弁開放時間を長くするものである。
また、請求項5では、前記熱動弁制御手段は、前記輻射端末に関わる前記熱動弁において、当該熱動弁の閉じ状態において、予め設定された熱動弁閉止時間が経過した場合に、当該熱動弁を開き状態に制御し、かつ、前記輻射端末の前記暖房時において前記目標戻り温度が高いほど当該輻射端末に関わる前記熱動弁の前記熱動弁閉止時間を短くするか、又は、前記輻射端末の前記冷房時において前記目標戻り温度が低いほど当該輻射端末に関わる前記熱動弁の前記熱動弁閉止時間を短くするものである。
また、請求項6では、前記輻射式空調システムにおいて用いられる、前記輻射端末を含む熱交換端末の種類の入力を受け付ける、端末種類受付手段を備えたリモコン装置をさらに有し、前記熱動弁制御手段は、前記リモコン装置の前記端末種類受付手段で特定種類の前記輻射端末が入力された場合の当該特定種類の輻射端末に関わる前記熱動弁の制御については、当該熱動弁が前記開き状態とされた後に前記所定の熱動弁開放時間が経過していて、かつ、前記戻り温度が前記目標戻り温度に到達している場合に、当該熱動弁を閉じ状態に制御するものである。
また、請求項7では、前記輻射式空調システムにおいて用いられる、前記輻射端末を含む熱交換端末の種類の入力を受け付ける、端末種類受付手段を備えたリモコン装置をさらに有し、前記熱動弁制御手段は、前記リモコン装置の前記端末種類受付手段での受付結果に応じて、(a)前記輻射端末に関わる前記熱動弁において、当該熱動弁が前記開き状態とされた後に前記所定の熱動弁開放時間が経過していて、かつ、前記戻り温度が前記目標戻り温度に到達している場合に、当該熱動弁を閉じ状態に制御する、第1制御モード;(b)前記戻り温度が前記目標戻り温度に到達した場合、前記輻射端末に関わる前記熱動弁において、当該熱動弁が前記開き状態とされた後に前記所定の熱動弁開放時間が経過していたか否かを問わず、当該熱動弁を閉じ状態に制御する、第2制御モード;のいずれの制御モードとするかを決定するものである。
また、請求項8では、前記熱源機は、圧縮機、膨張弁、熱源側熱交換器を冷媒配管で接続したヒートポンプ装置と、このヒートポンプ装置から前記冷媒配管を介し冷媒の供給を受けて水との熱交換により前記温水又は前記冷水を生成する水熱交換器とを有する、ヒートポンプ熱源機であるものである。
この発明の請求項1によれば、熱源機の水熱交換器により生成された温水又は冷水が、共通往き管及び個別往き管を介し熱交換端末に供給されて放熱又は吸熱により暖房又は冷房が行われる。その後、熱交換端末からの温水又は冷水は、前記個別戻り管及び前記共通戻り管を介し、前記水熱交換器へと還流される。このとき、個別戻り管に設けた戻り温度検出手段が検出した温水又は冷水の戻り温度に応じて、個別往き管に設けられた熱動弁が開閉制御されることで、熱交換端末の暖房又は冷房運転の制御が個別に行われる。
ここで、前記複数の熱交換端末には、少なくとも1つの輻射端末が含まれている。この輻射端末に対し、例えば、温水又は冷水の戻り温度が目標戻り温度(予め設定)に到達したときに直ちに対応する熱動弁を閉じ状態にする制御手法(以下適宜、「従来手法」という)を適用した場合、以下のような不都合が生じうる。すなわち、一般に、輻射端末は、ファン等で室内空気を循環させる他の熱交換端末とは異なり、室内空気との熱交換量が比較的小さい。したがって、暖房運転時の温水の温度低下量又は冷房運転時の温度上昇量も小さいので、前記戻り温度が前記目標戻り温度に到達しやすい傾向となる。この結果、前記戻り温度が前記目標戻り温度に達したときでも、実際は、輻射端末の周辺は比較的暖かい(暖房時)又は涼しい(冷房時)環境でも、室内全体としては暖かさ又は涼しさが不十分である可能性がある。このような状態で上記目標戻り温度の到達により熱動弁が閉じられると、前記共通往き管からの温水又は冷水が輻射端末に供給されなくなって、室内の暖房又は冷房が不十分なまま暖房又は冷房運転が停止する。この結果、ユーザの意図する温度レベルに見合った暖房感又は冷房感が得られないおそれがある。特に例えば暖房運転又は冷房運転を開始して十分に時間がたったときなど暖房負荷又は冷房負荷が比較的小さい場合に、この傾向が顕著となりうる。
そこで請求項1によれば、熱動弁制御手段は、前記輻射端末に関わる前記熱動弁においては、温水又は冷水の戻り温度が前記目標戻り温度に到達したことのみによって熱動弁を閉じ状態に制御するのではなく、前記熱動弁が前記開き状態とされた後に所定の熱動弁開放時間(例えば数分から十数分等)が経過したこと、及び、温水又は冷水の戻り温度が前記目標戻り温度に到達したこと、の両方が満足されていることを条件として、熱動弁を閉じ状態に制御する。
これにより、輻射端末において暖房負荷又は冷房負荷が比較的小さい場合には、前記熱動弁が前記開き状態とされた後に(前記熱動弁開放時間が経過するより前に)まず先に前記戻り温度が前記目標戻り温度に到達した後、さらに前記熱動弁開放時間が経過したときに、当該熱動弁を閉じ状態に制御される。したがって、熱動弁が開かれた後に閉じられるまでの時間(開き状態の時間)が長くなり、輻射端末に温水又は冷水が供給される時間が長くなる。この結果、従来手法よりも前記戻り温度は高め(温水の場合)又は低め(冷水の場合)に推移することになるので、前記従来手法のように暖かさ又は涼しさが不十分のまま熱動弁が閉じられるのを防止し、ユーザの意図する暖房感又は冷房感を確実に得ることができる。
なお、例えば前記輻射端末の暖房運転又は冷房運転を開始した直後等の暖房負荷又は冷房負荷が比較的大きい場合には、前記熱動弁が前記開き状態とされた後に(前記戻り温度が前記目標戻り温度に到達しない状態のまま)まず先に前記熱動弁開放時間が経過し、その後、前記目標戻り温度に到達したときに、当該熱動弁が閉じ状態に制御される。この場合、少なくとも前記従来手法と同様、温水又は冷水の循環によって前記戻り温度がある程度上昇又は下降するまでは、熱動弁の開き状態を維持することができる。
以上の結果、請求項1によれば、従来手法に比べて、輻射端末の暖房運転時又は冷房運転時における、ユーザにとっての暖房感又は冷房感を改善することができる。
また、請求項2によれば、暖房負荷又は冷房負荷が比較的大きい、輻射端末の暖房運転又は冷房運転を開始した直後において、少なくとも前記従来手法と同様、温水の循環によって前記戻り温度がある程度上昇又は下降するまでは、熱動弁の開き状態を維持することができる。
また、請求項3によれば、暖房負荷又は冷房負荷が比較的小さい、輻射端末の暖房運転又は冷房運転が開始されてある程度時間がたった状態において、熱動弁の開き状態の時間を長くし、従来手法よりも前記戻り温度を高め(温水の場合)又は低め(冷水の場合)に推移させることができるので、ユーザの意図する暖房感又は冷房感を確実に得ることができる。
また、請求項4によれば、暖房時の目標戻り温度が高いほど(=ユーザによる暖房設定レベルが強いほど)、若しくは、冷房時の目標戻り温度が低いほど(=ユーザによる冷房設定レベルが強いほど)、輻射端末に関わる熱動弁の開き状態の時間を長くし、速やかにユーザの所望する暖房感又は冷房感を実現することができる。
また、請求項5によれば、暖房時の目標戻り温度が高いほど(=ユーザによる暖房設定レベルが強いほど)、若しくは、冷房時の目標戻り温度が低いほど(=ユーザによる冷房設定レベルが強いほど)、輻射端末に関わる熱動弁の閉止状態の時間を短くし、速やかにユーザの所望する暖房感又は冷房感を実現することができる。
また、請求項6によれば、リモコン装置を介し空調システムに用いられるものとして特定種類の輻射端末が入力された場合の、当該輻射端末に関わる熱動弁に限り、前記のような熱動弁開放時間経過+目標戻り温度到達による熱動弁閉止制御を行う。このように特定種類の輻射端末に関わる熱動弁に限定して前記の制御を行うことにより、ユーザの冷暖房の使用シーンや使用状況に応じたきめ細かい制御が自動的に可能となり、さらに利便性を向上することができる。
また、請求項7によれば、リモコン装置を介し空調システムに用いられるものとして入力された熱交換端末の種類に輻射端末が含まれるか否かに応じて若しくは輻射端末のうちいずれの種類が含まれるか等に応じて、輻射端末に関わる熱動弁において、前記のような熱動弁開放時間経過+目標戻り温度到達による熱動弁閉止制御を行う第1制御モードとするか、若しくは、目標戻り温度到達によってのみ熱動弁閉止制御を行う第2制御モードとするか、が選択される。このようにシステムに用いられる熱交換端末の種類に応じて制御態様が選ばれることにより、ユーザの冷暖房の使用シーンや使用状況に応じたきめ細かい制御が可能となり、さらに利便性を向上することができる。
また、請求項8によれば、熱源機として、圧縮機、膨張弁、熱源側熱交換器を備えたヒートポンプ式の熱源機を用いることにより、使用したエネルギ以上の熱エネルギを得ることができ、エネルギの高効率利用を図ることができる。
本発明の一実施形態の輻射式空調システムの全体概略構成を示す図 室外機の暖房・冷房運転時における冷凍サイクルを模式的に表した図 室外機制御部の主たる機能を表す機能的構成図 暖房時において圧縮機制御部及び膨張弁制御部が実行する制御手順を表すフローチャート図 冷房時において圧縮機制御部及び膨張弁制御部が実行する制御手順を表すフローチャート図 メインリモコン装置の外観構造を表す図 暖房運転時における第1比較例及び実施形態の各部挙動を表す図 暖房運転時及び冷房運転時において、温度レベルに応じて目標戻り温度、熱動弁閉止時間、熱動弁開放時間を設定する際に用いられるテーブルを表す図 冷房運転時における第2比較例及び実施形態の各部挙動を表す図 暖房時において熱動弁コントローラが実行する制御手順を表すフローチャート図 冷房時において熱動弁コントローラが実行する制御手順を表すフローチャート図 システムに使用される熱交換端末の種類により制御モードが切り替えられる変形例において、メインリモコン装置の表示部に表示される内容を表す図 システムに使用される熱交換端末の種類により制御モードが切り替えられる変形例において、メインリモコン装置の表示部に表示される内容を表す図 システムに使用される熱交換端末の種類により制御モードが切り替えられる変形例において、メインリモコン装置の表示部に表示される内容を表す図
次に、本発明の一実施の形態を図1〜図14に基づいて説明する。
本実施形態の輻射式空調システムの全体概略構成を図1に示す。図1において、この輻射式空調システム100は、室外に設置されるヒートポンプ熱源機としての室外機1と、この室外機1に対し冷温水往き管2及び冷温水戻り管3を介して接続されて室内に設置される、複数の熱交換端末(この例では、結露水の処理機能を有する輻射端末である冷温水パネル51及び冷温水パネル52の2つ)とを有する。
この例では、前記冷温水パネル51はA室、B室からなる2室構造のうち前記A室に配置されており、前記冷温水パネル52は前記B室に配置されている。このとき、前記室外機1から延びる前記冷温水往き管2の途中に1つの往きヘッダ91が設けられており、冷温水往き管2のうち前記往きヘッダ91より上流側部分は、1つの共通往き管2Aとして構成され、前記室外機1からの冷温水が供給される。そして、冷温水往き管2のうち前記往きヘッダ91より下流側部分2Bは、複数(この例では2つ)の往き管、すなわち、前記冷温水パネル51への往き管2B1と、前記冷温水パネル52への往き管2B2と、に分岐する形で前記往きヘッダ91に接続されている。なお、前記往き管2B1,2B2が各請求項記載の個別往き管に相当し、前記共通往き管2Aと往き管2B1とが前記冷温水パネル51への導入管路に相当し、前記共通往き管2Aと往き管2B2とが前記冷温水パネル52への導入管路に相当している。
