JP6815268B2 - 油圧機械の制御装置 - Google Patents

油圧機械の制御装置 Download PDF

Info

Publication number
JP6815268B2
JP6815268B2 JP2017082966A JP2017082966A JP6815268B2 JP 6815268 B2 JP6815268 B2 JP 6815268B2 JP 2017082966 A JP2017082966 A JP 2017082966A JP 2017082966 A JP2017082966 A JP 2017082966A JP 6815268 B2 JP6815268 B2 JP 6815268B2
Authority
JP
Japan
Prior art keywords
flow rate
value
speed
control
output value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082966A
Other languages
English (en)
Other versions
JP2018179238A (ja
Inventor
崇之 白水
崇之 白水
昌裕 井谷
昌裕 井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2017082966A priority Critical patent/JP6815268B2/ja
Priority to US16/605,169 priority patent/US11143212B2/en
Priority to EP18787894.7A priority patent/EP3613998A4/en
Priority to PCT/JP2018/016056 priority patent/WO2018194110A1/ja
Priority to AU2018255024A priority patent/AU2018255024A1/en
Publication of JP2018179238A publication Critical patent/JP2018179238A/ja
Application granted granted Critical
Publication of JP6815268B2 publication Critical patent/JP6815268B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • E02F3/325Backhoes of the miniature type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/575Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6323Electronic controllers using input signals representing a flow rate the flow rate being a pressure source flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6326Electronic controllers using input signals representing a flow rate the flow rate being an output member flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/67Methods for controlling pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures

