JP6848553B2 - 電池冷却システム - Google Patents

電池冷却システム Download PDF

Info

Publication number
JP6848553B2
JP6848553B2 JP2017047274A JP2017047274A JP6848553B2 JP 6848553 B2 JP6848553 B2 JP 6848553B2 JP 2017047274 A JP2017047274 A JP 2017047274A JP 2017047274 A JP2017047274 A JP 2017047274A JP 6848553 B2 JP6848553 B2 JP 6848553B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
battery
flow rate
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047274A
Other languages
English (en)
Other versions
JP2018151117A (ja
Inventor
一眞 淺倉
一眞 淺倉
土屋 豪範
豪範 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017047274A priority Critical patent/JP6848553B2/ja
Publication of JP2018151117A publication Critical patent/JP2018151117A/ja
Application granted granted Critical
Publication of JP6848553B2 publication Critical patent/JP6848553B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Secondary Cells (AREA)

Description

本開示は電池冷却システムに関し、より特定的には、冷凍サイクルで用いられる冷媒を導入して電池を冷却するシステムに関する。
電力を用いて走行する電気自動車やハイブリッド自動車等の電動車両では、電気エネルギを蓄積するために二次電池が搭載される。二次電池は充放電によって発熱し、かつ、高温領域では内部抵抗の増大等によって損失が増加するため、電動車両では、二次電池を冷却する必要がある。
特開2005−120505号公報(特許文献1)には、電池を冷却するための熱伝達流体を、空調システムの冷媒との熱交換によって冷却するための熱交換器に導入するバイパス経路を設けるシステム構成が示されている。さらに、特許文献1には、熱伝達流体の測定温度と設定点温度との比較に従ってバイパス経路の流量を制御することで、電池の冷却要求が高いときに当該熱交換器に導入される熱伝達流体を増加する制御が記載されている。
特開2005−120505号公報
特許文献1とは異なり空調システムでの冷媒を直接導入して電池冷却に用いる構成とすると、熱交換器の配置が不要となることで、システム構成を簡素化することができる。その一方で、冷媒を直接導入するため、冷媒流量が不足すると電池を十分に冷却できない一方で、冷媒流量が過剰になると、空調システム等の本来の冷凍サイクルにおける冷却能力が不足することが懸念される。
しかしながら、冷凍サイクルから導入された気液混合状態の冷媒が気化する際の潜熱によって電池が冷却される構成では、冷媒温度から冷媒状態を直接検知することが困難である。したがって、特許文献1のように、冷媒(熱伝達流体)と基準温度(設定点温度)との比較に従って、冷媒流量を制御することが困難である。
本開示はこのような問題点を解決するためになされたものであって、その目的は、冷凍サイクルで用いられる冷媒を導入する電池冷却システムにおいて、適切な冷却状態が得られるように冷媒流量を制御することである。
本開示のある局面では、電池冷却システムは、第1および第2の冷媒経路と、熱交換器と、冷媒の流量調整機構と、昇温装置と、第1、第2および第3の温度検出と、制御装置とを備える。第1の冷媒経路は、少なくとも一部が液化された状態の冷媒を冷凍サイクルから導入するように構成される。熱交換器は、電池と第1の冷媒経路によって供給される冷媒との間で熱交換を実行するように構成される。冷媒の流量調整機構は、第1の冷媒経路に介挿接続される。第2の冷媒経路は、熱交換器を通流した後の冷媒を冷凍サイクルに戻すように構成される。昇温装置は、第2の冷媒経路に介挿接続されて、冷媒を昇温する。第1の温度検出器は、熱交換器の通過前における冷媒の温度である第1の冷媒温度を検出する。第2の温度検出器は、熱交換器の通過後であって昇温装置の通過前における冷媒の温度である第2の冷媒温度を検出する。第3の温度検出器は、昇温装置の通過後における冷媒の温度である第3の冷媒温度を検出する。制御装置は、第2の冷媒温度が第1の冷媒温度よりも高くなると冷媒流量を増加する第1の制御と、第1および第2の冷媒温度が同等である下で第3の冷媒温度が第2の冷媒温度と同等である場合には冷媒流量を減少する第2の制御とを実行するように流量調整機構を制御する。
