JP6825248B2 - 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法 - Google Patents

光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法 Download PDF

Info

Publication number
JP6825248B2
JP6825248B2 JP2016131939A JP2016131939A JP6825248B2 JP 6825248 B2 JP6825248 B2 JP 6825248B2 JP 2016131939 A JP2016131939 A JP 2016131939A JP 2016131939 A JP2016131939 A JP 2016131939A JP 6825248 B2 JP6825248 B2 JP 6825248B2
Authority
JP
Japan
Prior art keywords
optical
channel
value
channels
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016131939A
Other languages
English (en)
Other versions
JP2018007043A (ja
Inventor
俊雄 石井
俊雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Optical Components Ltd
Original Assignee
Fujitsu Optical Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Optical Components Ltd filed Critical Fujitsu Optical Components Ltd
Priority to JP2016131939A priority Critical patent/JP6825248B2/ja
Priority to US15/636,058 priority patent/US10256938B2/en
Publication of JP2018007043A publication Critical patent/JP2018007043A/ja
Application granted granted Critical
Publication of JP6825248B2 publication Critical patent/JP6825248B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、光受信器とこれを用いた光トランシーバ、及び光信号の受信制御方法に関する。
100ギガビットイーサネット(登録商標)などの高速光通信において、CFPx、QSFP28といった標準規格の光モジュールがクライアント側に採用されている。これらの光モジュールは、伝送速度を達成するため、25Gbps×4チャネル(4波長)によるAM変調を用いた伝送方式を採用している。受信側の光電変換及び増幅に用いられる光受信サブアセンブリ(ROSA:receiver optical subassembly)では、小型化の目的で4チャネルを1つのパッケージに集積している。
標準規格の光モジュールのうち、40Kmまでの伝送を行うER4規格では、光電力ロスによる光受信電力のダイナミックレンジを確保するため、光受信器内に半導体光アンプ(SOA:semiconductor optical amplifier)と可変光減衰器(VOA:variable
optical attenuator)を用いている。小電力信号の受信時はSOAで一括して増幅し、大電力信号の受信時はVOAで一括して減衰させた後に、各チャネルに分波してPINフォトダイオード(PD:photodiode)で受光する。
しかし、小型化を目的とするCFP4やQSFP28では、実装サイズの制約によりSOAやVOAを配置するのが困難である。そのため、アバランシェ型フォトダイオード(APD:avalanche photodiode)を用いた受光方式が採用されつつある。APDは逆バイアス(電圧)の印加により光電流を増幅し、高い受光感度を実現する。
米国特許出願公開第2012/0155864号 米国特許出願公開第2006/0016894号
多チャネルを1つのパッケージに集積する場合、受信チャネル間のクロストークによる受信感度劣化の影響を無視することはできない。従来は、各チャネルに1つのROSAを配置する、あるいはチャネル間に電波シールド用の壁を配置するなどにより、クロストークを防止していた。しかし、ROSAの小型化を実現する場合、実装面積が制約され、従来の対策を用いることは困難である。
そこで、チャネル間のクロストークの影響を低減した小型の光受信器を提供することを課題とする。
一つの態様では、光受信器は、
複数のチャネルで入力される光信号をチャネルごとに分波する分波器と、
前記複数のチャネルに応じた数の受光素子を有し、チャネルごとに光信号を電気信号に変換する光電変換器と、
前記光電変換器により電気信号に変換された前記光信号の振幅特性をチャネルごとにモニタするモニタ回路と、
前記モニタ回路のモニタ結果に基づいて、前記振幅特性のチャネル間のばらつきを最小または所定範囲内にするように前記受光素子に印加されるバイアス電圧を制御する制御回路と、
を有する。
多チャネルの光信号を受信する小型の光受信器で、チャネル間のクロストークの影響を低減することができる。
チャネル間のクロストークの影響を説明する図である。 チャネル間のクロストークの影響を説明する図である。 チャネル間のクロストークの影響を説明する図である。 チャネル間のクロストークの影響を説明する図である。 チャネル間のクロストークの影響を説明する図である。 第1実施形態の光受信器の概略図である。 プロセッサの機能ブロック図である。 第1実施形態の制御フローである。 第1実施形態でメモリに格納される情報の例を示す図である。 第2実施形態の光受信器の概略図である。 第2実施形態の制御フローである。 第2実施形態でメモリに格納される情報の例を示す図である。 第3実施形態の制御フローである。 温度変化への対応を説明する図である。 第3実施形態の変形例のフローチャートである。 APDの電流増倍率とSN比の関係を説明する図である。 APDの電流増倍率と帯域の関係を示す図である。 実施形態の光受信器を用いた光トランシーバの概略図である。
実施形態の構成と手法を説明する前に、図1〜図5を参照して、発明者が見出した光受信モジュール(ROSA)におけるクロストークの影響について説明する。図1は、実施形態の光受信器に適用されるROSAの概略図である。ROSAに入力される光信号は、光分波器で波長ごとに分波され、対応するアバランシェ型フォトダイオード(APD)で光検出される。それぞれのAPDにバイアス電圧Vapd0〜Vapd_nが印加され、増幅された光電流が出力される。一般的に、各チャネルで最適な固定の電圧値が設定されている。APDの出力は、プリアンプ113−1〜113−n(適宜「プリアンプ113」と総称する)によって電圧信号に変換されて出力される。
多チャネルの光信号がROSAに入力されると、プリアンプ113相互間でクロストークが発生する。光信号がAPDで光電流に変換されプリアンプ113で電圧信号に変換されるとき、データの変化点(立ち上がりと立下り)で所定の振幅で電圧がスイングする。この電圧スイングで生じる電磁波がROSAの内部で他のチャネルに回り込んで、チャネル間の干渉すなわちクロストークが生じる。クロストークが起きると、後段の識別器でのデータ識別精度が劣化し、受信感度が低下する。
