JP6849858B2 - 2段階成膜プロセスにおける接合抵抗の変動の低減 - Google Patents

2段階成膜プロセスにおける接合抵抗の変動の低減 Download PDF

Info

Publication number
JP6849858B2
JP6849858B2 JP2020515872A JP2020515872A JP6849858B2 JP 6849858 B2 JP6849858 B2 JP 6849858B2 JP 2020515872 A JP2020515872 A JP 2020515872A JP 2020515872 A JP2020515872 A JP 2020515872A JP 6849858 B2 JP6849858 B2 JP 6849858B2
Authority
JP
Japan
Prior art keywords
layer
opening
resist layer
resist
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020515872A
Other languages
English (en)
Other versions
JP2020535461A (ja
Inventor
ブライアン・ジェームズ・バーケット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Publication of JP2020535461A publication Critical patent/JP2020535461A/ja
Application granted granted Critical
Publication of JP6849858B2 publication Critical patent/JP6849858B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/203Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure comprising an imagewise exposure to electromagnetic radiation or corpuscular radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Description

本開示は、2段階成膜プロセスにおける接合抵抗の変動の低減に関する。
量子コンピューティングは、基底状態の重ね合わせやもつれなどの量子効果を利用して、古典的なデジタルコンピュータよりも効率的に特定の計算を行う比較的新しいコンピューティング手法である。ビット(例えば「1」または「0」)の形で情報を記憶、操作するデジタルコンピュータとは異なり、量子情報処理デバイスは、キュービットを使用して情報を操作することができる。キュービットは、複数の状態の重ね合わせ(例えば、「0」及び「1」の両方の状態のデータ)を可能にする量子デバイス及び/または複数の状態にあるデータの重ね合わせ自体を指しうる。従来の用語に従って、量子システムにおける「0」と「1」との状態の重ね合わせは、例えば、α|0>+β|1>のように表されうる。デジタルコンピュータの「0」及び「1」の状態は、それぞれキュービットの|0>及び|1>の基底状態に類似している。値|α|は、キュービットが|0>の状態である確率を表し、値|β|は、キュービットが|1>の基底状態にある確率を表している。
一般に、本明細書で説明される対象の本発明の1つの態様は、誘電体基板を提供する段階と、誘電体基板上に第1のレジスト層を形成する段階と、第1のレジスト層上に第2のレジスト層を形成する段階と、第2のレジスト層上に第3のレジスト層を形成する段階と、を含む方法として実施されうる。第1のレジスト層が、第1のレジスト層の厚さを通して延在する第1の開口部を含み、第2のレジスト層が、第1の開口部の上に位置合わせされ、第2のレジスト層の厚さを通して延在する第2の開口部を含み、第3のレジスト層が、第2の開口部の上に位置合わせされ、第3のレジスト層の厚さを通して延在する第3の開口部を含む。
本方法の実施例は、任意選択的に、以下の特徴の1つまたは複数を含みうる。いくつかの実施例において、第1の開口部、第2の開口部及び第3の開口部のそれぞれの厚さが、誘電体基板の表面の法線方向である第1の方向に沿って延在し、第1の開口部、第2の開口部及び第3の開口部のそれぞれが、第1の方向に対して直交する第2の方向に沿って延在する対応する幅を有し、第2の開口部の幅が、第1の開口部の幅よりも小さく、第3の開口部の幅よりも小さい。
いくつかの実施例において、第1のレジスト層における第1の開口部及び第3のレジスト層における第3の開口部が、第1のレジスト層、第2のレジスト層及び第3のレジスト層を第1のパターンで露光することによって画定され、第2のレジスト層における第2の開口部が、第1のレジスト層、第2のレジスト層及び第3のレジスト層を第2のパターンで露光することによって画定される。第1のレジスト層、第2のレジスト層及び第3のレジスト層がその後現像される。
いくつかの実施例において、第1の開口部、第2の開口部及び第3の開口部を通して、基板に対して第1の成膜角度で材料の第1の層が成膜され、第1の開口部、第2の開口部及び第3の開口部を通して、基板に対して第2の成膜角度で材料の第2の層が成膜される。材料の第1の層及び材料の第2の層は、超伝導材料でありうる。
いくつかの実施例において、材料の第2の層を成膜する前に、材料の第1の層の表面酸化を実行して、材料の第1の層の酸化領域を提供する。いくつかの実施例において、材料の第1の層の一部、酸化領域の一部及び材料の第2の層の一部が、量子情報処理デバイスの一部、例えばジョセフソン接合を形成し、量子情報処理デバイスはキュービットでありうる。
いくつかの実施例において、第1のレジスト層、第2のレジスト層、第3のレジスト層、及び過剰な成膜材料が、例えばエッチングプロセスを用いて除去される。
いくつかの実施例において、材料の第1の層の成膜の際に、誘電体基板及び、材料成膜ソースが、互いに対して第1の配向に従って配置され、材料の第2の層の成膜の際に、誘電体基板及び、材料成膜ソースが、互いに対して第2の配向に従って配置され、第1の配向が第2の配向とは異なる。材料の第1の層を成膜した後であって、材料の第2の層を成膜する前に、基板が回転されうる。代替的に、材料の第1の層を成膜した後であって、材料の第2の層を成膜する前に、誘電体基板に対して材料成膜ソースの位置が変更されうる。
いくつかの実施例において、第1の開口部、第2の開口部及び第3の開口部が、誘電体基板の表面を露出させるマスク開口領域を画定する。第1のアンダーカット幅が、第2の開口部の第1の縁と、マスク開口領域の第1の側の第3の開口部の第1の縁との間の距離によって画定されうる。第2のアンダーカット幅が、第2の開口部の第2の縁と、マスク開口領域の第1の側に直接対向するマスク開口領域の第2の側の第3の開口部の第2の縁との間の距離によって画定されうる。第1のアンダーカット幅はほぼゼロでありうる。
いくつかの実施例において、第2のアンダーカット幅が、第1の成膜プロセスの際に、第3のレジスト層の側壁上に成膜される材料の厚さよりも大きい。
いくつかの実施例において、マスク開口領域の第1の側が、材料の第1の層の成膜の際に、マスク開口領域の第2の側よりも材料成膜ソースに近い。
本明細書で説明される対象の特定の実施形態は、以下の利点のうちの1つまたは複数を実現するように実施されうる。例えば、いくつかの実施例において、本明細書で開示される技術は、基板上の最も近い隣接するジョセフソン接合間の接合変動を低減し、及び/または性能の均一性を改善するために使用されうる。いくつかの実施例において、ここで開示される技術は、成膜パラメータ(例えば成膜角度)及び/またはマスク層の側壁における偶発的な成膜に起因しうるマスク層内の開口領域の大きさの変動を低減することによって、量子情報処理デバイスの性能全体の均一性を改善する。さらに、量子情報処理デバイスの性能の全体的な均一性は、成膜層(例えば、アルミニウム結晶粒成長)における結晶粒成長及び結晶粒の形態の効果に起因しうる、マスク層内の開口領域の大きさにおける変動(例えば、成膜粗さに起因する開口領域のうねり)を低減することによって改善されうる。マスク層内の開口部の大きさにおける変動を低減することにより、マスク層を用い製造された、ジョセフソン接合及びキュービットなどの量子情報処理デバイスの形状および形態は、より均一になされうる。そして、得られる量子情報処理デバイスは、より均一な動作特性を示し、これは、単一のコントローラーを使用する2つ以上のキュービットのセットを駆動する/動作させるためのグローバルなマイクロ波駆動方法の使用及び設計を容易にする。いくつかの実施例において、成膜層における結晶粒成長効果を低減することで、成膜層の結晶粒成長及び結晶粒形態(例えば、結晶粒界)によって破壊される接合の数を低減することにより、量子情報処理デバイス(例えば、ジョセフソン接合及びキュービット)の収率を改善する。
本明細書で説明される対象の1つまたは複数の実施形態の詳細は、添付する図面及び以下の説明に記載される。対象のその他の特徴、態様及び利点は、説明、図面及び特許請求の範囲から明らかになるであろう。
2層レジストマスクを介した例示的な2段階成膜プロセスを示す様々な図である。 2層レジストマスクを介した例示的な2段階成膜プロセスを示す様々な図である。 2層レジストマスクを介した例示的な2段階成膜プロセスを示す様々な図である。 3層レジストマスクを介した例示的な2段階成膜プロセスを示す様々な図である。 3層レジストマスクを介した例示的な2段階成膜プロセスを示す様々な図である。 3層レジストマスクを介した例示的な2段階成膜プロセスを示す様々な図である。 様々な例示的な3層レジストマスクについての2段階成膜プロセスの断面図である。 様々な例示的な3層レジストマスクについての2段階成膜プロセスの断面図である。 様々な例示的な3層レジストマスクについての2段階成膜プロセスの断面図である。 様々な例示的な3層レジストマスクについての2段階成膜プロセスの断面図である。 3層レジストマスクを介した別の例示的な2段階成膜プロセスを示す様々な図である。 3層レジストマスクを介した別の例示的な2段階成膜プロセスを示す様々な図である。 3層レジストマスクを介した別の例示的な2段階成膜プロセスを示す様々な図である。 多層レジストマスクを形成するための例示的なプロセスのフロー図である。 多層レジストマスクを用いてジョセフソン接合を形成するための例示的なプロセスのフロー図である。
本開示の対象は、接合部間の接合抵抗を低減するための技術に関する。特定の実施例において、本開示は、基板にわたって均一なジョセフソン接合抵抗を達成することに関する。
量子コンピューティングは、量子コンピュータの量子ビット(キュービット)に記憶された量子情報をコヒーレントに処理することを意味する。超伝導量子コンピューティングは、量子情報処理デバイスが部分的に超伝導材料から形成される量子コンピューティング技術の有望な実施例である。超伝導量子コンピュータは、典型的には多準位システムであり、最初の2準位のみが計算の基盤として使用される。特定の実施形態において、キュービットなどの量子情報処理デバイスは、超伝導が達成され、熱変動がエネルギー準位間の遷移を引き起こさないように、非常に低い温度で動作する。さらに、量子情報処理デバイスは、エネルギー損失及び散逸が低い状態で動作されることが好ましい場合がありうる(例えば、量子回路素子は高い品質係数Qを示す)。エネルギー損失及び散逸が低いことは、例えば量子デコヒーレンスを回避するのに役立ちうる。
超伝導構成要素を有する集積型量子情報処理デバイスの製造は、典型的には超電導材料、誘電体及び金属層の成膜及びパターニングを伴う。キュービットなどの特定の量子情報処理デバイスは、ジョセフソン接合を用いて構築される。ジョセフソン接合は、2層の超伝導材料の間に非超伝導材料の薄い層を挟むことによって作られうる。
2層レジストマスクを用いてジョセフソン接合を作成するための例示的なプロセスは、図1AからCを参照して以下に説明される。図1AからCは、2層レジストマスク100を通して例示的な2段階成膜プロセスを示す様々な図である。図1Aは、平面図102、軸A−Aを通る断面図104及び軸B−Bを通る断面図106における2層レジストマスク100の概略図である。2層レジストマスク100は、基板108上に成膜され、2層のレジスト110及び112を含み、第1のレジスト層110は第1の厚さ111を有し、第2のレジスト層112は第2の厚さ113を有し、これらの厚さは、レジスト層が形成される基板108の表面に対して垂直な方向に規定される。2つのレジスト層110、112は、例えばポリ(メチルメタクリレート)(PMMA)、ポリ(メチルメタクリレート−コ−メタクリル酸)(P(MMA−MAA))、ZEP520、UV5/UVIIIまたは類似のレジスト組成物などの様々な材料からなりうる。一例において、第1のレジスト層110はP(MMA−MAA)であり、第2のレジスト層112はPMMAである。第1のレジスト層110の第1の厚さ111及び第2のレジスト層112の第2の厚さ113は、同じまたは異なる厚さでありうる。例えば、第1の厚さ111及び第2の厚さ113は、100から1000nmの厚さの範囲でありうる。
第1のレジスト層110は基板108上に成膜され、例えば、P(MMA−MAA)の層を含む。第2のレジスト層112は、第1のレジスト層110の上に成膜され、例えばPMMAの層を含む。いくつかの実施例において、第1のレジスト層110及び第2のレジスト層112は、成膜された層から溶媒を除去するためにベークされる。