上記電池冷却システムによれば、第1および第2の冷媒温度の比較により、放熱器の通過時に冷媒のドライアウトが発生していることを検知すると、冷媒不足を検知して冷媒流量を増加するとともに、第2および第3の冷媒温度の比較により、放熱器および昇温装置を通過しても冷媒にドライアウトが発生しないことを検知すると、冷媒過剰を検知して冷媒流量を減少することができる。したがって、冷凍サイクルで用いられる冷媒を導入する電池冷却システムにおいて、冷媒不足による電池冷却能力不足、および、冷媒過剰による冷媒供給元の冷凍サイクルでの冷却能力不足を回避するように冷媒流量を制御することである。
本開示によれば、冷凍サイクルで用いられる冷媒を導入する電池冷却システムにおいて、適切な冷却状態が得られるように冷媒流量を制御することができる。
本実施の形態に従う電池冷却システムの適用例として示されるハイブリッド車両の全体構成を示すブロック図である。 本実施の形態に従う電池冷却システムおよび電池冷却システムへ冷媒を供給する空調システムの概略的な構成図である。 本実施の形態に従う電池冷却システムの構成を説明するためのブロック図である。 冷媒流量適正時における冷媒温度の挙動を説明する概念図である。 冷媒流量不足時における冷媒温度の挙動を説明する概念図である。 冷媒流量過剰時における冷媒温度の挙動を説明する概念図である。 本実施の形態に従う電池冷却システムにおける冷媒流量制御を説明するフローチャートである。
以下、本開示の実施の形態について図面を参照しながら詳細に説明する。なお以下では、複数の実施の形態について説明する。なお、図中の同一または相当する部分には同一符号を付してその説明は繰返さないものとする。
図1は、本実施の形態に従う電池冷却システムの適用例として示されるハイブリッド車両の全体構成を示すブロック図である。
図1を参照して、ハイブリッド車両1は、モータジェネレータMG1,MG2と、動力分割装置4と、減速機5と、駆動輪6と、PCU(Power Control Unit)20と、エンジン30と、バッテリ40と、制御装置50とを含む。
エンジン30は、たとえば、ガソリンエンジンやディーゼルエンジン等の内燃機関により構成される。動力分割装置4は、エンジン30の発生する動力を、出力軸7を経由した駆動軸8への経路とモータジェネレータMG1への経路とに分割可能に構成される。動力分割装置4としては、サンギヤ、プラネタリギヤおよびリングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。たとえば、モータジェネレータMG1のロータを中空としてその中心にエンジン30のクランク軸を通すことで、動力分割装置4にエンジン30とモータジェネレータMG1,MG2とを機械的に接続することができる。
具体的には、モータジェネレータMG1のロータをサンギヤに接続し、エンジン30の出力軸をプラネタリギヤに接続し、かつ、出力軸7をリングギヤに接続する。モータジェネレータMG2の回転軸とも接続された出力軸7は、減速機5を経由して、駆動輪6を回転駆動するための駆動軸8と機械的に連結される。なお、モータジェネレータMG2の回転軸と出力軸7との間に減速機をさらに組込んでもよい。
モータジェネレータMG1,MG2は、交流回転電機であり、たとえば、三相交流同期電動発電機である。モータジェネレータMG1は、エンジン30によって駆動される発電機として動作し、かつ、エンジン30を始動させるための電動機として動作するものとして、電動機および発電機の機能を併せ持つように構成される。
同様に、モータジェネレータMG2は、減速機5および駆動軸8を経由して駆動輪6へ伝達される車両駆動力を発生する。さらに、モータジェネレータMG2は、駆動輪6の回転方向と反対方向の出力トルクを発生することによって回生発電を行なうように電動機および発電機への機能を併せ持つように構成される。
図1の構成例では、バッテリ40を電源とするモータジェネレータMG1によって、エンジン30の出力軸(クランク軸)に回転力(クランキングトルク)を付与することができる。すなわち、モータジェネレータMG1は、エンジン30の始動を行なうことが可能に構成されている。そして、モータジェネレータMG1は、動力伝達ギヤの一例である動力分割装置4を経由して、ハイブリッド車両1の駆動軸8およびエンジン30の出力軸と機械的に連結されている。
バッテリ40は、たとえば、リチウムイオン電池、ニッケル水素電池または鉛蓄電池などの二次電池によって構成される。バッテリ40は、モータジェネレータMG1,MG2を駆動するためのPCU20に接続される。そして、バッテリ40は、ハイブリッド車両1の駆動力を発生させるための電力をPCU20に供給する。また、バッテリ40は、モータジェネレータMG1,MG2で発電された電力を蓄電する。
上記のようにバッテリ40は、ハイブリッド車両1の走行に伴い充放電される。あるいは、バッテリ40が、図示しない車載充電器を経由して、車両外部の電源からの電力によって充電可能であるように、ハイブリッド車両1を構成することも可能である。たとえば、交流/直流電力変換機能を有する充電器を車載することによって、充電ケーブルによって接続された商用交流電源からの電力によってバッテリ40を外部充電する、いわゆる、プラグイン充電タイプのハイブリッド車両を構成することができる。
PCU20は、バッテリ40から供給される直流電力を交流電力に変換し、モータジェネレータMG1,MG2を駆動する。また、PCU20は、モータジェネレータMG1,MG2が発電した交流電力を直流電力に変換し、バッテリ40を充電する。