同様に、前記室外機1へと延びる前記冷温水戻り管3の途中に1つの戻りヘッダ92が設けられており、冷温水戻り管3のうち前記戻りヘッダ92より上流側部分3Bは、複数(この例では2つ)の戻り管、すなわち、前記冷温水パネル51からの戻り管3B1と、前記冷温水パネル52からの戻り管3B2とに分かれている。そして、冷温水戻り管3のうち前記戻りヘッダ92より下流側部分は、1つの共通戻り管3Aとして構成され(すなわち分岐された戻り管3B1,3B2が共通戻り管3Aの上流側に集結する形で戻りヘッダ92に接続されている)、前記戻り管3B1,3B2を介し導入された冷温水を前記室外機1へと戻す。なお、前記戻り管3B1,3B2が各請求項記載の個別戻り管に相当し、前記共通戻り管3Aと戻り管3B1とが前記冷温水パネル51からの導出管路に相当し、前記共通戻り管3Aと戻り管3B2とが前記冷温水パネル52からの導出管路に相当している。
なお、前記共通往き管2Aと前記共通戻り管3Aとの間には、これらを接続するバイパス管50が設けられている。なお、このバイパス管50の横断面積は、前記共通往き管2A及び前記共通戻り管3Aの横断面積よりも十分に小さくなっている。
そして、前記冷温水パネル51への往き管2B1、前記冷温水パネル52への往き管2B2には、熱動弁コントローラCVからの駆動信号により各往き管を開閉可能な複数(この例では2つ)の熱動弁V1,V2がそれぞれ設けられている。この例では、前記A室には、前記冷温水パネル51,52の放熱(暖房)及び吸熱(冷房)運転操作を行うためのメインリモコン装置RMと、前記冷温水パネル51の放熱(暖房)及び吸熱(冷房)運転操作を行うための端末用リモコン装置RAとが設けられている。また、前記B室には前記冷温水パネル52の放熱(暖房)及び吸熱(冷房)運転操作を行うための端末用リモコン装置RBが設けられている。
前記メインリモコン装置RMでの操作に対応して出力される制御信号SS1は、前記室外機1の制御を行う室外機制御部(後述)へと入力され、これによって前記共通往き管2Aへ供給される冷温水の流量や温度等が制御されるとともに、さらにこれに対応して前記室外機制御部から前記熱動弁コントローラCVに制御信号SS2が出力され、これに応じて熱動弁コントローラCVから出力される制御信号S1,S2によって各熱動弁V1,V2の開閉動作が制御可能である。また、前記端末用リモコン装置RAでの操作に対応して出力される制御信号Saは前記熱動弁コントローラCVへと入力され、これに応じて熱動弁コントローラCVから出力される制御信号S1によって前記熱動弁V1の開閉動作が制御可能である。また、前記端末用リモコン装置RBでの操作に対応して出力される制御信号Sbは前記熱動弁コントローラCVへと入力され、これに応じて熱動弁コントローラCVから出力される制御信号S2によって前記熱動弁V2の開閉動作が制御可能である。
一方、前記冷温水パネル51からの戻り管3B1、及び、前記冷温水パネル52からの戻り管3B2には、戻り温度検出手段としての戻り温度センサ53,54がそれぞれ設けられている。これら戻り温度センサ53,54は、対応する戻り管3B1,3B2における温水又は冷水の温度(戻り温度)をそれぞれ検出し、検出結果を表す検出信号を前記熱動弁コントローラCVへと出力する。
熱動弁コントローラCVは、前記メインリモコン装置RM及び前記端末用リモコン装置RA,RBの操作に対応しつつ、前記戻り温度センサ53,54により検出される前記戻り温度に基づき、前記熱動弁V1,V2の開閉制御を行う(詳細は後述)。これにより、ユーザは、リモコン装置RM,RA,RBを適宜に操作することで前記冷温水パネル51,52の運転状態を制御可能となる。
次に、前記室外機1の概略的なシステム構成を図2(a)に示す。図2(a)において、室外機1は、例えばHFCなどの合成化合ガスを冷媒として循環させ室外での吸放熱を行う冷媒循環回路21と、例えば不凍液などを冷温水として循環させ前記複数の熱交換端末(この例では、冷温水パネル51及び冷温水パネル52)での吸放熱を行う、(前記冷温水往き管2及び前記冷温水戻り管3からなる)冷温水循環回路22と、の間における熱交換を行うものである。
すなわち、前記冷媒循環回路21は、前記室外機1に備えられた、前記冷媒の循環方向を切り替える四方弁6と、前記冷媒を圧縮する圧縮機7と、前記冷媒と外気との熱交換を行う室外熱交換器8(熱源側熱交換器に相当)と、前記冷媒を減圧膨張させる膨張弁9と、前記冷温水往き管2及び前記冷温水戻り管3を循環する前記冷温水と前記冷媒との熱交換を行う水−冷媒熱交換器11(水熱交換器に相当)とを、冷媒配管15で接続して形成されている。なお、前記冷媒配管15で互いに接続された前記四方弁6、前記圧縮機7、前記室外熱交換器8、前記膨張弁9によってヒートポンプ装置が構成されている。また、前記室外熱交換器8に送風する室外ファン10がさらに設けられている。
前記四方弁6は4つのポートを備える弁であり、(前記冷媒配管15の一部を構成する)冷媒主経路15a用の2つのポートのそれぞれに対して、(前記冷媒配管15の一部を構成する)他の冷媒副経路15b用の2つのポートのいずれに接続するかを切り替える。冷媒副経路15b用の2つのポートどうしはループ状に配置された冷媒副経路15bで接続されており、この冷媒副経路15b上に前記圧縮機7が設けられている。
前記圧縮機7は、低圧ガス状態の冷媒を昇圧して高圧ガス状態にするとともに、室外機1内における冷媒配管15全体の冷媒を循環させるポンプとしても機能する。なお、前記圧縮機7の吐出側における前記冷媒副経路15bには、吐出温度検出手段としての吐出温度センサ55が設けられ、圧縮機7から吐出される冷媒の温度(冷媒吐出温度)を検出し、検出結果を表す検出信号を後述の室外機制御部CUへと出力する。
また、前記四方弁6の冷媒主経路15a用の2つのポートどうしは、ループ状に配置された前記冷媒主経路15aで接続されており、この冷媒主経路15a上に前記室外熱交換器8、前記膨張弁9、及び前記水−冷媒熱交換器11が順に(図2(a)に示す例では冷媒主経路15a左回りの順に)設けられている。
前記室外熱交換器8は、その内部を通過する液体状態の前記冷媒の温度が室外の外気温度より低い場合は外気の熱を冷媒に吸熱してガス状態に蒸発させる蒸発器として機能する。また、その内部を通過するガス状態の前記冷媒の温度が室外の外気温度より高い場合は、その冷媒の熱を放熱して液体状態に凝縮させる凝縮器として機能する(後述の図2(b)参照)。
前記室外ファン10は、前記室外熱交換器8に対して送風することで、室外熱交換器8の性能を向上させる。
前記膨張弁9は、高圧液体状態の前記冷媒を減圧膨張させて低圧液体状態とするよう機能する。
水−冷媒熱交換器11は、前記のように冷媒主経路15aに接続されてその内部に冷媒を通過させるとともに、前記冷温水往き管2及び前記冷温水戻り管3にも接続されてその内部に冷温水を通過させる。水−冷媒熱交換器11の内部を通過するガス状態の冷媒の温度が冷温水の温度より高い場合は、冷媒に対してその熱を冷温水に放熱し液体状態に凝縮させる凝縮器として機能する。また、水−冷媒熱交換器11の内部を通過する液体状態の冷媒の温度が前記冷温水の温度より低い場合は、冷媒に対して冷温水の熱を吸熱しガス状態に蒸発させる蒸発器として機能する(後述の図2(b)参照)。
一方、前記冷温水循環回路22は、前記室外機1に備えられた、前記水−冷媒熱交換器11、前記冷温水に循環圧力を加える循環ポンプ12、及びシスターンタンク13と、前記複数の熱交換端末(この例では、冷温水パネル51及び冷温水パネル52の2つ)を、前記冷温水往き管2(詳細には共通往き管2A)及び前記冷温水戻り管3(詳細には共通戻り管3A)で接続して形成されている。
前記水−冷媒熱交換器11は、前記冷温水往き管2及び前記冷温水戻り管3に接続されており、前記冷温水戻り管3上に、前記シスターンタンク13及び前記循環ポンプ12が設けられている。
前記シスターンタンク13は、キャビテーションなどで冷温水中に生じた気泡の分離(気水分離機能)と、前記冷温水循環回路22における膨張冷温水の吸収及び冷温水の補給を行う。
前記循環ポンプ12は、前記冷温水往き管2及び前記冷温水戻り管3全体に冷温水を循環させるよう機能する。
なお、前記水−冷媒熱交換器11の出口側の前記冷温水往き管2(詳細には共通往き管2A)には、往き温度検出手段としての往き温度センサ56が設けられ、共通往き管2Aにおける温水又は冷水の温度(往き温度)を検出し、検出結果を表す検出信号を後述の室外機制御部CUへと出力する。
そして、室外機1は、当該室外機1の制御を行う室外機制御部CUを備えている。この室外機制御部は、主にCPU、ROM、RAM等を備えたマイクロコンピュータで構成され、前記メインリモコン装置RMからの前記制御信号SS1に基づいて室外機1全体の制御を行うとともに、対応する前記制御信号SS2を前記熱動弁コントローラCVに出力する(詳細は後述)。
上記構成の冷媒循環回路21において、前記圧縮機7は冷媒副経路15b上において一方向に冷媒を循環させるものであり、前記四方弁6の切り替えによって冷媒主経路15a上の冷媒の循環方向を制御する。前記図2(a)は暖房運転時の循環方向を示しており、圧縮機7から吐出した冷媒が水−冷媒熱交換器11、膨張弁9、室外熱交換器8の順で流通する。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機7で圧縮されて高温・高圧のガスとなった後、前記水−冷媒熱交換器11(凝縮器として機能)において前記冷温水戻り管3からの温水に熱を放出しながら高圧の液体に変化する。こうして液体になった冷媒は前記膨張弁9で減圧されて低圧の液体となり蒸発しやすい状態となる。その後、低圧の液体が前記室外熱交換器8(蒸発器として機能)において蒸発してガスに変化することで外気から吸熱する。そして冷媒は、低温・低圧のガスとして再び前記圧縮機7へと戻る。
このとき、前記のようにして水−冷媒熱交換器11で加熱された温水は、冷温水往き管2から前記複数の熱交換端末(前記の例では、冷温水パネル51及び冷温水パネル52の2つ)に供給されて室内空気に対し輻射伝熱により放熱して室内を加温し、その後に前記シスターンタンク13を通過して再び前記循環ポンプ12へ戻る。以上のような冷媒循環回路21の冷凍サイクルと冷温水循環回路22との間で熱交換を行うことにより、室内空気の温度を上げる暖房運転が行われる。
一方、前記図2(b)は冷房運転時の循環方向を示しており、圧縮機7から吐出した冷媒が室外熱交換器8、膨張弁9、水−冷媒熱交換器11の順で流通する。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機7で圧縮されて高温・高圧のガスとなった後、前記室外熱交換器8(凝縮器として機能)において前記室外ファン10の送風で冷却されることで外気に熱を放出しながら高圧の液体に変化する。こうして液体になった冷媒は前記膨張弁9で減圧されて低圧の液体となり蒸発しやすい状態となる。その後、低圧の液体が前記水−冷媒熱交換器11(蒸発器として機能)において蒸発してガスに変化することで前記冷温水戻り管3からの冷水から吸熱を行う。そして冷媒は、低温・低圧のガスとして再び前記圧縮機7へと戻る。
このとき、前記のようにして水−冷媒熱交換器11で冷却された冷水は、冷温水往き管2から前記複数の熱交換端末(前記の例では、冷温水パネル51及び冷温水パネル52の2つ)に供給されて室内空気から輻射伝熱により吸熱して室内を冷却し、その後に前記シスターンタンク13を通過して再び前記循環ポンプ12へ戻る。以上のような冷媒循環回路21の冷凍サイクルと冷温水循環回路22との間で熱交換を行うことにより、室内空気の温度を下げる冷房運転が行われる。
次に、前記室外機制御部CUの主たる機能的構成を図3により説明する。
図3に示すように、前記室外機制御部CUは、圧縮機制御手段としての圧縮機制御部61と、膨張弁制御手段としての膨張弁制御部62とを機能的に備えている。
