JP6822007B2 - 冷媒回路装置 - Google Patents

冷媒回路装置 Download PDF

Info

Publication number
JP6822007B2
JP6822007B2 JP2016160342A JP2016160342A JP6822007B2 JP 6822007 B2 JP6822007 B2 JP 6822007B2 JP 2016160342 A JP2016160342 A JP 2016160342A JP 2016160342 A JP2016160342 A JP 2016160342A JP 6822007 B2 JP6822007 B2 JP 6822007B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
low
flow rate
pressure refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016160342A
Other languages
English (en)
Other versions
JP2018028405A (ja
Inventor
中村 淳
淳 中村
賢哲 安嶋
賢哲 安嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016160342A priority Critical patent/JP6822007B2/ja
Publication of JP2018028405A publication Critical patent/JP2018028405A/ja
Application granted granted Critical
Publication of JP6822007B2 publication Critical patent/JP6822007B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷媒回路装置に関し、より詳細には、2段圧縮2段膨張サイクルの冷媒回路を備える冷媒回路装置に関するものである。
従来、2段圧縮2段膨張サイクルの冷媒回路を備える冷媒回路装置が、特許文献1に提案されている。この特許文献1の冷媒回路装置は、圧縮機と、凝縮器と、高段膨張弁と、気液分離器と、低段膨張弁と、蒸発器とを冷媒管路にて接続して構成された冷媒回路を有している。
圧縮機は、冷媒を低圧から中間圧に圧縮する低段圧縮部と、冷媒を中間圧から高圧に圧縮する高段圧縮部とを有しており、これら低段圧縮部と高段圧縮部とが直列に配列されている。かかる圧縮機は、低段圧縮部と高段圧縮部とが、互いの回転数比が一定となる態様で共通の駆動源で駆動するものである。
凝縮器は、圧縮機によって圧縮された高圧冷媒を凝縮するものである。高段膨張弁は、凝縮器によって凝縮された冷媒を減圧膨張して中間圧にするものである。気液分離器は、高段膨張弁から導入された中間圧冷媒を気液分離し、分離させた気相の冷媒を高段圧縮部に吸入させるものである。低段膨張弁は、気液分離器によって分離させられた液相の冷媒を減圧膨張して低圧にするものである。蒸発器は、低段膨張弁から導入した低圧冷媒を、外部熱源から回収した排熱で蒸発させ、低段圧縮部に吸入させるものである。
特開2009−186033号公報
ところで、上述した冷媒回路装置において、上記圧縮機は、低段圧縮部と高段圧縮部とが互いの回転数比が一定となる態様で共通の駆動源で駆動するものであるので、低段圧縮部と高段圧縮部との流量を独立に制御することができないという特性がある。
一方、外部熱源から回収した排熱の温度条件、すなわち蒸発器での冷媒の蒸発温度の条件により、高段圧縮部での冷媒の流量に対する低段圧縮部での冷媒の流量の比である冷媒流量比の最適値が異なることが知られている。
そのため、上述した冷媒回路装置においては、上記圧縮機が所定の蒸発温度(以下、基準蒸発温度ともいう)での運転条件(定格運転条件)に合わせて設計された場合に次のような問題があった。
すなわち、外部熱源の温度が上昇若しくは低下した場合に、冷媒流量比を調整することができずにCOP(Coefficient Of Performance:成績係数)の低下を招来した。
本発明は、上記実情に鑑みて、圧縮機における低段圧縮部と高段圧縮部との冷媒の流量を独立に制御できない場合でも、種々の運転条件に応じて冷媒流量比を変更して運転効率の向上を図ることができる冷媒回路装置を提供することを目的とする。
上記目的を達成するために、本発明に係る冷媒回路装置は、冷媒を低圧から中間圧に圧縮する低段圧縮部と、冷媒を中間圧から高圧に圧縮する高段圧縮部とが互いの回転数比が一定となる態様で共通の駆動源で駆動する圧縮機と、前記圧縮機によって圧縮された高圧冷媒を凝縮する凝縮器と、前記凝縮器によって凝縮された冷媒を減圧膨張して中間圧にする高段膨張弁と、前記高段膨張弁から導入した中間圧冷媒を気液分離する気液分離器と、前記気液分離器の気相側出口から導入した中間圧冷媒を前記高段圧縮部に吸入させる中間配管と、前記気液分離器の液相側出口から導入した中間圧冷媒を減圧膨張して低圧にする低段膨張弁と、前記低段膨張弁から導入した低圧冷媒を蒸発させ、前記低段圧縮部に吸入させる蒸発器と、を冷媒管路にて接続して構成された冷媒回路を備える冷媒回路装置において、前記中間配管を流通する中間圧冷媒及び前記蒸発器を流通した低圧冷媒の少なくとも一方の加熱量を調整する加熱量調整機構と、前記加熱量調整機構により加熱された冷媒の密度と、運転条件に基づいて予め設定された目標値との比較結果に応じて前記加熱量調整機構による加熱量を制御する制御部と、を備えたことを特徴とする。
また本発明は、上記冷媒回路装置において、前記加熱量調整機構は、前記凝縮器を流通した高圧冷媒と、前記中間配管を流通する中間圧冷媒とを熱交換させる高圧/中間圧内部熱交換器と、前記凝縮器から導入した高圧冷媒が前記高圧/中間圧内部熱交換器を迂回可能とするバイパス配管と、前記高圧/中間圧内部熱交換器へ導入される高圧冷媒の流量と、前記バイパス配管へ導入される高圧冷媒の流量とを制御する流量制御弁と、を備え、前記制御部は、前記高段圧縮部に吸入される中間圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする。