Description

本発明は、掘削旋回作業機等の油圧機械を駆動するための油圧アクチュエータに対する作動油供給システムに用いられる制御装置に関する。
従来、例えば特許文献1、2、3に示すような、掘削旋回作業機等の油圧機械を駆動するための油圧アクチュエータに対する作動油供給システムであって、方向制御弁を介して、可変容量型の油圧ポンプより吐出される作動油を、油圧アクチュエータに対し供給するよう構成されたものが公知となっている。
以上のうち、特許文献1、2に開示のポンプ吐出油流量の制御装置は、ロードセンシング弁を用いて、油圧ポンプの吐出圧と、方向制御弁の二次側(油圧アクチュエータの入口ポート側)の負荷圧との差(以下、単に「差圧」と称する)が一定となるように、油圧ポンプの吐出油量を調整する構成の、負荷感知(ロードセンシング)式ポンプ制御システムとなっており、一方、方向制御弁における油圧ポンプから油圧アクチュエータへの流路を絞るメータイン絞りの開口面積を、その手動操作具の操作量に応じて変化させるものとしている。これにより、方向制御弁から油圧アクチュエータには、当該手動操作具にて設定されたアクチュエータの作動速度に見合う必要な量の作動油が供給されるので、作動油供給システムの作動効率を高めることができる。
さらに、特許文献1、2に示すポンプ制御システムは、使用状況(モード)の変化に応じて油圧ポンプの吐出油量を変化させることができるよう、ロードセンシング弁に制御圧を付加して、差圧の目標値を変更可能な構成となっている。
この制御圧生成のため、上述の負荷感知式ポンプ制御システムにおいては、電磁比例弁が設けられており、その二次圧を制御圧としてロードセンシング弁に付加するものとしている。また、ロードセンシング弁は、バネ力及び負荷圧と、吐出圧及び制御圧とのバランスにより、位置決めされる構造となっている。
また、掘削作業機等の複数のアクチュエータへの作動油供給システムにおいては、統一ブリードオフ弁を設けているものが公知である。さらに、特許文献3では、複数の油圧アクチュエータの公差に対応して、ポンプ圧の検出に基づき、統一ブリードオフ弁制御用の比例弁指令値を補正するという技術が開示されている。
特開2011−247301号公報 特開平2−76904号公報 特開2007−225095号公報
上述の如くロードセンシングシステムを備えた作業車両では、各方向制御弁がメータイン絞りを持ち、メータイン絞りの開口面積は前記手動操作具の操作量に対応して決定されるが、前記開口面積にはばらつきがある。これは、前述の如き、同一油圧機械(掘削旋回作業機等)内での個々の油圧アクチュエータの作動性能に関するばらつきとなるのみならず、油圧機械ごとの性能のばらつき要因にもなる。
さらに、負荷感知式ポンプ制御システムにおいては、ロードセンシング弁の目標差圧設定用のバネの性能の誤差、及び、制御圧生成用の電磁比例弁における二次圧の対電流特性の誤差が、油圧ポンプの吐出油量の制御性能の誤差として現出し得る。油圧ポンプの吐出性能の誤差は、その作業車両の全油圧アクチュエータの作動速度の誤差となって現れる。
個々の要素においては公差の範囲内でのばらつきであっても、これだけの要因が積み重なると、油圧機械同士の間では、それぞれの油圧アクチュエータの作動においてかなりの性能格差となって現れてしまう。
また、制御圧を大きくする条件下では、ロードセンシング弁の目標差圧が小さくなり、ポンプの吐出流量は小さくなる。その一方で、目標差圧の公差中央値に対するばらつきの幅は、ポンプが持つ目標差圧のばらつきに制御圧を生成する電磁比例弁の特性のばらつきが加わるために拡大する。その結果、設計上の作動速度(吐出流量)に対する実際の作動速度(吐出流量)のばらつき幅は、制御圧が大きいほど拡大する。
例えば、掘削旋回作業機で吊り上げ(クレーン)作業をすべくブーム等を作動する場面では、走行速度を極めて遅く抑える必要があり、大きな制御圧をかけてポンプ吐出流量を抑えるので、制御圧が小さい状態での高速作動時に比して相対的にぶれ幅が拡大してしまう。
なお、前述の、特許文献3に開示される統一ブリードオフ弁の制御のためには、比例弁指令値の補正量を画定するために油圧ポンプの吐出圧を見る必要があるが、そのための圧力センサの設置を必要とするため、コスト増加につながってしまう。
本願に係る油圧機械の制御装置は、以上の課題を解決するため、以下の如く構成されるものである。
すなわち、本願に係る油圧機械の制御装置は、エンジンにて駆動される可変容量型油圧ポンプからの吐出油にて駆動される複数の油圧アクチュエータを備えた油圧機械についての制御装置であって、該油圧ポンプの吐出油が有する吐出圧と該複数の油圧アクチュエータへの供給油が有する負荷圧との間の差圧についての目標値を達成するように、該油圧ポンプの吐出油の流量を制御するよう構成されており、該差圧の目標値を変化させるための制御圧を、電磁比例弁の二次圧にて生成するものとしている。該制御装置は、該油圧機械内に設けた、第一演算部、及び、目標エンジン回転数検出部と、該油圧機械外に設けた、記憶部、第二演算部、及び、少なくとも一つの油圧アクチュエータに対する実供給油流量またはこれに代替する数値を検出する実測値検出部と、を備えている。該制御装置は、該第一演算部では、該目標エンジン回転数検出部にて検出される目標エンジン回転数に応じて該電磁比例弁にかける電流値のもととなる制御出力値を算出し、該記憶部には、該少なくとも一つの油圧アクチュエータについて、特定のエンジン回転数及び特定の手動操作量で駆動した特定駆動状態を想定し、該特定駆動状態での該少なくとも一つの油圧アクチュエータへの設計上の供給油流量値またはこれに代替する数値を記憶しており、該第二演算部では、該少なくとも一つの油圧アクチュエータを該特定駆動状態で実際に駆動した場合に該実測値検出部にて検出される実供給油流量またはこれに代替する数値と、該記憶部にて記憶した該設計上の供給油流量値またはこれに代替する数値との比較に基づき、該制御出力値の補正係数を算出するものであり、該第一演算部で算出した前記制御出力値を、該第二演算部にて算出した該補正係数にて補正する。
また、前記構成の制御装置の第一態様として、前記特定駆動状態における前記特定の手動操作量を、前記少なくとも一つの油圧アクチュエータの最大手動操作量とし、かつ、前記特定のエンジン回転数を、前記制御出力値が最大値またはその近傍の値となるエンジン回転数とするものである。
あるいは、前記構成の制御装置の第二態様として、前記特定駆動状態における前記特定の手動操作量を、前記少なくとも一つの油圧アクチュエータの最大手動操作量とし、かつ、前記特定のエンジン回転数を、前記制御出力値が最小値またはその近傍の値となるエンジン回転数とするものである。
あるいは、前記構成の制御装置の第三態様として、前記特定駆動状態は、第一特定駆動状態及び第二特定駆動状態を含み、該第一特定駆動状態及び該第二特定駆動状態における前記特定の手動操作量を、前記少なくとも一つの油圧アクチュエータの最大手動操作量とし、該第一特定駆動状態における前記特定のエンジン回転数を、前記制御出力値が最大値またはその近傍の値となるエンジン回転数とし、該第二特定駆動状態における前記特定のエンジン回転数を、前記制御出力値が最小値またはその近傍の値となるエンジン回転数とする。前記制御装置は、前記第二演算部では、前記少なくとも一つの油圧アクチュエータを、該第一特定駆動状態及び該第二特定駆動状態で実際に駆動した場合に前記実測値検出部にて検出される実供給油流量またはこれに代替する数値と、前記記憶部にて記憶した前記設計上の供給油流量値またはこれに代替する数値との比較に基づき、前記制御出力値の補正係数を算出するものである。
また、前記構成の制御装置及びその前記第一〜第三態様のうちのいずれかにおいて、前記制御装置はさらに、実エンジン回転数の低下の検出に基づいて該油圧ポンプの吐出油の流量を制御するよう構成されている。該制御装置は、前記油圧機械外の前記記憶部とは別に、前記油圧機械内に設けた記憶部にて、目標エンジン回転数に対応する第一制御出力値のマップを記憶しており、前記第一演算部において、該マップに基づいて、前記目標エンジン回転数検出部にて検出される目標エンジン回転数に対応する第一制御出力値を決定するとともに、該実エンジン回転数の低下の検出に基づく該油圧ポンプの吐出油の流量制御のための第二制御出力値を算出し、該第一制御出力値と該第二制御出力値を合算して、前記制御出力値に該当する第三制御出力値を算出し、該第三制御出力値を、前記第二演算部にて算出した前記補正係数にて補正するものである。
以上の如き油圧機械の制御装置により、油圧機械ごとの油圧アクチュエータの作動性能のばらつきを縮める作業を、既存の負荷感知式ポンプ制御システムでの制御圧の制御にて行うことができ、例えば油圧ポンプの吐出圧を見るための圧力センサ等の追加設備を油圧機械自体に設置する必要がなく、低コストで、出荷前や最初の使用時等における製品の誤差解消のための補正作業の効率を高めることができる。
また、前記負荷感知式ポンプ制御システムに用いられる目標差圧の生成手段(ロードセンシング弁のバネ等)や前記制御圧を生成する前記電磁比例弁(のソレノイド等)における性能誤差等は、制御圧の誤差として影響を及ぼすものであり、このような要因でのポンプ吐出流量特性上の誤差は、前記第一態様として示すように、制御圧を最大にするエンジン回転数でポンプを駆動して上記補正を行う装置構成とすることで、ポンプ吐出流量特性上の誤差についての補正作業の効率をより一層高めることができる。
また、各油圧アクチュエータ用の方向制御弁(のメータイン絞り等)の性能誤差等は、制御圧とは無関係にその油圧アクチュエータの作動速度の誤差として影響を及ぼすものであり、このような要因の当該油圧アクチュエータの作動速度の誤差については、前記第二態様として示すように、制御圧を最小にする条件でポンプを駆動して上記補正を行う装置構成とすることで、制御圧に影響を及ぼす誤差要因によっての当該油圧アクチュエータの作動速度への影響を最小にし、制御圧誤差とは区別した状態で、制御圧とは無関係の要因による当該油圧アクチュエータの作動速度の誤差を確実に補正できる。こうした第二態様の補正作業を、油圧機械における個々の油圧アクチュエータについて行うことで、個々の油圧アクチュエータについての、複数の油圧機械間での作動速度特性のばらつきを是正することができる。
また、前記第三態様として示すように作業を行う装置構成とすることで、制御圧に関係する要因によるポンプ吐出流量特性上の誤差も、制御圧とは無関係の要因による個々の油圧アクチュエータの作動速度特性上の誤差も、効率よく補正することができる。
また、前記制御装置が、実エンジン回転数の低下の検出に基づくポンプ制御も行う構成である場合に、第一演算部にて、前記差圧の目標値を変化させるための第一制御出力値と、実エンジン回転数の低下に基づいてポンプ制御するための第二制御出力値とを合算して算出した第三制御出力値を、第二演算部にて算出する補正係数にて補正する構成とすることで、前述の如く差圧の目標値を変化させてのポンプ制御の効果におけるばらつきを低減できることに加え、実エンジン回転数の低下時に行うポンプ制御の効果におけるばらつきを低減できる。
油圧機械の実施例としての掘削作業機の側面図。 油圧アクチュエータへの圧油供給システムを示す油圧回路図。 制御圧をかけない場合の負荷感知式ポンプ制御によるエンジン回転数に対する油圧アクチュエータへの供給流量のグラフ。 制御出力値の補正制御システムを示すブロック図。 負荷感知式ポンプ制御に関するマップ及びグラフであって、図5(a)は制御出力値のマップ、図5(b)は制御圧のグラフ、図5(c)は目標差圧のグラフ。 制御圧をかけた場合の負荷感知式ポンプ制御によるエンジン回転数に対する油圧アクチュエータへの供給流量のグラフ。 負荷感知式ポンプ制御による操作量に対する油圧アクチュエータへの供給流量のグラフ。 負荷感知式ポンプ制御システムによる目標エンジン回転数に対する走行速度の歪み幅を示すグラフ図。 本実施例によるポンプ吐出流量の補正効果を示すグラフ図。 掘削旋回作業機の駆動スプロケットの回転数検知により走行モータへの供給流量を測定する様子を示す掘削旋回作業機の略図。
図1に示す油圧機械の実施例としての掘削旋回作業機10の概略構成について説明する。掘削旋回作業機10は、左右一対のクローラ式走行装置11を備える。各クローラ式走行装置11は、トラックフレーム11aに駆動スプロケット11b及び従動スプロケット11cを支持し、駆動スプロケット11bと従動スプロケット11cの間にクローラ11dを巻回してなる。なお、走行装置をホイル式走行装置とすることも考えられる。
左右一対のクローラ式走行装置11の上部には、旋回台12が、両クローラ式走行装置11に対し鉛直の枢軸を中心に回動可能に搭載され、旋回台12に、エンジンE、ポンプユニットPU、制御弁ユニットV等を内装するボンネット13が搭載されている。旋回台12にはさらに、オペレータ用の座席14を配置しており、座席14の前方や側方には、後述の各油圧アクチュエータを操作するためのレバーやペダル等の手動操作具が配置されている。
旋回台12には、旋回台12に対し水平方向に回動可能にブームブラケット15が設けられており、ブームブラケット15にブーム16の基端部が上下回動自在に枢支され、ブーム16の先端部にアーム17の基端部が上下回動自在に枢支され、アーム17の先端部に、作業機としてのバケット18が上下回動自在に枢支されている。その他の作業機として、左右一対のクローラ式走行装置11に、排土用のブレード19が上下回動自在に取り付けられている。
以上に述べた掘削旋回作業機10の各駆動部の駆動のため、掘削旋回作業機10には、図2に示すように、複数の油圧アクチュエータが備えられる。図1には、代表的な油圧アクチュエータであるブームシリンダ20、アームシリンダ21、バケットシリンダ22が図示されている。ブームシリンダ20のピストンロッドの伸縮動によりブーム16がブームブラケット15に対し上下回動し、アームシリンダ21のピストンロッドの伸縮動によりアーム17がブーム16に対し上下回動し、バケットシリンダ22のピストンロッドの伸縮動によりバケット18がアーム17に対し上下回動する構成となっている。
これらの他、掘削旋回作業機10には、油圧シリンダよりなる伸縮型の油圧アクチュエータとして、図1では図外の、旋回台12に対しブームブラケット15を水平回動するためのスイングシリンダ、左右のクローラ式走行装置11に対してブレード19を上下回動するためのブレードシリンダ等が備えられている。
また、掘削旋回作業機10には、油圧モータよりなる回転型の油圧アクチュエータとして、図1では図外の、左右のクローラ式走行装置11のうち一方の駆動スプロケット11bを駆動するための走行モータ23(図2参照)、左右のクローラ式走行装置11のうち他方の駆動スプロケット11bを駆動するための走行モータ24(図2参照)、及び、旋回台12を左右のクローラ式走行装置11に対し旋回するための旋回モータ25(図2参照)が備えられている。
図2の油圧回路図により、掘削旋回作業機10に備えられる各油圧アクチュエータに対する油圧ポンプの吐出油の供給制御システムについて説明する。掘削旋回作業機10には、エンジンEにより駆動される油圧ポンプ1が備えられている。油圧ポンプ1は、ブームシリンダ20、アームシリンダ21、走行モータ23・24、及び旋回モータ25に圧油を供給する。図2の油圧回路図では、これらを代表的な油圧アクチュエータとして図示し、他の油圧アクチュエータについては図略している。
各油圧アクチュエータには、各別の方向制御弁が備えられており、これらの方向制御弁を合わせて前記制御弁ユニットVとしている。
それぞれの方向制御弁は、前述の各手動操作具の手動操作にて位置が切り換えられ、油の供給方向を切り換える。さらに、各方向制御弁にはメータイン絞りが備えられていて、各手動操作具の操作量に応じてメータイン絞りの開度が変化する。これにより、後述の負荷感知式ポンプ制御システム5による油圧ポンプ1の吐出流量制御と相まって、各油圧アクチュエータに対する作動油の供給流量を、各油圧アクチュエータの要求流量に合わせることができ、仕事をすることなくタンクに戻されて損失となる余剰流量を低減でき、油圧アクチュエータへの作動油供給システムの作動効率の向上を図っている。いいかえれば、各油圧アクチュエータについて、その方向制御弁の操作量に対応して設定されるメータイン絞りの開度により、その要求流量が確定される。
なお、図2では、方向制御弁30・31・33・34・35それぞれの手動操作具として、ブーム操作レバー30a・アーム操作レバー31a・第一走行操作レバー33a・第二走行操作レバー34a・旋回操作レバー35aが設けられているものとして描かれているが、これらの手動操作具は、レバー以外に、ペダルやスイッチ等としてもよく、また、適宜統合してもよい。例えば、一本のレバーの、一方向の回動によって、一つの方向制御弁を制御し、他方向の回動によって、別の方向制御弁を制御するという構成としてもよい。