圧縮機制御部61は、前記往き温度センサ56により検出された温水又は冷水の前記往き温度に応じて、前記圧縮機7の回転数を制御する。特にこの例では、圧縮機制御部61は、前記往き温度センサ56により検出される前記往き温度が、例えば前記メインリモコン装置RMの操作に対応して適宜に設定(詳細は省略)される所望の目標温度(目標往き温度)となるように、前記圧縮機7の回転数を制御する。
膨張弁制御部62は、前記吐出温度センサ55により検出された前記冷媒吐出温度に応じて、前記膨張弁9の弁開度を制御する。特にこの例では、膨張弁制御部62は、吐出温度センサ55により検出される前記冷媒吐出温度が、例えば前記メインリモコン装置RMの操作に対応して適宜に設定(詳細は省略)される適宜の目標吐出温度となるように、前記膨張弁9の弁開度を制御する。
前記圧縮機制御部61及び前記膨張弁制御部62が実行する制御手順を図4及び図5のフローチャートにより説明する。
まず、暖房運転時の圧縮機制御部61による制御手順を図4(a)のフローチャートに示す。図4(a)において、まずステップS10で、圧縮機制御部61は、前記室外機1が運転開始状態となったか否かを判定する。具体的には、運転開始状態とは、例えば、前記メインリモコン装置RMや前記端末用リモコン装置RA,RBを介し操作者による適宜の室外機1の運転開始操作がなされることで停止状態から起動される場合、若しくは、運転停止後から再起動して室外機1の運転が再び開始される場合(詳細は後述)、である。運転開始状態となるまではステップS10の判定が満たされず(S10:No)ループ待機し、運転開始状態となるとステップS10の判定が満たされ(S10:Yes)、ステップS15に移る。
ステップS15では、圧縮機制御部61は、室外機1が運転終了状態となったか否かを判定する。すなわち、後述のような回転数の制御の下で暖房運転を行って暖房負荷が小さくなると、前記室外機1を動作させずとも、前記戻り温度センサ53,54で検出される前記戻り温度がいずれも前記目標戻り温度以上に達する場合がある。この場合は、前記室外機制御部CUによる公知の制御により室外機1が停止され、待機状態となる(すなわち、いったん室外機1の運転が終了される)。ステップS15では、圧縮機制御部61は、室外機1がこの待機状態となったか否かを判定するものである。運転終了状態(すなわち待機状態)となっていた場合はステップS15の判定が満たされ(S15:YES)、このフローを終了する。一方、運転終了状態(すなわち待機状態)となっていない間はステップS15の判定は満たされず(S15:NO)、ステップS20に移る。
ステップS20では、圧縮機制御部61は、この時点で前記往き温度センサ56から検出された前記往き温度が前記目標往き温度(前記の例では60[℃])を下回っているか否かを判定する。往き温度が目標往き温度を下回っている場合、判定が満たされ(S20:YES)、ステップS25に移る。
ステップS25では、圧縮機制御部61は、前記圧縮機7の回転数を増大する。その後、前記ステップS15に戻って同様の手順を繰り返す。
一方、前記ステップS20の判定において、前記往き温度が前記目標往き温度以上である場合、判定は満たされず(S20:NO)、ステップS30に移る。
ステップS30では、圧縮機制御部61は、前記圧縮機7の回転数を低減する。その後、前記ステップS15に戻って同様の手順を繰り返す。
以上のようにして、ステップS20、ステップS25、及びステップS30の処理により、前記往き温度が前記目標往き温度に一致するよう圧縮機7の回転数を制御する、往き温度制御が行われる。
次に、暖房運転時の膨張弁制御部62による制御手順を図4(b)のフローチャートに示す。図4(b)において、まずステップS60で、膨張弁制御部62は、前記図4(a)のステップS10と同様にして、前記室外機1が運転開始状態となったか否かを判定する。運転開始状態となるまではステップS60の判定が満たされず(S60:No)ループ待機し、運転開始状態となるとステップS60の判定が満たされ(S60:Yes)、ステップS65に移る。
ステップS65では、膨張弁制御部62は、前記図4(a)のステップS15と同様にして、前記室外機1が運転終了状態となったか否かを判定する。運転終了状態(すなわち待機状態)となっていた場合はステップS65の判定が満たされ(S65:YES)、このフローを終了する。一方、運転終了状態(すなわち待機状態)となっていない間はステップS65の判定は満たされず(S65:NO)、ステップS70に移る。
ステップS70では、膨張弁制御部62は、この時点で前記吐出温度センサ55から検出された前記冷媒吐出温度が前記目標吐出温度を下回っているか否かを判定する。冷媒吐出温度が目標吐出温度を下回っている場合、判定が満たされ(S70:YES)、ステップS75に移る。
ステップS75では、膨張弁制御部62は、前記膨張弁9の弁開度を減少させる。その後、前記ステップS65に戻って同様の手順を繰り返す。
一方、前記ステップS70の判定において、前記冷媒吐出温度が前記目標吐出温度以上である場合、判定は満たされず(S70:NO)、ステップS80に移る。
ステップS80では、膨張弁制御部62は、前記膨張弁9の弁開度を増大させる。その後、前記ステップS65に戻って同様の手順を繰り返す。
以上のようにして、ステップS70、ステップS75、及びステップS80の処理により、前記冷媒吐出温度が前記目標吐出温度に一致するよう膨張弁9の弁開度を制御する、冷媒吐出温度制御が行われる。
また、冷房運転時の圧縮機制御部61による制御手順を図5(a)のフローチャートに示す。図5(a)に示すように、このフローでは、前記図4(a)のフローにおけるステップS20が、不等号の向きが逆になったステップS20Aに置き換えられるとともに、各制御手順において「温水」を「冷水」と読み替えて同等の制御が行われる。すなわちステップS20Aでは、圧縮機制御部61は、この時点で前記往き温度センサ56から検出された前記往き温度が前記目標往き温度(7[℃])を上回っているか否かを判定する。往き温度が目標往き温度を上回っている場合は判定が満たされ(S20A:YES)て前記ステップS25に移り、前記往き温度が前記目標往き温度以下である場合は判定は満たされず(S20A:NO)、ステップS30に移る。これ以外の手順は前記図4(a)と同様であり、説明を省略する。
また、冷房運転時の膨張弁制御部62による制御手順を図5(b)のフローチャートに示す。図5(b)に示すように、このフローでは、全手順の内容が前記図4(b)のフローと同一となることから、説明を省略する。
次に、前記メインリモコン装置RMの詳細について、説明する。図6にメインリモコン装置RMの外観を示す。図6において、メインリモコン装置RMには、前記複数の熱交換端末(前記の例では、冷温水パネル51,52)の運転状態や各種設定状態を表示可能な表示部201と、メインリモコン装置RM自体の電源をON・OFFするための「電源」ボタン202と、前記熱交換端末の運転開始を指示するための「運転」ボタン203と、前記熱交換端末に対しタイマーによる運転を指示するための「タイマー」ボタン204と、前記熱交換端末の運転態様の切替を指示する「運転切替」ボタン205と、適宜の節電運転等のガイドを行うための「ecoガイド」ボタン206と、画面表示を1つ前の画面に戻すための「戻る」ボタン207と、「メニュー/決定」ボタン208と、上下左右方向への十字キー209と、が備えられている。なお、図示を省略しているが、メインリモコン装置RMには、各種の表示を行うための、演算部としてのCPUや記憶部としてのメモリ等が内蔵されている。
なお、前記端末用リモコン装置RA,RBについても、図1では区別のために別態様のシンボルにて表記しているが、対応する1つの熱交換端末(すなわち前記端末用リモコン装置RAは前記冷温水パネル51、前記端末用リモコン装置RBは前記冷温水パネル52)について前記リモコン装置RMと同等の機能を果たす、同等の構成を備えている(詳細な図示及び説明は省略)。
以上の基本構成及び作動である輻射式空調システム100において、本実施形態の要部は、前記のようにして前記戻り温度センサ53,54により検出される前記戻り温度に基づき熱動弁コントローラCVが前記熱動弁V1,V2の開閉制御を行う際、前記熱動弁V1,V2が開き状態になった後に所定の熱動弁開放時間(詳細は後述)が経過していて、かつ、前記戻り温度が予め定められた目標戻り温度(後述)に到達したときに限り、対応する熱動弁V1,V2を開き状態から閉じ状態に制御する(詳細は後述)ことにある。以下、その詳細を順を追って説明する。
まず、本実施形態の第1比較例として、前記のように暖房運転を行うときで、前記と異なり、前記戻り温度が前記目標戻り温度に到達したときに(それだけを条件に)対応する熱動弁V1,V2を開き状態から閉じ状態に制御する場合の、輻射式空調システム100の挙動を、図7中の破線で示すグラフにより説明する。なお、以下、図7及び後述の図9においては、説明の簡単化と理解の容易化のために、熱動弁V1,V2が設けられる前記往き管2B1,2B2及び前記戻り管3B1,3B2内の温水又は冷水が同一の温度挙動をとり(すなわち同時に前記戻り温度に到達)、これに対応して前記熱動弁V1,V2(以下適宜、単に「熱動弁V」と総称する)も一括して前記熱動弁コントローラCVによって開閉制御される場合を例にとって説明する。
図示において、図7(a)は、冷温水パネル51,52の空調制御対象となる前記A室及びB室の端末周辺温度(後述のように冷温水パネル51,52周辺近傍の室内雰囲気温度)の経時推移を表している。
また、図7(b)は、前記冷温水戻り管下流側部分3Bの戻り管3B1,3B2(以下適宜、単に「戻り管3B」と総称する)における温水の前記戻り温度[℃](前記のように戻り温度センサ53,54で検出。以下同様)の経時推移を示している。
また、図7(c)は、前記冷温水往き管2の共通往き管2Aにおける温水の前記往き温度[℃](前記のように往き温度56で検出。以下同様)の経時推移を示している。
また、図7(d)は、前記往き管2B1,2B2に設けた前記熱動弁V1,V2の開き状態(図中「ON」で表す)及び閉じ状態(図中「OFF」で表す)の切り替えの経時推移を示している。
また、図7(e)は、前記室外機制御部CUが前記圧縮機7への回転制御時に指示する回転数に相当する指示周波数(但し回転数[rps]で表記)の経時推移を示している。
例えば、(前記A室B室が長時間不在等で冷え切った状態で)前記のようにして熱動弁Vが開き状態とされ、暖房運転が開始された場合を想定する(図中の時間t1参照)。熱動弁Vの開き状態への制御により、前記共通往き管2Aから供給される温水は各往き管2B1,2B2を介し冷温水パネル51,52へ導かれて放熱が行われる。このとき、前記したように前記バイパス管50の横断面積は、前記共通往き管2A及び前記共通戻り管3Aの横断面積よりも十分に小さくなっていることから、その流通抵抗の差により、前記共通往き管2Aから供給される温水は、バイパス管50へ導入されることはなく各往き管2B1,2B2を介し冷温水パネル51,52へ導かれる。そして、前記冷温水パネル51,52での放熱による温度降下を経た温水は各戻り管3B1,3B2及び共通戻り管3Aを介し前記水−冷媒熱交換器11へと還流される。最初は前記のようにA室B室とも冷え切っており(すなわち暖房負荷が大きく)、前記水−冷媒熱交換器11の出口側における前記往き温度が前記目標往き温度(この例では60[℃]。以下同様)を大きく割り込んだ状態であることから、これに対応して、圧縮機7が前記停止状態から駆動開始され(図7(e)下段における時間t1参照)、その回転数は最大回転数(この例では90[rps])まで徐々に増大する(図7(e)下段における時間t2〜t4参照)。