また本発明は、上記冷媒回路装置において、前記加熱量調整機構は、前記凝縮器を流通した高圧冷媒と、前記中間配管を流通する中間圧冷媒とを熱交換させる高圧/中間圧内部熱交換器と、前記中間配管を流通する中間圧冷媒が前記高圧/中間圧内部熱交換器を迂回可能とするバイパス配管と、前記高圧/中間圧内部熱交換器へ導入される中間圧冷媒の流量と、前記バイパス配管へ導入される中間圧冷媒の流量とを制御する流量制御弁と、を備え、前記制御部は、前記高段圧縮部に吸入される中間圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする。
また本発明は、上記冷媒回路装置において、前記加熱量調整機構は、前記気液分離器の液相側出口から導入された中間圧冷媒と、前記蒸発器を流通した低圧冷媒とを熱交換させる中間圧/低圧内部熱交換器と、前記気液分離器の液相側出口から導入した中間圧冷媒が前記中間圧/低圧内部熱交換器を迂回可能とするバイパス配管と、前記中間圧/低圧内部熱交換器へ導入される中間圧冷媒の流量と、前記バイパス配管へ導入される中間圧冷媒の流量とを制御する流量制御弁と、を備え、前記制御部は、前記低段圧縮部に吸入される低圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする。
また本発明は、上記冷媒回路装置において、前記加熱量調整機構は、前記気液分離器の液相側出口から導入された中間圧冷媒と、前記蒸発器を流通した低圧冷媒とを熱交換させる中間圧/低圧内部熱交換器と、前記蒸発器を流通した低圧冷媒が前記中間圧/低圧内部熱交換器を迂回可能とするバイパス配管と、前記中間圧/低圧内部熱交換器へ導入される低圧冷媒の流量と、前記バイパス配管へ導入される低圧冷媒の流量とを制御する流量制御弁と、を備え、前記制御部は、前記低段圧縮部に吸入される低圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする。
また本発明は、上記冷媒回路装置において、前記蒸発器は、外部熱源から回収した排熱で前記低圧冷媒を蒸発させることを特徴とする。
本発明によれば、加熱量調整機構が、中間配管を流通する中間圧冷媒及び前記蒸発器を流通した低圧冷媒の少なくとも一方の加熱量を調整し、制御部が、加熱量調整機構により加熱された冷媒の密度と、運転条件に基づいて予め設定された目標値との比較結果に応じて加熱量調整機構による加熱量を制御するので、高段圧縮部の冷媒の密度に対する低段圧縮部の冷媒の密度の比である密度比を変化させることができる。これにより、高段圧縮部での冷媒の流量に対する低段圧縮部での冷媒の流量の比である冷媒流量比を増減させて、当該運転に最適な値にすることができる。従って、圧縮機における低段圧縮部と高段圧縮部との冷媒の流量を独立に制御できない場合でも、種々の運転条件に応じて冷媒流量比を変更して運転効率の向上を図ることができるという効果を奏する。
図1は、本発明の実施の形態1である冷媒回路装置の構成を模式的に示す模式図である。 図2は、図1に示した冷媒回路装置での冷媒の循環における比エンタルピと圧力との変化を示すP−h線図である。 図3は、図1に示した制御部が実施する流量制御処理の処理内容を示すフローチャートである。 図4は、本発明の実施の形態1である冷媒回路装置の変形例を模式的に示す模式図である。 図5は、本発明の実施の形態2である冷媒回路装置の構成を模式的に示す模式図である。 図6は、図5に示した冷媒回路装置での冷媒の循環における比エンタルピと圧力との変化を示すP−h線図である。 図7は、図5に示した制御部が実施する流量制御処理の処理内容を示すフローチャートである。 図8は、本発明の実施の形態2である冷媒回路装置の変形例を模式的に示す模式図である。
以下に添付図面を参照して、本発明に係る冷媒回路装置の好適な実施の形態について詳細に説明する。
<実施の形態1>
図1は、本発明の実施の形態1である冷媒回路装置の構成を模式的に示す模式図である。ここで例示する冷媒回路装置は、冷媒回路10及び制御部50を備えて構成されている。
冷媒回路10は、圧縮機21、凝縮器22、高段膨張弁23、気液分離器24、低段膨張弁25及び蒸発器26が冷媒管路にて接続され、かつ内部に冷媒が封入されて構成されている。
圧縮機21は、低段圧縮部21aと高段圧縮部21bとが直列に配列され、互いの回転数比が一定となる態様で共通の駆動源により駆動されるものである。低段圧縮部21aは、第1吸入口211から吸入した低圧冷媒を圧縮して中間圧冷媒を高段圧縮部21bに吐出するものである。高段圧縮部21bは、第2吸入口212から吸入した中間圧冷媒、すなわち低段圧縮部21aで圧縮された中間圧冷媒と、詳細は後述するが気液分離器24から導入した中間圧冷媒とを圧縮して高圧冷媒を吐出口213より吐出するものである。この吐出口213に接続された冷媒配管2aは、凝縮器22の入口221に接続されており、圧縮機21と凝縮器22とを接続する冷媒管路を構成している。
凝縮器22は、圧縮機21から吐出された高圧冷媒と、周囲を通過する被加熱水とを熱交換させることにより、高圧冷媒を凝縮させるものである。
この凝縮器22の出口222に接続された冷媒配管2bは、流量制御弁31の入口311に接続されている。流量制御弁31は、上記入口311の他に第1出口312及び第2出口313を備えており、制御部50から与えられる指令に応じて入口311から第1出口312への冷媒の流量と、入口311から第2出口313への冷媒の流量とを制御する弁である。
上記第1出口312に接続された冷媒配管2cは、内部熱交換器(高圧/中間圧内部熱交換器)41の高圧冷媒流路41aの入口411に接続されている。高圧冷媒流路41aは、凝縮器22で凝縮された高圧冷媒が通過する流路である。この高圧冷媒流路41aの出口412に接続された冷媒配管2dは、高段膨張弁23の入口231に接続されている。
上記流量制御弁31における第2出口313にはバイパス配管2eが接続されている。このバイパス配管2eは、一端が第2出口313に接続され、他端が高圧冷媒流路41aの出口412と高段膨張弁23の入口231とを接続する冷媒配管2dの途中に合流している。