制御装置50は、例えば電子制御ユニット(ECU)によって構成される。制御装置50は、各種の情報を記憶するメモリ51およびCPU(Central Processing Unit)52を有する。メモリ51には、制御装置50を動作させるためのプログラムが記憶されている。制御装置50による各制御機能は、CPU52が、メモリ51に格納されたプログラムを実行するソフトウェア処理および/または専用の電子回路によるハードウェア処理によって実行することが可能である。
制御装置50は、車両の走行状態に応じて、エンジン30およびモータジェネレータMG1,MG2の出力を制御する。たとえば、制御装置50は、エンジン30を停止させた状態でモータジェネレータMG2を動力源として走行する「EV走行」と、エンジン30を動作させた状態で走行する「HV走行」とを組み合わせるように、ハイブリッド車両1の走行を制御する。
バッテリ40は、走行中の充放電あるいは外部充電に伴う発熱によって温度が上昇する。バッテリ40については、高温時には内部抵抗の増大によって電力損失が増加すること、および、著しい高温状態が継続すると劣化が進行することが知られている。このため、バッテリ40に対しては、以下に説明する電池冷却システムが設けられる。
図2は、本実施の形態に従う電池冷却システムおよび電池冷却システムへ冷媒を供給する空調システム概略的な構成図である。
図2を参照して、ハイブリッド車両1には、エンジン冷却システム60、空調システム70、および、電池冷却システム100a,100bがさらに搭載される。
図2の例では、バッテリ40は、ハイブリッド車両1内で分割配置される。たとえば、図1に示された、バッテリ40は、車室フロア下領域に配置されたバッテリ40aと、車室後方領域に配置されたバッテリ40bとによって構成される。かかる分割配置では、バッテリ40aおよび40bにそれぞれ対応して、電池冷却システム100aおよび100bを配置することが好ましい。ただし、電池冷却システム100aおよび100bは同一の構成を有するので、以下では、両者を包括的に表記する場合には、単に電池冷却システム100とも称する。
空調システム70は、車室への送風口99を有するエアコン筐体91と、エアコン筐体91に格納される、暖房用のヒータコア92、冷房用のエバポレータ94、ブロア95、および、可動式のエア混合機構96とを含む。
エアコン筐体90内には、ブロア95の作動時に送風される通風路が設けられる。ヒータコア92、エバポレータ94、および、エア混合機構96は、通風路内に配列される。ブロア95の作動/停止および回転数(送風量)は、制御装置50によって制御される。また、制御装置50によるエア混合機構96の移動制御によって、送風口99からの出力における、ヒータコア92による温風およびエバポレータ94による冷風の混合比率を0〜100(%)に調整することができる。
エンジン冷却システム60は、エンジン30の冷却水を循環させるためのウォータポンプ61と、冷却水の放熱するためのラジエータ62と、冷却水経路を切換えるための電磁弁63,64と、水加熱ヒータ66とを有する。ウォータポンプ61を電動式ポンプで構成することにより、エンジン30の停止中にも冷却水を循環させることができる。
エンジン30の作動時には、電磁弁63および64を開放することにより、エンジン30内に設けられた冷却水経路に、冷却水を循環することができる。冷却水がエンジン30から熱を奪うことによって、循環冷却水の温度が上昇するとともに、エンジン30が冷却される。さらに、循環冷却水の一部は、水冷コンデンサ90およびヒータコア92を通過する。これにより、ヒータコア92を通過する冷却水と、通風路の空気との熱交換によって、エンジン30による発熱の一部を用いて、ヒータコア92によって暖房を行うことができる。
なお、エンジン30およびラジエータ62の間には、図示しないサーモスタットが配置されることにより、循環冷却水の低温時は、冷却水がラジエータ62を通過しない一方で、高温時には冷却水がラジエータ62を通過するように、冷却水の経路を自動的に切換えることができる。
エンジン30の停止時には、電磁弁64を閉止する一方で電磁弁63を開放した状態でウォータポンプ61を作動させることにより、水加熱ヒータ66、水冷コンデンサ90およびヒータコア92を含む経路に、冷却水を循環することができる。たとえば、バッテリ40の電力によって水加熱ヒータ66を作動することにより、エンジン30の停止時においても、ヒータコア92を通過する循環冷却水を昇温することができる。このように、空調システム70は、エンジン冷却システム60を用いて、エンジン30の作動時および停止時の両方において、暖房を行うことができる。
空調システム70は、冷媒を圧縮するための電動式の圧縮機71と、第1膨張弁72と、コンデンサ79a,79bと、運転切換弁73,74と、バイパス弁75と、第2膨張弁76と、逆止弁77と、アキュムレータ78と、配管81〜86とを含む。
空調システム70は、圧縮機71、コンデンサ79a,79b、エバポレータ94、ならびに、第1膨張弁72および第2膨張弁76によって構成される冷媒の冷凍サイクルによって冷房運転を行うことができる。冷媒は、冷凍サイクル内で気体および液体間の相変化を生じるものであれば、その種類は特に限定されない。