図2は、クロストークによる信号波形の劣化を説明する図である。ノイズ源となるチャネルでの信号波形の立ち上がりと立下りの電圧スイングで、中段に示す波形の電磁波がROSA内に放射される。この電磁波(ノイズ)の影響により、下段に示すように他のチャネルの信号波形が劣化する。
図3は、チャネル間のクロストークによる受信感度劣化を説明する図である。横軸は光入力パワー、縦軸は誤り率である。光入力パワーが同じ場合、クロストークの影響により規格で決まる誤り率を維持することができなくなる。規格で決まる誤り率を維持しようとすると、光入力パワーを大きくしなければならない。しかし、光入力パワーは伝送路損失で決まり、規格で決まる入力パワーの範囲を満たさないといけない。
図4は、クロストークによる波形劣化に対する入力パワーのチャネル間の偏差の影響を説明する図である。図の左側はチャネル間偏差が小さい場合を示し、図の右側はチャネル間偏差が大きい場合を示す。ROSAに入力される光信号は、送信側の光出力パワーのチャネル間のばらつき、及び/または伝送路損失のチャネル間のばらつきにより、光入力パワーがチャネル間でばらつく。チャネル間の偏差が小さい場合は、各チャネルの信号の振幅はほぼ同等になる。この場合、ノイズ源からの電波波形によって他チャネルの信号波形が多少劣化しても、波形劣化は許容される範囲内にとどまり、閾値判定によるデータの識別余裕への影響は少ない。
チャネル間の偏差が大きいと、チャネルによって振幅に差異が生じ、振幅の大きいチャネルで発生するノイズの影響で、他のチャネルの信号波形の劣化が増大する。固定のバイアス電圧が印加されるAPDでは、入力パワーの偏差が補償されず、入力パワーの偏差分のクロストークの影響をそのまま受ける。その結果、閾値に基づく識別余裕が減少し、データ値(たとえば「1」、「0」)の判定を誤るおそれがある。あるチャネルからのノイズはROSA内のすべてのチャネルに影響する。
図5は、チャネル間偏差と誤り率劣化の相関を示す図である。横軸は光入力パワーのチャネル間偏差、縦軸は、誤り率劣化量である。チャネル間の偏差が大きいほど、誤り率の劣化量も大きくなる。規格で決まる誤り率を維持するには、光入力パワーと関連する要因(電流振幅、電圧振幅など)についてチャネル間での偏差を小さくすることが有効であるとわかる。
上述した現象と考察を踏まえて、実施形態では多チャネルが集積されたROSAでチャネル間の偏差を低減することでクロストークの影響を低減する。
<第1実施形態>
図6は、第1実施形態の光受信器10Aの概略図である。第1実施形態では、アバランシェ型フォトダイオード(APD)の電流モニタ値に基づいてAPDへの印加電圧を制御することで、チャネル間の光電流の振幅差を一定の範囲内に保つ。
光受信器10Aは、光受信モジュール11Aと、電源回路15−0〜15−n(適宜、「電源回路15」と総称する)と、モニタ回路としての電流検出回路16−0〜16−nとを有する。光受信器10Aでは、クロックデータリカバリ(CDR)12、温度検出回路17、及び制御IC(Integrated Circuit)30も用いられているが、これらは光トランシーバの中で光送信器と共通に用いられていてもよい。
光受信モジュール11Aは「ROSA」とも呼ばれ、光分波器111と、APD112−0〜112−nと、プリアンプ113−0〜113−nを有する。APD112−0〜112−nとプリアンプ113−0〜113−nで光電気(O/E)変換器を形成する。
光分波器111は、入力される光信号をチャネルごとに分離して、分波された信号光を出力する。多チャネルの光信号の入力形態と光分波器111の構成は任意である。たとえば、1本の光ファイバに波長多重された信号光が入力される場合、光分波器111で波長ごとに分波して波長λ0〜λnの光信号を出力する。光分波器として、アレイ導波路(AWG:Arrayed Waveguide Gratin)を用いてもよいし、特定の波長の光だけを通すバンドパスフィルタとミラーの組み合わせでもよい。また、多心ファイバケーブルでファイバごとに異なる波長の光を空間的に束ねて入力される場合は、個々の光ファイバに分離する構成であってもよい。
分波された各光信号は対応するAPD112−0〜112−nに入射する。多心ファイバケーブルを用いる場合は、たとえば分離された光ファイバの出射面を対応するAPD112−0〜112−nの受光面に対向させる。波長多重の場合は、光分波器111で分波された各波長の光をマイクロレンズアレイで直接APD112−0〜APD112−nに集光してもよい。
APD112−0〜112−nのカソードは、対応する電源回路15−0〜15−nに接続されている。電源回路15−0〜15−nは、制御IC30からの制御信号に基づいて、APD112−0〜112−nのカソードに印加される正電圧のバイアス電圧Vapd0〜Vapd_nを生成する。バイアス電圧Vapd0〜Vapd_nを調整することで、APD112−0〜112−nで生成される光電流の増倍率を可変にする。電源回路15−0〜15−nの各々は、たとえば光送信器と共通に用いられる電源ICから供給される電圧を所望の電圧に変換するDC−DCコンバータと抵抗で形成されてもよい。
APD112−0〜112−nのアノードは、プリアンプ113−0〜113−nに接続され、生成された光電流がプリアンプ113−0〜113−nで電圧に変換され、後段の識別器121−1〜121−nの入力に適したレベルに増幅されて出力される。プリアンプ113−0〜113−nの出力はROSAの出力となり、電気信号がCDR12に入力される。各チャネルの電気信号は、CDR12の識別器121−0〜121−nで閾値に基づくデータ値判定され、タイミング抽出され、波形整形されてデータ判定される。
第1実施形態では、電源回路15−0〜15−nとAPD112−0〜112−nの間に、電流検出回路16−0〜16−nが配置される。電流検出回路16−0〜16−nはAPD112−0〜112−nに流れる光電流Iapd0〜Iapd_nを検出し、電流モニタ値Imon_0〜Imon_nを出力する。各チャネルの電流モニタ値Imon_0〜Imon_nは、制御IC30内のプロセッサ31に入力される。図6では、電流検出回路16−0〜16−nは光受信モジュール11Aの外に配置されているが、電流検出回路16−0〜16−nをたとえばカレントミラー回路等の公知の電流検出回路で形成して、光受信モジュール11A内に配置してもよい。
プロセッサ31は、電流モニタ値Imon_0〜Imon_nに基づいて、APD112−0〜112−nに流れる光電流の振幅差がチャネル間で最小または所定の範囲内となるように制御信号Vset0〜Vset_nを生成し、電源回路15−0〜15−nに出力する。電源回路15−0〜15−nは、プロセッサ31からの制御信号に基づいて、APD112−0〜112−nに印加するバイアス電圧Vapd0〜Vapd_nを調整する。
制御IC30内のメモリ32は、APD112−0〜112−nに流れる光電流のチャネル間での振幅差を所定の範囲内に制限するための制限値を記憶してもよい。また、APD112−0〜112−nの光電流増倍率は温度依存性があるため、メモリ32はAPD112−0〜112−nに印加される初期バイアス値を、温度と対応付けて記憶してもよい。初期バイアス値としては、たとえば温度ごとに信号対雑音(S/N)比が最も良くなる電圧値が選択される。温度検出回路17で検出される温度をプロセッサ31にてモニタし、プロセッサ31にてメモリ32を参照して温度に応じた電圧制御を行ってもよい。