前記圧縮機7の回転数増大により、前記共通往き管2Aから供給される温水の前記往き温度が徐々に上昇し、前記往き温度が前記目標往き温度に達する(図7(c)における時間t5参照)。
そして、前記のように往き温度が前記目標往き温度に達してから、若干遅れたタイミングで、前記戻り温度が前記目標戻り温度(この例では前記レベル8に対応した46[℃]。以下同様)に到達する(図7(b)における時間t6参照)。なお、この例では、ほぼ同じタイミングで、前記端末周辺温度(A室B室における冷温水パネル51,52周辺近傍の雰囲気温度)が、前記レベル8に対応した24[℃]となっている。前記目標戻り温度への到達により、ただちに熱動弁Vが閉じ状態に切り替えられる(図7(d)下段における時間t6参照)。これにより、前記共通往き管2Aから供給される温水はバイパス管50から前記共通戻り管3Aへと導入され、そのまま共通戻り管3Aから前記水−冷媒熱交換器11へと還流される。この結果、温水は冷温水パネル51,52での温度降下のない状態で還流されることから、前記水−冷媒熱交換器11の出口側における前記往き温度が前記目標往き温度を大きく超えるのを防止するために、圧縮機7の回転がそれまでの回転数(前記のように65〜70[rps]程度)から直ちに停止(すなわち0[rps])される(図7(e)下段における時間t7参照)。
その後、前記熱動弁Vが閉じ制御されたタイミングから予め定められた熱動弁閉止時間(この例では前記目標戻り温度に応じて定められた熱動弁閉止時間、後述の図8(a)参照)T2′が経過すると、熱動弁Vが再び開き状態に切り替えられる(図7(d)下段における時間t8参照)。なお、前記熱動弁V1,V2それぞれの前記熱動弁閉止時間T2′は、対応する前記端末用リモコン装置RA,RBの操作に基づいてそれぞれ設定される(後述の熱動弁閉止時間T2も同様)。
すなわち、例えばユーザが、前記端末用リモコン装置RA,RBにおいて前記「運転切替」ボタン205にて暖房運転を選択し、前記「戻る」ボタン207、前記「メニュー/決定」ボタン208、前記十字キー209等を適宜に操作することで、暖房の強弱に対応した温度レベル(暖房設定レベル)を複数段階(この例では後述のようにレベル1〜レベル9の9段階)にて選択することができる。そして、この選択された温度レベルに応じて、熱動弁コントローラCVにより、前記目標戻り温度及び前記熱動弁閉止時間T2′(後述の熱動弁閉止時間T2も同様。以下適宜、単に「熱動弁閉止時間T」と総称する)が自動的に設定される。すなわち、図8(a)に示すように、温度レベルとして、暖房の程度が最も弱い(言い替えれば温度が最も低い)レベル1が選択された場合には、前記目標戻り温度は34[℃]に設定され、前記熱動弁閉止時間Tは26[分]に設定される。また、これよりも暖房の程度が1段階強いレベル2が選択された場合には、前記目標戻り温度はやや上がって39[℃]に設定され、前記熱動弁閉止時間Tはやや短くなって24[分]に設定される。以降同様に、レベル3が選択された場合には前記目標戻り温度は41[℃]で前記熱動弁閉止時間Tは22[分]となり、レベル4が選択された場合には前記目標戻り温度は42[℃]で前記熱動弁閉止時間Tは20[分]となり、レベル5が選択された場合には前記目標戻り温度は43[℃]で前記熱動弁閉止時間Tは18[分]となり、レベル6が選択された場合には前記目標戻り温度は44[℃]で前記熱動弁閉止時間Tは16[分]となり、レベル7が選択された場合には前記目標戻り温度は45[℃]で前記熱動弁閉止時間Tは14[分]となり、レベル8が選択された場合には前記目標戻り温度は46[℃](前記した例に相当)で前記熱動弁閉止時間Tは12[分]となる。そして、暖房の程度が最も強い(言い替えれば温度が最も高い)レベル9が選択された場合には前記目標戻り温度は47[℃]で前記熱動弁閉止時間Tは10[分]に設定される。このように、熱動弁閉止時間Tは、高いレベルであるほど(言い替えれば目標戻り温度が高いほど)短くなっている。なお、図8(b)については後述する。なお、熱動弁開放時間については後述する。
図7に戻り、前記したように熱動弁Vが再び開かれることにより、前記同様、前記共通往き管2A及び各往き管2B1,2B2を介し前記冷温水パネル51,52へ供給され、放熱による温度降下を経た温水が各戻り管3B1,3B2及び共通戻り管3Aを介し還流される。この流動開始によって、前記水−冷媒熱交換器11の出口側における前記往き温度が再び前記目標往き温度を割り込む(図7(c)における時間t8〜t9参照)のに対応し、圧縮機7が前記停止状態から駆動再開され(図7(e)下段における時間t9参照)、その回転数が再び徐々に増大する(図7(e)下段における時間t9〜t11参照)。
これにより、前記同様、前記戻り温度が再び前記目標戻り温度(46[℃])に到達し、熱動弁Vが再び閉じ状態に切り替えられる(図7(b)及び図7(d)下段における時間t12参照)。なおこのとき、前述のように前記端末周辺温度は一度24[℃]に到達済みであり、ある程度A室B室内は暖まっている(すなわち暖房負荷が比較的小さい)状態であることから、前記のようにして熱動弁Vが開かれてから閉じられるまでの経過時間(すなわち時間t8〜t12)は、いちばん最初に熱動弁Vが開かれてから最初に閉じられるまでの経過時間(すなわち時間t1〜t6)よりも短くなっている。
また、この例では、前記のように熱動弁Vが閉じ状態になるのとほぼ同じタイミングで前記往き温度が前記目標往き温度(60[℃])に達し(図7(c)における時間t12参照)、前記のように熱動弁Vが閉じ状態となったのに伴い、前記往き温度が急上昇して前記目標往き温度を大きく超えるのを防止するために、圧縮機7の回転がそれまでの回転数(前記のように65〜70[rps]程度)から直ちに停止される(図7(e)下段における時間t13参照)。
以降、同様にして、前記熱動弁閉止時間T2′が経過すると熱動弁Vが開き状態となり(図7(d)下段における時間t17参照)、前記往き温度が前記目標往き温度を割り込むのに対応して圧縮機7が駆動再開され(図7(e)下段における時間t18参照)てその回転数が徐々に増大する(図7(e)下段における時間t18〜t20参照)。そして、前記戻り温度が目標戻り温度に到達したら熱動弁Vが閉じられて前記圧縮機7が駆動停止され、以降、同様の流れが繰り返される。
ここで、一般に、上記冷温水パネル51,52のような輻射端末は、ファン等で室内空気を循環させる他の熱交換端末とは異なり、室内空気との熱交換量が比較的小さい。したがって、暖房運転時の温水の温度低下量も小さいので、前記戻り温度が前記目標戻り温度に到達しやすい傾向となる。この結果、前記第1比較例では、例えば前記図7(b)の時間t6,t12,t21・・等に示したように前記戻り温度が前記目標戻り温度に達したときでも、実際は、冷温水パネル51,52の周辺近傍は比較的暖かい環境でも、A室B室の室内全体としては暖かさが不十分である可能性がある。前記第1比較例では、このような状態で前記したように目標戻り温度への到達により熱動弁Vが閉じられる結果、前記共通往き管2Aからの温水が冷温水パネル51,52に供給されなくなって、室内の暖房が不十分なまま暖房運転が停止する。この結果、図7(a)に示すように端末周辺温度は最高24[℃]であるが、室内全体としてはさらに低い温度(例えば22[℃]など)に留まっている可能性が高く、ユーザの意図する温度レベルに見合った暖房感(前記の例では前記レベル8に対応した暖房感)が得られていないおそれがある。特に例えば暖房運転を開始して十分に時間がたったとき(例えば前記図7(a)の時間t12,t21,・・)等など暖房負荷が比較的小さい場合に、この傾向が顕著となりうる。
そこで、本実施形態においては、上記のような室内の暖房が不十分なまま暖房運転が停止するといった状態を抑制するために、前記第1比較例のように前記戻り温度が前記目標戻り温度に到達したとき熱動弁V1,V2を開き状態から閉じ状態に制御するのではなく、前記熱動弁V1,V2が開き状態になった後に所定の熱動弁開放時間T1(詳細は後述)が経過していて、かつ、前記戻り温度が前記目標戻り温度に到達した場合に限り、熱動弁V1,V2を閉じ状態に制御する。これにより、前記第1比較例と異なり、図7の実線のグラフに示すような挙動となる。
すなわち、前記のように熱動弁Vが開き状態とされ暖房運転が開始された場合、最初は前記のようにA室B室とも冷え切って暖房負荷が大きいことから、前記第1比較例と同様の挙動となり、圧縮機7の回転数増大によって前記前記往き温度が前記目標往き温度に達し(図7(c)における時間t5参照)、若干遅れて前記戻り温度が前記目標戻り温度(46[℃])に到達するとともに、前記端末周辺温度が24[℃]となる(図7(a)(b)における時間t6参照)。このとき、この例では、前記熱動弁開放時間T1が前記レベル8及びそのときの前記目標戻り温度(46[℃])に対応して設定されている。すなわち、前記図8(a)において、前記したように温度レベルとして暖房の程度が最も弱い(言い替えれば温度が最も低い)レベル1が選択された場合には、熱動弁開放時間T1は2[分]に設定される。また、これよりも暖房の程度が1段階強いレベル2が選択された場合には、前記熱動弁開放時間T1はやや長くなって4[分]に設定される。以降同様に、レベル3が選択された場合には前記熱動弁開放時間T1は6[分]となり、レベル4が選択された場合には前記熱動弁開放時間T1は8[分]となり、レベル5が選択された場合には前記熱動弁開放時間T1は10[分]となり、レベル6が選択された場合には前記熱動弁開放時間T1は12[分]となり、レベル7が選択された場合には前記熱動弁開放時間T1は14[分]となり、レベル8が選択された場合には前記熱動弁開放時間T1は16[分]となる。そして、暖房の程度が最も強い(言い替えれば温度が最も高い)レベル9が選択された場合には前記熱動弁開放時間T1は18[分]に設定される。このように、熱動弁開放時間T1は、高いレベルであるほど(言い替えれば目標戻り温度が高いほど)長くなっている。
図7に戻り、この例では、前記熱動弁開放時間T1が前記レベル8及びそのときの前記目標戻り温度(46[℃])に対応して16[分]に設定されており(前記の図8(a)参照)、前記往き温度が前記目標往き温度に達したタイミング(図7(c)における時間t5参照)において、前記熱動弁開放時間T1が既に経過している。したがってその後の時間t6における前記目標戻り温度への到達により、ただちに熱動弁Vが閉じ状態に切り替えられる(図7(d)上段における時間t6参照)。
これにより、前記第1比較例と同様、圧縮機7の回転が停止され(図7(e)上段における時間t7参照)、前記熱動弁Vが閉じ制御されたタイミングから熱動弁閉止時間T2(この例では前記図8(a)に示したように前記目標戻り温度46[℃]に対応する9分で、前記第1比較例の熱動弁閉止時間T2′と同じ)が経過すると、熱動弁Vが再び開き状態に切り替えられる(図7(d)上段における時間t8参照)。これにより、前記第1比較例と同様、前記往き温度が再び前記目標往き温度を割り込む(図7(c)における時間t8〜t9参照)とともに圧縮機7が駆動再開され(図7(e)上段における時間t9参照)、回転数が再び徐々に増大する(図7(e)上段における時間t9〜t11参照)。これにより、前記戻り温度が再び前記目標戻り温度(46[℃])に到達する(図7(b)における時間t12参照)が、前述のように前記端末周辺温度は一度24[℃]に到達済みであり暖房負荷が比較的小さい状態であることから、この時点では、前記時間t8で熱動弁Vが開かれてからの閉じられるまでの経過時間(すなわち時間t8〜t12)は、前記熱動弁開放時間T1よりも短い。この結果、当該熱動弁開放時間T1が経過するまでは熱動弁Vは切り替えられず(図7(d)上段における時間t12〜t15参照)、当該熱動弁開放時間T1が経過したタイミングで、熱動弁Vが閉じ状態に切り替えられる(図7(d)上段における時間t15参照)。すなわち、この場合、前記第1比較例とは異なり、本実施形態では、前記目標戻り温度到達後もしばらくの間(すなわち上記時間t12〜t15の間)は熱動弁Vが開かれて冷温水パネル51,52による前記放熱が行われ、前記往き温度の急上昇は防止されている。したがって、前記圧縮機7は、前記往き温度が前記目標往き温度(60[℃])に達した(図7(c)における時間t12参照)後において、前記往き温度が前記目標往き温度になるように、それまでの回転数(65〜70[rps]程度)から段階的に回転数が低減された後、前記熱動弁Vが閉じ状態とされたことに伴い前記往き温度が急上昇すると、前記往き温度が前記目標往き温度を大きく超えるのを防止するために駆動停止されることになる(図7(e)上段における時間t14〜t16参照)。