冷房運転時には、運転切換弁73が閉止され、運転切換弁74が開放された状態で、圧縮機71が作動する。これにより、圧縮機71から吐出された高圧の冷媒蒸気は、配管81および第1膨張弁72を経てコンデンサ79a,79bを通過する。冷媒は、コンデンサ79a,79bにおいて冷却されて、高圧のまま液化されて過冷却状態となる。これにより、冷媒は、少なくとも一部が液化された状態(通常、気液混合状態)で配管83へ出力される。
配管83に出力された冷媒は、第2膨張弁76が介挿された配管84を経由してエバポレータ94へ送られる。冷媒は、第2膨張弁76で減圧された後、エバポレータ94で気化される。エバポレータ94では、冷媒の気化に伴う潜熱によって、通風路の空気を冷却することができる。このとき、配管83に出力された冷媒の一部は、配管83から電池冷却システム100へ送出された後、配管85から配管86へ戻される。
エバポレータ94を通過した低圧の冷媒蒸気は、圧縮機71の吸入側と接続された配管86へ出力される。配管86には、アキュムレータ78が配置されており、冷媒蒸気中の液体成分が分離される。圧縮機71は、液体成分が分離された低圧の冷媒蒸気を圧縮して、高温高圧の冷媒蒸気を配管81へ吐出する。このように形成された冷凍サイクルによって、空調システム70では、エバポレータ94で冷却された冷風を送風口99から出力する冷房運転を行うことができる。
一方で、暖房運転時には、運転切換弁74が閉止され、運転切換弁73が開放された状態で、圧縮機71が作動する。これにより、圧縮機71から配管81へ吐出された冷媒は、水冷コンデンサ90、第1膨張弁72および、コンデンサ79aを通過した後、配管82を経由して、エバポレータ94をバイパスして配管86へ戻される。また、配管82を通過せずにコンデンサ79bを通過する一部の冷媒についても、配管83から電池冷却システム100へ送出された後、配管85から配管86へ戻される。
暖房運転時には、運転切換弁74の閉止により、配管84からエバポレータ94を通過する経路が遮断されるので、冷媒がエバポレータ94を通過することによる、通風路での冷却は実行されない。一方で、水冷コンデンサ90によって、圧縮機71から吐出された高温高圧の冷媒蒸気と、エンジン冷却システム60での循環冷却水との間で熱交換が行われる。これにより、暖房運転時には、冷媒の熱エネルギを用いて、ヒータコア92を通過する循環冷却水を昇温することができる。すなわち、冷凍サイクルを暖房運転にも利用できる。
電池冷却システム100aは、配管83から分岐される配管101aと、開閉弁105aと、電子膨張弁110aと、放熱器120aと、放熱器120aと配管86の間に配置される配管102aと、昇温装置130aとを含む。開閉弁105aおよび電子膨張弁110aは、配管101aに介挿される。昇温装置130aは、配管102aに介挿される。
配管101aは、空調システム70の冷凍サイクルから、少なくとも一部が液化された状態の冷媒を導入する。配管101aによって導入された冷媒は、電子膨張弁110aによって減圧されて、放熱器120aへ供給される。
開閉弁105aは、たとえば電磁弁によって構成されて、開状態および閉状態の一方に制御される。開閉弁105aを閉止することによって、電池冷却システム100aに対する冷媒の供給を遮断することができる。
放熱器120aは、金属等の熱伝導性の高い材質で構成することができる。放熱器120aには、冷凍システムから導入された冷媒の流路(図示せず)が設けられる。放熱器120aは、当該流路を経由する冷媒と、放熱器120aに取り付けられたバッテリ40aとの間で熱交換が行われるように構成される。
放熱器120aを通過する冷媒の気化に伴う潜熱によって、放熱器120aを経由してバッテリ40aから熱量が奪われる。これにより、空調システム70の冷凍サイクルから導入された冷媒を用いて、バッテリ40aを冷却することができる。さらに、電子膨張弁110aの開度調整により、電池冷却システム100aに導入される冷媒流量を制御することができる。
昇温装置130aは、たとえば、バッテリ40aの電力によって通電加熱されるヒータによって構成される。放熱器120aを通過した冷媒は、昇温装置130aを通過することによって気化されて、配管86へ送出される。放熱器120aでの気化量は、バッテリ40aからの抜熱量によって変化するが、昇温装置130aの配置によって、配管86から圧縮機71の吸入側へ戻される冷媒の状態を一定に維持することを指向する。具体的には、冷媒流量を適正化することによって、冷媒をドライアウトさせて、ほぼ完全に気化状態(乾き度100(%))とすることができる。
電池冷却システム100aには、冷媒温度を検出するための温度センサ151a〜153aおよび冷媒圧力を検出するための圧力センサ140aが配置される。温度センサ151aは、配管101aにおいて放熱器120aよりも上流側に設けられて、放熱器120aの通過前における冷媒温度を検出する。温度センサ152bは、放熱器120aおよび昇温装置130との間に配置されて、放熱器120aの通過後の冷媒温度を検出する。温度センサ153aは、配管102aにおいて昇温装置130aよりも下流側に配置されて、昇温装置130aの通過後の冷媒温度を検出する。さらに、圧力センサ140aは、配管102aに配置されて、冷凍サイクルに戻される冷媒の圧力を検出する。