図7は、プロセッサ31の機能ブロック図である。プロセッサ31は、基準値検出部311と、比算出部312と、比較部314と、電圧設定部315と、出力部316と、温度取得部317を有する。
基準値検出部311は、電流検出回路16−0〜16−nで検出された電流モニタ値Imon_0〜Imon_nを受け取り、複数の電流モニタ値の中で基準値をひとつ決定する。基準値は最小値、最大値、中間値、平均値など、任意の値を用いることができる。この例では、最小の電流モニタ値を基準値とする。
基準値検出部311は、各チャネルの電流モニタ値Imon_0〜Imon_nと、基準値(たとえば最小値)を、比算出部312に出力する。比算出部312は、各チャネルについて、最小値に対する電流モニタ値の比を計算する。計算された各チャネルの比の値は、比較部314に入力される。
比較部314は、メモリ32から制限値を読み込み、制限値と各チャネルの比を比較する。比較結果は、電圧設定部315に入力される。電圧設定部315は、比較結果に基づいて、APD112−0〜112−nに印加されるバイアス電圧を設定する。バイアス電圧を変更(再設定)する場合は、電圧設定部315は、メモリ32からバイアス電圧の調整に用いる再設定変化量を読み出して、再設定変化量単位でバイアス電圧値を変化させて新たな電圧を設定する。
温度取得部317は、温度検出回路17で検知された温度を取得して、電圧設定部315に温度情報を供給する。電圧設定部31は、光受信器10Aの電源オン時などに電源回路15−0〜15−nに初期電圧を設定する際に、メモリ32を参照して、取得された温度に応じた電源電圧の初期値をチャネルごとに設定する。
電圧設定部315で設定された電圧値は、電圧設定値を示す制御信号Vset0〜Vset_nとして、出力部316から電源回路15−0〜15−nに出力される。制御信号Vset0〜Vset_nにより、APD112−0〜112−nを流れる光電流のチャネル間での振幅差が常に制限値の範囲内にあるように、逆バイアス電圧が調整される。その結果、チャネル間での偏差が低減され、クロストークの影響が低減される。
図8は、第1実施形態の光受信器10Aで行われる電圧制御のフローチャートである。この処理は、制御IC30のプロセッサ31により行われる。まず、APD112−0〜112−nに印加される初期電圧値を、温度に対応してチャネルごとに設定する(S11)。たとえば、チャネル0については、Vset0は電源回路15−0に設定される電圧値、Vadp(T,ch0)は、温度Tのときにチャネル0でAPD112−0に印加される逆バイアス、kは再設定変化量とループ回数で決まるチャネルごとの電圧調整量である。初期設定の場合、すべてのチャネルで電圧調整量kはゼロ(k=0)である。電源回路15−0〜15−nにおける温度に応じた初期設定値は、メモリ32に記録されている。
光受信器10Aの動作中、APD112−0〜112―nに流れる光電流のモニタ値がプロセッサ31で取得され、基準値として、たとえば最小の電流モニタ値が決定される(S12)。プロセッサ31は、各チャネルについて、電流モニタ値の最小値に対する比を算出し(S13)、比の値がメモリ32に格納された制限値以下であるか否かを判断する(S14)。基準チャネルでは比の値は1となり、基準チャネル以外のチャネルで、比の値は1より大きくなる。制限値として、たとえば、「1.2」のような値が設定される。
すべてのチャネルで比の値が制限値以下の場合は(S14でYES)、チャネル間の電流振幅のばらつきは許容範囲内として次のループ開始まで待機し(S16)、ステップS12に戻る。比の値が制限値を超えるチャネルがある場合は(S14でNO)、そのチャネルの電源回路15の電圧値を、所定の変化量、たとえばメモリ32に記憶された再設定変化量のステップサイズで下げて、最小値チャネルとの間の偏差を低減する(S15)。S15の処理の結果、制限値を超える偏差を有するチャネルの電圧調整量kはゼロでなくなる(k≠0)。その後、ステップS16で次のループ開始まで待機し、次の処理タイミングで(S16でYES)、S12からの処理を繰り返す。
図8の処理は、光受信器10Aの運用中、繰り返し行われる。基準チャネルとの差が安定して制限値の範囲内にあるチャネルでは、ループが繰り返された後も電圧調整量kがゼロ(k=0)に維持される場合もある。逆に、基準チャネルからの逸脱が大きいチャネルでは偏差が許容範囲内に収束するまで、電圧調整量kが値が変化する。
この制御により、光電変換の段階で、複数のチャネル間での振幅特性の偏差が常に一定の範囲内に収まるように制御され、クロストークの影響を低減することができる。
図9は、メモリ32に格納されるデータの例を示す。アドレスごとに、種々の温度Tに対応する各チャネルのAPD印加用の初期バイアス値が記録される。温度間隔は一定でもよいし、低温側では温度間隔を小さく、高温側では温度間隔を広げてもよい。メモリ32には、基準チャネル(たとえば最小の電流モニタ値を有するチャネル)に対する各チャネルで検出された電流モニタ値の基準値からの許容偏差、たとえば基準値に対する各チャネルのモニタ値の比の制限値も記録されている。さらに、APD112に印加される逆バイアスを調整するための再設定変化量が記録されている。プロセッサ31は適宜メモリ32に格納された値を読み出して電源回路15−0〜15−nに設定される電圧値を調整し、チャネル間の偏差が所定範囲内にあるように制御する。
(第1実施形態の変形例)
第1実施形態の構成と手法は、上述した例に限定されない。複数チャネルの中の基準チャネルとして、最小電流値のチャネルに替えて、最大の光電流が流れるチャネルを選択してもよい。他チャネルに対するノイズ量の低減を優先する場合は、電流モニタ値が最小のチャネルを基準とし、他のチャネルを基準チャネルの光電流の増倍率に合わせることでS/N比を最適化する。しかし、正確なデータ検出のためには一定レベル以上の入力パワーを有することが望ましい。したがって、複数のチャネルの光電流量を最大の電流モニタ値に合わせてS/N比を最適化する制御もクロストークの影響低減のために有効である。この場合、たとえば、基準チャネルの電流モニタ値を分子として各チャネルの電流モニタ値との比を計算し、比が制限値以下となるように各チャネルのバイアス電圧を上げる制御を行ってもよい。
また、基準チャネルと他のチャネルの比を取る替わりに、差分をとってもよい。最小の電流モニタ値を有するチャネルを基準チャネルとする場合は、制限値の値は電流量で表される。電圧設定部315は、基準チャネルとの差分が制限値以下となるように、対応するチャネルの電源回路15の電圧値を下げる。
あるいは、最大の電流モニタ値を有するチャネルを基準チャネルとして、電流モニタ値の差分に基づいて電圧制御を行ってもよい。電圧設定部315は、基準チャネルとの差分が制限値以下となるように、対応するチャネルの電源回路15の電圧値を上げる。
さらに、比または差分を制限値以下とする制御に替えて、チャネル間の偏差を最小にする制御、具体的には比を1に近づける制御、または差分を0に近づける制御を行ってもよい。この場合、たとえば平均値または中央値を基準値として、ステップS14で比が1より大きいか小さいか、あるいは差が0よりも大きいか小さいかで、S15の制御の方向を変える。この制御では制限値を用いる必要がなくチャネル間の偏差低減をより精密に行うことができる。