また、手動操作具(レバー30a・31a・33a・34a・35a)をリモコン(パイロット)弁とし、手動操作具の操作で発生したパイロット圧によって各方向制御弁30・31・33・34・35を制御するものとしてもよい。
また、掘削旋回作業機10には、変速スイッチ26が備えられている。変速スイッチ26は、可変容量型油圧モータである走行モータ23の可動斜板23a及び走行モータ24の可動斜板24aに連係されており、変速スイッチ26の操作にて、可動斜板23a・24aが同時に傾動されるものとなっている。なお、ペダルやレバー等、スイッチ以外の手動操作具で、走行モータ23・24の可動斜板23a・24aを操作するものとしてもよい。
本実施例では、変速スイッチ26をON/OFF切換スイッチとしており、変速スイッチ26のON操作にて、可動斜板23a・24aを、路上走行に適した高速(通常速)設定用の小傾倒角度(小容量)位置に配し、変速スイッチ26のOFF操作にて、可動斜板23a・24aを、作業走行に適した低速(作業速)設定用の大傾倒角度(大容量)位置に配するものとしている。
より詳しくは、各可動斜板23a・24aは、油圧アクチュエータである斜板制御シリンダ23b・24bのピストンロッドに連係されていて、両斜板制御シリンダ23b・24bに作動油を供給するための開閉弁27が設けられている。変速スイッチ26を入れるとパイロット圧で開閉弁27が開いて斜板制御シリンダ23b・24bに作動油を供給し、斜板制御シリンダ23b・24bが可動斜板23a・24aを小傾倒角度位置へと押動する。一方、変速スイッチ26を切ると開閉弁27は斜板制御シリンダ23b・24bより作動油を戻し、ピストンロッドのバネ付勢により可動斜板23a・24aを大傾倒角度位置へと戻す。
油圧ポンプ1、油圧ポンプ1の吐出圧力が過大となることを防止するリリーフ弁3、そして、負荷感知式ポンプ制御システム5が組み合わされて、ポンプユニットPUを構成している。負荷感知式ポンプ制御システム5は、ポンプアクチュエータ6、ロードセンシング弁7、ポンプ制御比例弁8を組み合わせてなる。
ポンプアクチュエータ6は、油圧シリンダよりなり、そのピストンロッド6aを、第一油圧ポンプ1の可動斜板1aに連係しており、ピストンロッド6aの伸縮により、可動斜板1aを同時に傾動し、これらの傾倒角度を変更する。これにより、油圧ポンプ1の吐出流量Qを変更する。
ロードセンシング弁7の給排ポートは、ポンプアクチュエータ6の、ピストンロッド伸長用の圧油室6bと連通している。ロードセンシング弁7は、バネ7aにより、ポンプアクチュエータ6の圧油室6bより油を抜く方向、すなわち、ピストンロッド6aを収縮する方向に付勢されている。このピストンロッド6aの収縮方向は、可動斜板1aの傾斜角度増大側、すなわち、油圧ポンプ1の吐出流量増大側となっている。
ロードセンシング弁7には、油圧ポンプ1からの吐出油の一部が、ポンプアクチュエータ6の圧油室6bに供給される作動油として導入される。その一部は、油圧ポンプ1の吐出圧Pに基づくパイロット圧として、バネ7aに抗してロードセンシング弁7に付加される。ロードセンシング弁7へのパイロット圧としての吐出圧Pは、ポンプアクチュエータ6の圧油室6bに油を供給する方向、すなわち、ピストンロッド6aを伸長する方向にロードセンシング弁7を切り換えるように作用する。
さらに、全方向制御弁についての、メータイン絞りを経ての二次側の油圧、すなわち、各方向制御弁から各油圧アクチュエータへの供給油の油圧の全てのうちから、最大の油圧、すなわち、最大負荷圧Pを抽出し、これを吐出圧Pに抗するパイロット圧としてロードセンシング弁7に付加している。
ここで、各方向制御弁のメータイン絞りを通過して該当の油圧アクチュエータへと供給される油の流量、すなわち、各油圧アクチュエータの要求流量Qは、以下の「数1」に表される数式により算出される。
Figure 0006815268
したがって、後述の制御圧Pが0であるものと仮定すれば、ロードセンシング弁7の位置は、吐出圧Pと最大負荷圧Pとの間の差圧ΔP(未制御差圧ΔP)がバネ7aのバネ力Fを上回るか下回るかによって切り換えられる。すなわち、差圧ΔPがバネ力Fを上回ると、ポンプアクチュエータ6のピストンロッド6aが伸長して、可動斜板1aの傾倒角度を減少させ、油圧ポンプ1の吐出流量Qを低減する。バネ力Fが差圧ΔPを上回ると、ポンプアクチュエータ6のピストンロッド6aが収縮して可動斜板1aの傾倒角度を増大させ、油圧ポンプ1の吐出流量Qを増大する。
上記の式より、差圧ΔPが一定であれば、要求流量Qは、メータイン絞りの断面積A(開度)に比例する。メータイン絞りの開度は、その方向制御弁の手動操作具の操作量にしたがって決まる。つまり、要求流量Qは、エンジン回転数の変化とは関係なく決まる量であり、操作量を一定に保持している限り、要求流量Qは一定に保持される。
油圧ポンプ1からの吐出流量Qの不足により、操作される油圧アクチュエータに対する方向制御弁におけるメータイン絞りを介しての供給流量が、当該油圧アクチュエータの要求流量Qに足りないと、差圧ΔPが小さくなり、バネ力Fを下回ることにより、ロードセンシング弁7が、可動斜板1aの傾倒角度を増大する方向に作動し、油圧ポンプ1の吐出流量Qを増大させ、当該油圧アクチュエータへの供給流量を増大させる。これにより、当該油圧アクチュエータの駆動速度を、その手動操作具にて設定した速度にまで高めることができる。
一方、油圧ポンプ1からの吐出流量Qが過剰である場合、差圧ΔPが大きくなって、バネ力Fを上回ることにより、ロードセンシング弁7が、可動斜板1aの傾倒角度を減少させる方向に作動し、油圧ポンプ1の吐出流量Qを低減し、油圧アクチュエータへの供給流量を、その要求流量Qに見合う値にまで低減する。これにより、作動油の過剰供給量を低減することができる。
ここで、例えばそれぞれのレバー操作量(各方向制御弁のスプールストローク)が最大(すなわち、各方向制御弁のメータイン絞りの開度が最大)であっても、操作対象となる油圧アクチュエータによって、要求流量Qには差がある。例えば、ブーム16を回動するためのブームシリンダ20の要求流量は高いものとなっている一方、旋回台12を回動するための旋回モータ25の要求流量は、さほど高くない。
このように、個々のアクチュエータの要求流量が違っても、前述の如くロードセンシング弁7における前記差圧ΔPをバネ7aのバネ力Fにて規定される差圧(目標差圧)にするよう可動斜板1aの傾倒角度が制御されることで、油圧ポンプ1は、それぞれの方向制御弁にて規定される要求流量に見合う流量の油を供給する。すなわち、全アクチュエータについて、要求流量Qに対する供給流量Qの比率(Q/Q)(以下、「供要流量比」と称する)が1となることを目標として(以下、この目標値を「目標供要流量比Rq」とする)、油圧ポンプ1の可動斜板1aの傾倒角度(ポンプ容量)が制御される。
一方、可動斜板1aの傾倒角度を一定にしている場合、油圧ポンプ1の吐出流量Qは、目標エンジン回転数Nの変化に伴って変化する。
ここで、エンジン回転数の変化とは関係なくロードセンシング弁7における目標差圧ΔPが前記のバネ力Fにて規定される規定差圧ΔPである(すなわち、全エンジン回転数域において、全アクチュエータの駆動について、目標供要流量比Rqが1(Rq=1)となることを目標にポンプ1の可動斜板1aが制御される)ことを前提として、ブーム操作レバー30aの操作量を最大にしてのブーム16の回動と、旋回操作レバー35aの操作量を最大にしての旋回台12の回動とを交互に行う場合の供給流量特性について、図3を用いて考える。
図3は、油圧アクチュエータの操作のために設定されてある目標エンジン回転数Nの領域全体にわたっての油圧アクチュエータの供給流量Qの特性(ここではブームシリンダ20への供給流量Qb及び旋回モータ25の供給流量Qsの特性)を示しており、この目標エンジン回転数Nの領域は、ローアイドル回転数Nを最低値とし、ハイアイドル回転数Nを最大値とするものとなっている。また、可動斜板1aの傾倒角度について、ハイアイドル回転数Nでのエンジン駆動時(以下、「ハイアイドル回転時」とする)に操作されるものをΘNHとし、ローアイドル回転数Nでのエンジン駆動時(以下、「ローアイドル回転時」とする)に操作される場合のものをΘNLとしている。
図3には、可動斜板1aが最大傾倒角度位置にある場合に得られるポンプ吐出流量Qの最大量QPMAX(以後、最大吐出流量QPMAXとする)の、前記エンジン回転数領域にわたっての変化を示している。一方、供給流量Qは実際に方向制御弁を介して各アクチュエータに供給される流量であって、各アクチュエータを単独で駆動する限りは、その駆動ごとに、負荷感知式ポンプ制御システム5により油圧ポンプ1の吐出流量Qがその要求流量Qに見合うように制御されるので、結果的には吐出流量Q=供給流量Qとなる。以下の説明は、このことを前提としているものとする。
まず、目標差圧ΔPが規定差圧ΔPに定められている限り、各アクチュエータが操作されるごとに、その要求流量Qを満たすようにポンプ1からの吐出油を供給すべく、すなわち、目標供要流量比Rq=1として、可動斜板1aの傾倒角度が制御される。
ここで、ブーム操作レバー30aの操作量を最大にした場合のブームシリンダ20の要求流量Qbは、方向制御弁30のメータイン絞りの最大開口面積SMAX(図7参照)によって決定されるところ、この要求流量Qbは、ハイアイドル回転時におけるポンプ最大吐出流量QPHMAXよりも少ないため、ハイアイドル回転時におけるブーム16駆動時の可動斜板1aの傾倒角度Θb1は、最大傾倒角度ΘMAX以下である(本実施例では傾倒角度ΘMAXよりも小さい)。すなわち、ハイアイドル回転時において、ブームシリンダ20への供給流量Qbは要求流量と同じQbとなる。すなわち、ハイアイドル回転時には、ブームシリンダ20への供給流量Qbが最大値となり、このときのブーム16の駆動速度が、その最大駆動速度となる。
しかし、ブーム操作レバー30aの操作量を最大値に維持している限り、ブームシリンダ20の要求流量Qbは一定である一方、その要求流量Qbが、全アクチュエータの中でも高いものなので、目標エンジン回転数Nがハイアイドル回転数Nより低下するにつれ、最大吐出流量QPMAXが低下すると、やがて(図3において、目標エンジン回転数NがNとなる時点)、最大吐出流量QPMAX自体がブームシリンダ20の要求流量Qbと同じになる。目標エンジン回転数NがNからNに低下する間に、負荷感知式ポンプ制御システム5は、ブームシリンダ20の目標供要流量比Rq(=1)を実現すべく、可動斜板1aの傾倒角度を増大し、目標エンジン回転数N=Nの時点で、この可動斜板1aの傾倒角度が、最大角度ΘMAXに達することとなる。
さらに、目標エンジン回転数NがNを下回り、ローアイドル回転数Nまで低下する間は、最大吐出流量QPMAXがブームシリンダ20の要求流量Qbを下回り、結果的に、エンジン回転数の低下に伴って、ブームシリンダ20への供給流量Qbが最大吐出流量QPMAXと重なって低減する。この供給流量Qbの低下に伴って、ブームシリンダ20の作動速度、すなわち、ブーム16の駆動速度が低下することとなる。
一方、旋回操作レバー35aの操作量を最大にした場合の旋回モータ25の要求流量Qsは、方向制御弁35のメータイン絞りの最大開口面積SMAX(図7参照)によって決定され、その要求流量Qsを満たすべく、ハイアイドル回転時には、油圧ポンプ1の可動斜板1aが傾倒角度Θs1に配され、旋回モータ25をその最大速度で作動し、すなわち、旋回台12をその最大速度で旋回する。したがって、ハイアイドル回転時には、ブーム操作レバー30aの操作量を最大にしてのブームシリンダ20の駆動と、旋回操作レバー35aの操作量を最大にしての旋回モータ25の駆動とを交互に行うことで、ブーム16も旋回台12も、それぞれの最大駆動速度で回動する。
しかし、旋回操作レバー35aの操作量を最大にしての旋回モータ25の要求流量Qsがブーム操作レバー30aの操作量を最大にしてのブームシリンダ20の要求流量Qbよりもかなり低く、ハイアイドル回転時に、可動斜板1aの傾倒角度Θは、前記のブーム操作レバー30aを最大操作量としてのブームシリンダ20の操作時における傾倒角度Θb1よりもかなり小さいものとなっており、最大傾倒角度ΘMAXまでかなりの傾動許容幅を有している。
したがって、旋回操作レバー35aが最大操作量に保持されつつ、ハイアイドル回転数Nから目標エンジン回転数Nが低下する間、目標供要流量比Rq=1とした負荷感知式ポンプ制御システム5のポンプ制御により、供給流量Qsが前記要求流量Qsを満たすよう、可動斜板1aの傾倒角度Θが角度増大側に傾動されるが、この傾動許容幅が大きいため、目標エンジン回転数Nがローアイドル回転数Nまで低下して、可動斜板1aが最大限に角度増大側に傾動されて傾倒角度Θs2まで達した状態でも、なお最大傾倒角度ΘMAXまでに至ることはない。したがって、このローアイドル回転数Nまで目標エンジン回転数Nが低下する間、旋回モータ25への供給流量Qbは要求流量Qbを満たしており、旋回モータ25の作動速度は前記最大速度のままであり、旋回台12の旋回速度も前記最大速度のままである。
このように、ブーム16のローアイドル回転時の駆動速度がハイアイドル回転時のそれよりも低下している一方で、旋回台12のローアイドル回転時の駆動速度がハイアイドル回転時のままに保たれているという状況において、オペレータが、エンジンEをローアイドル回転数Nで駆動していることで想定されるゆっくりとした速度でブーム16を回動してから、つづけて旋回台12を回動作業に移行したときに、その回動速度が想定していたよりも速くて、作業がやりづらいものとなる。また、旋回台12を微小な速度で動作させたい場合であっても、エンジン回転数の低減では旋回台12の旋回速度が変化しないため、旋回操作レバー35aの調整によってしか速度を調整できず、旋回の微操作をしにくい機械となる。
そこで、目標エンジン回転数Nの低下量に見合うように全アクチュエータについての目標供要流量比Rqを一定の比率で低減させて、負荷感知式ポンプ制御システム5によるポンプ制御を行うことで、それぞれの操作時における各アクチュエータへの供給流量Qが、要求流量Qの大小と関係なく、当該目標エンジン回転数Nの低下量に見合うよう一律に低減され、したがって、各アクチュエータにて駆動される各駆動部の駆動速度を一律に低下させることができる。
例えば、前述の如くブーム16の回動と旋回台12の回動とを交互に行う場合には、ローアイドル回転時において、ブーム16の回動がハイアイドル回転時に比べて遅くなったのと同等の感覚で、旋回台12の回動を遅くすることができ、ブーム16の回動に対して相対的に旋回台12の回動が速く感じられるという不具合を解消することができる。
また、このようなポンプ制御により、エンジン回転数の低下とともに旋回モータ25の駆動速度が低下するので、目標供要流量比Rq=1が固定されてポンプ制御されるときは不可能であった、エンジン回転数を増減させての旋回モータ25の微速調整による旋回台12の微妙な位置調整も可能となる。
このようにエンジン回転数の低下に応じて全アクチュエータの目標供要流量比Rqを低下するための手段として、負荷感知式ポンプ制御システム5においては、ポンプ制御比例弁8としての電磁比例弁が設けられており、ロードセンシング弁7にポンプ制御比例弁8からの油をパイロット圧油として供給する。この油の有するロードセンシング弁7の二次圧が、最大負荷圧Pに抗するようにロードセンシング弁7に付加される制御圧Pである。
制御圧Pを加えた分、バネ力Fと均衡するのに要する吐出圧Pと最大負荷圧Pとの差圧、すなわち目標差圧ΔPは減少する。したがって、制御圧Pを高めるほどロードセンシング弁7が可動斜板1aの傾倒角度減少側に働き、油圧ポンプ1の吐出流量を低減する。
前記制御圧Pは、電磁比例弁であるポンプ制御比例弁8のソレノイド8aに印加される電流値によって決まる。これを第一制御出力値C1とする。そこで、各油圧アクチュエータの方向制御弁について、その手動操作具の操作量に対する該油圧アクチュエータの要求流量の相関を、エンジン回転数ごとに想定し、こうして想定した相関を実現するように、エンジン回転数に対応する第一制御出力値C1の相関マップを作成し、ポンプ制御比例弁8に対する制御出力値を制御するコントローラの記憶部にこのマップを記憶させておくことで、前述の如く、エンジン回転数の変化に対応する全油圧アクチュエータの供要流量比の制御(すなわち、複数のアクチュエータの駆動速度がエンジン回転数に応じて同じ比率で低減する制御)が可能となる。このマップに基づき、本来は1であるべき全油圧アクチュエータの供要流量比の目標値を、エンジン回転数の低下に応じて低下させる制御を、「減速制御」と称するものとして、以下、説明する。