バッテリ40bを冷却する電池冷却システム100bは、配管101bと、開閉弁105bと、電子膨張弁110bと、放熱器120bと、放熱器120bと配管86の間に配置される配管102bと、昇温装置130bとを含む。電子膨張弁110bは、配管101bに介挿される。昇温装置130bは、配管102bに介挿される。
配管101bは、電池冷却システム100aの配管101aと並列に、配管83から分岐される。配管102bは、電池冷却システム100bの配管101bと並列に、配管86に接続される。電子膨張弁110b、放熱器120b、配管102b、および、昇温装置130bは、開閉弁105a、電子膨張弁110a、放熱器120a、配管102a、および、昇温装置130aと同様に構成される。
すなわち、電池冷却システム100bにおいても、空調システム70の冷凍サイクルから導入された冷媒を用いて、バッテリ40bを冷却することができる。また、電池冷却システム100bに導入される冷媒流量は、電子膨張弁110bの開度調整によって制御することができる。また、電池冷却システム100bにおいても、圧力センサ140aおよび温度センサ151a〜153aのそれぞれと同様の位置に配置された、圧力センサ140bおよび温度センサ151b〜153bが設けられる。
図3は、本実施の形態に従う電池冷却システムの構成を説明するブロック図である。
図3を参照して、電池冷却システム100は、図2に示された電池冷却システム100aおよび100bを包括的に示すものである。
電池冷却システム100は、配管101と、開閉弁105と、電子膨張弁110と、バッテリ40に取り付けられた放熱器120と、配管102と、昇温装置130と、コントローラ160と、温度センサ151〜153とを含む。
配管101は、配管101a,101bを包括的に表記するものであり、配管102は、配管102a,102bを包括的に表記するものである。また、開閉弁105は、開閉弁105a,105bを包括的に表記するものであり、電子膨張弁110は、電子膨張弁110a,110bを包括的に表記するものである。同様に、放熱器120は、放熱器120a,120bを包括的に表記するものであり、昇温装置130は、昇温装置130a,130bを包括的に表記するものである。なお、配管101は「第1の冷媒経路」の一実施例に対応し、配管102は「第2の冷媒経路」の一実施例に対応する。
また、温度センサ151は、温度センサ151a,151bを包括的に表記するものであり、温度センサ152は、温度センサ152a,152bを包括的に表記するものであり、温度センサ153は、温度センサ153a,153bを包括的に表記するものである。温度センサ151は「第1の温度検出器」の一実施例に対応し、温度センサ152は「第2の温度検出器」の一実施例に対応し、温度センサ153は「第3の温度検出器」の一実施例に対応する。
コントローラ160は、たとえば、制御装置50の一部機能として実現することができる。あるいは、制御装置50とは別の電子制御ユニット(ECU)を配置して、電池冷却システム100のコントローラ160を構成することも可能である。
コントローラ160には、温度センサ151〜153によってそれぞれ検出された冷媒温度T1〜T3が入力される。コントローラ160は、開閉弁105の開閉および電子膨張弁110の開度を調整する。コントローラ160は、コントローラ160は、冷媒温度T1〜T3に基づいて、電子膨張弁110の弁開度指令Sopを生成する。弁開度指令Sopを変化させることにより、電池冷却システム100に導入される冷媒流量を制御することができる。すなわち、本実施の形態では、電子膨張弁110が「流量調整機構」の一実施例に対応する。
電池冷却システム100では、空調システム70の冷凍サイクルから導入された、少なくとも一部が液化されている冷媒が気化することによってバッテリ40が冷却される。したがって、放熱器120の通過中に、すなわち、乾き度=100(%)となって、冷媒が完全に気化する現象であるドライアウトが発生すると、バッテリ40の冷却能力が不足することが懸念される。
ドライアウトは、バッテリ40での発熱量に対して冷媒流量が不足することで発生する。一方でバッテリ40での発熱量に対して、冷媒流量が過剰であると、昇温装置130の通過後においても、冷媒の乾き度が100(%)に達していない状態となる。冷媒流量が過剰であると、バッテリ40の冷却能力が確保される一方で、冷媒の供給元である空調システム70における冷却能力が低下する虞がある。
このように、空調システム70から導入される冷媒を用いた電池冷却システム100では、冷媒流量を適切に制御することが必要となる。一方で、冷媒温度は、ドライアウトが発生するまでは、吸熱エネルギが気化に使われるため上昇しない。このため、特許文献1のように、一点の冷媒温度のみを単純に監視しても、冷媒流量が適正であるかどうかを判断することが困難である。
次に、図4から図6を用いて、電池冷却システム100における冷媒状態の違いに対応した冷媒温度の挙動の違いを説明する。
図4には、冷媒流量適正時における冷媒温度の挙動が示される。
図4を参照して、冷媒流量が適正である場合には、放熱器120の通過時(すなわち、電池冷却時)には冷媒のドライアウトは発生せず、放熱器120の出力側においても、冷媒の乾き度が100%に達しない。したがって、放熱器120の出側における冷媒温度T2は、冷媒温度T1から上昇しない(T2=T1)。