さらに、APDに印加されるバイアス電圧の再設定変化量を、温度に対応付けてメモリ32に格納してもよい。温度ごとに異なる再設定変化量を用いる場合は、チャネル間の偏差が所定範囲内に収束する速度が速くなる。この処理については、第3実施形態でより詳細に説明する。図9のように、ひとつの再設定変化量を用いる場合は、たとえば、光受信器10Aの使用環境で最も低い温度での再設定変化量をあらかじめ決定しておく。温度が上がると結晶の格子振動が大きくなり、加速されたキャリアのエネルギーが十分に大きくならないうちに結晶と衝突して増倍率の変化が小さくなる。そこで、増倍率の変化のスロープが大きい低温側の再設定変化量を用いて制御する。
上述した変形例を2以上組み合わせてもよい。これにより、より効率的にクロストークの影響を低減することができる。
<第2実施形態>
図10は、第2実施形態の光受信器10Bの概略図である。第2実施形態では、APDに流れる光電流をモニタする替わりに、プリアンプ113−0〜113−nから出力される電圧信号の振幅をモニタし、モニタ結果に基づく電圧制御を行う。
光受信器10Bは、光受信モジュール11Bと、電源回路15−0〜15−nと、モニタ回路としての振幅検出回路115−0〜115−nを有する。光受信器10Bでは、クロックデータリカバリ(CDR)12、温度検出回路17、及び制御IC(Integrated Circuit)30も用いられているが、これらは光トランシーバの中で光送信器と共通に用いられてもよい。
第1実施形態と同様に、光受信モジュール11Bでは、多チャネルの入力光信号が光分波器111で各チャネルに分波され、APD112−0〜112−nで光検出される。APD112−0〜112−nのカソードは対応する電源回路15−0〜15−nに接続されてAPD112−0〜112−nに逆バイアスが印加される。逆バイアスの印加により、APD112−0〜112−nへの光入射により生成される光電流が増倍される。APD112−0〜112−nのアノードは、プリアンプ113−0〜113−nに接続され、生成された光電流がプリアンプ113−0〜113−nで電圧信号に変換される。プリアンプ113−0〜113−nから出力される電気信号は、CDR12の識別器121−0〜121−nで波形整形されデータ判定される。
第2実施形態では、プリアンプ113−0〜113−nの出力が分岐されて、電圧振幅が振幅検出回路115−0〜115−nでモニタされる。各チャネルの電圧振幅値は、APD112−0〜112−nに流れる光電流の振幅と相関する。振幅検出回路115−0〜115―nとしては、ピークディテクタ回路、ピークホールド回路など、任意の構成を採用できる。
振幅検出回路115−0〜115−nで検出された各チャネルの電圧信号の振幅値Vppmon_0〜Vppmon_nは、制御IC30内のプロセッサ31に入力される。プロセッサ31は、振幅モニタ値Vppmon_0〜Vppmon_nに基づいて、チャネル間の電圧振幅差が最小または所定の範囲内となるように制御信号Vset0〜Vset_nを生成する。制御信号は、電源回路15−0〜15−nに入力される。電源回路15−0〜15−nは、プロセッサ31からの制御信号に基づいて、APD112−0〜112−nに印加されるバイアス電圧Vapd0〜Vapd_nを調整する。バイアス電圧Vapd0〜Vapd_nを調整することで、APD112−0〜112−nで生成される光電流の増倍率を可変にし、チャネル間での振幅ばらつきを低減する。
制御IC30内のメモリ32は、振幅検出回路115−1〜115−nで検出された電圧振幅のチャネル間の偏差またはばらつきを所定の範囲内に制限するための制限値を記憶する。プロセッサ31は適宜メモリ32を参照して電圧制御を行う。プロセッサ31の機能ブロックは、第1実施形態と同じであり、図7を参照して説明したとおりである。
図11は、光受信器10Bで行われる電圧制御のフローチャートである。この処理は、制御IC30のプロセッサ31により行われる。第1実施形態と同じステップには同じ符号を付けて説明を簡略化する。
まず、温度検出回路17の検出値とメモリ32を参照して、APD112−0〜112−nに印加される初期電圧値を、温度に応じて設定する(S11)。初期設定では、すべてのチャネルで電圧調整量kはゼロ(k=0)である。電源回路15−0〜15−nにおける温度に応じた初期設定値は、メモリ32に記録されている。
光受信器10Aの動作中、振幅検出回路115−0〜115−nからの入力により、プリアンプ113−0〜113―nから出力される電圧信号の振幅を取得し、基準値としてたとえば最小の振幅モニタ値が決定される(S22)。プロセッサ31は、各チャネルでモニタされた振幅モニタ値と最小値との比を算出し(S23)、比の値がメモリ32に格納された制限値以下であるか否かを判断する(S14)。
すべてのチャネルで比の値が制限値以下の場合は(S14でYES)、チャネル間の偏差は許容範囲内として次のループ開始まで待機し(S16)、ステップS22に戻る。比の値が制限値を超えるチャネルが存在する場合は(S14でNO)、そのチャネルの電源回路15の電圧値を所定の変化量、たとえばメモリ32に記憶された再設定変化量のステップサイズで下げて、最小値チャネルとの偏差を低減する(S15)。その後、ステップS16で次のタイミングまで待機してS22へ戻る。S15の処理の結果、制限値を超える偏差を有するチャネルの電圧調整量kはゼロでなくなる(k≠0)。
図11の処理は、光受信器10Aの運用中、繰り返し行われる。基準チャネルからの逸脱が安定して制限値の範囲内にあるチャネルでは、ループが繰り返された後も電圧調整量kがゼロ(k=0)に維持される場合もある。逆に、基準チャネルからの逸脱が大きいチャネルでは偏差が許容範囲内に収束するまで、電圧調整量kの値が変化する。
この制御により、光電変換の段階で、複数のチャネル間での振幅特性のばらつきが常に一定の範囲内に収まるように制御され、クロストークの影響を低減することができる。
図12は、メモリ32に格納されるデータの例を示す。第1実施形態と同様に、アドレスごとに、温度Tに対応する各チャネルのAPD印加用の初期バイアス値が記録される。また、基準チャネル(たとえば最小の電圧振幅のモニタ値を有するチャネル)と各チャネルの偏差の制限値が記録されている。さらに、APD112に印加される逆バイアスを調整するための再設定変化量が記録されている。プロセッサ31は、適宜メモリ32に格納された値を読み出して電源回路15−0〜15−nに設定される電圧値を調整し、チャネル間の偏差が所定範囲内にあるように制御する。
<第3実施形態>
図13は、第3実施形態の電圧制御のフローチャートである。APD112−0〜112−nの光電流の倍増率は温度依存性があることから、クロストークの影響を低減するバイアス制御に、温度変化に応じた制御を取り込んでもよい。
図14は、APDの光電流増倍率の温度依存性を説明する図である。図14(A)は、異なる温度でのAPDバイアス電圧(Vapd)と光電流(Iapd)の関係を示す図、図14(B)は、温度(T)とバイアス電圧(VB)の関係を示す図である。図14(A)に示すように、低温側では印加バイアス電圧に対する光電流の変化の傾きが大きい。第1実施形態で説明したように、あらかじめ低温側に合わせたひとつの再設定変化量を用いることで、高温側でもループを繰り返すうちに、最適な増倍率に収束させることができる。しかし、温度変化が大きいときは、電源回路15全体のバイアス電圧を温度に応じた最適値に再設定することで、制御の速度と精度を向上することができる。そこで、図13では、温度情報を取り入れた制御を行う。
図13の処理は、制御IC30のプロセッサ31により行われ、第1実施形態の光受信器10Aにも、第2実施形態の光受信器10Bにも適用することができる。第1実施形態及び第2実施形態と同じステップには同じ符号を付けて説明を簡略化する。