このように凝縮器22と高段膨張弁23とを接続する冷媒管路は、複数の冷媒配管2b,2c,2d、流量制御弁31、高圧冷媒流路41a及びバイパス配管2eにより構成されている。
かかるバイパス配管2eは、凝縮器22から導入した高圧冷媒が内部熱交換器41を迂回可能とするものである。
高段膨張弁23は、凝縮器22によって凝縮された高圧冷媒を減圧膨張して気液二相の中間圧冷媒にするものである。この高段膨張弁23の出口232に接続された冷媒配管2fは、気液分離器24の入口241に接続されており、高段膨張弁23と気液分離器24とを接続する冷媒管路を構成している。
気液分離器24は、高段膨張弁23から導入された中間圧冷媒を気液分離し、分離させた気相の冷媒(中間圧冷媒)を気相側出口242から送出する一方、分離させた液相の冷媒(中間圧冷媒)を液相側出口243から送出するものである。
気液分離器24の気相側出口242に接続された冷媒配管2gは、上記内部熱交換器41の中間圧冷媒流路41bの入口413に接続されている。中間圧冷媒流路41bは、気液分離器24によって分離させられた中間圧冷媒(主に気相の冷媒)が通過する流路であり、上記高圧冷媒流路41aと熱交換可能に構成されている。この中間圧冷媒流路41bの出口414に接続された冷媒配管2hは、圧縮機21の第2吸入口212に接続されている。
これら冷媒配管2g、中間圧冷媒流路41b及び冷媒配管2hは、気液分離器24の気相側出口242から導入された中間圧冷媒を、低段圧縮部21aで圧縮された中間圧冷媒とともに高段圧縮部21bに吸入させる中間配管を構成している。
また、冷媒配管2hには、温度センサT1及び圧力センサS1が設けられている。温度センサT1は、該冷媒配管2hを通過する冷媒、すなわち、高段圧縮部21bに吸入される中間圧冷媒の温度を検出する温度検出手段である。かかる温度センサT1は、検出した吸入冷媒温度を温度信号として制御部50に与えるものである。
圧力センサS1は、該冷媒配管2hを通過する冷媒、すなわち、高段圧縮部21bに吸入される中間圧冷媒の圧力を検出する圧力検出手段である。かかる圧力センサS1は、検出した吸入冷媒圧力を圧力信号として制御部50に与えるものである。
そして、内部熱交換器41は、凝縮器22を流通した高圧冷媒と、中間配管を流通する中間圧冷媒とを熱交換させるものである。
上記気液分離器24の液相側出口243に接続された冷媒配管2iは、低段膨張弁25の入口251に接続されており、気液分離器24と低段膨張弁25とを接続する冷媒管路を構成している。
低段膨張弁25は、気液分離器24によって分離させられた液相の中間圧冷媒を減圧膨張して低圧冷媒にするものである。この低段膨張弁25の出口252に接続された冷媒配管2jは、蒸発器26の入口261に接続されており、低段膨張弁25と蒸発器26とを接続する冷媒管路を構成している。
蒸発器26は、低段膨張弁25から導入した低圧冷媒を、外部熱源から回収した排熱で蒸発させるものである。この蒸発器26の出口262に接続された冷媒配管2kは、圧縮機21の第1吸入口211に接続されており、蒸発器26と圧縮機21とを接続する冷媒管路を構成している。
制御部50は、メモリ55に記憶されたプログラムやデータにしたがって冷媒回路装置の動作を統括的に制御するものであり、入力処理部51、判定処理部52及び出力処理部53を備えている。尚、制御部50は、例えば、CPU(Central Processing Unit)等の処理装置にプログラムを実行させること、すなわちソフトウェアにより実現してもよいし、IC(Integrated Circuit)等のハードウェアにより実現してもよいし、ソフトウェア及びハードウェアを併用して実現してもよい。
入力処理部51は、温度センサT1から与えられた温度信号(吸入冷媒温度)や圧力センサS1から与えられた圧力信号(吸入冷媒圧力)を入力するものである。
判定処理部52は、入力処理部51を通じて入力された温度信号(吸入冷媒温度)及び圧力信号(吸入冷媒圧力)を用いて冷媒密度を算出するものである。冷媒密度の算出方法は、例えば冷媒物性データテーブルから線形近似で演算してもよいし、あるいは温度と圧力との多項式で近似した相関式を用いて演算してもよい。
また判定処理部52は、メモリ55から基準情報を読み出し、基準情報に含まれる目標値と、算出した密度とを比較判定するものである。ここで基準情報に含まれる目標値は、運転条件に基づいて予め設定されたものである。ここでいう運転条件とは、例えば冷媒の種類、蒸発器における冷媒の蒸発温度、中間圧、外部に送出する蒸気温度等が挙げられる。
出力処理部53は、流量制御弁31に対して入口311から第2出口313への冷媒の流量を増減させる指令信号を与えるものである。
以上のような構成を有する冷媒回路装置においては、圧縮機21が駆動することにより冷媒が冷媒回路10を次のように循環する。図2は、図1に示した冷媒回路装置での冷媒の循環における比エンタルピと圧力との変化を示すP−h線図である。
第1吸入口211を通じて圧縮機21に吸入された低圧冷媒は、低段圧縮部21aで圧縮されて中間圧冷媒となる(図2の点P1から点P2)。そして、低段圧縮部21aで圧縮された中間圧冷媒は、中間配管2g等を流通した中間圧冷媒と混合し(図2の点P2から点P3)、高段圧縮部21bで圧縮されて高圧冷媒となる(図2の点P3から点P4)。
圧縮機21の吐出口213より吐出された高圧冷媒は、凝縮器22で被加熱水と熱交換して凝縮する(図2の点P4から点P5)。凝縮した高圧冷媒は、高段膨張弁23で減圧膨張され(図2の点P5から点P6)、中間圧冷媒となって気液分離器24に導入される。
中間圧冷媒のうち気相の冷媒は、中間配管2g等を流通して吸入され(図2の点P6から点P3)、上述したように低段圧縮部21aで圧縮された中間圧冷媒と混合する。一方、中間圧冷媒のうち液相の冷媒は、低段膨張弁25で減圧膨張され(図2の点P7から点P8)、低圧冷媒となって蒸発器26に導入される。
蒸発器26に導入された低圧冷媒は、外部熱源から回収した排熱で蒸発し(図2の点P8から点P1)、圧縮機21の第1吸入口211に吸入されて冷媒回路10を循環する。
図3は、図1に示した制御部50が実施する流量制御処理の処理内容を示すフローチャートである。