放熱器120から出力された冷媒は、昇温装置130によって加熱されることによって完全に気化されて、乾き度が100(%)となる。昇温装置130の通過中に乾き度が100(%)になると、昇温装置130の出側における冷媒温度T3は、放熱器120の出側(昇温装置130の入側)における冷媒温度T2よりも上昇する。したがって、冷媒流量適正時における冷媒温度T1〜T3は、冷媒温度T1およびT2が同等である一方で、冷媒温度T3は冷媒温度T2よりも高くなる。
図5には、冷媒流量不足時における冷媒温度の挙動が示される。
図5を参照して、冷媒流量が不足する場合には、放熱器120の通過中(すなわち、電池冷却時)に、冷媒のドライアウトが発生して、冷媒の乾き度が100%に達する。したがって、放熱器120の出側における冷媒温度T2は、冷媒温度T1から上昇する(T2>T1)。
放熱器120の通過時点で気化している冷媒は、昇温装置130によって加熱されることによってさらに温度が上昇する。すなわち、昇温装置130の出側における冷媒温度T3は、放熱器120の出側(昇温装置130の入側)における冷媒温度T2からさらに上昇する。したがって、冷媒流量適正時における冷媒温度T1〜T3は、冷媒温度T1、T2およびT3の順に高くなる(T3>T2>T1)。
図6には、冷媒流量過剰時における冷媒温度の挙動が示される。
図6を参照して、冷媒流量が過剰である場合には、放熱器120および昇温装置130を通過しても、冷媒は完全に気化しないため乾き度が100(%)に達しない。すなわち、冷媒のドライアウトは発生しないので、放熱器120の出側における冷媒温度T2は、冷媒温度T1から上昇しない。さらに、昇温装置130の出側における冷媒温度T3も、放熱器120の出側(昇温装置130の入側)における冷媒温度T2から上昇しない。したがって、冷媒流量過剰時における冷媒温度T1〜T3は変化しない(T1=T2=T3)。
本実施の形態に従う電池冷却システム100では、図4〜図6で説明した三点での冷媒温度T1〜T3の比較に基づいて冷媒状態を推定することにより、図7に示される冷媒流量制御を実行する。図7のフローチャートに示された制御処理は、一定時間の経過毎に、コントローラ160によって周期的に実行することができる。
図7を参照して、コントローラ160は、ステップS100により、温度センサ151〜153の検出値から冷媒温度T1〜T3を取得すると、ステップS110により、冷媒温度T1およびT2の比較により、冷媒温度T2が冷媒温度T1から上昇しているかどうかを判定する。
ステップS120の判定は、たとえば、T2−T1<ε(ε:所定の判定値)が成立するか否かによって実行することができる。T2−T1<εの成立時(S120のYES判定時)には、T1≒T2、すなわち、冷媒温度T2は冷媒温度T1から上昇しておらず、放熱器120の通過時に冷媒のドライアウトは発生していないと判定することができる。
コントローラ160は、T2−T1<εの非成立時(S120のNO判定時)、すなわち、図5のように冷媒温度T2が冷媒温度T1から上昇しているとき(T2>T1)には、ステップS130へ処理を進める。
コントローラ160は、ステップS130では冷媒不足を検知し、ステップS140に処理を進めて、冷媒流量を増加するように、すなわち、電子膨張弁110の弁開度が増加するように弁開度指令Sopを調整する。すなわち、ステップS130,S140により「第1の制御」が実行される。
コントローラ160は、T2−T1<εの成立時(S120のYES判定時)には、図4および図6の状態のいずれであるかを区別するために、ステップS150により、冷媒温度T2が冷媒温度T3から上昇しているかどうかを判定する。
ステップS150の判定は、たとえば、T3>T2+α(α:所定の判定値)が成立するか否かによって実行することができる。T3>T2+αの非成立時(S150のNO判定時)には、T2≒T3、すなわち、冷媒温度T3は冷媒温度T2から上昇しておらず、昇温装置130を通過しても冷媒のドライアウトは発生していないと判定することができる。
コントローラ160は、T3>T2+αの非成立時(S150のNO判定時)、すなわち、図6のように冷媒温度T3が冷媒温度T2から上昇していないとき(T2≒T3)には、ステップS160へ処理を進める。
コントローラ160は、ステップS160では冷媒過剰を検知し、ステップS170に処理を進めて、冷媒流量を減少するように、すなわち、電子膨張弁110の開度が減少するように弁開度指令Sopを調整する。すなわち、ステップS160,S170により「第2の制御」が実行される。
コントローラ160は、T3>T2+αの成立時(S150のYES判定時)には、ステップS180へ処理を進めて、図4のような冷媒温度T1〜T3の挙動であるため、現在の冷媒流量が適正であると判定する。したがって、コントローラ160は、ステップS190により、現在の流量を維持するように、すなわち、電子膨張弁110の開度を維持するように、弁開度指令Sopを生成する。
このように、冷媒温度T1〜T3を用いて、バッテリ40を冷却する放熱器120の入側および出側の冷媒温度比較、ならびに、昇温装置130の入側および出側の冷媒温度比較に基づいて冷媒流量の過剰あるいは不足を検知することにより、電子膨張弁110によって冷媒流量を適正に制御することができる。
図7のフローチャートを繰り返し実行することにより、冷媒流量が適正な状態から、バッテリ40の発熱量の増加あるいは減少によって、冷媒流量の不足あるいは過剰が生じても、冷媒温度T1〜T3の挙動に基づいて、再び適正な冷媒流量が得られるように、電子膨張弁110を制御することが可能である。