掘削旋回作業機10には、図2及び図4に示すように、第一制御出力値C1を決定するように構成されたコントローラ50が設けられている。コントローラ50の備える記憶部51に、全アクチュエータを対象とする目標エンジン回転数Nに対応する第一制御出力値C1の相関を示す制御出力値マップM1(図5(a)参照)が記憶されている。
なお、記憶部51に記憶された制御出力値マップM1は、掘削旋回作業機10においていくつか設定可能となっている作業モードごとに用意されており、設定された作業モードに対応して制御出力値マップM1が選択される。目標エンジン回転数Nが設定されると、その値が、選択された制御出力値マップM1にあてはめられて、第一制御出力値C1が決定される。
図5〜図7にて、「減速制御」に関しての、第一制御出力値C1のマップとそのマップに基づくポンプ制御の態様について説明する。
図5(a)は、目標エンジン回転数Nをハイアイドル回転数Nからローアイドル回転数Nまで低下させるに連れての第一制御出力値C1の変化を示す制御出力値マップM1を示している。なお、ここでは、前述の如く掘削旋回作業機10において設定可能ないくつかのモードごとに用意されたマップ群の中の代表的な制御出力値マップM1の構成について説明する。
制御出力値マップM1は、ハイアイドル回転時の第一制御出力値C1を最小値C1(ポンプ制御比例弁8の二次圧(制御圧P)を0とする値)とし、ローアイドル回転時の第一制御出力値C1を最大値C1MAXとしており、ハイアイドル回転数Nからローアイドル回転数Nまで目標エンジン回転数Nを低下させるにつれ、第一制御出力値C1を増加するものとしている。
図5(b)及び図5(c)は、制御出力値マップM1に基づき目標エンジン回転数Nの変化に対応してポンプ制御比例弁8の第一制御出力値C1(ソレノイド8aへの印可電流値)を変化させた場合の、ロードセンシング弁7にかかる圧力の変化を示すものであって、図5(b)は、ポンプ制御比例弁8の二次圧、すなわち、制御圧Pの変化を示し、図5(c)は、吐出圧Pと最大負荷圧Pとの差圧ΔPの目標値、すなわち目標差圧ΔPを示す。
ハイアイドル回転時に、第一制御出力値C1が最小値C1であることにより、制御圧Pは0である。したがって、目標差圧ΔPは、ロードセンシング弁7のバネ力Fと等しい規定差圧ΔPである。ハイアイドル回転数Nからローアイドル回転数Nに目標エンジン回転数Nを低下させるにつれ、第一制御出力値C1の増加により、制御圧Pが増加し、その分、目標差圧ΔPは減少する。ローアイドル回転時の目標差圧ΔPを最小目標差圧ΔPMINとする。
図6は、エンジン回転数の変化に対応する油圧アクチュエータへの供給流量特性に現れる減速制御の効果を示す図であって、要求流量の異なる二つの油圧アクチュエータ(ここでは、ブームシリンダ20及び旋回モータ25とする)を交互に(すなわち、それぞれ単独で)操作する作業状態を想定したものであり、要求流量が高いブームシリンダ20を駆動する場合のポンプ供給流量Qbのグラフと、要求流量の低い旋回モータ25を駆動する場合の供給流量Qsのグラフとを示している。また、図3と同様に最大吐出流量QPMAXのグラフを描いている。なお、それぞれ、その操作レバー30a・35aの操作量を最大(各方向制御弁30・35のスプールストロークSを最大値SMAX)にしたときのもの、すなわち、それぞれの要求流量Qb・Qsを最大としたときのものとする。また、前述のとおり、可動斜板1aの傾倒角度について、ハイアイドル回転時のものをΘNH、ローアイドル回転時のものをΘNLとしている。
まず、ハイアイドル回転時(N=N)には、ポンプ制御比例弁8の第一制御出力値C1を最小値C1とし、ロードセンシング弁7に制御圧Pをかけない(すなわち、規定差圧ΔPを目標差圧ΔPとする)ので、各アクチュエータについて、目標供要流量比Rq=1として、可動斜板1aが制御される。したがって、図3で説明したハイアイドル回転時の場合と同様に、ブームシリンダ20の駆動時には可動斜板1aが傾倒角度Θb1に達して供給流量Qbが要求流量Qbを満たし(Qb=Qb)、ブーム16をその最大速度で駆動する一方、旋回モータ25の駆動時には可動斜板1aが傾倒角度Θs1に達して供給流量Qsが要求流量Qsを満たし(Qs=Qs)、旋回台12をその最大速度で旋回する。
一方、ローアイドル回転時(N=N)には、ポンプ制御比例弁8の第一制御出力値C1が最小値C1よりも大きなC1MAXとなり、ロードセンシング弁7に制御圧Pがかかり、目標差圧ΔPは、規定差圧ΔP−制御圧Pとなって、ハイアイドル回転時よりも減少する。これにより、各アクチュエータの目標供要流量比Rqを、ハイアイドル回転時の目標値1よりも小さい値とする。ここでは、ローアイドル回転時の目標供要流量比RqをRqとする場合に、Rq=N/Nとする。したがって、ブームシリンダ20の駆動時に、可動斜板1aの傾倒角度ΘNLはΘb2に抑えられ、供給流量QbLはQb×N/Nに低減する一方、旋回モータ25の駆動時に、可動斜板1aの傾倒角度ΘNLは、減速制御がなければΘs2まで傾倒可能であるところを、それより小さなΘs3に抑えられ、供給流量QsLはQs×N/Nに低減する。このように、ブームシリンダ20も旋回モータ25も、ハイアイドル回転数からローアイドル回転数にエンジン回転数が低下するのに伴って、供給流量Qが同じ比率で低下し、それぞれの駆動速度も同じ比率で低下する。
さらには、ハイアイドル回転数Nとローアイドル回転数Nとの間の任意エンジン回転数NでエンジンEが駆動されるときは、各アクチュエータ駆動時における目標供要流量比RqをN/Nとする。任意エンジン回転数Nは、ローアイドル回転数Nに近いほど小さくなる数値であり、したがって、ローアイドル回転数Nに向かって目標エンジン回転数Nが下がるほど各アクチュエータ駆動時における目標供要流量比Rqが低下する。
なお、任意エンジン回転数Nに対応する目標供要流量比RqをN/Nとするのは、目標エンジン回転数Nの低下に伴って各アクチュエータの駆動時の供給流量Qの低下態様を、エンジン回転数の低下なりに合わせるものとするための一実施例であり、これとは異なる数値としてもよい。重要なのは、ハイアイドル回転数Nからの目標エンジン回転数Nの低下とともに目標供要流量比Rqが低下するものであり、全アクチュエータについて、各アクチュエータの駆動時ごとにそのエンジン回転数の低下に合わせての目標供要流量比Rqの低減効果が得られることである。
ここで、図3で説明したように、ブーム操作レバー30aの操作量を最大にした状態の要求流量Qbが大きいブームシリンダ20については、エンジン回転数の変化にかかわらず目標差圧ΔPを変えない(目標供要流量比Rq=1を保持する)場合、目標エンジン回転数Nの低下に伴う供給流量Qbの低下が、ほぼ、目標エンジン回転数Nの低下に伴う最大吐出流量QPMAXの低下によるものとなっている。そして、図6を見ると、ブーム操作レバー30aの操作量を最大にしてのブームシリンダ20についての供給流量Qbを、任意エンジン回転数Nに対応してQb×N/Nとする場合、エンジン回転数の低下に伴っての供給流量Qbの低下態様が、概ね最大吐出流量QPMAXの低下態様に沿ったものであることがわかる。
一方、旋回操作レバー35aの操作量を最大にした状態の要求流量Qsが小さい旋回モータ25については、図3で説明したように、エンジン回転数の変化にかかわらず目標差圧ΔPを変えない(目標供要流量比Rq=1を保持する)場合、ハイアイドル回転数Nからローアイドル回転数Nまでの目標エンジン回転数Nの全域にわたって、供給流量Qsが要求流量Qsを満たす量に保持されているところ、図6を見ると、旋回操作レバー35aの操作量を最大にしての旋回モータ25についての供給流量Qsを、任意エンジン回転数Nに対応してQs×N/Nとすることで、エンジン回転数の低下に伴って、そのエンジン回転数の低下なりに供給流量Qsが低下するものであることがわかる。
このように、エンジン回転数の低下に伴って図5(a)に示す第一制御出力値C1を増加させることによる目標供要流量比Rqの低減効果は、見た目には、要求流量の小さいアクチュエータについて、今までエンジンの低回転時でも要求流量を満たすように保持されていた供給流量が低減されるので、その効果が顕著に表れるものであり、要求流量の大きいアクチュエータについては、エンジン回転数の低下に伴っての供給流量の低減態様が、最大吐出流量QPMAXの低下によるものと似たものであるため、その効果が明らかには表れないが、図5(a)〜図5(c)に見られる第一制御出力値C1、制御圧P、及び目標差圧ΔPの、エンジン回転数の変化に対応した制御の効果が、ブームシリンダ20のように要求流量の大きい油圧アクチュエータにも得られているのにはかわりなく、すなわち、全アクチュエータについて、それぞれの駆動時に、エンジン回転数に対応した目標供要流量比Rqの低減による駆動速度の低減効果を得られるものである。
この結果として、全アクチュエータについて、それぞれのレバー位置を変えない状況において、エンジンの回転数の低下に伴い、一律の態様で(例えばエンジン回転数の低下なりに)駆動速度が低下し、低エンジン回転数でのエンジン駆動下においていずれかのアクチュエータの駆動が他のアクチュエータに相対して速く感じられてしまうという事態を回避している。
また、旋回モータ25のように要求流量の小さいアクチュエータの場合には、目標供要流量比Rq=1に固定されていた場合には不可能だったエンジン回転数を変化させてのアクチュエータの微速調整が可能となる。
エンジン回転数の変化に対応した減速制御に関連して、図7では、ある油圧アクチュエータについてのレバー操作量、すなわち、その方向制御弁のスプールストロークSに対する要求流量Qおよび供給流量Qの特性を示している。
要求流量Qは、スプールストロークSが増大するにつれ増大し、最大ストロークSMAXで最大値QRMAXとなる。ハイアイドル回転時のように、減速制御による制御出力がない場合には、要求流量Qがポンプの最大吐出流量QPMAXを上回らない限り、供要流量比が1となり、供給流量Qは要求流量Qと一致する。
一方、ローアイドル回転時の供給流量Qは、減速制御の効果によって、要求流量Qに、1未満の一定の比率(前述の実施例ではN/N)を乗じた量となる。すなわち、スプールストロークSが最大ストロークSMAXの場合は、QLMAX=QRMAX×N/Nとなる。この対応関係は操作量(スプールストロークS)の状態に関わりなく保持され、減速制御が適用されている状態であっても、ローアイドル回転時のポンプの供給流量Qはレバー操作量の増大とともに増大し、アクチュエータの作動速度も増大する。
ここで、図4に示すコントローラ50の構成について詳述する。
図4に示すように、コントローラ50には記憶部51及び演算部52が備えられている。記憶部51には、前述の図5(a)に示す如き目標エンジン回転数Nに対する第一制御出力値C1の相関を示す制御出力値マップM1を記憶している。演算部52内には負荷感知(ロードセンシング)演算部53が備えられており、負荷感知演算部53に、目標エンジン回転数検出部S1にて検出した目標エンジン回転数Nが入力され、負荷感知演算部53にて、目標エンジン回転数Nを制御出力値マップM1に当てはめて第一制御出力値C1を決定する。
演算部52にはさらに、エンジン速度感知(エンジンスピードセンシング)演算部54が備えられている。これはPID制御部であり、実エンジン回転数が、目標エンジン回転数Nに対応する基準エンジン回転数を下回っているか否かを判断し、実エンジン回転数が基準回転数よりも低下していることを検知すると、第二制御出力値C2を算出し、この第二制御出力値C2と負荷感知演算部53にて算出した第一制御出力値C1と合算して、第三制御出力値C3を算出し、この第三制御出力値C3に相当する指令電流Ceをポンプ制御比例弁8のソレノイド8aに印加することで、油圧ポンプ1の吐出流量Qを下げて、エンジンストールを回避するとともに、実エンジン回転数を基準エンジン回転数に一致させるものである。なお、目標エンジン回転数Nに対応する基準エンジン回転数のマップを記憶部51に記憶しておき、エンジン速度感知演算部54では、このマップにて決定した基準エンジン回転数をもとに第二制御出力値C2を算出するものとしてもよい。
以上のように、コントローラ50の演算部52においては、負荷感知演算部53にて算出された第一制御出力値C1と、エンジン速度感知制御部54にて算出された第二制御出力値C2とを加算器55にて合算して、第三制御出力値C3を生成する。さらにコントローラ50では、外部コントローラ60よりコントローラ50への後述の補正率Rの入力があったときに、補正回路56において、この補正率Rを第三制御出力値C3に乗じて、指令電流Ceの値を算出する。こうして最終的に決定された指令電流Ceがポンプ制御比例弁8のソレノイド8aに印加される。
なお、ポンプ制御比例弁8の制御圧Pは第三制御出力値C3を補正して生成される指令電流Ceに対して非線形となるので、コントローラ50より出力される指令電流Ceと制御圧Pが略線形の関係となるように、補正回路56に入力する前の第三制御出力値C3を、線形化マップ(図4では図示せず)に通して補正するものとしてもよい。
外部コントローラ60から入力される補正率Rとは、負荷感知式ポンプ制御システム5を備えた掘削旋回作業機10における油圧アクチュエータの作動誤差が発見された場合に、前述の如く第三制御出力値C3、あるいは第三制御出力値C3を前記線型化マップに通して補正したもの(以下、「第三制御出力値C3」とは、線形化マップに通して補正したものを含むものとする)を補正するものとして、外部コントローラ60にて算出されるものである。したがって、補正回路56での上記演算は、主には、掘削旋回作業機10の、最初の作業の間に行われるテストで誤差が発見された場合のように、限られた時期や場面でのみ行われるものであり、通常は第三制御出力値C3のままの指令電流Ceがソレノイド8aへと印加されることとなる。
以上のように、最終的に決定された指令電流Ceは、負荷感知演算部53の演算結果である第一制御出力値C1とエンジン速度感知制御部54の演算結果である第二制御出力値C2を合算した第三制御出力値C3に基づいて演算されており、外部コントローラ60にて決定された補正率Rは、コントローラ50にて、第三制御出力値C3に乗じられ、最終の指令電流Ceの値を演算する。
後に詳述するように、掘削旋回作業機10は、負荷感知(ロードセンシング)式ポンプ制御システム5を採用しているので、ポンプ制御比例弁8の対電流二次圧特性の誤差、及び、目標差圧ΔPの決定のもととなるロードセンシング弁7のバネ7aの誤差が合わさって、掘削旋回作業機10のポンプ吐出流量Qについての個体差(個々の掘削旋回作業機10同士の間でのポンプ制御精度のばらつき)が大きくなり、さらに、各方向制御弁のスプールの寸法誤差が合わさることで、各油圧アクチュエータにおける駆動速度の個体差(各油圧アクチュエータについての個々の掘削旋回作業機10同士の間での駆動速度の制御精度のばらつき)も大きくなるという事情がある。補正率Rは、このような事情を考慮して決定される。
ここで、負荷感知式ポンプ制御システム5に特有の個体差のばらつきは、負荷感知演算部53にて算出する「減速制御用」の第一制御出力値C1に影響するので、補正率Rを第一制御出力値C1に乗じることも考えられる。
しかし、本実施例に係る掘削旋回作業機10では、前述の如きPID制御部としてのエンジン速度感知演算部54が負荷感知式ポンプ制御システム5のコントローラ50に組み込まれており、前述の如き個体差の影響がエンジン速度感知演算部54にて算出する第二制御出力値C2にも及ぶ。
すなわち、基準エンジン回転数を下回る実エンジン回転数の低下が検出されてエンジン速度感知演算部54が第二制御出力値C2を算出し、これと第一制御出力値C1とを合算した第三制御出力値C3に基づき、ポンプ制御比例弁8が制御される状態において、ポンプ制御比例弁8の電流に対する二次圧が設計値よりも低圧の側に誤差を有する場合、負荷感知式ポンプ制御システム5の目標差圧ΔPは設計値ほど低下せず、油圧ポンプ1の吐出流量Qがあまり低減されず、油圧アクチュエータの駆動速度が充分に遅くならない。すなわち、エンジン速度感知演算部54で前記第二制御出力値C2を算出したことによるポンプ制御(以下、これを「エンジン速度感知制御」とする)の効果が充分でなく、エンジンEの回転ダウン量が設計以上に大きくなる。
また、前述の如きエンジン回転数の低下が検出されてエンジン速度感知演算部54における第二制御出力値C2の算出が行われる状態において、反対に、ポンプ制御比例弁8の電流に対する二次圧が設計値よりも高圧の側に誤差を有する場合、負荷感知式ポンプ制御システム5の目標差圧は設計値よりも低下し、油圧ポンプ1の吐出流量Qが必要以上に低減されてしまって、掘削旋回作業機10の走行速度や各油圧アクチュエータの駆動速度が遅くなりすぎる。すなわち、エンジン速度感知制御の効果が過大となり、エンジンEがハンチングすることが懸念される。