この流量制御処理において制御部50は、入力処理部51を通じて温度センサT1から温度信号(吸入冷媒温度)及び圧力センサS1から圧力信号(吸入冷媒圧力)を入力した場合(ステップS101:Yes)、判定処理部52を通じて冷媒の密度を算出する(ステップS102)。
このようにして冷媒の密度を算出した制御部50は、判定処理部52を通じてメモリ55から基準情報を読み出し、算出密度と、基準情報に含まれる目標値とを比較する(ステップS103,ステップS104)。
そして、算出密度が目標値未満である場合(ステップS103:Yes)、制御部50は、出力処理部53を通じて流量制御弁31に対して入口311から第2出口313への流量を減少させる指令を送出し(ステップS105)、その後に手順をリターンさせて今回の処理を終了する。
このように制御部50が流量制御弁31に対して入口311から第2出口313への流量を減少させる指令を送出すると、凝縮器22で凝縮した高圧冷媒のうち内部熱交換器41の高圧冷媒流路41aを通過する冷媒の割合が増加し、この内部熱交換器41での熱交換量が増大する。これにより第2吸入口212に吸入される冷媒(中間圧の気相の冷媒)の温度が上昇する。このように第2吸入口212に吸入される冷媒の温度が上昇すると、高段圧縮部21bにて圧縮される冷媒の温度も上昇し、結果的に、高段圧縮部21bで圧縮される冷媒の密度が低減する。
ここで、高段圧縮部21bでの冷媒の流量(Gh)に対する低段圧縮部21aでの冷媒の流量(Gl)の比である冷媒流量比(Gl/Gh)については、下記のような関係式(1)がある。
関係式(1) Gl/Gh=(Vl/Vh)×(ρl/ρh)
(Vl:低段圧縮部21aの容積、Vh:高段圧縮部21bの容積、ρl:低段圧縮部21aでの冷媒の密度、ρh:高段圧縮部21bでの冷媒の密度)
上述したように圧縮機21は、低段圧縮部21aと高段圧縮部21bとが互いの回転数比が一定となる態様で共通の駆動源で駆動するものであるので、低段圧縮部21aと高段圧縮部21bとの流量を独立に制御することができない。しかしながら、冷媒流量比(Gl/Gh)は、密度比(ρl/ρh)により変化することが関係式(1)から明らかである。
そして、上記ステップS105により高段圧縮部21bでの冷媒の密度(ρh)を低減させることができるので、冷媒流量比(Gl/Gh)を増加させることができる。
これにより、高段圧縮部21bでの中間圧冷媒の圧縮は、図2において点P3′から点P4′となる。
一方、上記流量制御処理において、算出密度が目標値を超える場合(ステップS103:No,ステップS104:Yes)、制御部50は、出力処理部53を通じて流量制御弁31に対して入口311から第2出口313への流量を増大させる指令を送出し(ステップS106)、その後に手順をリターンさせて今回の処理を終了する。
これによれば、第2吸入口212に吸入される中間圧の気相の冷媒の温度が低下して、該冷媒の密度を増加させることができる。これにより、密度比(ρl/ρh)を低減させて冷媒流量比(Gl/Gh)を低減させることができ、冷媒流量比を当該運転条件に応じた最適なものにすることができる。
更に、上記流量制御処理において、算出密度が目標値に一致する場合(ステップS103:No,ステップS104:No)、制御部50は、流量制御弁31に何ら指令を送出することなく、その後に手順をリターンさせて今回の処理を終了する。
以上説明したように、本発明の実施の形態1である冷媒回路装置によれば、制御部50は、高段圧縮部21bに吸入される中間圧冷媒の密度と、運転条件に基づいて予め設定された目標値との比較結果に応じて流量制御弁31を制御することにより、密度比(ρl/ρh)を変化させることができ、これにより、冷媒流量比(Gl/Gh)を増減させて、当該運転に最適な値にすることができる。従って、圧縮機21における低段圧縮部21aと高段圧縮部21bとの冷媒の流量を独立に制御できない場合でも、種々の運転条件に応じて冷媒流量比を変更して運転効率の向上を図ることができる。
図4は、本発明の実施の形態1である冷媒回路装置の変形例を模式的に示す模式図である。尚、上述した実施の形態1である冷媒回路装置の構成要素と同一の構成要素については同一の符号を付してその説明を省略する。
ここで例示する冷媒回路装置は、冷媒回路11及び制御部50を備えて構成されている。
冷媒回路11は、圧縮機21、凝縮器22、高段膨張弁23、気液分離器24、低段膨張弁25及び蒸発器26が冷媒管路にて接続され、かつ内部に冷媒が封入されて構成されている。
凝縮器22の出口222に接続された冷媒配管2mは、内部熱交換器(高圧/中間圧内部熱交換器)41の高圧冷媒流路41aの入口411に接続されている。この高圧冷媒流路41aの出口412に接続された冷媒配管2dは、高段膨張弁23の入口231に接続されている。
このように凝縮器22と高段膨張弁23とを接続する冷媒管路は、複数の冷媒配管2m,2d及び高圧冷媒流路41aにより構成されている。
気液分離器24の気相側出口242に接続された冷媒配管2nは、流量制御弁32の入口321に接続されている。流量制御弁32は、上記入口321の他に第1出口322及び第2出口323を備えており、制御部50から与えられる指令に応じて入口321から第1出口322への冷媒の流量と、入口321から第2出口323への冷媒の流量とを制御する弁である。
流量制御弁32の第1出口322に接続された冷媒配管2pは、上記内部熱交換器41の中間圧冷媒流路41bの入口413に接続されている。この中間圧冷媒流路41bの出口414に接続された冷媒配管2hは、圧縮機21の第2吸入口212に接続されている。
これら冷媒配管2n、冷媒配管2p、中間圧冷媒流路41b及び冷媒配管2hは、気液分離器24の気相側出口242から導入された中間圧冷媒を、低段圧縮部21aで圧縮された中間圧冷媒とともに高段圧縮部21bに吸入させる中間配管を構成している。
上記流量制御弁32における第2出口323にはバイパス配管2qが接続されている。このバイパス配管2qは、一端が第2出口323に接続され、他端が中間圧冷媒流路41bの出口414と第2吸入口212とを接続する冷媒配管2hの途中に合流している。
かかるバイパス配管2qは、中間配管2n等を流通する中間圧冷媒が内部熱交換器41を迂回可能とするものである。