その後、前記第1比較例同様、前記熱動弁Vが閉じ制御されたタイミングから前記熱動弁閉止時間T2(この例では9[分])が経過すると、熱動弁Vが再び開き状態に切り替えられる(図7(d)上段における時間t20参照)。この結果、前記同様、前記往き温度が前記目標往き温度(60[℃])を割り込む(図7(c)における時間t20〜t21参照)のに対応して、圧縮機7が前記停止状態から駆動再開され(図7(e)上段における時間t21参照)、その回転数が徐々に増大する(図7(e)上段における時間t21〜t22参照)。
その後、前記同様、再び前記戻り温度が前記目標戻り温度(46[℃])に到達した(図7(b)における時間t22〜t23参照)後、前記熱動弁開放時間T1が経過したタイミングで、熱動弁Vが閉じ状態に切り替えられる(図7(d)上段における時間t25参照)。このように熱動弁Vが閉じ状態になることにより、前記同様、前記往き温度が前記目標往き温度(60[℃])に達した(図7(c)における時間t23参照)後において、前記往き温度が前記目標往き温度になるように、圧縮機7の回転数が段階的に低減された後、前記熱動弁Vが閉じ状態とされたことに伴い前記往き温度が急上昇すると、前記往き温度が前記目標往き温度を大きく超えるのを防止するために駆動停止される(図7(e)上段における時間t24〜t26参照)。
以降、同様にして、前記熱動弁閉止時間T2が経過すると熱動弁Vが開き状態となり、前記往き温度が前記目標往き温度を割り込むのに対応して圧縮機7が駆動再開されて回転数が増大する。そして、前記戻り温度が目標戻り温度に到達した後に前記熱動弁開放時間T1が経過したタイミングで熱動弁Vが閉じられて前記圧縮機7が減速して駆動停止され、以降、同様の流れが繰り返される(時間t27〜t38参照)。
なお、以上は暖房運転時を例にとって説明したが、冷房運転時においても同様の課題が生じる。本実施形態の第2比較例として、前記のように冷房運転を行うときで、前記戻り温度が前記目標戻り温度に到達したときに(それだけを条件に)対応する熱動弁V1,V2を開き状態から閉じ状態に制御する場合の、輻射式空調システム100の挙動を、前記図7(a)〜(e)にそれぞれ対応した、図9(a)〜(e)中の破線で示すグラフにより説明する。
図示において、図9(a)は、前記図7(a)同様の冷温水パネル51,52の空調制御対象となる前記A室及びB室の端末周辺温度の経時推移を表しており、図9(b)は、前記戻り管3Bにおける冷水の前記戻り温度[℃](戻り温度センサ53,54で検出)の経時推移を示しており、図9(c)は、前記共通往き管2Aにおける冷水の前記往き温度[℃](往き温度56で検出)の経時推移を示しており、図9(d)は前記熱動弁V1,V2の開き状態及び閉じ状態の切り替えの経時推移を示しており、図9(e)は、前記圧縮機7への前記指示周波数(回転数[rps]で表記)の経時推移を示している。
例えば前記のようにして熱動弁Vが開き状態とされ冷房運転が開始されたら、前記共通往き管2Aから供給される冷水は各往き管2B1,2B2を介し冷温水パネル51,52へ導かれて吸熱が行われる。前記冷温水パネル51,52での吸熱による温度上昇を経た冷水は各戻り管3B1,3B2及び共通戻り管3Aを介し前記水−冷媒熱交換器11へと還流される。最初はA室B室とも室内空気が高温となっており(すなわち冷房負荷が大きく)、前記水−冷媒熱交換器11の出口側における前記往き温度が前記目標往き温度(この例では7[℃]。以下同様)を大きく上回った状態であることから、これに対応して、圧縮機7が前記停止状態から駆動開始され(図9(e)下段における時間t1参照)、その回転数は最大回転数(この例では90[rps])まで徐々に増大する(図9(e)下段における時間t2〜t4参照)。
前記圧縮機7の回転数増大により、前記共通往き管2Aから供給され冷水の前記往き温度が徐々に下降し、前記往き温度が前記目標往き温度まで低下する(図9(c)における時間t5参照)。
そして、前記のように往き温度が前記目標往き温度に達してから、若干遅れたタイミングで、前記戻り温度が前記目標戻り温度(この例では前記レベル8に対応した11[℃]。以下同様)に到達する(図9(b)における時間t6参照)。この例では、ほぼ同じタイミングで、前記端末周辺温度が前記レベル8に対応した20[℃]となっている。前記目標戻り温度への到達により、ただちに熱動弁Vが閉じ状態に切り替えられる(図9(d)下段における時間t6参照)。これにより、前記共通往き管2Aから供給される冷水はバイパス管50から前記共通戻り管3Aへと導入され、そのまま共通戻り管3Aから前記水−冷媒熱交換器11へと還流される。この結果、冷水は冷温水パネル51,52での温度上昇のない状態で還流されることから、前記水−冷媒熱交換器11の出口側における前記往き温度が前記目標往き温度を大きく下回るのを防止するために、圧縮機7の回転がそれまでの回転数(前記のように65〜70[rps]程度)から直ちに停止(すなわち0[rps])される(図9(e)下段における時間t7参照)。
その後、前記熱動弁Vが閉じ制御されたタイミングから予め定められた熱動弁閉止時間(この例では前記目標戻り温度に応じて定められた熱動弁閉止時間、後述の図8(b)参照)T2′が経過すると、熱動弁Vが再び開き状態に切り替えられる(図9(d)下段における時間t8参照)。なお、前記熱動弁V1,V2それぞれの前記熱動弁閉止時間T2′は、前記第1比較例で述べたように、対応する前記端末用リモコン装置RA,RBの操作に基づいてそれぞれ設定される(後述の実施形態の冷房運転時の熱動弁閉止時間T2も同様)。
すなわち、例えばユーザが、前記端末用リモコン装置RA,RBにおいて前記「運転切替」ボタン205にて冷房運転を選択し、前記「戻る」ボタン207、前記「メニュー/決定」ボタン208、前記十字キー209等を適宜に操作することで、冷房の強弱に対応した温度レベル(冷房設定レベル)を複数段階(この例では後述のようにレベル1〜レベル9の9段階)にて選択することができる。そして、この選択された温度レベルに応じて、熱動弁コントローラCVにより、前記目標戻り温度及び前記熱動弁閉止時間T2′(後述の熱動弁閉止時間T2も同様。以下適宜、単に「熱動弁閉止時間T」と総称する)が自動的に設定される。すなわち、図8(b)に示すように、温度レベルとして、冷房の程度が最も弱い(言い替えれば温度が最も高い)レベル1が選択された場合には、前記目標戻り温度は18[℃]に設定され、前記熱動弁閉止時間Tは26[分]に設定される。また、これよりも冷房の程度が1段階強いレベル2が選択された場合には、前記目標戻り温度はやや下がって17[℃]に設定され、前記熱動弁閉止時間Tはやや短くなって24[分]に設定される。以降同様に、レベル3が選択された場合には前記目標戻り温度は16[℃]で前記熱動弁閉止時間Tは22[分]となり、レベル4が選択された場合には前記目標戻り温度は15[℃]で前記熱動弁閉止時間Tは20[分]となり、レベル5が選択された場合には前記目標戻り温度は14[℃]で前記熱動弁閉止時間Tは18[分]となり、レベル6が選択された場合には前記目標戻り温度は13[℃]で前記熱動弁閉止時間Tは16[分]となり、レベル7が選択された場合には前記目標戻り温度は12[℃]で前記熱動弁閉止時間Tは14[分]となり、レベル8が選択された場合には前記目標戻り温度は11[℃](前記した例に相当)で前記熱動弁閉止時間Tは12[分]となる。そして、冷房の程度が最も強い(言い替えれば温度が最も低い)レベル9が選択された場合には前記目標戻り温度は8[℃]で前記熱動弁閉止時間Tは10[分]に設定される。このように、熱動弁閉止時間Tは、高いレベルであるほど(言い替えれば目標戻り温度が低いほど)短くなっている。
図9に戻り、前記したように熱動弁Vが再び開かれることにより、前記同様、前記共通往き管2A及び各往き管2B1,2B2を介し前記冷温水パネル51,52へ供給され、吸熱による温度上昇を経た温水が各戻り管3B1,3B2及び共通戻り管3Aを介し還流される。この流動開始によって、前記水−冷媒熱交換器11の出口側における前記往き温度が再び前記目標往き温度を上回る(図9(c)における時間t8〜t9参照)のに対応し、圧縮機7が前記停止状態から駆動再開され(図9(e)下段における時間t9参照)、その回転数が再び徐々に増大する(図9(e)下段における時間t9〜t11参照)。
これにより、前記同様、前記戻り温度が再び前記目標戻り温度(11[℃])に到達し、熱動弁Vが再び閉じ状態に切り替えられる(図9(b)及び図9(d)下段における時間t12参照)。なおこのとき、前述のように前記端末周辺温度は一度20[℃]に到達済みであり、ある程度A室B室内は冷えている(すなわち冷房負荷が比較的小さい)状態であることから、前記のようにして熱動弁Vが開かれてから閉じられるまでの経過時間(すなわち時間t8〜t12)は、いちばん最初に熱動弁Vが開かれてから最初に閉じられるまでの経過時間(すなわち時間t1〜t6)よりも短くなっている。
また、この例では、前記のように熱動弁Vが閉じ状態になるのとほぼ同じタイミングで前記往き温度が前記目標往き温度(7[℃])に達し(図9(c)における時間t12参照)、前記のように熱動弁Vが閉じ状態となったのに伴い、前記往き温度が急低下して前記目標往き温度を大きく下回るのを防止するために、圧縮機7の回転がそれまでの回転数(前記のように65〜70[rps]程度)から直ちに停止される(図9(e)下段における時間t13参照)。
以降、同様にして、前記熱動弁閉止時間T2′が経過すると熱動弁Vが開き状態となり(図9(d)下段における時間t17参照)、前記往き温度が前記目標往き温度を上回るのに対応して圧縮機7が駆動再開され(図9(e)下段における時間t18参照)てその回転数が徐々に増大する(図9(e)下段における時間t18〜t20参照)。そして、前記戻り温度が目標戻り温度に到達したら熱動弁Vが閉じられて前記圧縮機7が駆動停止され、以降、同様の流れが繰り返される。
ここで、前記したように、上記冷温水パネル51,52のような輻射端末は室内空気との熱交換量が比較的小さいことから、冷房運転時の冷水の温度上昇量も小さいので、前記戻り温度が前記目標戻り温度に到達しやすい傾向となる。この結果、前記第2比較例では、例えば前記図9(b)の時間t6,t12,t21・・等に示したように前記戻り温度が前記目標戻り温度に達したときでも、実際は、冷温水パネル51,52の周辺近傍は比較的涼しい環境でも、A室B室の室内全体としては涼しさが不十分である可能性がある。前記第2比較例では、このような状態で前記したように目標戻り温度への到達により熱動弁Vが閉じられる結果、前記共通往き管2Aからの温水が冷温水パネル51,52に供給されなくなって、室内の冷房が不十分なまま冷房運転が停止する。この結果、図9(a)に示すように端末周辺温度は最低20[℃]まで下がるが、室内全体としてはさらに高い温度(例えば22[℃]など)に留まっている可能性が高く、ユーザの意図する温度レベルに見合った冷房感(前記の例では前記レベル8に対応した冷房感)が得られていないおそれがある。特に例えば冷房運転を開始して十分に時間がたったとき(例えば前記図9(a)の時間t12,t21,・・)等など冷房負荷が比較的小さい場合に、この傾向が顕著となりうる。