すなわち、前述の「減速制御」による効果のばらつきを低減するとともに、このような、ポンプ制御比例弁8の対電流二次圧特性の個体差に起因するエンジン速度感知制御の効果のばらつきをも低減するため、「減速制御」用の第一制御出力値C1と、エンジン速度感知制御用の第二制御出力値C2とを合算した第三制御出力値C3を補正するものとしており、第三制御出力値C3に補正率Rを乗じて、ポンプ制御比例弁8のソレノイド8aに印加される指令電流Ceを決定するものとしている。
このような構成とすることで、掘削旋回作業機10の油圧アクチュエータの駆動速度のばらつきとなって現れる減速制御の効果のばらつきを低減するだけでなく、エンジンの挙動のばらつきとなって現れるエンジン速度感知制御の効果のばらつきも平準化することができる。
ここで、図8及び図9により、負荷感知式ポンプ制御システム5を用いての油圧アクチュエータの速度制御において発生し得る誤差について説明する。
なお、ここでは、ロードセンシング弁7にある値の制御圧Pがかけられて油圧ポンプ1の吐出流量Qをある値に制御した場合における走行モータ23・24の駆動速度に見られる誤差について説明する。また、以下の説明では「制御出力値C」という語句を用いるが、これは、前述の第三制御出力値C3に該当するものである。すなわち、前記基準エンジン回転数を下回るような実エンジン回転数の低下がなければ、制御出力値マップM1に基づき負荷感知演算部53で決定した第一制御出力値C1に該当し、このような実エンジン回転数の低下が検出された場合には、第一制御出力値C1と、エンジン速度感知演算部54にて算出した第二制御出力値C2とを合算したものに該当する。
図8は、走行モータ23・24の駆動により得られる掘削旋回作業機10の走行速度TVの制御出力値Cに対する特性を記しており、グラフTVrは、設計上の走行速度特性を示している。なお、走行操作レバー33a・34aが最大量操作されているときのものとする。制御出力値Cに関しては、Cがハイアイドル回転時の制御出力値、Cがローアイドル回転時の制御出力値、Cが、ハイアイドル回転数とローアイドル回転数との間の中間回転数でのエンジン駆動時(以下、「中間速回転時」)の制御出力値である。
ハイアイドル回転時の制御出力値Cは、制御圧Pを発生させない値、すなわち、制御出力値Cの最小値としている。ローアイドル回転時には、制御出力値Cをポンプ制御比例弁8にかけて、制御圧Pを発生させることで、可動斜板1aの位置が、最大傾倒角度まで余裕のある位置であっても、その傾倒角度を小さく抑えて、ポンプ吐出流量Qを下げ、走行速度TVを低速にするものとしている。
中間速回転時の制御出力値Cは、ハイアイドル回転時の制御出力値Cとローアイドル回転時の制御出力値Cとの間の値となっている。このとき、走行モータ23・24の回転速度は、ハイアイドル回転時の回転速度と、ローアイドル回転時の回転速度との間の中間速度となり、走行操作レバー33a・34aの操作量を最大にしての掘削旋回作業機1の走行速度TVは、ハイアイドル回転時の走行速度TVよりも低く、ローアイドル回転時の走行速度TVよりも高いものとなる。
本実施例では、中間速回転時の走行モータ23・24の供要流量比の目標値は可動斜板1aを最大傾倒角度よりも小さい傾斜角度に配したときに達成されるものであり、走行モータ23・24の回転速度が前記中間速度になるのは、可動斜板1aを、ハイアイドル回転時の傾倒角度と、ローアイドル回転時の傾倒角度との間の傾倒角度に配して油圧ポンプ1を駆動することに依拠しているものとする。
一方、図8は、制御出力値Cと走行モータ23・24へのポンプ流量比Qrとの関係を示しており、設計上の供給流量比の特性をグラフQrにて表している。ここで、ポンプ流量比Qrとは、走行操作レバー33a・34aの操作量を最大にして制御出力値Cを0としたときの、走行モータ23・24への設計上の供給流量Qrの最大値を1としての流量比である。
そして、図8には、走行モータ23・24を駆動する上で、それぞれの誤差要因に基づく公差範囲内での走行速度TVの最大誤差の、設計上の走行速度TVrに対する比率(以下、「最大誤差比」と称する)が示されている。
まず、走行モータ23・24には、図2に示すように、方向制御弁33・34内のメータイン絞りを通して圧油が供給されるため、これらのメータイン絞りの開度(開口面積)について誤差が生じ得る。このような誤差により、走行操作レバー33a・34aに対するメータイン絞りの開度の関係についてばらつきが生じると、それは、走行モータ23・24への供給流量の個体差となり、掘削旋回作業機10の走行速度TVの個体差となる。
図8では、方向制御弁33・34のメータイン絞りの開度(開口面積)の誤差を要因とする走行速度TVの、速度増大側(ポンプ吐出流量増大側)の最大誤差比を「ud1」、速度減少側(ポンプ吐出流量減少側)の最大誤差比を「dd1」として表している。
さらに、ロードセンシング弁7の機能によりポンプ吐出流量Qが、可動斜板1aが最大傾転角ΘMAXにあるときのポンプ1の吐出流量の最大値よりも小さな値に低減されている場合、ロードセンシング弁7のバネ7aの構造に誤差があれば、それは目標差圧ΔPの設定誤差となり、ポンプ吐出流量Qの増減につながるものであり、走行モータ23・24の場合には、その影響が、走行速度TVの増減となる。
図8では、ロードセンシング弁7における目標差圧ΔPの誤差を要因とする走行速度TVの、速度増大側(ポンプ吐出流量増大側)の最大誤差比を「ud2」、速度減少側(ポンプ吐出流量減少側)の最大誤差比を「dd2」として表している。
つまり、図8の走行速度TVで見た場合、メータイン絞りの開度の公差で、速度増大側がud1、速度減少側がdd1の最大誤差比内で収まっていた走行速度TVのぶれが、ロードセンシング7における差圧設定上の公差(バネ7aの性能公差)による増減分が加わることで、設計上の走行速度TVrからの速度増大側には最大誤差比ud1+ud2のぶれ、設計上の走行速度TVからの速度減少側には最大誤差比dd1+dd2のぶれが、走行速度TVに生じ得る。
ここで、図9で見ると、制御出力値Cが0のときの設計上の吐出流量比Qrについて、方向制御弁33・34のメータイン絞り開度の公差範囲内での最大誤差と、ロードセンシング弁7における目標差圧(バネ7a)の公差範囲内での最大誤差とを合わせて、設計上の流量比1から増大側に最大でΔQru、減少側に最大でΔQrdのぶれが生じることとなる。
さらに、ロードセンシング弁7に制御圧Pが付加されている状態であれば、ポンプ制御比例弁8の二次圧(制御圧P)と、ソレノイド8aにかかる指令電流Ceとの関係(電流−二次圧特性)について誤差が生じ得る。
図8では、ポンプ制御比例弁8の電流−二次圧特性の誤差を要因とする走行速度TVの、速度増大側(ポンプ吐出流量増大側)の最大誤差比を「ud3」、速度減少側(ポンプ吐出流量減少側)の最大誤差比を「dd3」として表している。
つまり、設計上の走行速度TVrからの速度増大側には、前記の最大誤差比ud1+ud2にさらに電流−二次圧特性の公差による最大誤差比ud3が加わり、設計上の走行速度TVからの速度減少側には、前記の最大誤差比dd1+dd2にさらに電流−二次圧特性の公差による最大誤差比dd3が加わる。
このように、方向制御弁のメータ絞り、ロードセンシング弁7の差圧設定(すなわちバネ7aの特性)、ポンプ制御比例弁8の電流−二次圧特性の、それぞれについては、誤差が公差内であっても、これらの誤差が積み重なってポンプ吐出流量の特性に現れるので、その結果、複数の掘削旋回作業機10を製造した場合における個々の製品間での負荷感知式ポンプ制御によるポンプ吐出流量の特性のばらつきが非常に大きなものとなる。走行モータ23・24の場合、それが、走行速度TVの特性のばらつきとなって現れる。
ここで、図8において、前記三つの誤差要因が合わさっての、任意回転数でのエンジン回転時における設計上の走行速度TVrからの速度増大側の最大誤差比をUD、速度減少側の最大誤差比をDDとし、特に、ハイアイドル回転時における設計上の走行速度TVrからの速度増大側の最大誤差比をUD、速度減少側の最大誤差比をDDとし、一方、ローアイドル回転時における設計上の走行速度TVrからの速度増大側の最大誤差比をUD、速度減少側の最大誤差比をDDとする。
ロードセンシング弁7のバネ7aの公差に基づく目標差圧ΔPの誤差に由来する走行速度TVの最大誤差比ud2・dd2、及び、ポンプ制御比例弁8の電流−二次圧特性の公差による走行速度TVの最大誤差比ud3・dd3について説明する。
まず、この図8に示す走行速度TVの減少は、制御出力値C及び制御圧Pの増大による目標差圧ΔPの減少によるものである。すなわち、走行速度TVの最大誤差比ud2・dd2、ud3・dd3の分母となる設計上の走行速度TVrは、制御圧Pの増大による目標差圧ΔPの減少とともに低くなる。
一方、ロードセンシング弁7のバネ7aの公差に基づく最大誤差比ud2・dd2の分子である走行速度誤差を生じさせるのは規定差圧ΔPの誤差であり、その誤差値は、制御圧P及び目標差圧ΔPの変化とは関係なく一定である。したがって、分母である設定上の走行速度TVrの減少に伴って、走行速度TVの最大誤差比ud2・dd2が増加するものであり、ハイアイドル回転時(制御圧Pが最小の時)に最小であり、ローアイドル回転時(制御圧Pが最大の時)に最大である。
また、ポンプ制御比例弁8の電流−二次圧特性の公差による走行速度TVの最大誤差比ud3・dd3の分子である走行速度誤差を生じさせるのは制御圧Pの誤差であり、その誤差値は、制御圧Pを増大させるほど、すなわち、走行速度TVを低減するほど、増大する。したがって、分母である設定上の走行速度TVrの減少に伴って、分子の誤差値が増大し、走行速度TVの最大誤差比ud3・dd3が増加するものであり、ハイアイドル回転時(制御圧Pが最小の時)に最小であり、ローアイドル回転時(制御圧Pが最大の時)に最大である。
一方、方向制御弁33・34のメータイン絞りを最大開度に固定した条件において、メータイン絞りの公差に由来する最大誤差比ud1・dd1は、規定差圧ΔPとも、制御出力値C及び制御圧Pとも無関係であり、制御出力値Cの変化による設計上の走行速度TVrの変化にかかわらず、一定である。したがって、図8においては、分母としての設計上の走行速度TVrが大きくなるほど、最大誤差比ud1・dd1の示すグラフの、設計上の走行速度TVrからのぶれ幅が大きくなる。
したがって、前記三つの誤差要因が合わさっての最大誤差比UD・DDについて見れば、設計上の走行速度TVrの減少に伴って増大するものとなっている。
この結果、ハイアイドル回転時の走行速度TVの、設計上の走行速度TVrに対する最大誤差比UD・DDよりも、ローアイドル回転時の走行速度TVの、設計上の走行速度TVrに対する最大誤差比UD・DDの方が大きく、例えば、ローアイドル回転時の走行速度TVの最大誤差比UD・DDがハイアイドル回転時の走行速度TVの最大誤差比UD・DDの二倍ほどのものとなることも考えられる。
図9では、制御出力値Cに対する流量比Qrの特性グラフQru・Qrdにて、設計上の流量比Qrからの、上述の3点(方向制御弁33・34のメータイン絞り、ロードセンシング弁7の負圧設定、ポンプ制御比例弁8の電流−二次圧特性)における公差による流量比Qrの最大ぶれ幅を示しており、グラフQruが増大側に最大限ぶれた状態の流量比の特性、グラフQruが減少側に最大限ぶれた状態の流量比の特性を示している。
制御出力値Cが0(最小値CMIN)のときに設計上の流量比からのぶれ幅がΔQru・ΔQrdであったものが、制御出力値Cが増大するにつれ、そのぶれ幅が広がっていることがわかる。この、最初のぶれ幅ΔQru・ΔQrdに加えて広がった分が、ロードセンシング弁7及びポンプ制御比例弁8についての上記の公差によるものである。
そこで、掘削旋回作業機10の個々のポンプ制御精度に関する誤差をみるため、ある油圧アクチュエータを駆動する際の該油圧アクチュエータへの供給流量またはこれに代替する数値を記憶しておき、実際にその油圧アクチュエータを駆動してその油圧アクチュエータへの供給流量またはこれに代替する数値を計測し、設計上の値と実測値との差に基づいて、制御出力値Cの補正率(補正係数)を算出し、その補正率により制御出力値Cを補正するということが考えられる。
ここで、制御出力値Cを最大値CMAXにし、制御圧Pを最大値にすることで、ロードセンシング弁7のバネ7a(目標差圧ΔPの設定)についての誤差及びポンプ制御比例弁8の電流−二次圧特性についての誤差が、油圧アクチュエータへの供給流量に最も大きく現れる。したがって、ロードセンシング弁7及びポンプ制御比例弁8についての誤差の影響を解消するように補正率を決定するには、制御出力値Cを最大値CMAXまたはその近傍の値にすることで図9に示す流量比Qrが最小値またはその近傍の値となるところで、設計上の流量比Qrからのぶれ幅を見て決定するのが最適ということになる。
図9のグラフQru・Qrdは、制御出力値Cがどの状態にあるときに補正係数を決定すれば、前述のロードセンシング弁7及びポンプ制御比例弁8の誤差によるぶれを解消する効果が高いのかを示している。QruとQruとの差が、流量比増大側のぶれの解消度、QrdとQrdとの差が、流量比減少側のぶれの解消度を示している。
制御出力値Cが0(最小値CMIN)のときには、QruとQruとの差、及びQrdとQrdとの差が、それぞれ0であり、これは、制御出力値Cが0のときのぶれを見て補正率を決定しても、このときにはロードセンシング弁7及びポンプ制御比例弁8の誤差の影響が流量比に現れていない(または影響が最小である)ので、その誤差の解消度は0である(または極めて小さい)ことを示している。
制御出力値Cを増やすほど、流量比Qrが減少する一方、ロードセンシング弁7及びポンプ制御比例弁8における誤差の影響が流量比に現れて、補正の効果が大きくなり、制御出力値Cが最大値CMAXとなって流量比Qrが最小値となるところで、QruとQruとの差、及びQrdとQrdとの差が最大となり、補正後の流量比を示すQru・Qrdは最も設計上の流量比Qrに近接する。
したがって、制御出力値Cを最大値CMAXまたはその近傍の値として、流量比Qrが最小値またはその近傍の値となるところで流量比を実測して補正率を決定するのが、ロードセンシング弁7及びポンプ制御比例弁8の誤差の影響を解消するのに最も効果的であることがわかる。
ここで、油圧アクチュエータへの実際の供給流量を測るには流量計等の手段が必要であるが、測定方法が複雑になるので、油圧アクチュエータへの実供給流量に代替する数値であって、簡単に計測が可能なものを計測することが望ましい。走行モータ23・24の場合には、走行モータ23・24への供給流量に代替する数値として、駆動スプロケット11bの回転数を実測することが考えられる。
図10は、走行モータ23・24のうちの一方への実供給流量に代替する駆動スプロケット11bの回転数の実測をもとに補正率を決定する行程を示している。まず、ブーム16・アーム17・バケット18を、クローラ11dの向く方向に対し、平面視で直角の方向に向け(図10は平面視ではないが、図10等の参照にて想像できるように)、バケット18を接地し、ポンプ1の駆動にてブーム16・アーム17を旋回台12に近づける側に駆動すると、バケット18より遠い側のクローラ11dは接地したまま、バケット18に近い側のクローラ11dが地面より浮き上がる。こうして、バケット18に近い側のクローラ11dと、それを巻装した駆動スプロケット11b及び従動スプロケット11cがジャッキアップされる。
こうしてジャッキアップされた駆動スプロケット11bを駆動する油圧アクチュエータである走行モータ23または走行モータ24(ここでは、図10に示すように、これが走行モータ24であることを前提に、以下、記述する)を、油圧ポンプ1からの吐出油の供給により駆動することで、その駆動スプロケット11b、地面から浮いた状態のクローラ11d、及び、このクローラ11dが巻回されている従動スプロケット11cが空転し、その回転速度を計測できる状態となる。
ここで、走行操作レバー34aの操作量を最大(すなわち、設定速度を最大)にして、走行モータ24を最大速度で回転するよう設定する一方で、エンジンEをローアイドル回転数にて駆動することで、最大の制御出力値Cが生成され、ポンプ吐出流量Qは最小値に抑えられる。このとき、走行モータ24への供給流量に代替する駆動スプロケット11bの回転速度が下止まりする。そこで、このときの駆動スプロケット11bの回転数を、携帯型の回転数計測装置66にて計測する。
また、掘削旋回作業機10とは別に用意された、すなわち、掘削旋回作業機10の外部に備えられた携帯型(例えばタブレットタイプ)のパーソナルコンピュータ(PC)65が、掘削旋回作業機10のコントローラ50と、ケーブル等にて接続されている。このPCの記憶部には、駆動スプロケット11bの回転速度の、走行操作レバー34aを最大量操作したときにおけるローアイドル回転時の最低値、すなわち、制御圧Pの付加によりポンプ吐出流量を最小値としたときの駆動スプロケット11bの回転速度の設計上の値を記憶している。