このような構成を有する冷媒回路装置によっても、制御部50は、高段圧縮部21bに吸入される中間圧冷媒の密度と、運転条件に基づいて予め設定された目標値との比較結果に応じて流量制御弁32を制御することにより、密度比(ρl/ρh)を変化させることができ、これにより、冷媒流量比(Gl/Gh)を増減させて、当該運転に最適な値にすることができる。従って、圧縮機21における低段圧縮部21aと高段圧縮部21bとの冷媒の流量を独立に制御できない場合でも、種々の運転条件に応じて冷媒流量比を変更して運転効率の向上を図ることができる。
<実施の形態2>
図5は、本発明の実施の形態2である冷媒回路装置の構成を模式的に示す模式図である。尚、上述した実施の形態1である冷媒回路装置の構成要素と同一の構成要素については同一の符号を付してその説明を省略する。ここで例示する冷媒回路装置は、冷媒回路12及び制御部60を備えて構成されている。
冷媒回路12は、圧縮機21、凝縮器22、高段膨張弁23、気液分離器24、低段膨張弁25及び蒸発器26が冷媒管路にて接続され、かつ内部に冷媒が封入されて構成されている。
凝縮器22の出口222に接続された冷媒配管2rは、高段膨張弁23の入口231に接続されており、凝縮器22と高段膨張弁23とを接続する冷媒管路を構成している。
気液分離器24の気相側出口242に接続された冷媒配管2sは、圧縮機21の第2吸入口212に接続されており、気液分離器24の気相側出口242から導入された中間圧冷媒を、低段圧縮部21aで圧縮された中間圧冷媒とともに高段圧縮部21bに吸入させる中間配管を構成している。
気液分離器24の液相側出口243に接続された冷媒配管2tは、流量制御弁33の入口331に接続されている。流量制御弁33は、上記入口331の他に第1出口332及び第2出口333を備えており、制御部60から与えられる指令に応じて入口331から第1出口332への冷媒の流量と、入口331から第2出口333への冷媒の流量とを制御する弁である。
上記第1出口332に接続された冷媒配管2uは、内部熱交換器(中間圧/低圧内部熱交換器)42の中間圧冷媒流路42aの入口421に接続されている。中間圧冷媒流路42aは、高段膨張弁23で減圧膨張され、かつ気液分離器24で分離された中間圧冷媒が通過する流路である。この中間圧冷媒流路42aの出口422に接続された冷媒配管2vは、低段膨張弁25の入口251に接続されている。
上記流量制御弁33における第2出口333にはバイパス配管2wが接続されている。このバイパス配管2wは、一端が第2出口333に接続され、他端が中間圧冷媒流路42aの出口422と低段膨張弁25の入口251とを接続する冷媒配管2vの途中に合流している。
このように気液分離器24と低段膨張弁25とを接続する冷媒管路は、複数の冷媒配管2t,2u,2v、流量制御弁33、中間圧冷媒流路42a及びバイパス配管2wにより構成されている。このバイパス配管2wは、気液分離器24から導入した中間圧冷媒が内部熱交換器42を迂回可能とするものである。
蒸発器26の出口262に接続された冷媒配管2xは、上記内部熱交換器42の低圧冷媒流路42bの入口423に接続されている。低圧冷媒流路42bは、蒸発器26によって蒸発した低圧冷媒が通過する流路であり、上記中間圧冷媒流路42aと熱交換可能に構成されている。この低圧冷媒流路42bの出口424に接続された冷媒配管2yは、圧縮機21の第1吸入口211に接続されている。
また、この冷媒配管2yには、温度センサT2及び圧力センサS2が設けられている。温度センサT2は、該冷媒配管2yを通過する冷媒、すなわち、低段圧縮部21aに吸入される低圧冷媒の温度を検出する温度検出手段である。かかる温度センサT2は、検出した吸入冷媒温度を温度信号として制御部60に与えるものである。
圧力センサS2は、該冷媒配管2yを通過する冷媒、すなわち、低段圧縮部21aに吸入される低圧冷媒の圧力を検出する圧力検出手段である。かかる圧力センサS2は、検出した吸入冷媒圧力を圧力信号として制御部60に与えるものである。
このように蒸発器26と圧縮機21とを接続する冷媒管路は、複数の冷媒配管2x,2y及び低圧冷媒流路42bにより構成されている。そして、内部熱交換器42は、蒸発器26によって蒸発された低圧冷媒と、気液分離器24から低段膨張弁25に送出される中間圧冷媒とを熱交換させるものである。
制御部60は、メモリ65に記憶されたプログラムやデータにしたがって冷媒回路装置の動作を統括的に制御するものであり、入力処理部61、判定処理部62及び出力処理部63を備えている。尚、制御部60は、例えば、CPU(Central Processing Unit)等の処理装置にプログラムを実行させること、すなわち、ソフトウェアにより実現してもよいし、IC(Integrated Circuit)等のハードウェアにより実現してもよいし、ソフトウェア及びハードウェアを併用して実現してもよい。
入力処理部61は、温度センサT2から与えられた温度信号(吸入冷媒温度)や圧力センサS2から与えられた圧力信号(吸入冷媒圧力)を入力するものである。
判定処理部62は、入力処理部61を通じて入力された温度信号(吸入冷媒温度)及び圧力信号(吸入冷媒圧力)を用いて、上記実施の形態1で説明した算出方法によって冷媒密度を算出するものである。また、判定処理部62は、メモリ65から基準情報を読み出し、基準情報に含まれる目標値と、算出した密度とを比較判定するものである。ここで基準情報に含まれる目標値は、運転条件に基づいて予め設定されたものである。
出力処理部63は、流量制御弁33に対して入口331から第2出口333への冷媒の流量を増減させる指令信号を与えるものである。
以上のような構成を有する冷媒回路装置においては、圧縮機21が駆動することにより冷媒が冷媒回路12を次のように循環する。図6は、図5に示した冷媒回路装置での冷媒の循環における比エンタルピと圧力との変化を示すP−h線図である。
第1吸入口211を通じて圧縮機21に吸入された低圧冷媒は、低段圧縮部21aで圧縮されて中間圧冷媒となる(図6の点Q1から点Q2)。そして、低段圧縮部21aで圧縮された中間圧冷媒は、中間配管を構成する冷媒配管2sを流通した中間圧冷媒と混合し(図6の点Q2から点Q3)、高段圧縮部21bで圧縮されて高圧冷媒となる(図6の点Q3から点Q4)。