まず、温度検出回路17の検出値とメモリ32を参照して、APD112−0〜112−nに印加される初期電圧値を、温度に応じて設定する(S11)。初期設定では、すべてのチャネルで電圧調整量kはゼロ(k=0)である。
光受信器10Aまたは10Bの動作中、プロセッサ31は、光電気変換における振幅特性のモニタ値を電流検出回路16、振幅検出回路115などのモニタ回路から取得し、モニタ値の中で基準値を決定する(S32)。基準値は、最小値、最大値、平均値、中間値など任意の値を用いることができる。
プロセッサ31で、各チャネルでモニタされたモニタ値の基準値からの偏差が算出される(S33)。偏差として、基準値に対する比、基準値との差分など、基準値からの逸脱の度合いを表わす任意の値を用いることができる。さらに、各チャネルの偏差が所定の範囲内にあるか否かが判断される(S34)。
偏差が所定の範囲を超えるチャネルがある場合は(S34でNO)、偏差の方向に応じてそのチャネルの電源回路15の電圧値を、再設定変化量のステップサイズで減少または増加して、基準チャネルとの偏差を低減する(S35)。その後、ステップS32に戻って次の処理タイミングでS32以降の処理を繰り返す。
すべてのチャネルで偏差が所定の範囲内にある場合(S34でYES)、プロセッサ31は温度検出回路17から温度モニタ値を取得して(S36)、初期温度からの温度変化量(絶対値)が所定値を超えるか否かを判断する(S37)。温度変化が所定の範囲以内であれば(S37でNO)、ステップS32に戻って、次の処理タイミングでS32以降の処理を繰り返す。
初期温度からの温度変化量が所定値を超える場合は(S37でYES)、全チャネルについて温度に対応するAPD印加用のバイアス電圧値をメモリ32から読み出して、電源回路15の電圧値を再設定する(S38)。その後、ステップS32に戻って次の処理タイミングでS32以降の処理を繰り返す。
図13の処理は、光受信器10Aまたは10Bの運用中、繰り返し行われる。この処理により、温度変化が生じた場合でも、チャネル間の偏差を迅速に所定の範囲内に収束させることができる。温度変化の大きい環境でも、APD112−0〜112−nに印加される逆バイアスがチャネル間の偏差を小さくする方向に効率的に調整されるので、クロストークの影響を低減することができる。
図15は、第3実施形態の変形例のフローチャートである。変形例では、温度に対応してバイアス電圧の再設定変化量を異ならせる。図14(A)に示したように、APDの光電流増倍率は、温度依存性がある。低温側では、印加電圧Vapdに対する光電流Iapdの傾斜の傾きが大きいが、温度が高くなると傾斜の傾きは小さくなる。図14(B)に示すように、所定の増倍率を達成するには、温度が高いほどAPDに印加されるバイアス電圧が高くなる。これは、温度上昇値ΔTが0以上(ΔT≧0)、すなわち電圧変化量ΔVが0以上(ΔV≧0)のときは、Vapd対Iapd特性の傾斜が小さくなるので、現在のバイアス電圧の調整量kは不足する。しかし、各チャネルでの振幅特性の基準値からの逸脱に応じた電圧調整ループ(S32〜S35)により、チャネル間の偏差を所定の範囲内に収束させることができる。
これに対し、温度上昇値ΔTが0より小さい(ΔT<0)、すなわち電圧変化量ΔVが0より小さい(ΔV<0)のときは、Vapd対Iapd特性の傾斜が大きくなり、現在のバイアス電圧の調整量kは過剰になる。この場合は、再設定変化量を小さくする方向に制御することが望ましい。そこで、図15では、温度変化に応じて、再設定変化量を変える制御を行う。
図15で図13と同じステップには同じ符号を付けて説明を簡略化する。まず、光受信器10Aまたは10Bの動作開始時に、APD112−0〜112−nに印加される初期電圧値を温度に応じて設定する(S11)。光受信器10Aまたは10Bの動作中、プロセッサ31は、光電気変換における振幅特性のモニタ値を電流検出回路16、振幅検出回路115などのモニタ回路から取得し、モニタ値の中で基準値を決定する(S32)。各チャネルでモニタされたモニタ値の基準値からの偏差を算出し(S33)、各チャネルの偏差が所定の範囲内にあるか否かを判断する(S34)。偏差が所定の範囲を超えるチャネルがある場合は(S34でNO)、偏差の方向に応じてそのチャネルの電源回路15の電圧値を、再設定変化量のステップサイズで減少または増加して、基準チャネルとの偏差を低減する(S35)。その後、ステップS32に戻って、次の処理タイミングでS32以降を繰り返す。
すべてのチャネルで偏差が所定の範囲内にある場合は(S34でYES)、プロセッサ31は温度検出回路17から現在の温度モニタ値を取得して(S36)、全チャネルについて温度に対応するバイアス電圧値を再設定する(S38)。再設定されたAPD印加用の電圧値の変化量が0以上であるか否かを判断する(S41)。電圧値の変化量が0以上の場合は(S41でYES)、ステップS32に戻って、次の処理タイミングをS32以降を繰り返す。
再設定されたバイアス電圧の変化量が0より小さい場合は(S41でNO)、低温側に変化していることを意味し、再設定変化量を小さくする(S42)。その後、ステップS32に戻って、次の処理タイミングでS32以降を繰り返す。
図15の処理により、温度に応じてバイアス電圧の再設定変化量を調整し、チャネル間で光電流の倍増率を合わせることができる。その結果、マルチチャネル受信でクロストークの影響を低減し、誤り率の増大を防止することができる。
<APDの光電流増倍率の最適化について>
図16及び17を参照して、APD112の光電流増倍率の最適値について説明する。図16は、光電流増倍率Mと信号対雑音(S/N)比の関係を示す図、図17は、光電流増倍率Mと帯域の関係を示す図である。
第1〜第3実施形態を通して、チャネル間での振幅特性を揃えるだけでなく、各APD112の光電流増倍率が最適化されていることが望ましい。光電流増倍率Mを大きくすることで、信号振幅も大きくなるが、図16に示すように、ショット雑音も増加する。S/N比は、希望信号の雑音に対する比であり、雑音はショット雑音と熱雑音を含む。熱雑音は抵抗体内の自由電子の不規則な熱振動(ブラウン運動)によって生じる雑音であり、光電流増倍率Mに依存せず一定である。これに対し、ショット雑音は光電流増倍率Mに比例して大きくなる。したがって、熱雑音及びショット雑音とのバランスを考慮して光電流増倍率Mを設定するのが望ましい。
図16において、熱雑音とショット雑音を合わせた全雑音(実線)に対する信号電流の差が最大になる点がSN比が最も高くなる点(SN_max)であり、このときの光電流増倍率Mが最適なMである。
また、図17に示すように、光電流増倍率Mによって、受信帯域も変動する。したがって光電流増倍率Mの設定には、帯域劣化による波形干渉や雑音透過帯域も合わせて考慮するのが望ましい。
図9及び図12でメモリ32に記憶されている温度に応じた電圧設定値は、光電流増倍率Mが最適となるように(最良のS/N比が得られるように)、かつ受信帯域が安定するように、あらかじめ決定されている。第1〜第3実施形態では、大電流のチャネルで光電流増倍率を下げる場合も、小電流のチャネルで光電流増倍率を上げる場合も、光電流増倍率が最適値からずれることによるS/N比の劣化を抑制する制御となっている。すなわち、全チャネルの光電流が必ずしも一致していなくても、クロストークの影響による振幅特性の劣化が許容される範囲内でバイアス電圧、すなわち光電流増倍率Mを調整して、光受信器10Aまたは10B全体として、最良の受信特性を維持している。
<光トランシーバへの適用>