以上説明したように、本実施の形態に従う電池冷却システムでは、冷凍サイクルで用いられる冷媒を導入する構成において、冷却能力不足および過剰な冷媒使用を回避して適切な冷却状態が得られるように、冷媒流量を制御することができる。
なお、本実施の形態では、電子膨張弁110によって「冷媒流量調整機構」の機能を実現したが、変形例として、膨張弁とは別個に流量調整弁を配置することも可能である。この場合には、当該流量調整弁の開度調整によって、ステップS140,S170,S190による冷媒流量の制御を実行することができる。
また、図1では、エンジンが搭載されたハイブリッド車両1への搭載例として、エンジン冷却システム60との間で熱交換が可能な空調システム70からの冷媒を電池冷却システムに導入する構成を示したが、エンジン冷却システム60との間で熱交換を実施しない空調システムであっても、電池冷却システムへ冷媒を導入することができる。
たとえば、エンジンが搭載されない電気自動車においても、空調システムから電池冷却システムへ冷媒を導入することができる。あるいは、空調システム以外であっても、冷媒の冷凍サイクルを有するシステムであれば、当該システムから電池冷却システムに対して冷媒を導入することができる。すなわち、本実施の形態に従う電池冷却システムにおいて、冷媒供給元は空調システムに限定されるものではない。さらに、冷凍サイクルから冷媒を導入することが可能であれば、ハイブリッド車両や電気自動車以外の用途においても本実施の形態に従う電池冷却システムを適用することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 ハイブリッド車両、4 動力分割装置、5 減速機、6 駆動輪、7 出力軸、8 駆動軸、30 エンジン、40,40a,40b バッテリ、50 制御装置、51 メモリ、60 エンジン冷却システム、61 ウォータポンプ、62 ラジエータ、63,64 電磁弁、66 水加熱ヒータ、70 空調システム、71 圧縮機、72 第1膨張弁、73,74 運転切換弁、75 バイパス弁、76 第2膨張弁、77 逆止弁、78 アキュムレータ、79a,79b コンデンサ、81〜86,101,101a,101b,102,102a,102b 配管、90 水冷コンデンサ、91 エアコン筐体、92 ヒータコア、94 エバポレータ、95 ブロア、96 エア混合機構、99 送風口、100,100a,100b 電池冷却システム、130,130a,130b 昇温装置、105,105a,105b 開閉弁、110,110a,110b 電子膨張弁、120,120a,120b 放熱器、140,140a,140b 圧力センサ、151〜153,151a〜153a,151b〜153b 温度センサ、160 コントローラ、MG1,MG2 モータジェネレータ、Sop 弁開度指令(電子膨張弁)、T1,T2,T3 冷媒温度。

Claims (1)

  1. 冷凍サイクルから、少なくとも一部が液化された状態の冷媒を導入するための第1の冷媒経路と、
    電池と前記第1の冷媒経路によって供給される前記冷媒との間で熱交換を実行するように構成された熱交換器と、
    前記第1の冷媒経路に介挿接続される、前記冷媒の流量調整機構と、
    前記熱交換器を通流した後の前記冷媒を前記冷凍サイクルに戻すための第2の冷媒経路と、
    前記第2の冷媒経路に介挿接続される、前記冷媒を昇温するための昇温装置と、
    前記熱交換器の通過前における前記冷媒の温度である第1の冷媒温度を検出する第1の温度検出器と、
    前記熱交換器の通過後であって前記昇温装置の通過前における前記冷媒の温度である第2の冷媒温度を検出する第2の温度検出器と、
    前記昇温装置の通過後における前記冷媒の温度である第3の冷媒温度を検出する第3の温度検出器と、
    前記第2の冷媒温度が前記第1の冷媒温度よりも高くなると冷媒流量を増加する第1の制御と、前記第1および第2の冷媒温度が同等である下で前記第3の冷媒温度が前記第2の冷媒温度と同等である場合には冷媒流量を減少する第2の制御とを実行するように前記流量調整機構を制御する制御装置とを備える、電池冷却システム。
JP2017047274A 2017-03-13 2017-03-13 電池冷却システム Active JP6848553B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017047274A JP6848553B2 (ja) 2017-03-13 2017-03-13 電池冷却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047274A JP6848553B2 (ja) 2017-03-13 2017-03-13 電池冷却システム

Publications (2)

Publication Number Publication Date
JP2018151117A JP2018151117A (ja) 2018-09-27
JP6848553B2 true JP6848553B2 (ja) 2021-03-24

Family