このような冷房運転の場合においても、前記熱動弁V1,V2が開き状態になった後に所定の熱動弁開放時間T1が経過していて、かつ、前記戻り温度が前記目標戻り温度に到達した場合に限り、熱動弁V1,V2を閉じ状態に制御することで、図9の実線のグラフに示すような挙動となる。
すなわち、前記のように熱動弁Vが開き状態とされ冷房運転が開始された場合、最初は前記のようにA室B室とも高温であり冷房負荷が大きいことから、前記第2比較例と同様の挙動となり、圧縮機7の回転数増大によって前記前記往き温度が前記目標往き温度(7[℃])まで低下し(図9(c)における時間t5参照)、若干遅れて前記戻り温度が前記目標戻り温度(11[℃])に到達するとともに、前記端末周辺温度が20[℃]となる(図9(a)(b)における時間t6参照)。このとき、この例では、前記熱動弁開放時間T1が前記レベル8及びそのときの前記目標戻り温度(11[℃])に対応して設定されている。すなわち、前記図8(b)において、前記したように温度レベルとして冷房の程度が最も弱い(言い替えれば温度が最も高い)レベル1が選択された場合には、熱動弁開放時間T1は2[分]に設定される。また、これよりも冷房の程度が1段階強いレベル2が選択された場合には、前記熱動弁開放時間T1はやや長くなって4[分]に設定される。以降同様に、レベル3が選択された場合には前記熱動弁開放時間T1は6[分]となり、レベル4が選択された場合には前記熱動弁開放時間T1は8[分]となり、レベル5が選択された場合には前記熱動弁開放時間T1は10[分]となり、レベル6が選択された場合には前記熱動弁開放時間T1は12[分]となり、レベル7が選択された場合には前記熱動弁開放時間T1は14[分]となり、レベル8が選択された場合には前記熱動弁開放時間T1は16[分]となる。そして、冷房の程度が最も強い(言い替えれば温度が最も低い)レベル9が選択された場合には前記熱動弁開放時間T1は18[分]に設定される。このように、熱動弁開放時間T1は、高いレベルであるほど(言い替えれば目標戻り温度が低いほど)長くなっている。
図9に戻り、この例では、前記熱動弁開放時間T1が前記レベル8及びそのときの前記目標戻り温度(11[℃])に対応して16[分]に設定されており(前記の図8(b)参照)、前記往き温度が前記目標往き温度に達したタイミング(図9(c)における時間t5参照)において、前記熱動弁開放時間T1が既に経過している。したがってその後の時間t6における前記目標戻り温度への到達により、ただちに熱動弁Vが閉じ状態に切り替えられる(図9(d)上段における時間t6参照)。
これにより、前記第2比較例と同様、圧縮機7の回転が停止され(図9(e)上段における時間t7参照)、前記熱動弁Vが閉じ制御されたタイミングから熱動弁閉止時間T2(この例では前記図8(b)に示したように前記目標戻り温度11[℃]に対応する12分で、前記第2比較例の熱動弁閉止時間T2′と同じ)が経過すると、熱動弁Vが再び開き状態に切り替えられる(図9(d)上段における時間t8参照)。これにより、前記第2比較例と同様、前記往き温度が再び前記目標往き温度を上回る(図9(c)における時間t8〜t9参照)とともに圧縮機7が駆動再開され(図9(e)上段における時間t9参照)、回転数が再び徐々に増大する(図9(e)上段における時間t9〜t11参照)。これにより、前記戻り温度が再び前記目標戻り温度(11[℃])に到達する(図9(b)における時間t12参照)が、前述のように前記端末周辺温度は一度20[℃]に到達済みであり冷房負荷が比較的小さい状態であることから、この時点では、前記時間t8で熱動弁Vが開かれてからの閉じられるまでの経過時間(すなわち時間t8〜t12)は、前記熱動弁開放時間T1よりも短い。この結果、当該熱動弁開放時間T1が経過するまでは熱動弁Vは切り替えられず(図9(d)上段における時間t12〜t15参照)、当該熱動弁開放時間T1が経過したタイミングで、熱動弁Vが閉じ状態に切り替えられる(図9(d)上段における時間t15参照)。すなわち、この場合、前記第2比較例とは異なり、本実施形態では、前記目標戻り温度到達後もしばらくの間(すなわち上記時間t12〜t15の間)は熱動弁Vが開かれて冷温水パネル51,52による前記吸熱が行われ、前記往き温度の急降下は防止されている。したがって、前記圧縮機7は、前記往き温度が前記目標往き温度(7[℃])まで降下した(図9(c)における時間t12参照)後において、前記往き温度が前記目標往き温度になるように、それまでの回転数(65〜70[rps]程度)から段階的に回転数が低減された後、前記熱動弁Vが閉じ状態とされたことに伴い前記往き温度が急低下すると、前記往き温度が前記目標往き温度を大きく下回るのを防止するために駆動停止されることになる(図9(e)上段における時間t14〜t16参照)。
その後、前記第2比較例同様、前記熱動弁Vが閉じ制御されたタイミングから前記熱動弁閉止時間T2(この例では9[分])が経過すると、熱動弁Vが再び開き状態に切り替えられる(図9(d)上段における時間t20参照)。この結果、前記同様、前記往き温度が前記目標往き温度(7[℃])を上回る(図9(c)における時間t20〜t21参照)のに対応して、圧縮機7が前記停止状態から駆動再開され(図9(e)上段における時間t21参照)、その回転数が徐々に増大する(図9(e)上段における時間t21〜t22参照)。
その後、前記同様、再び前記戻り温度が前記目標戻り温度(11[℃])に到達した(図9(b)における時間t22〜t23参照)後、前記熱動弁開放時間T1が経過したタイミングで、熱動弁Vが閉じ状態に切り替えられる(図9(d)上段における時間t25参照)。このように熱動弁Vが閉じ状態になることにより、前記同様、前記往き温度が前記目標往き温度(11[℃])に達した(図9(c)における時間t23参照)後において、前記往き温度が前記目標往き温度になるように、圧縮機7の回転数が段階的に低減された後、前記熱動弁Vが閉じ状態とされたことに伴い前記往き温度が急低下すると、前記往き温度が前記目標往き温度を大きく下回るのを防止するために駆動停止される(図9(e)上段における時間t24〜t26参照)。
以降、同様にして、前記熱動弁閉止時間T2が経過すると熱動弁Vが開き状態となり、前記往き温度が前記目標往き温度を上回るのに対応して圧縮機7が駆動再開されて回転数が増大する。そして、前記戻り温度が目標戻り温度に到達した後に前記熱動弁開放時間T1が経過したタイミングで熱動弁Vが閉じられて前記圧縮機7が減速して駆動停止され、以降、同様の流れが繰り返される(時間t27〜t38参照)。
次に、以上の手法を実現するために前記熱動弁コントローラCVが実行する制御手順を、図10及び図11により説明する。
まず、暖房運転時の前記熱動弁コントローラCVによる制御手順を図10のフローチャートに示す。なお、以下では、前記戻り温度センサ53の検出結果に基づいて前記熱動弁V1を制御する内容をこのフローを用いて説明するが、前記戻り温度センサ54の検出結果に基づいて前記熱動弁V2を制御する場合も同等の内容である。
図10において、まずステップS110で、前記室外機1が運転開始状態となったか否かを判定する。具体的には、前記図4(a)のステップS10と同様の手法を、前記室外機制御部CUを介し適宜の情報を取得することによって行う。但し、この判定は、図4(a)において前記した、(前記メインリモコン装置RMや前記端末用リモコン装置RA,RBを介し)操作者による適宜の室外機1の運転開始操作がなされることで停止状態から起動されたときにのみ行われるものであり、別途述べたような運転停止後から再起動して室外機1の運転が再び開始されたときについては、この判定は行われない。運転開始状態となるまではステップS110の判定が満たされず(S110:No)ループ待機し、運転開始状態となるとステップS110の判定が満たされ(S110:Yes)、ステップS120に移る。
ステップS120では、熱動弁コントローラCVは、前記熱動弁V1を開き状態に制御する。その後、ステップS130に移る。
ステップS130では、熱動弁コントローラCVは、この時点で前記戻り温度センサ53で検出された前記戻り温度が前記目標戻り温度(前記の例では46[℃])以上であるか否かを判定する。前記戻り温度が前記目標戻り温度未満である場合、判定は満たされず(S130:NO)ループ待機し、前記戻り温度が前記目標戻り温度以上である場合、判定が満たされ(S130:Yes)、ステップS140に移る。
ステップS140では、熱動弁コントローラCVは、前記ステップS115で熱動弁Vを開き状態としてから前記熱動弁開放時間T1が経過したか否かを判定する。熱動弁開放時間T1が経過していなければ判定が満たされず(S140:NO)、ステップS130に戻り、同様の手順を繰り返す。熱動弁開放時間T1が経過していたら、ステップS140の判定が満たされ(S140:YES)、ステップS150に移る。
ステップS150では、熱動弁コントローラCVは、(前記ステップS115での制御で開き状態にある)前記熱動弁V1を、閉じ状態に制御する。その後、ステップS160に移る。
ステップS160では、熱動弁コントローラCVは、(ステップS150で熱動弁Vを閉じ状態としてから)前記熱動弁閉止時間T2が経過したか否かを判定する。熱動弁閉止時間T2が経過しないうちは判定が満たされず(S160:NO)ループ待機し、熱動弁閉止時間T2が経過したら、ステップS160の判定が満たされ(S160:YES)、ステップS170に移る。
ステップS170では、前記ステップS120と同様、熱動弁コントローラCVは、前記熱動弁V1を開き状態に制御する。その後、前記ステップS130に戻って同様の手順を繰り返す。すなわち、熱動弁コントローラCVは、前記ステップS110での判定が満たされて室外機1が起動された後は、(その後前記運転停止となっても)常に、前記戻り温度が前記目標戻り温度に対してどのような値であるかを監視しており、室外機1が待機状態で停止していてもその監視は変わらず続けているものである。
次に、冷房運転時の前記熱動弁コントローラCVによる制御手順を図11のフローチャートに示す。図11において、このフローでは、前記図10のフローにおけるステップS130が不等号の向きが逆になったステップS130Aに置き換えられるとともに、各制御手順において「温水」を「冷水」と読み替えて同等の制御が行われる。すなわちステップS130Aでは、熱動弁コントローラCVは、この時点で前記戻り温度センサ53で検出された前記戻り温度が前記目標戻り温度(前記の例では11[℃])以下であるか否かを判定する。前記戻り温度が前記目標戻り温度を超過している場合は判定は満たされず(S130A:NO)ループ待機し、前記戻り温度が前記目標戻り温度以下である場合は判定が満たされ(S130A:YES)前記ステップS140に移る。これ以外の手順は前記図10と同様であり、説明を省略する。
なお、図示を省略しているが、前記の図4、図5、図10、及び図11のフローの各手順における任意のタイミングで操作者による適宜の輻射式空調システム100の運転終了操作がなされた場合には、各フローは終了され、室外機1を含む輻射式空調システム100が停止する。
以上説明したように、本実施形態の輻射式空調システム100によれば、熱動弁コントローラCVにより、(温水又は冷水の戻り温度が前記目標戻り温度に到達したことのみによって熱動弁Vが閉じ状態に制御されるのではなく)前記熱動弁Vが前記開き状態とされた後に前記熱動弁開放時間T1が経過したこと、及び、温水又は冷水の戻り温度が前記目標戻り温度に到達したこと、の両方が満足されていることを条件として、熱動弁Vが閉じ状態に制御される。