図18は、実施形態の光受信器10Aまたは10Bが適用される光トランシーバ1の概略図である。光トランシーバ1は、光受信器10と、光送信器20を有する。光受信器10は、第1実施形態の光受信器10Aでもよいし、第2実施形態の光受信器10Bであってもよい。光受信器10に入力された光信号は、電気信号として出力される。光送信器20に入力された電気信号は、光信号として出力される。なお、図18では電気信号の入出力インタフェースは発明と直接関連しないので省略してある。
光受信器10は、光受信モジュール(ROSA)11と、電源回路15と、受信側CDR12と、モニタ制御IC30を有する。光受信モジュール11は、光分波器(DEMUX)と、光電気(O/E)変換器110と、モニタ回路160を有する。信器20は、光送信モジュール(TOSA:transmitter optical subassembly)21と、ドライバチップ22と、 送信側CDR23を有する。制御IC30は光送信器20と共通に用いられてもよい。受信側CDR12と送信側CDR23は一つのチップで形成されてもよい。
光受信器10に入力される光信号は、光受信モジュール11の光分波器(DEMUX)でチャネルごとに分波され、O/E変換器110で電気信号に変換された後、CDR12で波形整形およびデータ判定を受ける。CDR12で再生されたデータが電気信号として出力される。
O/E変換器110は、チャネルごとに光検出器(受光素子)であるAPD112を有する。APDに印加される逆バイアスは、電源回路15から供給される。図示の便宜上、電源回路15からO/E変換器110に入力される電圧ラインが1本の線で記載されているが、図6及び図10で説明したとおり、各APDに個別のバイアス電圧が印加される。APDから出力される光電流は、プリアンプ113(図6及び図10参照)でCDR12に適したレベルの電圧信号に増幅され、CDR12に出力される。
O/E変換器110でのチャネルごとの振幅特性(光入力特性)は、モニタ回路160でモニタされる。O/E変換器110の振幅特性は、APDに流れる光電流であってもよいし、プリアンプ113で生成される電圧信号であってもよい。図14の場合、電源回路115からAPDのカソードに正電圧が印加される。モニタ結果は、制御IC30に供給される。制御IC30は、各チャネルのモニタ結果に基づいて、チャネル間での光入力特性の偏差が最小または所定範囲内になるように、APDに印加されるバイアス電圧を制御する。制御ICから出力される制御信号は電源回路15に供給されて、各APDに印加されるバイアス電圧が調整される。これにより、光受信モジュール11で多チャネルのAPD及びプリアンプ113が集積されている場合でも、CDR12への入力前にクロストークの影響を低減することができる。
光送信器20では、データを表わす電気信号がCDR23で波形整形され、ドライバチップ22で高速の駆動信号に変換されて光送信モジュール21に入力される。光送信モジュール21の構成は本発明に直接関係しないので具体的な構成は省略するが、たとえば、光変調器と光源であるレーザダイオードが集積され、チャネルごとに入力駆動信号で変調された光信号が出力される。各チャネルの光信号は光合波器(MUX)で多重されて出力される。
実施形態の光受信器10Aまたは10Bを用いた光トランシーバは、小型で、かつ受信信号間のクロストークの影響が抑制されている。
第1実施形態で説明した変形例は、第2実施形態にも同様に当てはまる。また、第1実施形態及び第2実施形態で、第3実施形態のように、温度変化が大きいときに全チャネルでバイアス電圧を再設定してチャネル間偏差を迅速に所定範囲内に収束させてもよい。また、第1実施形態及び第2実施形態で、第3実施形態の変形例のように、温度変化の方向に応じてAPDに印加されるバイアス電圧の再設定変化量を調整して、全チャネルの光電流増倍率の制御を最適化してもよい。
以上の説明に対し、以下の付記を提示する。
(付記1)
複数のチャネルで入力される光信号をチャネルごとに分波する分波器と、
前記複数のチャネルに応じた数の受光素子を有し、チャネルごとに光信号を電気信号に変換する光電変換器と、
前記光電変換器により電気信号に変換された前記光信号の振幅特性をチャネルごとにモニタするモニタ回路と、
前記モニタ回路のモニタ結果に基づいて、前記振幅特性のチャネル間のばらつきを最小または所定範囲内にするように前記受光素子に印加されるバイアス電圧を制御する制御回路と、
を有することを特徴とする光受信器。
(付記2)
前記制御回路は、前記モニタ結果に基づいて前記複数のチャネルの中から基準チャネルを決定し、前記基準チャネルに対する各チャネルの偏差を最小または所定範囲内にするように前記バイアス電圧を制御することを特徴とする付記1に記載の光受信器。
(付記3)
前記制御回路は、前記基準チャネルのモニタ結果に対する各チャネルのモニタ結果の比を計算し、前記比の値が所定範囲内にあるように前記バイアス電圧を制御することを特徴とする付記2に記載の光受信器。
(付記4)
前記振幅特性は、前記受光素子に流れる光電流の振幅であり、
前記モニタ回路は、前記受光素子に流れる光電流を検出して前記光電流の振幅情報を前記制御回路に供給することを特徴とする付記1〜3のいずれかに記載の光受信器。
(付記5)
前記光電変換器は、前記受光素子の出力に接続される増幅器を有し、
前記振幅特性は、前記増幅器で生成される電圧信号の振幅であり、
前記モニタ回路は、前記電圧信号を検出して前記電圧信号の振幅情報を前記制御回路に供給することを特徴とする付記1〜3のいずれかに記載の光受信器。
(付記6)
前記受光素子に逆方向のバイアス電圧を印加する電圧回路、
をさらに有し、
前記制御回路は、前記モニタ結果に基づいて前記電圧回路で生成されるバイアス電圧を制御することを特徴とする付記1〜5のいずれかに記載の光受信器。
(付記7)
前記バイアス電圧を調整する電圧変化量を記録するメモリ、
をさらに有し、
前記制御回路は前記電圧変化量を用いて前記バイアス電圧を制御することを特徴とする付記1〜6のいずれかに記載の受信器。
(付記8)
温度検出回路、
をさらに有し、
前記制御回路は、前記メモリを参照し、温度に応じた前記電圧変化量を選択して前記バイアス電圧を制御することを特徴とする付記7に記載の光受信器。
(付記9)
温度検出回路、
をさらに有し、
前記制御回路は、検出された温度が初期温度から所定の範囲を超えて変化した場合に、前記バイアス電圧を再設定することを特徴とする付記1〜7のいずれかに記載の光受信器。
(付記10)
温度検出回路、
をさらに有し、
前記制御回路は、温度が低い側に変化したときに、前記バイアス電圧を調整する電圧変化量を小さくすることを特徴とする付記1〜7のいずれかに記載の光受信器。
(付記11)
前記光信号は波長多重または空間多重された信号であることを特徴とする付記1〜11のいずれかに記載の光受信器。
(付記12)
付記1〜11のいずれかに記載の光受信器と、
光送信器と、
を有する光トランシーバ。
(付記13)
複数のチャネルで入力される光信号を受光素子でチャネルごとに受光し、
光電変換により電気信号に変換された前記光信号の振幅特性をチャネルごとにモニタし、
モニタ結果に基づいて、前記振幅特性のチャネル間のばらつきを最小または所定範囲内にするように前記受光素子に印加されるバイアス電圧を制御する、
ことを特徴とする光信号の受信制御方法。
1 光トランシーバ
10、10A、10B 光受信器
11、11A,11B 光受信モジュール
12 クロックデータリカバリ(CDR)回路
15、15−0〜15−n 電源回路
16−0〜16−n 電流検出回路
17 温度検出回路
20 光送信器
30 制御IC
31 プロセッサ
32 メモリ
110 O/E変換器
112−0〜112−n APD(受光素子)
113−0〜113−n プリアンプ(増幅器)