第1のレジスト層110及び第2のレジスト層112は、レジスト内に開口部(例えば開口部114及び開口部116)を画定するようにパターニングされる。第1のレジスト層110内の第1の開口部114は、現像剤で処理したときに第1のレジスト層110の露光された部分が可溶性または不溶性のいずれかになるが、第2のレジスト層112の露光された部分が可溶性または不溶性のいずれかにならないように、第1のレジスト層110及び第2のレジスト層112を、0から1000μC/cmの第1の線量範囲で、選択的にソース(例えば光または電子ビーム、図示されない)に露光させることによって画定されうる。1つの例において、P(MMA−MAA)の第1のレジスト層を露光するための第1の線量は、350μC/cmである。第1のレジスト層110内の第1の開口部114は、基板108の表面の法線方向に沿って(例えばz軸に沿って)、第1のレジスト層110の上面から基板108までの第1のレジスト層の厚さを通して定義されうるものであり、第1のレジスト層の厚さに対して垂直な方向に沿って(例えば、x軸及び/またはy軸に沿って)延在する幅118を含む。
第2のレジスト層112内の第2の開口部116は、現像剤で処理されたときに、第2のレジスト層112の露光部分が可溶または不溶のいずれかとなるように、十分高い1000〜2000μC/cmの第2の線量範囲で、第1のレジスト層110及び第2のレジスト層112を、ソース(光または電子ビーム、図示されない)に露光することによって画定されうる。1つの例において、PMMAの第2のレジスト層112を露光するための第2の線量は、1500μC/cmである。第2のレジスト層112内の第2の開口部116は、第2のレジスト層112の上面から第1のレジスト層110の上面まで、基板108の方面の法線方向に沿って(例えばz軸に沿って)第2のレジスト層の厚さを介して画定されることができ、第2のレジスト層の厚さに対して垂直な方向(例えばx軸及び/またはy軸)に沿って延在する幅120を含む。
各レジスト層の成膜及び露光に続いて、第1のレジスト層110及び第2のレジスト層112は、使用されるレジストの種類に応じて、それぞれのレジスト層の露光領域または非露光領域を選択的に除去するために現像される(例えば、ポジ型レジストまたはネガ型レジスト)。第1のレジスト層及び第2のレジスト層の現像は、第1のレジスト層及び第2のレジスト層に画定されたそれぞれの開口部内からレジスト材料を除去する。いくつかの実施形態では、部分的にはそれぞれのレジスト層の組成物に応じて、1つまたは複数の現像プロセスが使用される。例えば、現像プロセスは、1:3の比のメチルイソブチルケトン:イソプロピルアルコール(MIBK:IPA)を含むことができる。
いくつかの実施例では、第2のレジスト層112に画定された第2の開口部116の少なくとも一部は、基板108の一部が露出されるように、第1のレジスト層110に画定された第1の開口部114の少なくとも一部の上に位置合わせされる。
いくつかの実施例では、第2の開口部116の幅120は、第1の開口部114の幅118よりも小さい。例えば、いくつかの実施例では、幅120は200nmであり、幅118は400nmである。第2のレジスト層112の第2の開口部116の幅120は、1つまたは複数の成膜構造(例えば、ジョセフソン接合の上部コンタクトまたは底部コンタクトなどの上部コンタクトまたは底部コンタクト)の特徴体の大きさ(例えば幅)を画定することができる。
所定の領域のレジストを選択的に除去した後、量子情報処理デバイス(例えばジョセフソン接合を含むキュービット)の一部を形成することとなる材料が、開放された領域内及び残りのレジストの上に成膜されうる。いくつかの実施例において、角度を付けられたシャドウ蒸着技術が、量子情報処理デバイス(例えばジョセフソン接合を含むキュービット)の一部を形成することとなる材料を成膜するために使用されうる。例えば、パターン化されたレジストを有する基板は、成膜チャンバー(例えば物理蒸着成膜システムのチャンバー)内に配置され、第1の層成膜プロセスが行われ、ここでは、パターニングされるレジスト層の一部が少なくともいくらかの成膜材料を遮断または「シャドウ」化しうるように、成膜される材料のフラックスが基板に対して垂直でない角度で導入され、次いで、第2の層成膜プロセスが行われ、ここでは、材料成膜ソースに対する基板の配向が変更される。
図1Bは、ジョセフソン接合の一部を形成するために第1の成膜フロー方向125からの材料の第1の成膜の後の、2層レジストマスク100の概略を、平面図122、軸A−Aを通る断面図124及び軸B−Bを通る断面図126で示している。材料の第1の成膜フロー方向125からの第1の成膜は、基板108上であってレジストマスクの開口領域(例えば、第1の開口部114及び第2の開口部116の位置合わせされた部分)に第1の成膜構造(例えばジョセフソン接合のための底部コンタクト128)を形成する。成膜材料(例えばソースからの材料のフラックス)の第1の成膜フロー方向125は、基板108の表面に対して平行なx軸に沿った成分を含み、基板108に対して垂直なz軸に対してある角度130だけ配向され、第2の開口部116の縁近傍の第2のレジスト層112の部分が、開口領域内の第1の成膜フロー方向125の成膜材料の少なくともいくらかを遮断する。第1の成膜フロー方向125は、例えば、z軸に対して10から80°の間の角度130で配向されうる。いくつかの実施例では、材料の第1の成膜は、第2のレジスト層112の上に成膜層132をもたらす。成膜層132は、第2のレジスト層112の上面上の上面領域132a及び、第2のレジスト層112の側壁上の側壁領域132bを含みうる。
第1の層の成膜ステップの後、基板108は、成膜材料の表面酸化が促進される空気または別のチャンバーに移送されうる。いくつかの実施例において、基板はその場酸化のために成膜チャンバー内に残されてもよい。酸化後、基板は、第2の成膜材料が、第2の成膜構造(例えばジョセフソン接合の上部コンタクト148)を形成するために成膜される第2の層成膜ステップを受けうる。
いくつかの実施例では、成膜材料ソースに対する基板108の配向が変更される。例えば、成膜システムの構成に部分的に応じて、成膜材料ソースが基板108に対して回転されてもよく、または基板108が材料成膜ソースに対して回転されてもよい。
図1Cは、ジョセフソン接合を形成するための材料の第2の成膜後の2層レジストマスク100の概略を、平面図142、軸A−Aを通る断面図144及び軸B−Bを通る断面図146で示している。成膜材料の第2の成膜フロー方向151は、基板108の表面に対して平行なy軸に沿った成分を含み、z軸に対してある角度150だけ配向され、第2のレジスト層及び/または開口領域の縁近傍の第1の成膜プロセスからの事前に成膜された材料の第1の層が、開口領域内の第2の成膜フロー方向151からの成膜材料の少なくともいくらかを遮断する。第2の成膜フロー方向151は、例えばz軸に対して10から80°の角度150で配向されうる。第2の成膜の間の配向角度150は、第1の成膜中の配向の角度130とは異なってもよい。例えば、いくつかの実施例において、基板の表面は第1の成膜ステップにおける成膜材料の第1の成膜フロー方向125に対してある角度130で配向され、第1の成膜ステップにおける第1の角度130に対して垂直な第2の成膜フロー方向151に対するある角度150で配向されうる。
シャドウ蒸着プロセスの後、レジストはリフトオフステップで除去され、不要な材料を除去し、量子情報処理デバイス(例えばジョセフソン接合を含むキュービット)の製造を完了させうる。リフトオフは、レジスト材料の化学的組成に応じて、様々な異なる溶媒及び/または化学物質を用いて実行されうる。
いくつかの場合、図1AからCを参照して説明されたシャドウ蒸着プロセスなどの成膜プロセスは、不均一な方法で材料を成膜し、量子情報処理デバイス(例えばジョセフソン接合を含むキュービット)の不均一な性能をもたらす。例えば、第1の成膜ステップからの側壁成膜132bは、第2の成膜ステップ中に成膜された第2の成膜層(例えば上部コンタクト148)の少なくとも一部が、第2のレジスト層112の開口部116によって画定される意図された幅120とは異なる幅152を有するように、開口部116の少なくとも一部をシャドウイングすることができる(断面図146に示されるように)。
第1の成膜層のシャドウイング効果によって生じる層幅の変化は、成膜層の不均一性につながりうる。例えば、ジョセフソン接合の接合抵抗は、接合の第1の超伝導層が、接合の第2の超伝導層と交差する断面積に反比例する。第2の超伝導層の幅の成膜における不均一性(例えば、幅152が意図された幅120と異なる)は、接合の第1の超伝導層と第2の超伝導層との間の重複の断面積を変化させることによって、接合抵抗の変動につながりうる。さらに、抵抗値は、シャドウイング効果の変動(例えば、成膜角度130、150の変動)に起因して、基板108上の異なる位置の異なるデバイスにわたって不均一でありうる。そして、不均一な接合抵抗は、超伝導キュービットなどの接合を含む量子情報処理デバイスに、不均一な動作周波数を示させることとなりうる。
本明細書に開示された技術は、レジスト側壁に成膜された材料から生じるシャドウイング効果を低減するために使用可能である。シャドウイング効果は、レジストマスク及び/またはレジストマスク上の偶発的な成膜が、レジストマスクの開口部を通した成膜からの材料の偶発的なフラックスの少なくとも一部を意図せずに遮断したり、影響を及ぼしたりする場合に生じる。シャドウイング効果は、レジストマスクの開口部を通して成膜されて得られた構造に、1つまたは複数の意図された寸法とは異なる最終的な寸法を有させる場合があり、また、レジストマスクの開口部を通して成膜されて得られた構造の粗化を引き起こす場合がある。シャドウイング効果は、マスクの1つまたは複数の表面への材料の偶発的な成膜に起因する可能性があり、その材料はレジストマスクの開口部の一部を変化させたり、妨げたりする。シャドウイング効果を低減することによって、いくつかの実施例において、意図した寸法により近い最終的な寸法を有する構造を得ることが可能である。さらに、シャドウイング効果を低減することは、複数の構造体にわたって最終的な寸法をより均一にすることにつながり、その結果、複数のデバイスにわたってより均一な動作特性(例えば、ジョセフソン接合の抵抗)につながりうる。
本明細書に開示される技術は、側壁成膜によって生じるシャドウイング効果を低減するために、3層のレジスト積層を導入することを含む。例えば、基板上には、第1のレジスト層、第2のレジスト層及び第3のレジスト層を含む多層シャドウマスクが画定され、各レジスト層は、それぞれの幅を有する開口部を含む。第2のレジスト層は、成膜された接合のための所望の特徴体寸法を画定する開口部の幅を含む。第3のレジスト層の厚さ及び開口部の幅は、そうでなければ第2の成膜ステップの間に、材料フラックスが第2のレジスト層の開口部を通過するのを遮断することになる第2のレジスト層の側壁上への成膜を防止するように選択される。
図2AからCは、3層レジストマスク200を介した例示的な2段階成膜プロセスを示す様々な図である。図2Aは、3層レジストマスク200の概略を、平面図202、軸A−Aを通る断面図204及び軸B−Bを通る断面図206で示す。3層レジストマスク200は基板208上に成膜され、3層のレジストを含む。第1のレジスト層210は第1の厚さ211を有し、第2のレジスト層212は第2の厚さ213を有し、第3のレジスト層214は第3の厚さ215を有し、レジスト層214は3層レジストマスクの最上層であり、3層レジストマスク200の平面図202において図示されている。
第1のレジスト層210の第1の厚さ211、第2のレジスト層212の第2の厚さ213及び第3のレジスト層214の第3の厚さ215は、同じまたは異なる厚さ、例えば基板108に対して垂直な方向に100から1000nmの範囲でありうる。1つの例において、第1のレジスト層210は、500nmの第1の厚さ211を有し、第2のレジスト層212は300nmの厚さ213を有し、第3のレジスト層214は、500nmの第3の厚さ215を有する。
3つのレジスト層210、212、214は、ポリ(メチルメタクリレート)(PMMA)、ポリ(メチルメタクリレート−コ−メタクリル酸)(P(MMA−MAA))、ZEP520、UV5/UVIIIIまたは類似のレジスト組成物でありうる。異なるレジスト材料は、レジスト層内の開口部の形成を助けるために、互いに接触したレジスト層に関して選択される。例えば、第1のレジスト層及び第2のレジスト層は、異なるレジスト組成物からなり、第2のレジスト層及び第3のレジスト層は、異なるレジスト組成物からなる。1つの例において、第1のレジスト層210はP(MMA−MAA)であり、第2のレジスト層212はPMMAであり、第3のレジスト層214はP(MMA−MAA)である。
第1のレジスト層は第1の開口部216を含み、第1の開口部216は、基板208の表面の法線方向に(例えばz軸に沿って)、第1のレジスト層210の上面から第1の厚さ211を介して基板208へ延在する。第2のレジスト層は第2の開口部218を含み、第2の開口部218は、基板208の表面の法線方向に(例えばz軸に沿って)、第2のレジスト層212の上面から第2の厚さ213を介して第1のレジスト層210の上面まで延在する。第3のレジスト層214は、第3の開口部220を含み、第3の開口部220は、基板208の表面の法線方向に(例えば、z軸に沿って)、第3のレジスト層214の上面から第3の厚さ215を介して第2のレジスト層212の上面まで延在する。また、開口部216、218、220は、例えば断面図204に示されるように、基板208の部分が露出されるように、互いに対して位置合わせされる。
第1のレジスト層210の第1の開口部216は幅222を含み、第2のレジスト層212の第2の開口部218は幅224を含み、第3のレジスト層214の第3の開口部220は幅226を含む。幅222、幅224及び幅226は異なる値、例えば10nmから10ミクロンの範囲でありうる。その他の幅も可能である。幅222、幅224及び幅226は、それぞれ対応するレジスト層210、212、214のそれぞれの厚さに対して垂直な方向に沿って(例えばx軸及び/またはy軸に沿って)延在する。