圧縮機21の吐出口213より吐出された高圧冷媒は、凝縮器22で被加熱水と熱交換して凝縮する(図6の点Q4から点Q5)。凝縮した高圧冷媒は、高段膨張弁23で減圧膨張され(図6の点Q5から点Q6)、中間圧冷媒となって気液分離器24に導入される。
中間圧冷媒のうち気相の冷媒は、冷媒配管(中間配管)2sを流通して吸入され(図6の点Q6から点Q3)、上述したように低段圧縮部21aで圧縮された中間圧冷媒と混合する。一方、中間圧冷媒のうち液相の冷媒は、低段膨張弁25で減圧膨張され(図6の点Q7から点Q8)、低圧冷媒となって蒸発器26に導入される。
蒸発器26に導入された低圧冷媒は、外部熱源から回収した排熱で蒸発し(図6の点Q8から点Q1)、圧縮機21の第1吸入口211に吸入されて冷媒回路12を循環する。
図7は、図5に示した制御部60が実施する流量制御処理の処理内容を示すフローチャートである。
この流量制御処理において制御部60は、入力処理部61を通じて温度センサT2から温度信号(吸入冷媒温度)及び圧力センサS2から圧力信号(吸入冷媒圧力)を入力した場合(ステップS201:Yes)、判定処理部62を通じて冷媒の密度を算出する(ステップS202)。
このようにして冷媒の密度を算出した制御部60は、判定処理部62を通じてメモリ65から基準情報を読み出し、算出密度と、基準情報に含まれる目標値とを比較する(ステップS203,ステップS204)。
そして、算出密度が目標値未満である場合(ステップS203:Yes)、制御部60は、出力処理部63を通じて流量制御弁33に対して入口331から第2出口333への流量を減少させる指令を送出し(ステップS205)、その後に手順をリターンさせて今回の処理を終了する。
このように制御部60が流量制御弁33に対して入口331から第2出口333への流量を減少させる指令を送出すると、気液分離器24を通過した中間圧冷媒のうち内部熱交換器42の中間圧冷媒流路42aを通過する冷媒の割合が増加し、この内部熱交換器42での熱交換量が増大する。これにより第1吸入口211に吸入される冷媒(低圧冷媒)の温度が上昇する。このように第1吸入口211に吸入される冷媒の温度が上昇すると、低段圧縮部21aにて圧縮される冷媒の温度も上昇し、結果的に、低段圧縮部21aで圧縮される冷媒の密度が低減するとともに、高段圧縮部21bで圧縮される冷媒の密度も僅かながら低減(微減)する。
上記ステップS205により低段圧縮部21aでの冷媒の密度(ρl)を低減させるとともに高段圧縮部21bでの冷媒の密度(ρh)も微減させることができるので、冷媒流量比(Gl/Gh)を減少させることができる。
これにより、低段圧縮部21aでの低圧の冷媒の圧縮は、図6において点Q1′から点Q2′となり、高段圧縮部21bでの中間圧の冷媒の圧縮は、図6において点Q3′から点Q4′となる。
一方、上記流量制御処理において、算出密度が目標値を超える場合(ステップS203:No,ステップS204:Yes)、制御部60は、出力処理部63を通じて流量制御弁33に対して入口331から第2出口333への流量を増大させる指令を送出し(ステップS206)、その後に手順をリターンさせて今回の処理を終了する。
これによれば、第1吸入口211に吸入される中間圧の気相の冷媒の温度が低下して、該冷媒の密度を増加させることができる。これにより、密度比(ρl/ρh)を増加させて冷媒流量比(Gl/Gh)を増大させることができ、冷媒流量比を当該運転条件に応じた最適なものにすることができる。
更に、上記流量制御処理において、算出密度が目標値に一致する場合(ステップS203:No,ステップS204:No)、制御部60は、流量制御弁33に何ら指令を送出することなく、その後に手順をリターンさせて今回の処理を終了する。
以上説明したように、本発明の実施の形態2である冷媒回路装置によれば、制御部60は、低段圧縮部21aに吸入される低圧冷媒の密度と、運転条件に基づいて予め設定された目標値との比較結果に応じて流量制御弁33を制御することにより、密度比(ρl/ρh)を変化させることができ、これにより、冷媒流量比(Gl/Gh)を増減させて、当該運転に最適な値にすることができる。従って、圧縮機21における低段圧縮部21aと高段圧縮部21bとの冷媒の流量を独立に制御できない場合でも、種々の運転条件に応じて冷媒流量比を変更して運転効率の向上を図ることができる。
図8は、本発明の実施の形態2である冷媒回路装置の変形例を模式的に示す模式図である。尚、上述した実施の形態2である冷媒回路12の構成要素と同一の構成要素については同一の符号を付してその説明を省略する。
ここで例示する冷媒回路装置は、冷媒回路13及び制御部60を備えて構成されている。
冷媒回路13は、圧縮機21、凝縮器22、高段膨張弁23、気液分離器24、低段膨張弁25及び蒸発器26が冷媒管路にて接続され、かつ内部に冷媒が封入されて構成されている。
気液分離器24の液相側出口243に接続された冷媒配管2zは、内部熱交換器(中間圧/低圧内部熱交換器)42の中間圧冷媒流路42aの入口421に接続されている。この中間圧冷媒流路42aの出口422に接続された冷媒配管2vは、低段膨張弁25の入口251に接続されている。
このように気液分離器24と低段膨張弁25とを接続する冷媒管路は、複数の冷媒配管2z,2v及び中間圧冷媒流路42aにより構成されている。
蒸発器26の出口262に接続された冷媒配管3aは、流量制御弁34の入口341に接続されている。流量制御弁34は、上記入口341の他に第1出口342及び第2出口343を備えており、制御部60から与えられる指令に応じて入口341から第1出口342への冷媒の流量と、入口341から第2出口343への冷媒の流量とを制御する弁である。
流量制御弁34の第1出口342に接続された冷媒配管3bは、上記内部熱交換器42の低圧冷媒流路42bの入口423に接続されている。この低圧冷媒流路42bの出口424に接続された冷媒配管3cは、圧縮機21の第1吸入口211に接続されている。
上記流量制御弁34における第2出口343にはバイパス配管3dが接続されている。このバイパス配管3dは、一端が第2出口343に接続され、他端が低圧冷媒流路42bの出口424と第1吸入口211とを接続する冷媒配管3cの途中に合流している。