駆動スプロケット11bの実回転数の計測の後、USB接続等で回転数計測装置66の検出した駆動スプロケット11bの実回転数を示す信号を入力する。PC65における演算部では、実回転数と設計上の回転数との差より補正率を算出する。
以上の行程を、図4のブロック図により説明する。掘削旋回作業機10内には前記コントローラ50が備えられている一方で、掘削旋回作業機10の外部に外部コントローラ60が備えられている。図10に示すPC65は外部コントローラ60の一例である。
この外部コントローラ60の記憶部61には、測定対象となる油圧アクチュエータの操作量を最大とし、かつ、ポンプ吐出流量が最小となる(制御出力値が最大となる)ときの、該油圧アクチュエータへの供給流量に代替する数値の設計上の(目標)値が記憶されている。図10に示す実施例でいえば、走行操作レバー34aの最大操作量で、エンジンEをローアイドル回転数で駆動してポンプ吐出流量をもっとも低く抑えたときを想定しての駆動スプロケット11bの設計上の回転数MNsである。
なお、測定対象が、前述の、制御出力値の生成に関する説明の中で例示したブームシリンダ20または旋回モータ25である場合、図6には、レバー30a・35aの操作量を最大にしての目標エンジン回転数Nに対する油圧ポンプ1の吐出流量Qの相関図が描かれているが、前述の記憶部61にて記憶すべき代替の数値の目標値は、図6にて示すグラフ上から求められる油圧アクチュエータへの目標供給流量を代替する数値ということとなる。
したがって、例えば、記憶部61には、図6に示すような、各油圧アクチュエータについてのエンジン回転数の変化に対応する目標供給流量のマップを記憶しておき、その油圧アクチュエータが前記計測対象となるときに、計測条件としてのエンジン回転数や操作量をこのマップにあてはめて設計上の供給油流量値を決定し、こうして決定した設計上の供給油流量値に対応して、代替する数値の設計上の値を決定するものとしてもよい。
このように、設計上の供給油流量値に代替する数値は、通常に考えられるものとしては、油圧アクチュエータの駆動対象の駆動速度である。前述の実施例では走行モータ24の駆動対象である駆動スプロケット11bの回転数であり、ブームシリンダ20であれば、ブームブラケット15におけるブーム16の枢軸を中心とするブーム16の回転数とすることが考えられる。その他に、図4の実測値検出部S2にて計測しやすい数値があれば、それを用いればよい。
また、実測値検出部S2として、油圧ポンプ1の吐出流量を測定する油量計を用いることができるのであれば、前述のような代替の数値を用いずに、設計上の供給油流量値そのものを記憶部61に記憶しておくことも考えられる。
外部コントローラ60には、その油圧アクチュエータへの実供給流量に代替する数値を検出する実測値検出部S2にて検出した数値を示す入力信号が入力される。図10に示す実施例では回転数計測装置66が実測値検出部S2に該当し、その計測した駆動スプロケット11bの実回転数MNrが外部コントローラ60に入力される。
外部コントローラ60(PC65)内の演算部62では、記憶部61に記憶した設計上の値(例えば駆動スプロケット設計上の回転数MNs)と、実測値検出部S2からの実測値(例えば駆動スプロケット実回転数MNr)とを比較し、その比較(差)をもとに、制御出力値Cについての補正率Rを算出(決定)する。すなわち、実測値が設計上の値と等しくなるようにするためには、制御出力値Cをどのような比率で補正すればよいのかを割り出すのである。
なお、例えば、前述のように左右一側のクローラ11dをジャッキアップして一方の走行モータ24にて駆動される駆動スプロケット11bの回転数を計測した後に、ブーム16・アーム17・バケット18と、左右クローラ11dとの相対位置を変更し、反対側のクローラ11dをジャッキアップし、走行操作レバー33aを最大操作量まで操作して、ローアイドル回転数でエンジンを駆動した状態にて、他方の走行モータ23に駆動される駆動スプロケット11bの回転数を計測し、こうして得た左右両方の駆動スプロケット11bの実測回転数とそれぞれの設計上の回転数との比較をもとに、制御出力値Cについての補正率Rを算出するものとしてもよい。
こうして決定した補正率Rは、例えば図10の実施例でいえば、PC65を掘削旋回作業機10上に持ち込んで、掘削旋回作業機10に設けられたUSBポート等に接続することで、コントローラ50へと入力され、コントローラ50の記憶部51(図4参照)に記憶される。これが、前述の、外部コントローラ60からコントローラ50への補正率Rの入力に該当するのである。
以上のように制御出力値を補正する行程を、個々の掘削旋回作業機10の出荷前に行うことで、出荷予定の複数の掘削旋回作業機10について、ポンプ制御精度においてばらつきの少ないものとすることができる。
ここで、図9は前述の如く走行操作レバー33a・34aの操作量を最大にしたときのものであって、設計上の流量比Qrと、最大ぶれ時の流量比Qru・Qrdとの差には、制御出力値Cがどれだけかかっている状態かにかかわらず、方向制御弁33・34のメータイン絞りの公差によるΔQru・ΔQrdのぶれ分が含まれている。したがって、流量比Qrが最小値付近となるところで駆動スプロケット11bの回転数の実測をもとに補正率を決定する場合、それは、方向制御弁33・34のメータイン絞りの公差によるΔQru・ΔQrdのぶれ分をも解消するものとなっている。
しかし、方向制御弁33・34のメータイン絞りの誤差単独で走行モータ23・24への供給流量にどれだけの影響が出ているのかはわからない。これを見るには、制御出力値Cを0(最小値CMIN)とするハイアイドル回転時において、メータイン絞りの誤差の影響が最も大きくでるように走行操作レバー33a・34aの操作量を最大にして、駆動スプロケット11bの回転数を計測し、その設計上の値と比較して補正率を算出することが考えられる。制御出力値Cが最小値CMINの近傍の値であるときに駆動スプロケット11bの回転数を計測して補正率を算出するものとしてもよい。
このハイアイドル回転時の回転数計測は、図10に示すように掘削旋回作業機10をジャッキアップしての、ローアイドル回転時の駆動スプロケット回転数の計測と併せて行うことが考えられる。あるいは、図10でのローアイドル回転時での回転数計測に基づく制御出力値Cの補正のあとに、実際に掘削旋回作業機10を走行させて、駆動スプロケット11bの回転数計測を行い、一旦、図10の行程で決定した補正率を修正することも考えられる。
また、伸縮型油圧アクチュエータであるブームシリンダ20、アームシリンダ21、バケットシリンダ22、スイングシリンダ、ブレードシリンダについては、その伸縮動作量を検出することで、それぞれの油圧アクチュエータへの実際の供給流量に代替する数値として実測することが考えられる。
なお、掘削旋回作業機10における油圧アクチュエータのうち、回転型油圧アクチュエータである走行モータ23・24及び旋回モータ25の駆動対象である駆動スプロケット11b及び旋回台12のみならず、伸縮型油圧アクチュエータであるブームシリンダ20、アームシリンダ21、バケットシリンダ22、スイングシリンダ、ブレードシリンダについても、全て、その伸縮動により駆動対象であるブーム16、アーム17、バケット18、ブームブラケット15、ブレード(排土板)19を回動させるものなので、それぞれの駆動対象の回動速度を検出することで、それを、それぞれの油圧アクチュエータへの実際の供給流量に代替する数値として実測することも考えられる。
また、方向制御弁33のメータイン絞りと方向制御弁34のメータイン絞りとの間の誤差が大きいと掘削旋回作業機11の直進性に問題を生じる可能性も考えられる。そこで、前述の如く左右両方の駆動スプロケット11bの回転数を計測し、それぞれの設計上の回転数との差を測定した上での制御出力値Cの補正率の算出にあたって、このような直進性の問題を生じないような速度に走行速度を制限することを考慮して、該補正率を算出するものとしてもよい。
以上の如く、掘削旋回作業機10は、エンジンEにて駆動される可変容量型油圧ポンプ1からの吐出油にて駆動される複数の油圧アクチュエータ(ブームシリンダ20、アームシリンダ21、走行モータ23・24、旋回モータ25等)を備えた油圧機械である。コントローラ50及び外部コントローラ60を備えた負荷感知式ポンプ制御システム5は、油圧ポンプ1の吐出油が有する吐出圧Pと該複数の油圧アクチュエータへの供給油が有する負荷圧Pとの間の差圧についての目標値である目標差圧ΔPを達成するように、油圧ポンプ1の吐出油の流量Qを制御するよう構成されている。
負荷感知式ポンプ制御システム5は、目標差圧ΔPを変化させるための制御圧Pを、電磁比例弁であるポンプ制御比例弁8の二次圧にて生成するものとしている。掘削旋回作業機10内のコントローラ50は、演算部52、及び、目標エンジン回転数検出部S1を備え、掘削旋回作業機10外の外部コントローラ60(PC65等)は、記憶部61、演算部62、及び、少なくとも一つの油圧アクチュエータ(前記実施例では走行モータ24)に対する実供給油流量(流量比Qr)またはこれに代替する数値(前記実施例では走行モータ24で駆動される駆動スプロケット11bの実回転数MNr)を検出する実測値検出部S2(回転数計測装置66等)を備えている。
負荷感知式ポンプ制御システム5は、掘削旋回作業機10内のコントローラ50の演算部52では、目標エンジン回転数検出部S1にて検出される目標エンジン回転数Nに応じてポンプ制御比例弁8にかける電流値Ceのもととなる制御出力値Cを算出する。
外部コントローラ60の記憶部61には、該少なくとも一つの油圧アクチュエータ(走行モータ24)について、特定のエンジン回転数N及び特定の手動操作量で駆動した特定駆動状態を想定し、該特定駆動状態での該少なくとも一つの油圧アクチュエータ(走行モータ24)への設計上の供給油流量値(設計上の供給流量比Qr)またはこれに代替する数値(設計上の回転数MNs)を記憶している。外部コントローラ60の演算部62では、該少なくとも一つの油圧アクチュエータ(走行モータ24)を該特定駆動状態で実際に駆動した場合に実測値検出部S2(回転数計測装置66等)にて検出される実供給油流量(流量比Qr)またはこれに代替する数値(走行モータ24で駆動される駆動スプロケット11bの実回転数MNr)と、記憶部61にて記憶した該設計上の供給油流量値(設計上の供給流量比Qr)またはこれに代替する数値(設計上の回転数MNs)との比較に基づき、制御出力値Cの補正係数(補正率R)を算出する。負荷感知式ポンプ制御システム5は、コントローラ50の演算部52で算出した制御出力値Cを、外部コントローラ60の演算部62にて算出した該補正係数(補正率R)にて補正する。
以上の如き構成により、油圧機械(掘削旋回作業機10)ごとの油圧アクチュエータの作動性能のばらつきを縮める作業を、既存の負荷感知式ポンプ制御システム5での制御圧の制御にて行うことができ、例えば油圧ポンプ1の吐出圧を見るための圧力センサ等の追加設備を油圧機械自体に設置する必要がなく、低コストで、出荷前や最初の使用時等における製品の誤差解消のための補正作業の効率を高めることができる。
また、例えば、前記ロードセンシング弁7やポンプ制御比例弁8等、制御圧P及び制御出力値Cに誤差の影響が及ぶものを要因とするポンプ制御上の誤差を補正するにあたっては、前記特定駆動状態における前記特定の手動操作量(レバー34aの操作量)を、前記少なくとも一つの油圧アクチュエータ(走行モータ24)の最大手動操作量(SMAX)とし、かつ、前記特定のエンジン回転数Nを、制御出力値Cが最大値またはその近傍の値となるエンジン回転数(ローアイドル回転数N)とする。
すなわち、負荷感知式ポンプ制御システム5に用いられる目標差圧ΔPの生成手段(ロードセンシング弁7のバネ7a等)や制御圧Pを生成するポンプ制御比例弁8(のソレノイド8a等)における性能誤差等は、制御圧Pの誤差として影響を及ぼすものであるところ、このような要因でのポンプ吐出流量特性上の誤差を、制御圧Pを最大にするエンジン回転数でポンプ1を駆動して上記補正を行う装置構成とすることで、ポンプ吐出流量特性上の誤差についての補正作業の効率をより一層高めることができる。
また、例えば、油圧アクチュエータ(前記実施例では走行モータ24)の方向制御弁(方向制御弁34)のメータイン絞りの誤差等、制御圧P及び制御出力値Cとは無関係のものを要因とする当該油圧アクチュエータ(走行モータ24)の作動速度の誤差を補正するにあたっては、前記特定駆動状態における前記特定の手動操作量(レバー34aの操作量)を、前記少なくとも一つの油圧アクチュエータ(走行モータ24)の最大手動操作量(SMAX)とし、かつ、前記特定のエンジン回転数Nを、制御出力値Cが最小値またはその近傍の値となるエンジン回転数(ハイアイドル回転数N)とする。
すなわち、各油圧アクチュエータ用の方向制御弁(のメータイン絞り等)の性能誤差等は、制御圧Pとは無関係にその油圧アクチュエータの作動速度の誤差として影響を及ぼすものであり、このような要因の当該油圧アクチュエータの作動速度の誤差については、 制御圧Pを最小にするエンジン回転数でポンプ1を駆動して上記補正を行う装置構成とすることで、制御圧Pに影響を及ぼす誤差要因によっての当該油圧アクチュエータの作動速度への影響を最小にし、制御圧誤差とは区別した状態で、制御圧とは無関係の要因による当該油圧アクチュエータの作動速度の誤差を確実に補正できる。
また、例えば、前記ロードセンシング弁7やポンプ制御比例弁8等、制御圧P及び制御出力値Cに誤差の影響が及ぶものを要因とするポンプ制御上の誤差を補正し、かつ、油圧アクチュエータ(走行モータ24)の方向制御弁(方向制御弁34)のメータイン絞りの誤差等、制御圧P及び制御出力値Cとは無関係のものを要因とする当該油圧アクチュエータ(走行モータ24)の作動速度の誤差を補正するにあたっては、前記特定駆動状態は、第一特定駆動状態及び第二特定駆動状態を含み、該第一特定駆動状態及び該第二特定駆動状態における前記特定の手動操作量(レバー34aの操作量)を、前記少なくとも一つの油圧アクチュエータ(走行モータ24)の最大手動操作量(SMAX)とし、該第一特定駆動状態における前記特定のエンジン回転数Nを、制御出力値Cが最大値またはその近傍の値となるエンジン回転数(ローアイドル回転数N)とし、該第二特定駆動状態における前記特定のエンジン回転数Nを、制御出力値Cが最小値またはその近傍の値となるエンジン回転数(ハイアイドル回転数N)とする。外部コントローラ60の演算部62では、前記少なくとも一つの油圧アクチュエータ(走行モータ24)を、該第一特定駆動状態及び該第二特定駆動状態で実際に駆動した場合に実測値検出部S2(回転数計測装置66等)にて検出される実供給油流量(流量比Q)またはこれに代替する数値(実回転数MNr)と、記憶部62にて記憶した前記設計上の供給油流量値(設計上の流量比Qr)またはこれに代替する数値(設計上の回転数MNs)との比較に基づき、制御出力値Cの補正係数(補正率R)を算出する。
このように作業を行う装置構成とすることで、制御圧Pに関係する要因によるポンプ吐出流量特性上の誤差も、制御圧Pとは無関係の要因による個々の油圧アクチュエータの作動速度特性上の誤差も、効率よく補正することができる。
また、負荷感知式ポンプ制御システム5は、実エンジン回転数の低下の検出に基づいて油圧ポンプ1の吐出油の流量Qを制御するよう構成されており、外部コントローラ60の記憶部61とは別に、掘削旋回作業機10内のコントローラ50に設けた記憶部51にて、目標エンジン回転数Nに対応する第一制御出力値C1の制御出力値マップM1を記憶しており、コントローラ50の演算部52において、制御出力値マップM1に基づいて、目標エンジン回転数Nに対応する第一制御出力値C1を決定するとともに、実エンジン回転数の低下の検出に基づく油圧ポンプ1の吐出油の流量制御のための第二制御出力値C2を算出し、第一制御出力値C1と第二制御出力値C2を合算して、前記制御出力値Cに該当する第三制御出力値C3を算出し、第三制御出力値C3を、外部コントローラ60の演算部62にて算出した補正係数である補正率Rにて補正するものである。
このように、負荷感知式ポンプ制御システム5が、実エンジン回転数の低下の検出に基づくポンプ制御も行う構成である場合に、コントローラ50にて、目標差圧ΔPを変化させるための第一制御出力値C1と、実エンジン回転数の低下に基づいてポンプ制御するための第二制御出力値C2とを合算して算出した第三制御出力値C3を、外部コントローラ60にて算出する補正率Rにて補正する構成とすることで、前述の如く目標差圧ΔPを変化させてのポンプ制御の効果におけるばらつきを低減できることに加え、実エンジン回転数の低下時に行うポンプ制御の効果におけるばらつきを低減できる。
本発明は、以上に述べた掘削旋回作業機のみならず、負荷感知式の油圧ポンプ制御システムが採用されるあらゆる油圧機械の制御装置として適用可能である。