いくつかの実施例では、成膜された特徴体(例えば、ジョセフソン接合の底部コンタクトまたは上部コンタクトなどの上部コンタクトまたは底部コンタクト)の1つまたは複数の寸法(例えば幅)は、図1B、Cを参照して以下に詳細に議論されるように、第2の開口部218の幅224によって画定されうる。
多層レジストマスク200のレジスト層は、以下のように成膜され、パターニングされうる。第1のレジスト層210は、基板208上に成膜される(例えば、基板208上にスピンコートされる)。第2のレジスト層212は第1のレジスト層210の上部に成膜される(例えば、スピンコートされる)。第2のレジスト層212は、第1のレジスト層210とは異なるレジスト材料からなる。第3のレジスト層214は、第2のレジスト層212の上に成膜(例えばスピンコート)され、第3のレジスト層214は、第2のレジスト層212の材料とは異なるレジスト材料からなる。
いくつかの実施例において、各レジスト層からの溶媒をベークアウトするベーキングステップは、各レジスト層の成膜後、後続のレジスト層の成膜の前に行われる。ベーキングステップはまた、全ての成膜されたレジスト層を同時にベーキングすることを含むことができる。各レジスト層のベーキング温度及びベーク時間は、部分的に、レジスト層の材料及びレジスト層の厚さに依存しうる。
いくつかの実施例において、多層レジストマスク200の各レジスト層は、電子ビームリソグラフィを使用して多層レジストマスクの各層の1つまたは複数の特徴体(例えば、開口部216、218、220)を画定するために、各パターンに露光される。各層の1つまたは複数の特徴体(例えば開口部)を画定するための各パターンは、電子ビームリソグラフィシステムのための1つまたは複数の書き込みファイルによって定義されうる。1つまたは複数の特徴体(例えば開口部)を含むパターンを画定するための各露光は、露光量を含むことができ、特定の露光量は、部分的に、レジスト材料及びレジスト層の厚さに依存する。例えば、P(MMA−MAA)の露光量の範囲は0から1000μC/cmである。別の例において、PMMAの露光量の範囲は1000から2000μC/cmである。
露光量は、特定のレジスト層における特徴体を画定し、多層レジストマスクの他のレジスト層の特徴体を画定しないように選択可能である。例えば、P(MMA−MAA)からなるレジスト層は、PMMAからなるレジスト層よりも特徴体を画定するために必要な露光量がずっと低く、そのような充分に低い露光量(例えば、350μC/cm)はP(MMA−MAA)からなるレジスト層を露光して1つまたは複数の特徴体を画定し、PMMAからなるレジスト層を露光せず、1つまたは複数の特徴体を画定しないこととなる。
1つの例において、第1の露光量は、露光量が第1のレジスト層210及び第3のレジスト層214(例えば、P(MMA−MAA)レジスト層)へのパターンに対応する特徴体を画定するのに十分であるが、第2のレジスト層212(例えばPMMAレジスト層)へのパターンに対応する特徴体を画定するのに十分ではないように選択される。第2の露光量は、露光量が第1のレジスト層210、第2のレジスト層212及び第3のレジスト層214への別のパターンに対応する特徴体を画定するのに十分である(例えば1500μC/cm)ように選択される。
いくつかの実施例では、多層レジストマスク200は、例えば3つのレジスト層全てにおいて、1つのパターンで特徴体を画定するために、最初に高露光量で露光され、その後、例えば第1のレジスト層210及び第3のレジスト層214において特徴体を画定するために、低い露光量で露光される。多層レジストマスク200は、最初に低露光量で露光され、続いて高露光量で露光されることができる。
いくつかの実施例において、第1のレジスト層210及び第3のレジスト層214は、レジスト層に画定された各開口部(例えば開口部216及び開口部220)の幅が同じであり、開口部が互いの上において直接位置合わせされている(第2のレジスト層212が間にある)。
各レジスト層の成膜及び露光に続いて、第1のレジスト層210、第2のレジスト層212及び第3のレジスト層214は、各層に使用されるレジストの種類(例えば、ポジ型またはネガ型レジスト)に応じて、それぞれのレジスト層の露光領域または非露光領域のいずれかを選択的に除去するために現像される。第1のレジスト層210、第2のレジスト層212及び第3のレジスト層24を現像することにより、第1のレジスト層210、第2のレジスト層212及び第3のレジスト層214のそれぞれに画定されたそれぞれの開口部内からレジスト材料を除去する。いくつかの実施例において各レジスト層の組成物に部分的に応じて、1つまたは複数の現像プロセスが使用される。いくつかの実施例では、現像プロセスは、1段階のプロセスであり、現像剤、例えば、メチルイソブチルケトン:イソプロピルアルコール(MIBK:IPA)(例えば1:3の比率)を、45から90秒の現像時間範囲で含む。1つの例において、多層レジストマスクは、MIBK:IPAで45秒間現像し、100nmから1000nmの開口部と100nmのアンダーカット幅を達成する。
いくつかの実施例では、第1のレジスト層210及び第2のレジスト層212は、それぞれの第1の露光量及び第2の露光量に露光することにより、電子ビームリソグラフィを用いて成膜及びパターニングされ、その後、多層レジストマスク200を第3の露光量で露光することにより、第3のレジスト層214が成膜及びパターニングされる。
ディープUVリソグラフィ(DUVリソグラフィ)は、電子ビームリソグラフィと組み合わせて、または電子ビームリソグラフィの代わりに、多層レジストマスク200のレジスト層の1つまたは複数の開口部を露光し、パターニングするために使用することができる。レジスト材料は、第1のレジスト層、第2のレジスト層及び第3のレジスト層のそれぞれについて、電子ビームリソグラフィ(例えば、P(MMA−MAA)、PMMA)、DUVリソグラフィ(例えばUV6)、または電子ビームリソグラフィとDUVリソグラフィの両方(例えば、P(MMA−MAA)、PMMA)に適合するものを選択することができる。DUVリソグラフィを用いてUV6のレジスト層をパターニングするための露光量の範囲は、18から28mJ/cmを含むことができる。1つの例において、UV6レジスト層をパターニングするための露光量は、25mJ/cmである。DUVリソグラフィを用いてPMMAのレジスト層をパターニングするための露光量は、DUVリソグラフィ装置の波長(例えば248nm)におけるPMMAの感度に部分的に基づいて、500mJ/cmを超える露光量を含むことができる。
1つの例において、電子ビームリソグラフィに適合する第1のレジスト層210及び第2のレジスト層212(例えば、それぞれP(MMA−MAA)及びPMMA)が成膜され、その上にDUVリソグラフィに適合する第3のレジスト層(例えばUV6)が成膜されている。DUVリソグラフィは、パターンを画定するレチクルを使用して、第3のレジスト層214を露光するために使用することができる。その後、第1のレジスト層210及び第2のレジスト層212を露光及びパターニングするために、上述したのと同様の方法で、電子ビームリソグラフィを使用することができる。
別の例では、第1のレジスト層210及び第2のレジスト層212は、電子ビームリソグラフィに適合する材料を用いて成膜し、電子ビームリソグラフィを用いて露光してパターニングすることができる。その後、DUVリソグラフィに適合する第3のレジスト層214を第2のレジスト層212の上に成膜し、DUVリソグラフィを用いて露光することができる。
別の例では、第1のレジスト層210及び第2のレジスト層212は、DUVリソグラフィに適合する材料を用いて成膜され、DUVリソグラフィを用いた露光によりパターニングすることができる。いくつかの実施例では、第2のレジスト層212は、紫外線に感光性を有するレジスト材料(例えばUV6)であり、第1のレジスト層210はリフトオフ層(Lift−Off Layer,LOL)である。その後、第2のレジスト層の上に、電子ビームリソグラフィに対応した第3のレジスト層214が成膜され、電子ビームリソグラフィを用いた露光によりパターニングされる。
別の例では、第1のレジスト層210、第2のレジスト層212及び第3のレジスト層214は、DUVリソグラフィに適合するレジスト材料(例えば、UV6、UV210)及びリフトオフ層材料(例えば、LOL、LOR、PMGI)を含む。第1のレジスト層210及び第2のレジスト層212は、DUVリソグラフィシステム内の1つまたは複数のレチクルを用いて成膜及びパターニングされ、次いで、第3のレジスト層は、第2のレジスト層の上に成膜され、DUVリソグラフィシステムのレチクルを介した露光によってパターニングされることができる。第1のレジスト層210、第2のレジスト層212及び第3のレジスト層214は、全て成膜され、次いで、DUVリソグラフィを使用して少なくとも1つの露光ステップでパターニングされることも可能である。
第1のレジスト層210、第2のレジスト層212及び第3のレジスト層214が成膜され、パターニングされると、多層レジスト層マスク200は、1つまたは複数の現像プロセスを使用して現像される。現像プロセスは、MIBK:IPA 1:3などの現像剤を使用して、露光された、または露光されていないレジスト材料(例えば、ポジ型またはネガ型レジストに応じて)を除去することを含むことができる。現像プロセスはまた、AZ300MIF、0.26N現像剤(例えば2.38%テトラメチルアンモニウム水酸化物)または類似の現像剤を含み、例えば、UV6レジスト材料及びLOLレジスト材料を含むレジスト層を現像することができる。1つまたは複数のレジスト層の現像に使用される現像剤は、他のレジスト層と互換性がある(例えば、攻撃や損傷を与えない)必要があることに注意する必要がある。例えば、AZ300MIFは、UV6レジスト材料の現像に使用されており、PMMAレジスト材料に損傷を与えたり攻撃したりすることはない。
いくつかの実施例では、第3の開口部220の幅226は、第2の開口部218の幅224よりも広く、第3の開口部220の一部は、第2の開口部218の上に位置合わせされている。第3の開口部220の幅226は、例えば、20nmから20μmの範囲であり、第2の開口部218の幅224は、例えば10nmから10μmの範囲でありうる。例えば、第3の開口部220の幅226は400nmであり、第2の開口部218の幅224は200nmである。別の例では、幅226は500nmであり、幅224は300nmである。別の幅も使用されうる。
いくつかの実施例では、第3の開口部220の幅226は、第2の開口部218の幅224よりも大きく、多層レジストマスク200の第3のレジスト層214における第3の開口部220の少なくとも一部は、第2のレジスト層212の上面の一部が露出するように、第2のレジスト層212における第2の開口部218の少なくとも一部の上に位置合わせされている。いくつかの実施例では、第3のレジスト層214の第3の開口部220の少なくとも一部は、基板108の表面の一部が露出するように、第2のレジスト層212の第2の開口部218の少なくとも一部及び第1のレジスト層210の第1の開口部222の少なくとも一部の上に位置合わせされている。例えば、平面視概略図202に示されるような3層レジストマスク100では、第2のレジスト層212の上面の一部225が露出し、第1の開口部222、第2の開口部224及び第3の開口部226の位置合わせにより、基板208の表面の一部227が露出している。
いくつかの実施例では、第1の開口部216、第2の開口部218及び第3の開口部220は、基板208の表面を露出させるマスク開口領域221を画定する。マスク開口領域221の第1の側面は、第2の開口部218の第1の縁と第3の開口部220の第1の縁との間の距離によって画定される第1のアンダーカット幅228を含む。マスク開口領域221の第1の側面に直接対向するマスク開口領域221の第2の側面は、第2の開口部218の第2の縁と第3の開口部220の第2の縁との間の距離によって画定される第2のアンダーカット幅230を含む。
いくつかの実施例では、マスク開口領域221の第1の側面(第1のアンダーカット幅228を含む)及び第2の側面(第2のアンダーカット幅230を含む)は、材料の成膜ソースのそれぞれの近接度に基づいて部分的に画定され、これは図2B、Cを参照してさらに詳細に説明される。いくつかの実施例では、レジスト層の開口部は、量子情報処理デバイス(例えば、ジョセフソン接合を含むキュービット)の少なくとも一部を画定するより大きな設計の一部であってもよい。例えば、図2Aの平面図202に示されるように、開口部は、ジョセフソン接合の底部コンタクトと、底部コンタクトに重なるジョセフソン接合の上部コンタクトのレイアウトを画定する。
いくつかの実施例では、第3のレジスト層は、第1のレジスト層上に露出されたパターンよりも狭いパターンに第3のレジスト層を露出させることにより、第1のレジスト層の第1の開口部の幅よりも小さい第3の開口部の幅を有することができ、さらに、図4Aを参照してより詳細に議論されるように、オフセットさせる(例えば、第1の開口部と直接位置合わせされていないが、まだ第1の開口部の境界内にある)ことができる。
第1の開口部216、第2の開口部218及び第3の開口部220を提供するために3層レジストマスク200の所定の領域でレジストを選択的に除去した後、シャドウ蒸着技術を使用して、回路素子の一部を形成する材料を成膜させてもよく、シャドウ蒸着技術は、例えば、キュービットなどの量子情報処理デバイスの一部を形成するジョセフソン接合を形成するために使用されてもよい。特に、パターン化されたレジストを有する基板は、成膜チャンバー(例えば、物理蒸着システムのチャンバー)内に配置され、第1の層の成膜プロセスを受ける。成膜される材料は、例えば、金、銀、白金、ニオブ、モリブデン、タンタル、アルミニウム、インジウムなどを含みうる。