160 モニタ回路

Claims (6)

  1. 複数のチャネルで入力される光信号をチャネルごとに分波する分波器と、
    前記複数のチャネルに応じた数の受光素子を有し、チャネルごとに光信号を電気信号に変換する光電変換器と、
    前記光電変換器により電気信号に変換された前記光信号の振幅特性をチャネルごとにモニタするモニタ回路と、
    前記モニタ回路のモニタ結果に基づいて、前記振幅特性のチャネル間のばらつきを最小または所定範囲内にするように前記受光素子に印加されるバイアス電圧を制御する制御回路と、
    を有することを特徴とする光受信器。
  2. 前記振幅特性は、前記受光素子に流れる光電流の振幅であり、
    前記モニタ回路は、前記受光素子に流れる光電流を検出して前記光電流の振幅情報を前記制御回路に供給することを特徴とする請求項1に記載の光受信器。
  3. 前記光電変換器は、前記受光素子の出力に接続される増幅器を有し、
    前記振幅特性は、前記増幅器で生成される電圧信号の振幅であり、
    前記モニタ回路は、前記電圧信号を検出して前記電圧信号の振幅情報を前記制御回路に供給することを特徴とする請求項1に記載の光受信器。
  4. 温度検出回路、
    をさらに有し、
    前記制御回路は、温度が低い側に変化したときに、前記バイアス電圧を調整する現在のステップサイズを小さくすることを特徴とする請求項1〜3のいずれか1項に記載の光受信器。
  5. 請求項1〜4のいずれか1項に記載の光受信器と、
    光送信器と、
    を有する光トランシーバ。
  6. 複数のチャネルで入力される光信号を受光素子でチャネルごとに受光し、
    光電変換により電気信号に変換された前記光信号の振幅特性をチャネルごとにモニタし、
    モニタ結果に基づいて、前記振幅特性のチャネル間のばらつきを最小または所定範囲内にするように前記受光素子に印加されるバイアス電圧を制御する、
    ことを特徴とする光信号の受信制御方法。
JP2016131939A 2016-07-01 2016-07-01 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法 Active JP6825248B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016131939A JP6825248B2 (ja) 2016-07-01 2016-07-01 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法
US15/636,058 US10256938B2 (en) 2016-07-01 2017-06-28 Optical receiver, optical transceiver, and optical signal reception control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131939A JP6825248B2 (ja) 2016-07-01 2016-07-01 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法

Publications (2)

Publication Number Publication Date
JP2018007043A JP2018007043A (ja) 2018-01-11
JP6825248B2 true JP6825248B2 (ja) 2021-02-03

Family

ID=60807915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131939A Active JP6825248B2 (ja) 2016-07-01 2016-07-01 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法

Country Status (2)

Country Link
US (1) US10256938B2 (ja)
JP (1) JP6825248B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6825248B2 (ja) * 2016-07-01 2021-02-03 富士通オプティカルコンポーネンツ株式会社 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法
CN109085562B (zh) * 2018-07-25 2020-11-13 北京小米移动软件有限公司 激光传感器及底噪补偿方法和电子设备
CN113746550A (zh) * 2020-05-27 2021-12-03 莫列斯有限公司 光接收装置
US11609116B2 (en) 2020-08-27 2023-03-21 Banner Engineering Corp Open-loop photodiode gain regulation

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2318471A (en) * 1996-10-18 1998-04-22 Stc Submarine Systems Ltd Semiconductor laser amplifiers for transient suppression in optical wavelength division multiplex networks
KR100319744B1 (ko) * 1998-11-09 2002-02-19 오길록 파장선택형광검출기를이용한파장분할다중화된광신호의채널정보검출장치및그방법
JP2000200922A (ja) * 1999-01-07 2000-07-18 Nec Corp 光信号検出装置および光信号検出方法
KR20050096701A (ko) * 2004-03-31 2005-10-06 (주)오피트정보통신 디지털 영상 전송장치
JP2006041628A (ja) 2004-07-22 2006-02-09 Sumitomo Electric Ind Ltd 光受信回路
JP2008048334A (ja) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd 光受信器
US7939790B1 (en) * 2007-03-02 2011-05-10 Wavesplitter Technologies, Inc. Method and apparatus for controlling the gain of an avalanche photodiode with fluctuations in temperature
US20100019079A1 (en) * 2007-06-20 2010-01-28 General Electric Company Thrust generator for a rotary wing aircraft
JP2009260300A (ja) * 2008-03-24 2009-11-05 Fujitsu Ltd Apdを用いた光受信装置およびapdバイアス制御方法
JP2010130270A (ja) * 2008-11-27 2010-06-10 Fujitsu Ltd 光波長多重伝送装置および光波長多重伝送方法
JP5267119B2 (ja) * 2008-12-26 2013-08-21 富士通株式会社 光受信装置および波長多重伝送システム