Claims (5)

  1. エンジンにて駆動される可変容量型油圧ポンプからの吐出油にて駆動される複数の油圧アクチュエータを備えた油圧機械の制御装置であって、
    該油圧ポンプの吐出油が有する吐出圧と該複数の油圧アクチュエータへの供給油が有する負荷圧との間の差圧についての目標値を達成するように、該油圧ポンプの吐出油の流量を制御するよう構成されており、
    該差圧の目標値を変化させるための制御圧を、電磁比例弁の二次圧にて生成するものとしており、
    該制御装置は、該油圧機械内に設けた、第一演算部、及び、目標エンジン回転数検出部と、該油圧機械外に設けた、記憶部、第二演算部、及び、少なくとも一つの油圧アクチュエータに対する実供給油流量またはこれに代替する数値を検出する実測値検出部と、を備えており、
    該第一演算部では、該目標エンジン回転数検出部にて検出される目標エンジン回転数に応じて該電磁比例弁にかける電流値のもととなる制御出力値を算出し、
    該記憶部には、該少なくとも一つの油圧アクチュエータについて、特定のエンジン回転数及び特定の手動操作量で駆動した特定駆動状態を想定し、該特定駆動状態での該少なくとも一つの油圧アクチュエータへの設計上の供給油流量値またはこれに代替する数値を記憶しており、
    該第二演算部では、該少なくとも一つの油圧アクチュエータを該特定駆動状態で実際に駆動した場合に該実測値検出部にて検出される実供給油流量またはこれに代替する数値と、該記憶部にて記憶した該設計上の供給油流量値またはこれに代替する数値との比較に基づき、該制御出力値の補正係数を算出するものであり、
    該第一演算部で算出した前記制御出力値を、該第二演算部にて算出した該補正係数にて補正することを特徴とする、油圧機械の制御装置。
  2. 前記特定駆動状態における前記特定の手動操作量を、前記少なくとも一つの油圧アクチュエータの最大手動操作量とし、かつ、前記特定のエンジン回転数を、前記制御出力値が最大値またはその近傍の値となるエンジン回転数とすることを特徴とする、請求項1に記載の油圧機械の制御装置。
  3. 前記特定駆動状態における前記特定の手動操作量を、前記少なくとも一つの油圧アクチュエータの最大手動操作量とし、かつ、前記特定のエンジン回転数を、前記制御出力値が最小値またはその近傍の値となるエンジン回転数とすることを特徴とする、請求項1に記載の油圧機械の制御装置。
  4. 前記特定駆動状態は、第一特定駆動状態及び第二特定駆動状態を含み、
    該第一特定駆動状態及び該第二特定駆動状態における前記特定の手動操作量を、前記少なくとも一つの油圧アクチュエータの最大手動操作量とし、
    該第一特定駆動状態における前記特定のエンジン回転数を、前記制御出力値が最大値またはその近傍の値となるエンジン回転数とし、
    該第二特定駆動状態における前記特定のエンジン回転数を、前記制御出力値が最小値またはその近傍の値となるエンジン回転数とし、
    前記第二演算部では、前記少なくとも一つの油圧アクチュエータを、該第一特定駆動状態及び該第二特定駆動状態で実際に駆動した場合に前記実測値検出部にて検出される実供給油流量またはこれに代替する数値と、前記記憶部にて記憶した前記設計上の供給油流量値またはこれに代替する数値との比較に基づき、前記制御出力値の補正係数を算出することを特徴とする、請求項1に記載の油圧機械の制御装置。
  5. 前記制御装置はさらに、実エンジン回転数の低下の検出に基づいて該油圧ポンプの吐出油の流量を制御するよう構成されており、
    前記油圧機械外の前記記憶部とは別に、前記油圧機械内に設けた記憶部にて、目標エンジン回転数に対応する第一制御出力値のマップを記憶しており、
    前記第一演算部において、該マップに基づいて、前記目標エンジン回転数検出部にて検出される目標エンジン回転数に対応する第一制御出力値を決定するとともに、該実エンジン回転数の低下の検出に基づく該油圧ポンプの吐出油の流量制御のための第二制御出力値を算出し、該第一制御出力値と該第二制御出力値を合算して、前記制御出力値に該当する第三制御出力値を算出し、該第三制御出力値を、前記第二演算部にて算出した前記補正係数にて補正することを特徴とする請求項1乃至4のうちいずれか一項に記載の油圧機械の制御装置。
JP2017082966A 2017-04-19 2017-04-19 油圧機械の制御装置 Active JP6815268B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017082966A JP6815268B2 (ja) 2017-04-19 2017-04-19 油圧機械の制御装置
US16/605,169 US11143212B2 (en) 2017-04-19 2018-04-18 Control device for hydraulic machine
EP18787894.7A EP3613998A4 (en) 2017-04-19 2018-04-18 CONTROL DEVICE FOR HYDRAULIC MACHINE
PCT/JP2018/016056 WO2018194110A1 (ja) 2017-04-19 2018-04-18 油圧機械の制御装置
AU2018255024A AU2018255024A1 (en) 2017-04-19 2018-04-18 Control device for hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082966A JP6815268B2 (ja) 2017-04-19 2017-04-19 油圧機械の制御装置