図2Bは、3層レジストマスク200の平面図240、軸A−Aを通る断面図242及び軸B−Bを通る断面図244を示し、ジョセフソン結合を形成するために第1成膜フロー方向251からの材料の第1の成膜後の模式図を示す。第1の成膜ステップの間、第1の成膜フロー方向251は、第3の開口部220の縁近傍の第3のレジスト層214の一部が、開口部領域内の第1の成膜フロー方向251からの第1の成膜材料の少なくとも一部を遮断するように、基板208の表面の法線であるz軸に関して角度250だけ配向されている。第1の成膜フロー方向251は、例えば、z軸に対して10から80°の間の角度250で配向することができる。
いくつかの実施例では、第1のアンダーカット幅228を含むマスク開口部領域221の第1の側面は、第2の開口部218と第3の開口部220のそれぞれの縁のうち、材料成膜ソースに近い方の縁の間の距離の差によって画定される。例えば、図2Bの3層レジストマスク200の平面図240及び断面図244には、第1の成膜フロー方向251、第1のアンダーカット幅228及び第2のアンダーカット幅230について示されている。第2のアンダーカット幅230を含むマスク開口部領域221の第2の側面は、例えば、第1の成膜フロー方向251に対して、図1Bの3層レジストマスク200の平面図240及び断面図244に示されるように、材料成膜ソースからさらに離れている第2の開口部218及び第3の開口部220のそれぞれの縁の間の距離の差によって画定される。
第1の成膜から成膜された材料は、基板208上及び3層レジストマスク200の開口部領域内に第1の構造(例えば、ジョセフソン接合のための底部コンタクト248)を生成する(例えば、図1Bの断面図242を参照)。いくつかの実施例では、材料の第1の成膜はまた、第3のレジスト層214上に成膜層252をもたらす。成膜層252は、第3のレジスト層214の上面(例えば、上面領域252a)に成膜されてもよいし、または成膜層252は第3のレジスト層214の上面及び第3のレジスト層214の側壁(例えば、側壁領域252b)に成膜されてもよい。
いくつかの実施例では、第1の成膜ステップの間に、第1の成膜フロー方向251の入射フラックスからの材料は、例えば、図2Bの断面図242に示されるように、第2のレジスト層212の露出された上面252cの上に成膜される。いくつかの実施例では、第1の成膜フロー方向251は、第1の成膜からの材料のフラックスの一部が開口部220の縁によって遮断されるように、第3のレジスト層214の開口部220に対して角度250だけ配向される。成膜材料252bは、例えば、図2Bの断面図244に示されるように、第1の成膜フロー方向の成膜のソースからさらに離れた開口部220の側壁領域に成膜される。開口部220の側壁領域への成膜252bは、第3のレジスト層214の第3の厚さ215全体に沿って成膜することから部分的に遮断されている。
いくつかの実施例では、第1の層の成膜は、基板208の第1の成膜層厚さ(tdep)254及び、第3のレジスト層214の側壁領域252b上の第2の成膜層厚さ(tmetal)256を有する底部コンタクト248を成膜する。第2の成膜層厚さ256は、以下のように第1の成膜層厚さ254と関連されうる。
metal=tdep(1−cosθ) (1)
ここで、θは角度250である。角度250は、例えば10から80°でありうる。
第1の成膜ステップ後、成膜層248は酸化されうる。例えば、基板208は、成膜層248を構成する材料の表面酸化が生じる空気中または別個のチャンバーに移送されうる。いくつかの実施例において、基板は、その場酸化のために成膜チャンバー内に残されうる。
第1の成膜ステップ後、第2の成膜ステップ前において、基板と成膜材料ソースとの間の配向は変更される。いくつかの実施例において、基板208は、材料ソースに対して回転される。成膜システムの構成に部分的に応じて、ソースは、基板208に対して回転可能であり、または、基板208及びソースは、互いに対して回転される。
酸化後、次に、基板は、第2の成膜ステップが行われてもよく、第2の材料(例えば超伝導材料)が、第2の成膜構造(例えば、ジョセフソン接合の上部コンタクト258)を形成するために成膜される。図2Cは、ジョセフソン接合を形成するための材料の第2の成膜後の、平面図260、軸A−Aを通る断面図262及び軸B−Bを通る断面図264における3層レジストマスク200の概略を示す。第2の成膜フロー方向271は、基板208の表面に対して平行なy軸に沿った成分を含む。第2の成膜フロー方向271は、基板208の表面の法線方向であるz軸に対してある角度270だけ配向される。角度270は、例えば、z軸に対して10から80°でありうる。第2の成膜における角度270は、第1の成膜における角度250とは異なるものでありうる。例えば、いくつかの実施例において、基板表面は、第1の成膜ステップにおいて成膜材料の成膜フロー方向251(例えば、第1の成膜フロー方向251はx軸に沿った成分を含む)に対して第1の角度250だけ、第2の成膜ステップにおいて第1の角度250に対して直交する第2の成膜フロー方向271(例えば、第2の成膜フロー方向271はy軸に沿った成分を含む)に対して第2の角度270だけ配向されうる。
第2の成膜フロー方向271からの第2の層成膜は、例えば図2Cにおいて断面図264に示されるように、基板208の上であって、3層レジストマスク200の開口領域内に第2の成膜構造(例えば、ジョセフソン接合のための上部コンタクト258)を形成する。いくつかの実施例において、第2の成膜構造は、例えば、ジョセフソン接合を形成するために、第1の成膜構造(例えば、底部コンタクト248)の上に成膜されうる。
いくつかの実施例において、第1の成膜層の一部、第1の成膜層の上の酸化領域の一部、及び酸化領域の上の第2の成膜層の一部は、量子コンピューティングシステムの一部(例えば、キュービット)を形成する。いくつかの実施例において、第1の成膜層の一部、第1の成膜層の上の酸化領域の一部、及び酸化領域の上の第2の成膜層の一部は、ジョセフソン接合の一部を形成する。
いくつかの実施例において、材料の第2の成膜はまた、前に成膜された層252の上に成膜層272をもたらす。成膜層272は、前に成膜された層252の上面(例えば上面領域252a)に成膜されてもよく、または、成膜層272は、前に成膜された層252の上面及び前に成膜された層252の側壁領域252b、252cに成膜されうる。
いくつかの実施例において、材料は、例えば、図2Cの断面図264に示されるように、第2の成膜フロー方向271と同じ方向に沿って第2のレジスト層212の露光された上面272cの上に成膜される。
いくつかの実施例において、第3のレジスト層214及び/または前に成膜された層252の一部が、開口部220内の成膜材料の少なくともいくらかの成膜を遮断するように、材料が、第2の成膜フロー方向271に対して角度270で、側壁領域272bの上に成膜される。例えば、図1Cの断面図262は、側壁領域272bの上の成膜が、第3のレジスト層214の第3の厚さ215の全体に沿って成膜から部分的に遮断されるように、基板208に対してある角度270だけ配向された第2の成膜フロー方向271を示している。
いくつかの実施例において、第2の層成膜は、基板208の上に第1の成膜層厚さ(tdep)274及び、第3のレジスト層214の側壁領域272bの上に第2の成膜層厚さ(tmetal)276を有する上部コンタクト258を成膜する。第2の成膜層厚さ256は、第1の成膜層厚さ254に関して以下のような関係を有する。
metal=tdep(1−cosθ) (1)
ここで、θは、例えば角度270である。角度270は、例えば、10から80°の間でありうる。
いくつかの実施例において、第3のレジスト層の側壁領域252b上の第1の成膜厚さ(tdep)256は、第2のアンダーカット幅230よりも小さく、材料は、第2のアンダーカット幅230を有する第2のレジスト層212の露光された上面には成膜されない(または成膜は無視できるほどである)。そのような状況において、材料の第2の成膜(例えば、上部コンタクト258)は、シャドウイング効果に影響されず、例えば、上部コンタクト258の幅は、開口部218の幅224よりも小さい幅よりもむしろ、3層レジストマスク200の開口部218によって画定される意図される幅224である。
いくつかの実施例において、第1のアンダーカット幅228及び第2のアンダーカット幅230は、等しい値ではない。さらに、第1の成膜フロー方向251によって画定される第1のアンダーカット幅228は、図4Aを参照して以下により詳細に議論されるように、第2の成膜フロー方向271によって画定された第1のアンダーカット幅228とは異なる値を有しうる。
いくつかの実施例において、3層レジストマスク200の1つもしくは複数のパラメータ及び/または2段階成膜プロセスの1つもしくは複数のパラメータは、シャドウイング効果を低減するように調整されてもよく、例えば、第2の成膜構造の1つまたは複数の寸法が、第1の成膜ステップにおける成膜材料からのシャドウイングに起因して、意図される寸法とは異なる場合がありうる。図3AからDは、様々な例示的な3層レジストマスクについての、2段階成膜プロセスの断面図である。図3AからDに示された断面図は、図2Cに示された軸B−Bを通る断面図264と類似している。基板308上の3層レジストマスクは、図2AからCを参照して議論された開口部と類似する、各開口部316、318、320を有する第1のレジスト層310、第2のレジスト層312及び第3のレジスト層314を含む。
第2の成膜ステップからの成膜が、単純化のために図3AからDに示された断面図の上面において示されていないが、第2の成膜からの材料の量は、図2Cに示された第2の成膜層272に類似する断面図のそれぞれの上面の少なくとも一部の上に成膜されるものと想像可能である。
一般に、3層レジストマスク200及び2段階成膜プロセスの様々なパラメータは、以下のような関係を有しうる。
Figure 0006849858
Figure 0006849858
ここで、tmetalは、レジスト層の側壁に成膜された金属の厚さ(例えば厚さ356)であり、θは第1の成膜ステップに関して基板に対する成膜の角度(例えば角度350)であり、tは第3のレジスト層の厚さ(例えば、第3の厚さ315)であり、wは第2のレジスト層の第2の開口部の幅(例えば幅324)であり、uc1は第1のアンダーカット幅(例えばアンダーカット幅328)であり、uc2は第2のアンダーカット幅(例えばアンダーカット幅330)である。
数式(1)を参照して上述したように、最も上のレジスト層(例えば第3のレジスト層314)の側壁356に成膜された金属の厚さは、角度θ(例えば、角度350)による成膜の厚さと関連しうる。角度が、基板表面に対して垂直なz軸に対して90°に近づくように増大すると、側壁に成膜された金属の厚さtmetalは、金属成膜の厚さtdepに近づく。
図3AからDは、同じ図の中で、材料の第1の成膜及び材料の第2の成膜の両方を示しており、第1の成膜フロー351及び第2の成膜フロー371を示しているが、第1の成膜ステップは、図2B及び2C並びに図6を参照して説明されるように、第2の成膜ステップに先行して行われることは理解されるべきである。
図3Aは、図2AからCに示された3層レジストマスク200に類似する3層レジストマスクの断面図であり、第1のアンダーカット幅328及び第2のアンダーカット幅330が非ゼロであり、第1の成膜角度350が、図2B及び2Cを参照して議論された関連する値と同等である。
図3Bは、別の例示的な3層レジストマスクについての2段階成膜プロセスの断面図であり、第1のアンダーカット幅328が閾値幅を超過し、材料の第1の成膜が、第2のレジスト層312の側壁の少なくとも一部とともに、第3のレジスト層314の側壁も被覆する。第1のアンダーカット幅(uc1)328についての閾値幅は、次のように定義されうる。
Figure 0006849858
閾値幅の値を超過する結果として、側壁成膜が第2のレジスト層312の上に生じる場合、第2の成膜層358のシャドウイング効果が、第2のレジスト層の第2の開口部の意図された幅に対して第2のレジスト層内の開口部が狭くなることに起因して観察されうる。例えば、成膜された第2の層358の少なくとも一部は、第2のレジスト層312の第2の開口部318の幅324によって画定される意図される幅よりも小さい幅380を有しうる。
図3Cは、3層レジストマスクについての2段階成膜プロセスの断面図であり、第3のレジスト層314の側壁356に成膜される第1の成膜材料の量は、第2のアンダーカット幅330を超過する。第3のレジスト層314の側壁356に成膜される第1の成膜材料の幅が第2のアンダーカット幅330の幅を超過する場合、第2の成膜層におけるシャドウイング効果が、第2のレジスト層312の第2の開口部の意図される幅に対して、第2のレジスト層の開口部が細くなることに起因して観察されうる。例えば、成膜された第2の層358の少なくとも一部は、第2のレジスト層312の第2の開口部318の幅324によって画定される意図される幅よりも小さい幅380を有しうる。
図3Dは、3層レジストマスクについて、2段階成膜プロセスの断面図を示しており、第2のアンダーカット幅はほぼゼロまたはゼロであり、第3のレジスト層314の側壁上のいかなる成膜も、材料の第2の成膜の間にシャドウイング効果を生じうる。ほぼゼロである第2のアンダーカット幅について、幅は、ゼロに等しい第2のアンダーカット幅と同じ、材料の第2の成膜の間におけるシャドウイング効果を有する程度に十分小さい非ゼロの距離である。基板308の成膜が行われる開口部が、第2のレジスト層312の第2の開口部318によって画定される意図される幅に対して1つまたは複数の方向において、より細いように、シャドウイング効果は、第2の成膜ステップの間、ソース(図示されない)によって見られることから、第2の開口部の少なくとも一部を遮断することを含みうる。例えば、成膜された第2の層358の少なくとも一部は、第2のレジスト層312の第2の開口部318の幅324によって画定される意図される幅よりも小さい幅380を有しうる。