EP2290860B1 (en) * 2009-08-06 2021-03-31 ADVA Optical Networking SE A pluggable conversion module for a data transport card of a wavelength division multiplexing system
JP5633266B2 (ja) * 2010-09-15 2014-12-03 富士通株式会社 Wdm光伝送システムおよびその制御方法
JP5617550B2 (ja) * 2010-11-12 2014-11-05 富士通株式会社 光伝送装置、光伝送システム及び光伝送方法
US8718492B2 (en) * 2010-12-17 2014-05-06 International Business Machines Corporation Adaptive power efficient receiver architecture
US8879927B2 (en) * 2011-03-02 2014-11-04 International Business Machines Corporation Optical receiver based on a decision feedback equalizer
JP5673843B2 (ja) * 2011-09-22 2015-02-18 日本電気株式会社 光パワーモニタ装置、方法及びプログラム
US8798484B2 (en) * 2012-02-16 2014-08-05 International Business Machines Corporation Optical receiver using infinite impulse response decision feedback equalization
WO2014125647A1 (ja) * 2013-02-18 2014-08-21 富士通オプティカルコンポーネンツ株式会社 光受信装置
JP2014165728A (ja) * 2013-02-26 2014-09-08 Sumitomo Electric Ind Ltd 光受信器
JP2014230043A (ja) * 2013-05-21 2014-12-08 富士通オプティカルコンポーネンツ株式会社 光受信器および識別レベル制御方法
KR101885372B1 (ko) * 2014-04-30 2018-08-03 한국전자통신연구원 시간 및 파장분할 다중화 방식의 수동형 광가입자망을 위한 광망종단장치의 광송신기 파워 제어방법 및 시스템
JP6825248B2 (ja) * 2016-07-01 2021-02-03 富士通オプティカルコンポーネンツ株式会社 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法

Also Published As

Publication number Publication date
US20180006756A1 (en) 2018-01-04
JP2018007043A (ja) 2018-01-11
US10256938B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
JP6825248B2 (ja) 光受信器、これを用いた光トランシーバ、及び光信号の受信制御方法
US20150349911A1 (en) Optical receiver
US20110135309A1 (en) Wavelength division multiplexing-passive optical network (wdm-pon)
US8571414B2 (en) Optical transmission device, transmission and reception module, optical transmission system, and wavelength dispersion compensation method in optical transmission device
US20090317079A1 (en) Dispersion determining apparatus and automatic dispersion compensating system using the same
JP5175459B2 (ja) 光受信機、光受信装置及び光信号受信方法
WO2011082006A2 (en) High dynamic range apd optical receiver for analog applications
US20050244160A1 (en) Optical transceiver for compensating for loss due to transmission distance in passive optical network
US10530495B2 (en) Optical receiver, optical transceiver using the same, and control method of reception of optical signals
JP2013219599A (ja) マルチレート光信号受信装置および方法
US20110229153A1 (en) Optical receiver
US9420357B2 (en) Method and apparatus for selecting wavelength by wavelength tunable optical receiver
US20070003281A1 (en) Active control loop for power control of optical channel groups
CN110149148B (zh) 通信系统和光收发器设备
EP4351041A1 (en) Optical signal receiving apparatus, system and method, optical line terminal, and computer-readable storage medium
JP4809811B2 (ja) バースト光受信方法および装置
US8270837B2 (en) Optical power equalizer for passive optical network
US11018762B2 (en) Transmission device, transmission system, and transmission method
JP6519117B2 (ja) 光伝送装置、光伝送システム、及び、光伝送システムの制御装置
US20230388040A1 (en) Transmission apparatus and transmission system
JP6793518B2 (ja) 光受信パワーモニタ回路、光送受信器、及び光受信パワーモニタ回路の制御方法
WO2023169296A1 (zh) 光功率控制方法和装置
JP2023047861A (ja) 光受信機、及び光トランシーバモジュール
JP6932255B2 (ja) 光送受信装置、光通信装置、制御方法、及び制御プログラム
JP2018056735A (ja) 局側終端装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6825248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150