Publications (2)

Publication Number Publication Date
JP2018179238A JP2018179238A (ja) 2018-11-15
JP6815268B2 true JP6815268B2 (ja) 2021-01-20

Family

ID=63855957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082966A Active JP6815268B2 (ja) 2017-04-19 2017-04-19 油圧機械の制御装置

Country Status (5)

Country Link
US (1) US11143212B2 (ja)
EP (1) EP3613998A4 (ja)
JP (1) JP6815268B2 (ja)
AU (1) AU2018255024A1 (ja)
WO (1) WO2018194110A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944270B2 (ja) * 2017-04-10 2021-10-06 ヤンマーパワーテクノロジー株式会社 油圧機械の制御装置
US11834811B2 (en) * 2021-10-25 2023-12-05 Cnh Industrial America Llc System and method for controlling hydraulic pump operation within a work vehicle
CN114033775B (zh) * 2021-11-23 2023-06-23 武汉船用机械有限责任公司 一种多功能大流量液压系统及其控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657548B2 (ja) 1988-06-29 1997-09-24 日立建機株式会社 油圧駆動装置及びその制御方法
JPH0444575Y2 (ja) 1988-12-05 1992-10-21
JP2828490B2 (ja) * 1990-06-19 1998-11-25 日立建機株式会社 ロードセンシング油圧駆動回路の制御装置
WO1992006306A1 (en) * 1990-09-28 1992-04-16 Hitachi Construction Machinery Co., Ltd. Control system of hydraulic pump
JP2526440Y2 (ja) * 1991-04-09 1997-02-19 住友建機株式会社 ロードセンシング油圧回路
WO2000073664A1 (fr) * 1999-05-28 2000-12-07 Hitachi Construction Machinery Co., Ltd. Dispositif de regulation du debit nominal d'une pompe et dispositif a soupape
DE60113002T2 (de) * 2000-01-25 2006-03-30 Hitachi Construction Machinery Co., Ltd. Hydraulische antriebseinrichtung
JP4353190B2 (ja) * 2006-02-27 2009-10-28 コベルコ建機株式会社 建設機械の油圧回路
JP5603115B2 (ja) * 2010-03-19 2014-10-08 ヤンマー株式会社 作業車両の油圧回路
JP5383591B2 (ja) 2010-05-24 2014-01-08 日立建機株式会社 建設機械の油圧駆動装置
JP6018442B2 (ja) * 2012-07-10 2016-11-02 川崎重工業株式会社 傾転角制御装置
JP6042294B2 (ja) * 2013-09-03 2016-12-14 ヤンマー株式会社 建設機械
US10260531B2 (en) * 2015-12-10 2019-04-16 Kawasaki Jukogyo Kabushiki Kaisha Hydraulic drive system
JP6789843B2 (ja) * 2017-02-17 2020-11-25 ヤンマーパワーテクノロジー株式会社 油圧機械の制御装置
JP6944270B2 (ja) * 2017-04-10 2021-10-06 ヤンマーパワーテクノロジー株式会社 油圧機械の制御装置

Also Published As

Publication number Publication date
JP2018179238A (ja) 2018-11-15
EP3613998A4 (en) 2020-04-15
US20210180294A1 (en) 2021-06-17
WO2018194110A1 (ja) 2018-10-25
AU2018255024A1 (en) 2019-12-05
US11143212B2 (en) 2021-10-12
EP3613998A1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP4322499B2 (ja) 油圧建設機械のポンプトルク制御方法及び装置
JP5249857B2 (ja) 制御装置及びこれを備えた作業機械
JP6815268B2 (ja) 油圧機械の制御装置
KR19990087335A (ko) 유압구동기계의 제어장치
US7788915B2 (en) Hydraulic circuit
KR101086117B1 (ko) 유압 액추에이터의 속도 제어 장치 및 속도 제어 방법
JP6944270B2 (ja) 油圧機械の制御装置
JP6789843B2 (ja) 油圧機械の制御装置
JP6712578B2 (ja) 油圧駆動装置
KR101693386B1 (ko) 편로드 유압실린더용 적응 제어식 유압장치
JP6605316B2 (ja) 作業機械の駆動装置
JPH07259140A (ja) 油圧ショベルのポンプ制御装置
WO2022102391A1 (ja) 建設機械
JP5357073B2 (ja) 建設機械のポンプ制御装置
JP7408503B2 (ja) 建設機械
JP6684240B2 (ja) 建設機械
JP6982158B2 (ja) 油圧機械の制御装置
JPWO2015178316A1 (ja) ショベル及びその制御方法
JP3765317B2 (ja) 油圧駆動機械の制御装置
JP3723270B2 (ja) 油圧駆動機械の制御装置
JP2024020791A (ja) 旋回制御装置及びこれを備えた旋回式作業機械
JP2015021276A (ja) 作業機械
JP2024022353A (ja) 作業機械
JPH08135606A (ja) 油圧ポンプの吐出量制御装置
JP3541142B2 (ja) 建設機械の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6815268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150