いくつかの実施例において、その他のパラメータは、第2の成膜プロセスの間、シャドウイング効果を発生させうる。例えば、成膜の角度に対する厚さの閾値よりも小さくなるように選択された第3のレジスト層の厚さは、第2のレジスト層上の側壁に成膜され(第3のレジスト層と同様に)、第2の成膜ステップにおいてシャドウイング効果を生じることができる。別の例では、第1の成膜層(例えば成膜されたアルミニウム)の粗化は、第1の成膜層の成膜材料の結晶粒成長及び/または結晶粒の形態(例えば結晶粒界)に部分的に起因して、不均一なシャドウイング効果を生じうる(例えば、第1の成膜層からの側壁成膜が不均一となる)。第1の成膜層の粗化に起因した不均一な成膜は、成膜された構造(例えばジョセフソン接合)の長さに沿って不均一にシャドウイングされた第2の成膜層を得る結果となりうる。
シャドウ蒸着プロセス後、レジストは、不要な材料を除去し、ジョセフソン接合の完了のために、リフトオフステップで除去されうる。リフトオフは、レジスト材料の化学的組成に応じて様々な異なる溶媒及び/または化学種を用いて実行されうる。
いくつかの実施例において、3層レジストマスクの前述のレイアウトで生じるシャドウイング効果の1つまたは複数(例えば、レジストマスクの開口部の一部を妨害する第1の成膜ステップからの成膜)は、第1のアンダーカット幅の注意深い選択によって解決されうる。具体的に、ゼロまたはほぼゼロである第1のアンダーカット幅の選択は、成膜パラメータに対する感度の1つまたは複数を改善し(例えば、成膜角度、成膜厚さ)、これは図4Aから4Cを参照してさらに詳細に議論される。
図4AからCは、3層レジストマスク400を通した別の例示的な2段階成膜プロセスを示す様々な図である。図4Aは、平面図402、軸A−Aを通る断面図404及び軸B−Bを通る断面図406における3層レジストマスク400の概略図を示す。3層レジストマスク400は、第1のアンダーカット(uc1)幅がゼロに等しいか、またはほぼゼロに等しいように構成される。
3層レジストマスクは、それぞれ層厚さ411、413、415を有する第1のレジスト層410、第2のレジスト層412及び第3のレジスト層414を含み、図2AからCを参照して説明される3層レジストマスク200と同様に構成される。しかし、3層レジストマスク400は、それぞれレジスト層410、412、414における開口部416、418、420の位置に違いがある。具体的に、Y方向に沿った断面図404に示され、X軸に沿った断面図406に示されるように、マスク開口領域421は、アンダーカット幅の1つまたは複数の幅がゼロ及び/またはほぼゼロであるように整列される。例えば、断面図404に示されるように、開口部420のY方向に沿った幅422は、開口部418のY方向に沿った幅426に等しいか、またはほぼ等しい(例えば、第1のアンダーカット幅及び第2のアンダーカット幅がゼロに等しい)。別の例において、断面図406に示されるように、開口部420のX方向に沿った幅424は、第1のアンダーカット幅がゼロまたはほぼゼロであり、第2のアンダーカット幅430が非ゼロの値を有するように画定される。すなわち、開口部424の一方の側のレジスト層414の側壁は、開口部428の側壁と同一平面である。
いくつかの実施例において、第3のレジスト層414は、第3のレジスト層を第1のレジスト層410上に露光されたパターンよりも狭いパターンに露光することによって、第1のレジスト層の第1の開口部416の幅417よりも小さい第3の開口部420の幅(例えば幅422、424)を有することができ、さらにオフセットされうる(例えば、開口部424が第1の開口部417と直接整列されていないが依然として第1の開口部417の境界内にある、断面図406に示されるように)。
ゼロまたはほぼゼロである第1のアンダーカット幅の利点は、図4Bを参照して議論される。図4Bは、ジョセフソン接合を形成するための材料の第1の成膜後の、平面図440、軸A−Aを通る断面図442及び軸B−Bを通る断面図444における3層レジストマスク400の概略を示す。成膜材料のソースに対する基板の相対的な配向は、図1AからC及び図2AからCを参照して前述されたものと同じである。
図2AからCを参照して説明されるように、第1のアンダーカット幅は、材料成膜ソースに近い第2の開口部418及び第3の開口部420のそれぞれの縁(例えば、それぞれ断面図444における縁419a及び421a)の間の距離の差によって画定され、第2のアンダーカット幅は、材料の成膜ソースからより離れた第2の開口部418及び第3の開口部420のそれぞれの縁(例えば、それぞれ断面図444における縁419b及び421b)の間の距離の差によって画定される。図4Bの断面図444に示される3層レジストマスク400の例において、第1のアンダーカット幅はゼロまたはほぼゼロであり、第2のアンダーカット幅430は非ゼロの値である。
第1の成膜フロー方向451からの第1の層の成膜は、例えば、図4Bの平面図440及び断面図442に示されるように、基板408の面内のX軸に沿って、3層レジストマスク400の開口領域内に細長く配置された第1の成膜構造(例えば、ジョセフソン接合のための底部コンタクト448)を形成する。いくつかの実施例において、材料の第1の成膜はまた、第3のレジスト層414上に成膜層452を得る結果となる。成膜層452は、第3のレジスト層414の上面(例えば上面領域452a)及び/または第3のレジスト層414の側壁(例えば側壁領域452b)に成膜可能である。
断面図444に示されるように、成膜の特定の角度θに関して、開口部420の第1の側(すなわち、材料成膜ソースに最も近い開口部420の縁421a)のアンダーカット幅を低減することは、開口領域420内の層414の対向する第2の側壁452bに成膜される材料の程度を低減させる。つまり、アンダーカット幅が低減すると、フラックス451からの材料は、層414の上側の角によって遮断される量が多くなる。そして、より少ない材料が、遮断フラックス451に関する層414の角とは反対の側壁452bに到達する。結果的に、側壁452bに成膜される材料は、層412からさらに離れて終端する。層412の上面と、側壁452bに成膜された材料の終端部分との間の最大距離は、フラックス451の特定の入射角θに関して、開口部420の第1の側のアンダーカット幅を低減することによって達成されうる。いくつかの実施例において、層412の上面と側壁452bに成膜された材料の終端部分との間の最大距離が、フラックス451の特定の入射角θに関して、ゼロに等しいアンダーカット幅になるように達成されうるように、第1のアンダーカット幅228がほぼゼロ(例えば十分小さい非ゼロの幅)である。
第1の層の成膜ステップ後、第1の成膜層は、図2AからCを参照してより詳細に前述されたように酸化されうる(例えば、成膜材料の表面酸化が促進される空気、別個のチャンバーに基板208を移送することによって、またはその場酸化のために成膜チャンバーに残されることによって)。
図4Cは、ジョセフソン接合を形成するための材料の第2の成膜の後の、平面図460、軸A−Aを通る断面図462及び軸B−Bを通る断面図464における3層レジストマスク400の概略を示している。再び、材料成膜ソース(図示されない)に面する基板表面は、第2の成膜材料のフラックスの方向471に対して角度470だけ配向されてもよく、その詳細は図2Cを参照してより詳細に議論される。
第2の成膜フロー方向471からの第2の層の成膜は、基板408上であって3層レジストマスク400の開口領域内に、例えば、図4Cの平面図460及び断面図464に示されるように、第2の成膜構造(例えば、ジョセフソン接合のための上部コンタクト458)を形成する。いくつかの実施例において、材料の第2の成膜はまた、図2Cを参照して上述した成膜層272と同様に、前に成膜された第1の層の成膜からの層452上に成膜層472をもたらす。
いくつかの実施例において、第2の層の成膜は、基板408の上の第1の成膜層厚さ(tdep)を有する上部コンタクト458、および厚さ(tmetal)476を有する側壁領域472b上の第2の成膜層を成膜し、tdepとtmetalとの間の関係は、図2Cを参照して、フラックス入射角470で数式1に説明された関係と同じである。
いくつかの実施例において、第3のレジスト層の側壁領域452bの第1の成膜厚さ(tdep)456は、第2のアンダーカット幅430より小さく、材料は、第2のアンダーカット幅430を有する第2のレジスト層412の露出した上面には成膜されていない(または成膜は無視できる程度である)。そのような状況において、材料の第2の成膜(例えば、上部コンタクト458)はシャドウイング効果に影響されず、例えば、上部コンタクト458の幅は、開口部418の幅よりも小さい幅428よりもむしろ、3層レジストマスク400の開口部418によって画定される意図される幅428である。
図5は、例えば、図1AからC、2AからC及び4AからCを参照して説明される2層及び3層レジストマスクなどの複数層のレジストマスクを形成するための例示的なプロセス500のフロー図である。誘電体基板(例えば、基板208)が提供される(502)。誘電体基板は、シリコン、サファイア、ダイアモンドまたは、類似する誘電体特性を有するその他の基板材料を含みうる。
第1の厚さを含む第1のレジスト層(例えば、厚さ211を有する第1のレジスト層)が、誘電体基板(例えば基板208)に形成される(504)。第1のレジスト層は、例えば、図2Aを参照して前述されたように、誘電体基板の表面上に形成されうる。第1のレジスト層は、電子ビームリソグラフィに対応する材料(例えば、P(MMA−MAA)、PMMA、ZEP520、UV5/UVIIII)、DUVリソグラフィに対応する材料(例えばUV6、UV210)、リフトオフ材料(例えばLOL、LOR、PMGI)または電子ビームリソグラフィ及びDUVリソグラフィの両方に対応するその他のレジスト材料(例えば、PMMA、P(MMA−MAA))からなりうる。第1のレジスト層は、スピンコーティングを含む成膜技術を使用して、誘電体基板上に形成されうる。
第2の厚さを含む第2のレジスト層(例えば、厚さ213を有する第2のレジスト層212)が、第1のレジスト層(例えば第1のレジスト層210)の上に形成される(506)。第2のレジスト層及び第2の開口部は、例えば、図2Aを参照して前述されたように、第1のレジスト層の表面上に形成されうる。第2のレジスト層は、電子ビームリソグラフィに対応する材料(例えば、P(MMA−MAA)、PMMA、ZEP520、UV5/UVIIII)、DUVリソグラフィに対応する材料(例えばUV6、UV210)、リフトオフ材料(例えばLOL、LOR、PMGI)または電子ビームリソグラフィ及びDUVリソグラフィの両方に適応する別のレジスト材料(例えばPMMA、P(MMA−MAA))、並びに第1のレジスト層のレジスト材料とは異なる材料であるレジスト材料からなりうる。第2のレジスト層は、スピンコーティングを含む成膜技術を用いて第1のレジスト層上に形成されうる。
第3の厚さを含む第3のレジスト層(例えば厚さ215を有する第3のレジスト層214)は、第2のレジスト層(例えば、第2のレジスト層212)上に形成される(508)。第3のレジスト層は、例えば、図2Aを参照して前述されたように、第2のレジスト層の表面上に形成されうる。第3のレジスト層は、電子ビームリソグラフィに対応する材料(例えば、P(MMA−MAA)、PMMA、ZEP520、UV5/UVIIII)、DUVリソグラフィに対応する材料(UV6,UV210)、リフトオフ材料(例えばLOL、LOR,PMGI)または電子ビームリソグラフィ及びDUVリソグラフィの両方に対応する別のレジスト材料(例えば、PMMA,P(MMA−MAA))並びに第2のレジスト層のレジスト材料とは異なる材料であるレジスト材料からなりうる。第3のレジスト層は、スピンコーティングを含む成膜技術を用いて第2のレジスト層の上に形成されうる。
第1のレジスト層、第2のレジスト層及び第3のレジスト層は、例えば、図2Aを参照して説明されたように、第1のパターニングステップ(510)で露光される。第1のパターニングステップは、第1のレジスト層、第2のレジスト層及び第3のレジスト層内へのパターンに対応する特徴体を画定するのに十分である第1の露光量を含みうる。複数層のレジストマスク内の1つまたは複数の開口部は、第1のパターニングステップによって画定されうる。例えば、第2のレジスト層内の開口部(例えば、第2のレジスト層212内に幅224を有する開口部218)が画定される。第1のレジスト層及び第3のレジスト層はまた、第1のパターンにおいて露光され、さらに第2のパターニングステップにおいて露光されうる。
第1のレジスト層、第2のレジスト層及び第3のレジスト層は、例えば、図2Aを参照して説明されるように、第2のパターニングステップにおいて露光される(512)。第2のパターニングステップは、第1のレジスト層及び第3のレジスト層へのパターンに対応する特徴体を画定するのには十分であるが、第2のレジスト層へのパターンに対応する特徴体を画定するのには十分ではない第2の露光量を含みうる。結果として、第1のレジスト層及び第3のレジスト層内の1つまたは複数の開口部(例えば、第1のレジスト層210の開口部216及び第3のレジスト層214の開口部220)は、第2のパターニングステップにおいて画定される。
第1及び第2のパターニングステップは、第1のレジスト層が第1のレジスト層の厚さを通して延在する第1の開口部を含み、第2のレジスト層が第1の開口部の上に位置合わせされ、第2のレジスト層の厚さを通して延在する第2の開口部を含み、第3のレジスト層が第2の開口部の上に位置合わせされ、第3のレジスト層の厚さを通して延在する第3の開口部を含むように、第1のレジスト層、第2のレジスト層及び第3のレジスト層にそれぞれ開口部を画定する。