これにより、暖房負荷又は冷房負荷が比較的小さい場合(前述の図7及び図9の例では例えば時間t7以降)では、前記熱動弁Vが前記開き状態とされた後に(前記熱動弁開放時間T1が経過するより前に)まず先に前記戻り温度が前記目標戻り温度に到達(前述の図7及び図9の例における例えば時間t12,t22〜t3,t32〜t33等参照)した後、さらに前記熱動弁開放時間T1が経過したとき(前述の図7及び図9の例における例えば時間t15,t25,t37等参照)に、当該熱動弁Vが閉じ状態に制御される。したがって、熱動弁Vが開かれた後に閉じられるまでの時間(開き状態の時間)が前記第1及び第2比較例よりも長くなり、冷温水パネル51,52に温水又は冷水が供給される時間が長くなる。この結果、前記第1及び第2比較例よりも前記戻り温度は高め(図7)又は低め(図9)に推移することになるので、前記第1及び第2比較例のように暖かさ又は涼しさが不十分のまま熱動弁が閉じられるのを防止し、ユーザの意図する暖房感又は冷房感を確実に得ることができる。
また、例えば暖房運転又は冷房運転を開始した直後(前述の図7及び図9の例では例えば時間t1〜t6)等の暖房負荷又は冷房負荷が比較的大きい場合には、前記熱動弁Vが前記開き状態とされた後に(前記戻り温度が前記目標戻り温度に到達しない状態のまま)まず先に前記熱動弁開放時間T1が経過し(図7及び図9の時間t5参照)、その後、前記目標戻り温度に到達したときに、当該熱動弁Vが閉じ状態に制御される(図7及び図9の時間t6参照)。この場合、少なくとも前記第1及び第2比較例と同様、温水又は冷水の循環によって前記戻り温度がある程度上昇又は下降するまでは、熱動弁Vの開き状態を維持することができる。
また、本実施形態では特に、前記図8(a)及び図8(b)を用いて前述したように、暖房時においては前記目標戻り温度が高いほど前記熱動弁開放時間T1を長くし、冷房時においては前記目標戻り温度が低いほど前記熱動弁開放時間T1を長くする。これにより、暖房時の目標戻り温度が高いほど(=ユーザによる暖房設定レベルが強いほど)、若しくは、冷房時の目標戻り温度が低いほど(=ユーザによる冷房設定レベルが強いほど)、熱動弁Vの開き状態の時間を長くし、速やかにユーザの所望する暖房感又は冷房感を実現することができる。
また、本実施形態では特に、前記図8(a)及び図8(b)を用いて前述したように、暖房時においては前記目標戻り温度が高いほど前記熱動弁閉止時間T2を短くし、冷房時においては前記目標戻り温度が低いほど前記熱動弁閉止時間T2を短くする。これにより、暖房時の目標戻り温度が高いほど(=ユーザによる暖房設定レベルが強いほど)、若しくは、冷房時の目標戻り温度が低いほど(=ユーザによる冷房設定レベルが強いほど)、熱動弁Vの閉じ状態の時間を短くし、速やかにユーザの所望する暖房感又は冷房感を実現することができる。
また、本実施形態では特に、熱源機として、圧縮機7、膨張弁9、水−冷媒熱交換器11を備えたヒートポンプ式の室外機1を用いることにより、使用したエネルギ以上の熱エネルギを得ることができ、エネルギの高効率利用を図ることができる。
なお、本発明は前記実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、上記実施形態では、熱交換端末として、冷温水パネル151,152が接続される場合を例にとって説明したが、これに限られず、冷房・暖房機能のうち少なくとも一方を備えた他の輻射端末、例えば暖房パネル、床暖房パネル、ラジエータ、コンベクター等を接続してもよい。また、上記実施形態では、冷温水パネル151,152の2台の輻射端末が接続される場合を例にとって説明したが、これに限られない。すなわち3台以上の輻射端末が接続される構成や、輻射端末1台と温水ルームヒータやファンコイル等の輻射端末でない熱交換端末1台(又は複数台)が接続される構成でも良く、少なくとも1台の輻射端末を含む複数の熱交換端末が接続される構成であれば良い。これらの場合、輻射端末に対応する熱動弁に対し、先に説明したような熱動弁コントローラCVによる熱動弁の開閉制御が適用される。さらに、複数台接続された輻射端末のうち、指定された輻射端末に対応する熱動弁にのみ、先に説明したような熱動弁コントローラCVによる熱動弁の開閉制御を適用してもよい。
また例えば、上記実施形態では、常に、前記熱動弁Vが前記開き状態とされた後に前記熱動弁開放時間T1が経過したこと、及び、温水又は冷水の戻り温度が前記目標戻り温度に到達したこと、の両方が満足されていることを条件として、熱動弁Vが閉じ状態に制御されていたが、これに限られない。例えば、このように前記2つのことが満足することを条件に熱動弁Vを閉じ状態に制御するモード(第1制御モード)と、前記第1及び第2比較例のように、温水又は冷水の戻り温度が前記目標戻り温度に到達したことのみによって熱動弁Vが閉じ状態に制御されるモード(第2制御モード)と、の2つのモードを、熱動弁コントローラCVが選択的に実行可能としてもよい。このとき特に、前記輻射式空調システム100にどのような種類の熱交換端末が備えられているか、がメインリモコン装置RMに対し操作入力され(詳細は後述)、その入力結果に応じて、前記2つのモードのうちいずれのモードとなるか、が自動的に選択されるようにしてもよい。そのような変形例を図12〜図14により説明する。
本変形例においては、例えばこの輻射式空調システム100の施工後のメンテナンス時やサービス時において、例えば施工会社のサービスマン等の操作者が、当該システム100に備えられた熱交換端末(前記の例では輻射端末である冷温水パネル51,52)の種類を操作入力することで、前記のような運転制御を行うためのモード設定(選択)が行われる。以下、その流れを順を追って説明する。
すなわち、本変形例では、前記の操作入力を前記操作者が行う際には記システムに使用されている熱交換端末の種類をひとつひとつ前記メインリモコン装置RMに対し入力する。すなわち、まず、前記「電源」ボタン202を用いてメインリモコン装置RMの電源をONにした後、予め定められている適宜の操作を行うと、図12に示す画面201Kが表示される。
図12に示すように、この画面201Kには、適宜の数(例えば8つ)の熱交換端末(この例では各熱交換端末の前記往き管及び前記戻り管の流れ制御という意味で「回路」と表示している。以下の各画面でも同様)の種類をそれぞれ入力可能となるように、「回路(1)(但し図中は丸文字で表示。以下同様)」「回路(2)」「回路(3)」・・の各行がそれぞれ用意され、表示されている。なお、各熱交換端末に対し使用するリモコン装置の種類を併せて入力するために、各行の「回路○」の右側には「■未使用■」の欄も併せて用意され、表示される。この画面201Kでは、メインリモコン装置RMの前記ボタン205,206,207や十字キー209等を用いた適宜の操作により、1つめの熱交換端末(図中では「回路(1)」)として「冷温水パネル」(前記冷温水パネル51に対応)が選択入力されかつ当該冷温水パネル51が1番目の端末用リモコン装置RAにより制御されることに合わせて「リモコン(1)」が選択され、さらに、2つめの熱交換端末(図中では「回路(2)」)として「冷温水パネル」(前記冷温水パネル52に対応)が選択入力されかつ当該冷温水パネル52が2番目の端末用リモコン装置RBにより制御されることに合わせて「リモコン(2)」が選択された状態が示されている。なお、このようにして熱交換端末の種類を受け付けるメインリモコン装置RMの前記CPUの機能が、各請求項記載の端末種類受付手段に相当している。
この後、前記十字キー209を用いて前記画面201Kの最下段までスクロールすると、図13に示すように「設定を確定し完了する」のメッセージの行が表示される。図示のようにこのメッセージにカーソルKを合わせて前記「メニュー/決定」ボタン208を操作すると、図14に示す画面201Lに移る。
図14において、この画面201Lでは、前述までの入力結果、すなわち、使用される熱交換端末が輻射端末(前記の例では冷温水パネル51,52)であることに対応して、前記第1制御モード(この画面201Lの例ではユーザに直感的に分かりやすい『しっかり快適』モードと表記)への確認を促す、「『しっかり快適』モードに切り替えます。よろしいですか」のメッセージと、これに対応する「はい(Y)」ボタン及び「いいえ(N)」ボタンとが表示されている。
この表示に対応して、前記ボタン205,206,207や十字キー209等を用いた適宜の操作により「はい(Y)」ボタンが操作されると、対応する制御信号が例えば前記室外機1の室外機制御部CUを介して熱動弁コントローラCVへと送られる。これによって、熱動弁コントローラCVは、前記熱動弁Vを制御するときのモードを、前記熱動弁Vが前記開き状態とされた後に前記熱動弁開放時間T1が経過したこと、及び、温水又は冷水の戻り温度が前記目標戻り温度に到達したこと、の両方が満足されていることを条件として、熱動弁Vを閉じ状態に制御する、前記第1制御モードに決定する。
一方、前記ボタン205,206,207や十字キー209等を用いた適宜の操作により「いいえ(N)」ボタンが操作されると、対応する制御信号が例えば前記室外機1の室外機制御部CUを介して熱動弁コントローラCVへと送られる。これによって、熱動弁コントローラCVは、前記熱動弁Vを制御するときのモードを、前記第1及び第2比較例のように、温水又は冷水の戻り温度が前記目標戻り温度に到達したことのみによって熱動弁Vを閉じ状態に制御する、第2制御モードに決定する。
あるいは、前記のようにして入力された結果が、使用される熱交換端末が輻射端末であった場合には(前記のようなメッセージ表示による確認操作を行うことなく)熱動弁コントローラCVが直ちに前記第1制御モードに決定し、使用される熱交換端末が輻射端末でない場合には熱動弁コントローラCVが直ちに前記第2制御モードに決定するようにしてもよい。
また、前記第1制御モードに決定される場合に、使用される熱交換端末がさらに輻射端末の中のどのような機種であるか(冷温水パネル、暖房パネル、床暖房パネル、ラジエータ、コンベクター等のいずれであるか)に応じて、図8(a)及び図8(b)を用いて説明した熱動弁開放時間T1や熱動弁閉止時間T2の値を長短変化させても良い。さらに、輻射端末の機種によっては、前記第1制御モードとせず、前記第2制御モードを用いて熱動弁Vの制御を行うようにしても良い。
さらには、使用される複数台の熱交換端末として、特定種類の輻射端末(例えば前記冷温水パネル)と、それ以外の熱交換端末(例えば暖房パネル、床暖房パネル、ラジエータ、コンベクター等の他の種類の輻射端末、あるいは、温水ルームヒータやファンコイル等の輻射端末でない熱交換端末)とが、前述のようにしてメインリモコン装置RMにて受け付けられた(指定された)場合に、前記特定種類の輻射端末(冷温水パネル)に関わる熱動弁に、前記第1制御モードによる熱動弁コントローラCVによる熱動弁Vの開閉制御を適用するようにしてもよい。
本変形例においては、空調システムに用いられるものとして入力された熱交換端末の種類に輻射端末が含まれるか否かに応じて(若しくは輻射端末のうちいずれの種類が含まれるか等に応じて)、前記のような熱動弁開放時間T1の経過+目標戻り温度到達による熱動弁閉止制御を行う前記第1制御モードとするか、若しくは、目標戻り温度到達によってのみ熱動弁閉止制御を行う前記第2制御モードとするか、が選択される。このようにシステムに用いられる熱交換端末の種類に応じて制御態様が選ばれることにより、ユーザの冷暖房の使用シーンや使用状況に応じたきめ細かい制御が可能となり、さらに利便性を向上することができる。