ID=63680318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047274A Active JP6848553B2 (ja) 2017-03-13 2017-03-13 電池冷却システム

Country Status (1)

Country Link
JP (1) JP6848553B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940245B2 (ja) * 2018-08-10 2021-09-22 株式会社大一商会 遊技機
KR102622137B1 (ko) * 2019-04-02 2024-01-08 현대모비스 주식회사 전기차 배터리 냉각 시스템
JP7294000B2 (ja) * 2019-09-04 2023-06-20 株式会社デンソー 車両用空調装置
JP2021038891A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 車両用空調装置
JP7379960B2 (ja) * 2019-09-04 2023-11-15 株式会社デンソー 車両用空調装置
JP7037087B2 (ja) 2020-03-27 2022-03-16 ダイキン工業株式会社 冷凍サイクル装置
CN115885142A (zh) * 2020-08-21 2023-03-31 株式会社电装 制冷循环装置
CN113410539B (zh) * 2021-05-17 2022-09-27 中国科学院电工研究所 储能电站冷却方法、系统、电子设备
JP2023017262A (ja) * 2021-07-26 2023-02-07 株式会社デンソー 冷凍サイクル装置
KR20230098943A (ko) * 2021-12-27 2023-07-04 주식회사 엘지에너지솔루션 공유형 배터리팩 냉각 시스템, 공유형 배터리팩 냉각 방법 및 충전 스테이션

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188761A (ja) * 1984-03-07 1985-09-26 シャープ株式会社 空気調和機
JP2005090862A (ja) * 2003-09-17 2005-04-07 Toyota Motor Corp 冷却システム
JP5989328B2 (ja) * 2011-11-17 2016-09-07 トヨタ自動車株式会社 熱交換装置
JP2016133290A (ja) * 2015-01-22 2016-07-25 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP2018151117A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6848553B2 (ja) 電池冷却システム
CN109895593B (zh) 用于车辆的热泵系统
CN108357333B (zh) 电气化车辆中使用电池冷却剂泵控制电池冷却的方法
CN107554235B (zh) 电池冷却剂回路控制
JP7185469B2 (ja) 車両の熱管理システム
US9827846B2 (en) Traction battery cooling system
US9604521B2 (en) Vehicle and method for controlling vehicle
JP6119546B2 (ja) ハイブリッド車両
CN102774251B (zh) 用于电动车辆的空气调节控制设备
US10814694B2 (en) Hybrid vehicle
CN105322249B (zh) 确定电气化车辆的电池热管理系统中的冷却剂泵的运行状态的方法
WO2013157214A1 (ja) 車載機器温調装置
JP6150113B2 (ja) 車両熱管理システム
US10675946B2 (en) Vehicle air-conditioning control device
US20090031749A1 (en) Refrigeration apparatus with exhaust heat recovery device
JP2002191104A (ja) 車両用バッテリ冷却装置
US11597375B2 (en) Vehicle control device
JP6992668B2 (ja) 車両駆動システムの冷却装置
JP2014121228A (ja) 車両
JP2017114179A (ja) 車両の空調装置
JP6712400B2 (ja) 車両用空気調温システム
US20240190212A1 (en) Thermal management system, thermal management method, and computer device
JP2018034744A (ja) ハイブリッド車両システム
Dewangan et al. e Vehicle Cooling System Approach for Off-Highway Machines
JP2015189348A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6848553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151