第1のレジスト層、第2のレジスト層及び第3のレジスト層は、1つまたは複数の現像プロセスにおいて現像される(514)。現像プロセスは、ポジ型レジスト材料が使用されるかネガ型レジスト材料が使用されるかに部分的に応じて、露光された、または露光されていないレジスト材料のいずれかを除去するための1つまたは複数の現像剤を含みうる。現像剤は、複数層のレジストマスクで使用される異なるレジスト材料に部分的に応じて、MIBK:IPA(例えば、1:3、1:2、1:1の比)、MIBK及びAZ300MIFを含みうる。AZ300MIFの現像時間の範囲は、40から90秒を含みうる。1つの例において、AZ300MIFを用いる現像時間は、サブミクロンからミクロンの範囲の開口部に関して70秒である。
本明細書で説明される多層のレジストマスクは、2層レジストマスク及び3層レジストマスクを含むが、3層を超えるレジスト層も使用されうる。
多層のレジストマスクは、図1AからC、2AからC及び4AからCを参照して説明されるように、量子コンピューティングシステムの少なくとも一部(例えば、底部コンタクト及び上部コンタクトを含むジョセフソン接合)を形成するのに使用されうる。図6は、多層レジストマスクを使用する量子コンピューティングシステムの少なくとも一部(例えばジョセフソン接合)を形成するための例示的なプロセス600のフロー図である。多層レジストマスクは3層のレジスト層を含み、各レジスト層は、レジスト層の厚さを通してレジスト層の上面から延在するレジスト層内の開口部を有する。レジスト層の各開口部は、互いの上に整列され、3つのレジスト層の各厚さを通して3つのレジスト層の最上部のレジスト層の上面から基板の主面まで延在する開口領域が形成される。材料の第1の層は第1の開口部、第2の開口部及び第3の開口部(例えばそれぞれ開口部216、218、220)を通して、基板(例えば基板208)の主面に対して垂直なz軸に対して第1の成膜角度(例えば角度250)で、基板の主面に対してx軸に沿った成分を含む第1の成膜フロー方向(例えばフロー方向251)から成膜される(602)。
基板と成膜材料のソースとの間の配向が変化される(604)。いくつかの実施例において、成膜材料のソースの配向が基板に対して変更され、または成膜材料のソース及び基板の各配向が互いに対して変更される。例えば、基板は、成膜材料のソースに対して90度回転され、第1の成膜に関する材料フラックスの方向(例えば、第1の成膜フロー方向251)及び第2の成膜に関する材料フラックスの方向(例えば第2の成膜フロー方向271)は、互いに対して直交する。別の例において、基板は材料フラックスの方向に対して傾けられ、基板の表面に対して平行に画定された面と第1の成膜方向に関する材料フラックスの方向(例えば第1の成膜フロー方向251)との間の角度及び、基板の表面に対して平行に画定された面と第2の成膜に関する材料フラックスの方向(例えば、第2の成膜フロー方向271)との間の角度が互いに対して直交する。
いくつかの実施例において、基板は、第2の成膜ステップの前に、図1Bを参照して説明されたように、成膜材料の表面酸化が促進される空気中に移送され、別個のチャンバーに移送され、またはその場酸化のために成膜チャンバー内に残される。
材料の第2の層は、第2の成膜フロー方向(例えば第2の成膜フロー方向271)から、第1の開口部、第2の開口部及び第3の開口部を通して、基板に対して垂直なz軸に対する第2の成膜角度(例えば角度270)で成膜される(606)。
いくつかの実施例において、材料の第2の層が成膜された後、不要な材料を除去し、ジョセフソン接合の製造を完了するために、多層レジストマスク及び任意の不要な成膜材料がリフトオフステップで除去される。
いくつかの実施例において、前述のいくつかまたはすべてのプロセス及び特性化技術は、高品質な真空チャンバー、超伝導材料の超伝導温度未満の温度またはそれらの組み合わせを含みうる制御された環境下で行われる。
量子回路素子の形成で使用されうる超伝導材料の例は、アルミニウムである。アルミニウムは、量子回路素子の一般的な構成要素であるジョセフソン接合を確立するために誘電体と組み合わせて使用されうる。アルミニウムで形成されうる量子回路素子の例は、超伝導共平面導波路、量子LC発振器、キュービット(例えば磁束キュービットまたは電荷キュービット)、超伝導量子干渉デバイス(SQUID)(例えばRF−SQUIDまたはDC−SQUID)、インダクタ、キャパシタ、伝送線、接地面などの回路素子を含む。
アルミニウムはまた、相補性金属酸化物半導体(CMOS)回路に基づくその他の古典的回路素子と同様に、超伝導量子回路素子と相互運用が可能な超伝導古典的回路素子の形成においても使用されうる。アルミニウムで形成されうる古典的回路素子の例は、高速単一磁束量子(RSFQ)デバイス、レシプロカル量子論理(RQL)デバイスおよび、バイアス抵抗器を使用しないRSFQのエネルギー効率に優れたバージョンであるERSFQデバイスを含む。その他の古典的回路素子も、同様にアルミニウムで形成されうる。古典的回路素子は、データに対する基本的な数学的、論理的及び/または入力/出力操作を実行することによって、コンピュータプログラムの命令を集合的に実行するように構成され、データがアナログまたはデジタル形式であらわされる。
本明細書で説明されるプロセスは、超伝導体、誘電体及び/または金属などの1つまたは複数の材料の成膜を含みうる。選択される材料に応じて、これらの材料は、化学気相成膜、物理気相成膜(例えば蒸着もしくはスパッタリング)、またはエピタキシャル技術、その他の成膜プロセスなどの成膜プロセスを用いて成膜されうる。本明細書で説明されるプロセスはまた、製造においてデバイスからの1つまたは複数の材料の除去も含みうる。除去される材料に応じて、除去プロセスは、例えばウェットエッチング技術、ドライエッチング技術またはリフトオフプロセスを含みうる。
本明細書で説明される量子対象および量子動作の実施例は、適切な量子回路、より一般的には、本明細書で開示される構造及びその構造的な等価物、またはそれらの1つまたは複数の組み合わせを含む量子コンピューティングシステムにおいて実施されうる。「量子コンピューティングシステム」との用語は、量子コンピュータ、量子情報処理システム、量子情報処理デバイス、量子暗号システムまたは量子シミュレータを含みうるがこれらに限定されない。
量子情報および量子データとの用語は、量子システムによって搬送され、量子システム内に保持または記憶される情報またはデータを指し、最も小さい非自明なシステムはキュービット、例えば量子情報の単位を定義するシステムである。「キュービット」との用語は、対応する文脈において2準位システムとして適切に近似されうるすべての量子システムを含む。そのような量子システムは、例えば2つ以上の準位を有する多準位システムを含みうる。例として、そのようなシステムは、原子、電子、光子、イオンまたは超伝導キュービットを含みうる。多くの実施例において、計算基底状態は、グラウンド及び第1の励起状態で識別されるが、計算状態がより高い準位の励起状態で識別されるその他のセットアップも可能であることは理解される。量子メモリは、長時間にわたって高い忠実性及び効率を有して量子データを保存可能なデバイス、例えば光が、重ね合わせまたは量子コヒーレンスなどの量子データの量子的特徴の伝送のために使用され、物質が量子的特徴を記憶及び保存するために使用される光−物質インターフェースであることが理解される。
量子情報処理デバイスは、量子処理動作を実行するために使用されうる。すなわち、量子情報処理デバイスは、非決定論的にデータに対する操作を実行する、重ね合わせ及びもつれなどの量子−機械的現象を利用するように構成されうる。キュービットなどの特定の量子情報処理デバイスは、1つより多い状態における情報を同時に表し、情報に対して同時に操作するように構成されうる。本明細書で開示されるプロセスで形成されうる超伝導量子情報処理デバイスの例は、共平面導波路、量子LC発振器、キュービット(例えば磁束キュービットまたは電荷キュービット)、超伝導量子干渉デバイス(SQUID)(例えばRF−SQUIDまたはDC−SQUID)などの回路素子を含む。
対照的に、古典的回路素子は、一般に、決定論的にデータを処理する。古典的回路素子は、データに対する基本的な数学的、論理的及び/または入力/出力操作を実行することによってコンピュータプログラムの命令を集合的に実行するように構成され、データはアナログまたはデジタル形式であらわされる。いくつかの実施例において、古典的回路素子は、電気的または電磁的接続を通して量子回路素子へデータを送信し、及び/または量子回路素子からデータを受け取るために使用されうる。本明細書で開示されるプロセスを有して形成されうる古典的回路素子の例は、高速単一磁束量子(RSFQ)デバイス、レシプロカル量子論理(RQL)デバイスおよび、バイアス抵抗器を使用しないRSFQのエネルギー効率の良いバージョンであるERSFQデバイスを含む。その他の古典的回路素子も、同様に本明細書に開示されたプロセスで形成されうる。
本明細書で開示されるような回路素子などの、超伝導量子情報処理デバイス及び/または超伝導古典的回路素子を使用する量子コンピューティングシステムの動作において、超伝導回路素子は、超伝導材料が超伝導特性を呈することができるようにする温度までクライオスタット内で冷却される。超伝導体(または超伝導)材料は、超伝導臨界温度またはそれ以下で超伝導特性を呈する材料として理解されうる。超伝導材料の例は、アルミニウム(超伝導臨界温度は、約1.2ケルビンである)、インジウム(超伝導臨界温度は、約3.4ケルビンである)、NbTi(超伝導臨界温度は、約10ケルビンである)及びニオブ(超伝導臨界温度は約9.3ケルビンである)を含む。したがって、超伝導トレース及び超伝導接地面などの超伝導構造は、超伝導臨界温度以下で超伝導特性を呈する材料から形成される。
本明細書は、多くの具体的な実施例の詳細を含む一方、これらは、特許請求されうる範囲に対する限定として解釈されるべきではなく、むしろ、特定の実施例に特有でありうる特徴の説明として解釈されるべきである。別個の実施例の文脈において、本明細書で説明される特定の特徴はまた、単一の実施例において組み合わせて実施されうる。反対に、単一の実施例の文脈において説明される様々な特徴はまた、別個の複数の実施例または任意の適切な下位の組み合わせでも実施されうる。さらに、特徴は特定の組み合わせで働くものとして前述され、初めにそのように主張されうるが、主張される組み合わせからの1つまたは複数の特徴は、いくつかの場合において、その組み合わせから実行されてもよく、主張される組み合わせは、1つの下位の組み合わせまたは下位組み合わせの変形例を指しうる。
複数の実施例が説明された。それでもなお、様々な変形が、本発明の思想及び範囲から逸脱することなくなされうることは理解されるであろう。その他の実施例は、以下の特許請求の範囲内にある。
100 2層レジストマスク
102 平面図
104、106 断面図
108 基板
110 第1のレジスト層
111 第1の厚さ
112 第2のレジスト層
113 第2の厚さ
114 第1の開口部
116 第2の開口部
118 第1の開口部の幅
120 第2の開口部の幅
122 平面図
124、126 断面図
125 第1の成膜フロー方向
128 底部コンタクト
130 成膜角度
132 成膜層
132a 上面領域
132b 側壁領域
142 平面図
144、146 断面図
148 上部コンタクト
150 成膜角度
151 第2の成膜フロー方向
152 意図された幅とは異なる幅
200 3層レジストマスク
202 平面図
204、206 断面図
208 基板
210 第1のレジスト層
211 第1の厚さ
212 第2のレジスト層
213 第2の厚さ
214 第3のレジスト層
215 第3の厚さ
216 第1の開口部
218 第2の開口部
220 第3の開口部
211 マスク開口領域
222 第1の開口部の幅
224 第2の開口部の幅
226 第3の開口部の幅
228 第1のアンダーカット幅
230 第2のアンダーカット幅
240 平面図
242、244 断面図
248 底部コンタクト
250 第1の成膜における角度
251 第1の成膜フロー方向
252 成膜層
252a 上面領域
252b 側壁領域
252c 上面
254 第1の成膜層厚さ
256 第1の成膜層厚さ(tdep
258 上部コンタクト
260 平面図
262、264 断面図
270 第2の成膜における角度
271 第2の成膜フロー方向
272 成膜層
272b 側壁領域
272c 第2のレジスト層の上面
274 第1の成膜層厚さ(tdep
276 第2の成膜層厚さ(tmetal
308 基板
310 第1のレジスト層
312 第2のレジスト層
314 第3のレジスト層
315 第3のレジスト層の厚さt
316、318、320 開口部
324 第2の開口部の幅w
328 第1のアンダーカット幅uc1
330 第2のアンダーカット幅uc2
350 成膜の角度
351 第1の成膜フロー
356 金属の厚さ(tmetal
358 第2の成膜層
371 第2の成膜フロー
380 意図される幅よりも小さい幅
400 3層レジストマスク
410 第1のレジスト層
411 第1のレジスト層の厚さ
412 第2のレジスト層
413 第2のレジスト層の厚さ
414 第3のレジスト層
415 第3のレジスト層の厚さ
416、418 420 開口部
417 第1の開口部の幅
419a 第2の開口部の縁
419b 第2の開口部の縁
421 マスク開口領域
421a 第3の開口部の縁
421b 第3の開口部の縁
422 開口部420のY方向に沿った幅
424 開口部420のX方向に沿った幅
426 開口部418のY方向に沿った幅
428 開口部
430 第2のアンダーカット幅
440 平面図
442、444 断面図
448 底部コンタクト
451 第1の成膜フロー方向
452 成膜層
452a 上面領域
452b 側壁領域
460 平面図
462、464 断面図
470 基板表面の配向する角度
471 第2の成膜フロー方向
472 成膜層