このように蒸発器26と圧縮機21とを接続する冷媒管路は、複数の冷媒配管3a,3b,3c、流量制御弁34、低圧冷媒流路42b及びバイパス配管3dにより構成されている。かかるバイパス配管3dは、蒸発器26を流通した低圧冷媒が内部熱交換器42を迂回可能とするものである。
このような構成を有する冷媒回路装置によっても、制御部60は、低段圧縮部21aに吸入される低圧冷媒の密度と、運転条件に基づいて予め設定された目標値との比較結果に応じて流量制御弁34を制御することにより、密度比(ρl/ρh)を変化させることができ、これにより、冷媒流量比(Gl/Gh)を増減させて、当該運転に最適な値にすることができる。従って、圧縮機21における低段圧縮部21aと高段圧縮部21bとの冷媒の流量を独立に制御できない場合でも、種々の運転条件に応じて冷媒流量比を変更して運転効率の向上を図ることができる。
以上、本発明の好適な実施の形態1及びその変形例、並びに実施の形態2及びその変形例について説明したが、本発明はこれらに限られず種々の変更を行うことができる。
上述した実施の形態1においては、内部熱交換器41、バイパス配管2e,2q及び流量制御弁31,32により、圧縮機21に吸入される中間圧冷媒の加熱量を調整する加熱量調整機構を構成し、実施の形態2においては、内部熱交換器42、バイパス配管2w,3d及び流量制御弁33,34により、圧縮機21に吸入される低圧冷媒の加熱量を調整する加熱量調整機構を構成していたが、本発明においては、圧縮機に吸入される低圧冷媒及び中間圧冷媒の加熱量を調整するように構成されてもよいし、その加熱量の調整においても、内部熱交換器を用いずに行ってもよい。
また本発明では、上述した実施の形態1の冷媒回路10において、凝縮器22と高段膨張弁23との間に冷媒を過冷却する過冷却器を設けてもよい。この場合、流量制御弁31及び内部熱交換器41は過冷却器よりも下流側に設けられることが望ましい。
上述した実施の形態1及び2では、いずれも冷媒の温度及び圧力を検出して冷媒密度を算出しているが、圧力(中間圧若しくは低圧)一定の条件下で運転する場合は、冷媒の温度検出結果のみから冷媒密度を算出してもよい。
2e バイパス配管
10 冷媒回路
21 圧縮機
21a 低段圧縮部
21b 高段圧縮部
211 第1吸入口
212 第2吸入口
213 吐出口
22 凝縮器
23 高段膨張弁
24 気液分離器
25 低段膨張弁
26 蒸発器
31 流量制御弁
311 入口
312 第1出口
313 第2出口
41 内部熱交換器
41a 高圧冷媒流路
41b 中間圧冷媒流路
50 制御部
51 入力処理部
52 判定処理部
53 出力処理部
S1 圧力センサ
T1 温度センサ

Claims (6)

  1. 冷媒を低圧から中間圧に圧縮する低段圧縮部と、冷媒を中間圧から高圧に圧縮する高段圧縮部とが互いの回転数比が一定となる態様で共通の駆動源で駆動する圧縮機と、
    前記圧縮機によって圧縮された高圧冷媒を凝縮する凝縮器と、
    前記凝縮器によって凝縮された冷媒を減圧膨張して中間圧にする高段膨張弁と、
    前記高段膨張弁から導入した中間圧冷媒を気液分離する気液分離器と、
    前記気液分離器の気相側出口から導入した中間圧冷媒を前記高段圧縮部に吸入させる中間配管と、
    前記気液分離器の液相側出口から導入した中間圧冷媒を減圧膨張して低圧にする低段膨張弁と、
    前記低段膨張弁から導入した低圧冷媒を蒸発させ、前記低段圧縮部に吸入させる蒸発器と、
    を冷媒管路にて接続して構成された冷媒回路を備える冷媒回路装置において、
    前記中間配管を流通する中間圧冷媒及び前記蒸発器を流通した低圧冷媒の少なくとも一方の加熱量を調整する加熱量調整機構と、
    前記加熱量調整機構により加熱された冷媒の密度と、運転条件に基づいて予め設定された目標値との比較結果に応じて前記加熱量調整機構による加熱量を制御することにより、前記高段圧縮部での冷媒の流量に対する前記低段圧縮部での冷媒の流量の比である冷媒流量比を増減させる制御部と、
    を備えたことを特徴とする冷媒回路装置。
  2. 前記加熱量調整機構は、
    前記凝縮器を流通した高圧冷媒と、前記中間配管を流通する中間圧冷媒とを熱交換させる高圧/中間圧内部熱交換器と、
    前記凝縮器から導入した高圧冷媒が前記高圧/中間圧内部熱交換器を迂回可能とするバイパス配管と、
    前記高圧/中間圧内部熱交換器へ導入される高圧冷媒の流量と、前記バイパス配管へ導入される高圧冷媒の流量とを制御する流量制御弁と、
    を備え、
    前記制御部は、前記高段圧縮部に吸入される中間圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする請求項1に記載の冷媒回路装置。
  3. 前記加熱量調整機構は、
    前記凝縮器を流通した高圧冷媒と、前記中間配管を流通する中間圧冷媒とを熱交換させる高圧/中間圧内部熱交換器と、
    前記中間配管を流通する中間圧冷媒が前記高圧/中間圧内部熱交換器を迂回可能とするバイパス配管と、
    前記高圧/中間圧内部熱交換器へ導入される中間圧冷媒の流量と、前記バイパス配管へ導入される中間圧冷媒の流量とを制御する流量制御弁と、
    を備え、
    前記制御部は、前記高段圧縮部に吸入される中間圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする請求項1に記載の冷媒回路装置。
  4. 前記加熱量調整機構は、
    前記気液分離器の液相側出口から導入された中間圧冷媒と、前記蒸発器を流通した低圧冷媒とを熱交換させる中間圧/低圧内部熱交換器と、
    前記気液分離器の液相側出口から導入した中間圧冷媒が前記中間圧/低圧内部熱交換器を迂回可能とするバイパス配管と、
    前記中間圧/低圧内部熱交換器へ導入される中間圧冷媒の流量と、前記バイパス配管へ導入される中間圧冷媒の流量とを制御する流量制御弁と、
    を備え、