また、以上においては、熱源機として、熱源側熱交換器としての室外熱交換器8に冷媒を通じる一方で外気を送風する室外ファン10を有し、熱源としての外気と前記冷媒とが熱交換される、空気熱源式のヒートポンプである前記室外機1を使用した場合を例にとって説明したが、これに限られない。すなわち、熱源機を、熱源側熱交換器に対して水や不凍液が供給されそれらの液体と冷媒とが当該熱源側熱交換器において熱交換する構成のものとしたり、地中又は比較的大容量の水源中に熱源側熱交換器を設け、この熱源側熱交換器で前記地中又は前記水源と冷媒とが熱交換する構成のものとしてもよい。さらには、熱源側熱交換器において前記冷媒と熱交換できるものであれば、前記液体や前記外気や前記水源に代えて、それ以外のもの(例えば、発煙、排煙、各種高温ガス等を含む気体や、熱砂、塵埃、各種粒子等を含む流動固体)を熱源側熱交換器に通じたり、太陽光、反射光、その他輻射等による熱を熱源側熱交換器に供給して用いる構成としても良い。
また、以上においては、ヒートポンプ熱源機としての室外機1を用いたが、これに限られず、ヒートポンプ型ではない他の種類の熱源機(例えば、ガス、灯油等を用いたものなど)を用いた構成に対し、前記の手法を適用しても良い。
1 室外機(ヒートポンプ熱源機、熱源機)
2A 共通往き管(導入管路)
2B1,2B2 往き管(個別往き管、導入管路)
3A 共通戻り管(導出管路)
3B1,3B2 戻り管(個別戻り管、導出管路)
7 圧縮機
8 室外熱交換器(熱源側熱交換器)
9 膨張弁
11 水−冷媒熱交換器(水熱交換器)
53,54 戻り温度センサ(戻り温度検出手段)
55 吐出温度センサ
56 往き温度センサ
61 圧縮機制御部
62 膨張弁制御部
100 輻射式空調システム
151 冷温水パネル(輻射端末、熱交換端末)
152 冷温水パネル(輻射端末、熱交換端末)
CU 室外機制御部
CV 熱動弁コントローラ(熱動弁制御手段)
RA,RB 端末用リモコン装置
RM メインリモコン装置
T1 熱動弁開放時間
T2 熱動弁閉止時間
V1,V2 熱動弁

Claims (8)

  1. 温水又は冷水を生成する熱源機と、
    前記熱源機で生成され導入管路を介して供給された前記温水又は冷水を用いて室内側空気に対する放熱又は吸熱により暖房又は冷房を行うとともに、放熱又は吸熱後の前記温水又は冷水を導出管路を介し前記熱源機へと還流させる、少なくとも1つの輻射端末を含む複数の熱交換端末と、
    を有し、
    前記導入管路は、
    1つの共通往き管と、
    前記共通往き管よりも下流側に分岐して接続され、前記複数の熱交換端末それぞれへ向かう複数の個別往き管と、
    前記複数の個別往き管それぞれに配置され、対応する前記個別往き管をそれぞれ開閉可能な複数の熱動弁とを備え、
    前記導出管路は、
    1つの共通戻り管と、
    前記共通戻り管よりも上流側に集結して接続され、前記複数の熱交換端末それぞれから戻る複数の個別戻り管と、
    前記複数の個別戻り管それぞれに配置され、対応する前記個別戻り管における前記温水又は冷水の戻り温度をそれぞれ検出する複数の戻り温度検出手段とを備え、
    前記複数の熱動弁は、前記複数の戻り温度検出手段の検出結果に基づき、熱動弁制御手段によって個別に開閉動作を制御される、輻射式空調システムにおいて、
    前記熱動弁制御手段は、
    前記輻射端末に関わる前記熱動弁において、当該輻射端末に関わる前記熱動弁が開き状態とされた後所定の熱動弁開放時間が経過する前に前記戻り温度検出手段により検出された対応する前記個別戻り管の前記戻り温度が予め設定された目標戻り温度に到達する、負荷が小さい場合には、その後前記熱動弁開放時間が経過したときに、当該熱動弁を閉じ状態に制御すること、及び、当該輻射端末に関わる前記熱動弁が前記開き状態とされた後に前記戻り温度が前記目標戻り温度に到達しない状態のまま前記熱動弁開放時間が経過する、負荷が大きい場合には、その後前記戻り温度が前記目標戻り温度に到達したときに、当該熱動弁を閉じ状態に制御すること、により、当該熱動弁が前記開き状態とされた後に前記熱動弁開放時間が経過していて、かつ、前記開き状態において前記戻り温度が前記目標戻り温度に到達している場合に、当該熱動弁を閉じ状態に制御する
    ことを特徴とする輻射式空調システム。
  2. 前記熱動弁制御手段は、
    前記輻射端末の暖房運転又は冷房運転を開始した直後においては、当該輻射端末に関わる前記熱動弁が前記開き状態とされた後に前記戻り温度が前記目標戻り温度に到達しない状態のまま前記熱動弁開放時間が経過し、その後前記戻り温度が前記目標戻り温度に到達したときに、当該熱動弁を閉じ状態に制御する
    ことを特徴とする請求項1記載の輻射式空調システム。
  3. 前記熱動弁制御手段は、
    前記輻射端末の暖房運転又は冷房運転を開始した後、当該輻射端末に関わる前記熱動弁が一度開閉操作された後においては、当該熱動弁が前記開き状態とされた後前記熱動弁開放時間が経過する前に前記戻り温度が前記目標戻り温度に到達し、その後前記熱動弁開放時間が経過したときに、当該熱動弁を閉じ状態に制御する
    ことを特徴とする請求項1または請求項2に記載の輻射式空調システム。
  4. 前記熱動弁制御手段は、
    前記輻射端末の前記暖房時において前記目標戻り温度が高いほど当該輻射端末に関わる前記熱動弁の前記熱動弁開放時間を長くするか、又は、前記輻射端末の前記冷房時において前記目標戻り温度が低いほど当該輻射端末に関わる前記熱動弁の前記熱動弁開放時間を長くする
    ことを特徴とする請求項1乃至請求項3の何れか1項に記載の輻射式空調システム。
  5. 前記熱動弁制御手段は、
    前記輻射端末に関わる前記熱動弁において、当該熱動弁の閉じ状態において、予め設定された熱動弁閉止時間が経過した場合に、当該熱動弁を開き状態に制御し、かつ、
    前記輻射端末の前記暖房時において前記目標戻り温度が高いほど当該輻射端末に関わる前記熱動弁の前記熱動弁閉止時間を短くするか、又は、前記輻射端末の前記冷房時において前記目標戻り温度が低いほど当該輻射端末に関わる前記熱動弁の前記熱動弁閉止時間を短くする
    ことを特徴とする請求項1乃至請求項4の何れか1項に記載の輻射式空調システム。
  6. 前記輻射式空調システムにおいて用いられる、前記輻射端末を含む熱交換端末の種類の入力を受け付ける、端末種類受付手段を備えたリモコン装置をさらに有し、
    前記熱動弁制御手段は、
    前記リモコン装置の前記端末種類受付手段で特定種類の前記輻射端末が入力された場合の当該特定種類の輻射端末に関わる前記熱動弁の制御については、
    当該熱動弁が前記開き状態とされた後に前記所定の熱動弁開放時間が経過していて、かつ、前記戻り温度が前記目標戻り温度に到達している場合に、当該熱動弁を閉じ状態に制御する
    ことを特徴とする請求項1乃至請求項5の何れか1項に記載の輻射式空調システム。
  7. 前記輻射式空調システムにおいて用いられる、前記輻射端末を含む熱交換端末の種類の入力を受け付ける、端末種類受付手段を備えたリモコン装置をさらに有し、
    前記熱動弁制御手段は、
    前記リモコン装置の前記端末種類受付手段での受付結果に応じて、
    (a)前記輻射端末に関わる前記熱動弁において、当該熱動弁が前記開き状態とされた後に前記所定の熱動弁開放時間が経過していて、かつ、前記戻り温度が前記目標戻り温度に到達している場合に、当該熱動弁を閉じ状態に制御する、第1制御モード;
    (b)前記戻り温度が前記目標戻り温度に到達した場合、前記輻射端末に関わる前記熱動弁において、当該熱動弁が前記開き状態とされた後に前記所定の熱動弁開放時間が経過していたか否かを問わず、当該熱動弁を閉じ状態に制御する、第2制御モード;
    のいずれの制御モードとするかを決定する
    ことを特徴とする請求項1乃至請求項5の何れか1項に記載の輻射式空調システム。
  8. 前記熱源機は、
    圧縮機、膨張弁、熱源側熱交換器を冷媒配管で接続したヒートポンプ装置と、
    このヒートポンプ装置から前記冷媒配管を介し冷媒の供給を受けて水との熱交換により前記温水又は前記冷水を生成する水熱交換器とを有する、ヒートポンプ熱源機である
    ことを特徴とする請求項1乃至請求項7の何れか1項に記載の輻射式空調システム。
JP2016139710A 2016-07-14 2016-07-14 輻射式空調システム Active JP6850558B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139710A JP6850558B2 (ja) 2016-07-14 2016-07-14 輻射式空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139710A JP6850558B2 (ja) 2016-07-14 2016-07-14 輻射式空調システム

Publications (2)

Publication Number Publication Date
JP2018009750A JP2018009750A (ja) 2018-01-18
JP6850558B2 true JP6850558B2 (ja) 2021-03-31

Family

ID=60995208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139710A Active JP6850558B2 (ja) 2016-07-14 2016-07-14 輻射式空調システム

Country Status (1)

Country Link
JP (1) JP6850558B2 (ja)

Also Published As

Publication number Publication date
JP2018009750A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6338761B2 (ja) 空気調和システム
JP5982017B2 (ja) 二元冷凍サイクル装置
JP2008121982A (ja) 冷凍サイクル装置
JP4890320B2 (ja) ヒートポンプ式給湯システム
JP6817735B2 (ja) ヒートポンプ式空調システム
JP6912349B2 (ja) 温調システム
KR101752974B1 (ko) 히트펌프시스템
JP6785867B2 (ja) 空調システム
JP6607829B2 (ja) 温水熱源機
JP6360805B2 (ja) 冷温水冷暖房システム
KR101761012B1 (ko) 급탕난방장치
JP6850558B2 (ja) 輻射式空調システム
JP6964482B2 (ja) ヒートポンプ式温調システム
JP6964049B2 (ja) ヒートポンプ式冷水冷房装置
JP2016057014A (ja) ヒートポンプシステム
JP6545378B2 (ja) 空調システム及び中継機
JP6599812B2 (ja) 複合熱源ヒートポンプ装置
JP6657623B2 (ja) 空調給湯システム
JP6978363B2 (ja) ヒートポンプ熱源機
JP6981905B2 (ja) ヒートポンプ熱源機
JP6467271B2 (ja) 温水暖房システム
JP6666803B2 (ja) 温水暖房システム
JP6389703B2 (ja) ヒートポンプシステム
JP7392567B2 (ja) 空気調和機
JP6883499B2 (ja) 温調システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6850558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250