Claims (13)

  1. 誘電体基板を提供する段階と、
    前記誘電体基板上に第1のレジスト層を形成する段階と、
    前記第1のレジスト層上に第2のレジスト層を形成する段階と、
    前記第2のレジスト層上に第3のレジスト層を形成する段階と、を含み、
    前記第1のレジスト層が、前記第1のレジスト層の厚さを通して延在する第1の開口部を含み、前記第2のレジスト層が、前記第1の開口部の上に位置合わせされ、前記第2のレジスト層の厚さを通して延在する第2の開口部を含み、前記第3のレジスト層が、前記第2の開口部の上に位置合わせされ、前記第3のレジスト層の厚さを通して延在する第3の開口部を含む、方法であって、
    前記方法がさらに、
    前記第1の開口部、前記第2の開口部及び前記第3の開口部を通して、前記基板に対して第1の成膜角度で材料の第1の層を成膜する段階と、
    前記第1の開口部、前記第2の開口部及び前記第3の開口部を通して、前記基板に対して第2の成膜角度で材料の第2の層を成膜する段階と、を含み、前記基板と、材料成膜ソースとの間の配向が、前記第1の層の成膜についての第1の位置から前記第2の層の成膜についての第2の位置へ変更され、
    前記第1の開口部、前記第2の開口部及び前記第3の開口部のそれぞれの厚さが、前記誘電体基板の表面の法線方向である第1の方向に沿って延在し、
    前記第1の開口部、前記第2の開口部及び前記第3の開口部のそれぞれが、前記第1の方向に対して直交する第2の方向に沿って延在する対応する幅を有し、
    前記第2の開口部の幅が、前記第1の開口部の幅よりも小さく、前記第3の開口部の幅よりも小さい、方法。
  2. 前記第1のレジスト層における前記第1の開口部及び前記第3のレジスト層における前記第3の開口部が、前記第1のレジスト層、前記第2のレジスト層及び前記第3のレジスト層を第1のパターンで露光することによって画定され、前記第2のレジスト層における前記第2の開口部が、前記第1のレジスト層、前記第2のレジスト層及び前記第3のレジスト層を第2のパターンで露光することによって画定され、前記第1のレジスト層、前記第2のレジスト層及び前記第3のレジスト層がその後現像される、請求項1に記載の方法。
  3. 前記材料の第1の層及び前記材料の第2の層が、超伝導材料である、請求項1に記載の方法。
  4. 前記材料の第2の層を成膜する前に、前記材料の第1の層の表面酸化を実行して、前記材料の第1の層の酸化領域を提供する段階をさらに含む、請求項1に記載の方法。
  5. 前記材料の第1の層の一部、前記酸化領域の一部及び前記材料の第2の層の一部が、ジョセフソン接合を形成する、請求項4に記載の方法。
  6. 前記材料の第1の層の一部、前記酸化領域の一部及び前記材料の第2の層の一部が、量子情報処理デバイスの一部を形成する、請求項4に記載の方法。
  7. 前記量子情報処理デバイスが、キュービットを含む、請求項6に記載の方法。
  8. 前記第1のレジスト層、前記第2のレジスト層、前記第3のレジスト層、及び過剰な成膜材料を除去する段階をさらに含む、請求項1に記載の方法。
  9. 前記材料の第1の層を成膜した後であって、前記材料の第2の層を成膜する前に、前記基板を回転する段階を含む、請求項8に記載の方法。
  10. 前記材料の第1の層を成膜した後であって、前記材料の第2の層を成膜する前に、前記誘電体基板に対して前記材料成膜ソースの位置を変更する段階を含む、請求項8に記載の方法。
  11. 前記第1の開口部、前記第2の開口部及び前記第3の開口部が、前記誘電体基板の表面を露出させるマスク開口領域を画定し、
    前記マスク開口領域の第1の側が、前記第2の開口部の第1の縁と、前記第3の開口部の第1の縁との間の距離によって画定された第1のアンダーカットを含み、
    前記マスク開口領域の前記第1の側に直接対向する前記マスク開口領域の第2の側が、前記第2の開口部の第2の縁と、前記第3の開口部の第2の縁との間の距離によって画定された第2のアンダーカット幅を含む、請求項8に記載の方法。
  12. 前記材料の第1の層の成膜の際に、前記マスク開口領域の前記第1の側が、前記マスク開口領域の前記第2の側よりも材料成膜ソースに近い、請求項11に記載の方法。
  13. 前記第2のアンダーカット幅が、第1の成膜プロセスの際に、前記第3のレジスト層の側壁上に成膜される材料の厚さよりも大きい、請求項12に記載の方法。
JP2020515872A 2017-09-18 2017-09-18 2段階成膜プロセスにおける接合抵抗の変動の低減 Active JP6849858B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2017/052049 WO2019055048A1 (en) 2017-09-18 2017-09-18 REDUCTION OF JUNCTION RESISTANCE VARIATION IN TWO-STEP DEPOSITION PROCESSES