    前記制御部は、前記低段圧縮部に吸入される低圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする請求項1に記載の冷媒回路装置。
  5. 前記加熱量調整機構は、
    前記気液分離器の液相側出口から導入された中間圧冷媒と、前記蒸発器を流通した低圧冷媒とを熱交換させる中間圧/低圧内部熱交換器と、
    前記蒸発器を流通した低圧冷媒が前記中間圧/低圧内部熱交換器を迂回可能とするバイパス配管と、
    前記中間圧/低圧内部熱交換器へ導入される低圧冷媒の流量と、前記バイパス配管へ導入される低圧冷媒の流量とを制御する流量制御弁と、
    を備え、
    前記制御部は、前記低段圧縮部に吸入される低圧冷媒の密度と、前記目標値との比較結果に応じて前記流量制御弁を制御することを特徴とする請求項1に記載の冷媒回路装置。
  6. 前記蒸発器は、外部熱源から回収した排熱で前記低圧冷媒を蒸発させることを特徴とする請求項1〜5のいずれか1つに記載の冷媒回路装置。
JP2016160342A 2016-08-18 2016-08-18 冷媒回路装置 Active JP6822007B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160342A JP6822007B2 (ja) 2016-08-18 2016-08-18 冷媒回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160342A JP6822007B2 (ja) 2016-08-18 2016-08-18 冷媒回路装置

Publications (2)

Publication Number Publication Date
JP2018028405A JP2018028405A (ja) 2018-02-22
JP6822007B2 true JP6822007B2 (ja) 2021-01-27

Family

ID=61247754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160342A Active JP6822007B2 (ja) 2016-08-18 2016-08-18 冷媒回路装置

Country Status (1)

Country Link
JP (1) JP6822007B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114183941B (zh) * 2021-12-14 2022-09-20 珠海格力电器股份有限公司 一种制冷系统、控制方法和制冷设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147456A (ja) * 2003-11-13 2005-06-09 Daikin Ind Ltd 空気調和装置
JP2010216686A (ja) * 2009-03-13 2010-09-30 Daikin Ind Ltd ヒートポンプシステム
JP2014016079A (ja) * 2012-07-06 2014-01-30 Daikin Ind Ltd ヒートポンプ
JP2014190613A (ja) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd ヒートポンプシステム及びヒートポンプシステムの運転方法

Also Published As

Publication number Publication date
JP2018028405A (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
JP5241872B2 (ja) 冷凍サイクル装置
US9951974B2 (en) Flash tank economizer cycle control
WO2014091909A1 (ja) ヒートポンプ式加熱装置
US20080302129A1 (en) Refrigeration system for transcritical operation with economizer and low-pressure receiver
JP2002081767A (ja) 空気調和装置
US11112140B2 (en) Air conditioning apparatus
JP2012504221A (ja) プルダウン時における容量の増加
JP2018028395A (ja) ヒートポンプ装置
JP2011214753A (ja) 冷凍装置
JP2008014602A (ja) 冷凍サイクル装置
JP6822007B2 (ja) 冷媒回路装置
JP2011196684A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP7154426B2 (ja) 室外ユニット及び冷凍サイクル装置
JP2002228282A (ja) 冷凍装置
WO2011072679A1 (en) A vapour compression system with split evaporator
JP4767340B2 (ja) ヒートポンプ装置の制御装置
JP2006145144A (ja) 冷凍サイクル装置
JP6272364B2 (ja) 冷凍サイクル装置
WO2015121993A1 (ja) 冷凍サイクル装置
JP5571429B2 (ja) 気液熱交換型冷凍装置
JP2005351537A (ja) 冷凍サイクル装置およびその制御方法
JP2018059666A (ja) 制御装置、冷媒回路システム及び制御方法
JP2010255884A (ja) 熱源機およびその制御方法
JP5144959B2 (ja) 熱源機およびその制御方法
JP7450772B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R150 Certificate of patent or registration of utility model

Ref document number: 6822007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250