Publications (2)

Publication Number Publication Date
JP2020535461A JP2020535461A (ja) 2020-12-03
JP6849858B2 true JP6849858B2 (ja) 2021-03-31

Family

ID=59974887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020515872A Active JP6849858B2 (ja) 2017-09-18 2017-09-18 2段階成膜プロセスにおける接合抵抗の変動の低減

Country Status (6)

Country Link
US (2) US11588094B2 (ja)
EP (2) EP3685451B1 (ja)
JP (1) JP6849858B2 (ja)
CN (2) CN117998973A (ja)
CA (1) CA3076743A1 (ja)
WO (1) WO2019055048A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673486A (zh) * 2019-07-25 2021-04-16 谷歌有限责任公司 具有降低的杂散电感的约瑟夫森结
CN112652522B (zh) * 2020-07-23 2022-05-03 腾讯科技(深圳)有限公司 光刻胶结构、图形化沉积层和半导体芯片及其制作方法
US11683995B2 (en) * 2020-08-03 2023-06-20 International Business Machines Corporation Lithography for fabricating Josephson junctions
WO2023139779A1 (ja) * 2022-01-24 2023-07-27 富士通株式会社 ジョセフソン素子、超伝導回路、量子演算装置及びジョセフソン素子の製造方法
CN116940217A (zh) * 2022-03-29 2023-10-24 腾讯科技(深圳)有限公司 约瑟夫森结制备方法及生产线设备
WO2023203679A1 (ja) * 2022-04-20 2023-10-26 富士通株式会社 ジョセフソン接合素子の製造方法および量子ビットの製造方法
WO2023243080A1 (ja) * 2022-06-17 2023-12-21 富士通株式会社 ジョセフソン接合素子の製造方法および量子ビットの製造方法
WO2024069800A1 (ja) * 2022-09-28 2024-04-04 富士通株式会社 ジョセフソン接合素子の製造方法および量子ビットデバイスの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218532A (en) * 1977-10-13 1980-08-19 Bell Telephone Laboratories, Incorporated Photolithographic technique for depositing thin films
US4533624A (en) * 1983-05-23 1985-08-06 Sperry Corporation Method of forming a low temperature multilayer photoresist lift-off pattern
JPS61115360A (ja) * 1984-11-10 1986-06-02 Agency Of Ind Science & Technol ジヨセフソン集積回路の作製方法
US4767721A (en) * 1986-02-10 1988-08-30 Hughes Aircraft Company Double layer photoresist process for well self-align and ion implantation masking
US6807734B2 (en) * 1998-02-13 2004-10-26 Formfactor, Inc. Microelectronic contact structures, and methods of making same
US6103619A (en) * 1999-10-08 2000-08-15 United Microelectronics Corp. Method of forming a dual damascene structure on a semiconductor wafer
AUPQ980700A0 (en) 2000-08-31 2000-09-21 Unisearch Limited Fabrication of nanoelectronic circuits
US7229745B2 (en) * 2004-06-14 2007-06-12 Bae Systems Information And Electronic Systems Integration Inc. Lithographic semiconductor manufacturing using a multi-layered process
US7960097B2 (en) * 2007-10-30 2011-06-14 Triquint Semiconductor, Inc. Methods of minimizing etch undercut and providing clean metal liftoff
US9082870B2 (en) * 2013-03-13 2015-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus of packaging semiconductor devices
JP5979495B2 (ja) * 2013-03-19 2016-08-24 Shマテリアル株式会社 半導体素子搭載用基板の製造方法
WO2017131831A2 (en) 2015-11-05 2017-08-03 Massachusetts Institute Of Technology Qubit and coupler circuit structures and coupling techniques

Also Published As

Publication number Publication date
CA3076743A1 (en) 2019-03-21
US11903329B2 (en) 2024-02-13
EP3805423A1 (en) 2021-04-14
EP3685451A1 (en) 2020-07-29
US11588094B2 (en) 2023-02-21
US20220328749A1 (en) 2022-10-13
CN117998973A (zh) 2024-05-07
CN111344875B (zh) 2024-02-02
EP3685451B1 (en) 2021-01-13
US20200279990A1 (en) 2020-09-03
CN111344875A (zh) 2020-06-26
WO2019055048A1 (en) 2019-03-21
JP2020535461A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6849858B2 (ja) 2段階成膜プロセスにおける接合抵抗の変動の低減
CN114256407B (zh) 相互并联的两个约瑟夫森结及量子比特装置的制备方法
CN109844637B (zh) 补偿电路元件中的沉积不均匀性
KR102400989B1 (ko) 다층 스택을 사용하여 장치 제조
JP6831452B2 (ja) フォトレジスト現像液によるエッチングを防ぐためのバッファ層
WO2023246326A1 (zh) 约瑟夫森结制备方法及系统
US20240107899A1 (en) Superconducting vacuum-bridged josephson junctions
CN117460399A (zh) 量子器件、约瑟夫森结及其制造方法、衬底和其应用
CN114899302A (zh) 拐弯区加厚型snspd器件的制备方法
CN115759272A (zh) 超导量子比特电路及其制备方法和量子计算机
CN117706863A (zh) 光刻胶掩膜及其制造方法、金属结构的制造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210304

R150 Certificate of patent or registration of utility model

Ref document number: 6849858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250