JP6806478B2 - 複合部品を付加製造するためのシステム及び方法 - Google Patents

複合部品を付加製造するためのシステム及び方法 Download PDF

Info

Publication number
JP6806478B2
JP6806478B2 JP2016141076A JP2016141076A JP6806478B2 JP 6806478 B2 JP6806478 B2 JP 6806478B2 JP 2016141076 A JP2016141076 A JP 2016141076A JP 2016141076 A JP2016141076 A JP 2016141076A JP 6806478 B2 JP6806478 B2 JP 6806478B2
Authority
JP
Japan
Prior art keywords
continuous flexible
flexible line
segment
guide
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016141076A
Other languages
English (en)
Other versions
JP2017077723A (ja
Inventor
ニック エス. エヴァンズ,
ニック エス. エヴァンズ,
ファラオン トルレス,
ファラオン トルレス,
ライアン ジー. ツィークラー,
ライアン ジー. ツィークラー,
サミュエル エフ. ハリソン,
サミュエル エフ. ハリソン,
シーロ ジェー., ザ サード グリハルバ,
シーロ ジェー., ザ サード グリハルバ,
ヘイデン エス. オズボーン,
ヘイデン エス. オズボーン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2017077723A publication Critical patent/JP2017077723A/ja
Application granted granted Critical
Publication of JP6806478B2 publication Critical patent/JP6806478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/08Feeding of the material to be moulded, e.g. into a mould cavity of preforms to be moulded, e.g. tablets, fibre reinforced preforms, extruded ribbons, tubes or profiles; Manipulating means specially adapted for feeding preforms, e.g. supports conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/545Perforating, cutting or machining during or after moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/10Cords, strands or rovings, e.g. oriented cords, strands or rovings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Robotics (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)

Description

従来、典型的な複合部品の製造は、複合材料の複数のプライであって、各プライが例えば一方向性強化繊維又はランダム配向のチョップド繊維を包含している複数のプライを、順次層形成することに依拠する。この様態で製造された部品は必ず積層構造を有するが、強化繊維の全てが部品に印加される力(複数可)の方向(複数可)に沿って配向されるわけではないことから、積層構造は、仕上がり部品の重量を望ましくないほどに増加させる。加えて、複合物を製造する積層技法に内在する制限は、多くの種類の進歩的な構造設計の実装に役立つものではない。
そのため、少なくとも上述の懸念に対処することを目的とした装置及び方法は有用となろう。
下記は本開示を許容する主題の例であり、それらは、特許請求されることも、されないこともあってよく、完全に網羅的というわけではない。
本開示の一例は、複合部品を付加製造するためのシステムに関する。システムは、表面に対して移動可能な供給ガイドを備える。供給ガイドは、プリントパスに沿って、連続可撓性ライン(continuous flexible line)の少なくとも1つのセグメントを堆積させるよう構成される。プリントパスは、表面に対して静止している。システムは更に、ある容積の液体フォトポリマ樹脂を保持するよう、かつ、ある量の液体フォトポリマ樹脂を非樹脂構成要素に付着させるよう構成された、容器を備える。システムは更に、容器に通して非樹脂構成要素を引き出すよう、かつ、連続可撓性ラインを供給ガイドから押し出すよう構成された、送り機構を備える。連続可撓性ラインは非樹脂構成要素を備え、容器内で非樹脂構成要素に付着した少なくともいくらかの液体フォトポリマ樹脂を含むフォトポリマ樹脂構成要素を更に備える。システムは更に、硬化エネルギーの供給源を備える。供給源は、連続可撓性ラインのセグメントが供給ガイドから出た後に、連続可撓性ラインのセグメントの少なくとも一部分に硬化エネルギーを供給するよう構成される。
本開示の別の例は、複合部品を付加製造する方法に関する。方法は、プリントパスに沿って連続可撓性ラインの一セグメントを堆積させることを含む。連続可撓性ラインは非樹脂構成要素を備え、硬化されていないフォトポリマ樹脂構成要素を更に備える。方法は更に、連続可撓性ラインをプリントパスに向けて進行させつつ、連続可撓性ラインのセグメントがプリントパスに沿って堆積された後に、連続可撓性ラインのセグメントの少なくとも一部分を少なくとも部分的に硬化させるために、連続可撓性ラインのセグメントの少なくともその部分に、既定の量又は能動的に決定される量の硬化エネルギーを、制御された速度で供給することを含む。
本開示の更に別の例は、複合部品を付加製造する方法に関する。方法は、ある容積の液体フォトポリマ樹脂を包含する容器に通して非樹脂構成要素を引き出すことによって、液体フォトポリマ樹脂を非樹脂構成要素に付着させて、連続可撓性ラインを作り出すことを含む。連続可撓性ラインは、非樹脂構成要素と、非樹脂構成要素に付着した少なくともいくらかの液体フォトポリマ樹脂を含む、フォトポリマ樹脂構成要素とを備える。方法は更に、連続可撓性ラインを供給ガイド内へと送ることと、連続可撓性ラインを供給ガイドから押し出すことと、供給ガイドを介して、プリントパスに沿って連続可撓性ラインの一セグメントを堆積させることと、連続可撓性ラインのセグメントの少なくとも一部分に硬化エネルギーを供給することとを含む。
本開示の例は上記で概括的に説明されており、以後添付図面を参照することになるが、図面は必ずしも正寸で描かれておらず、類似の参照記号は、複数の図を通して同じ又は類似した部分を指し示している。
本開示の一又は複数の例による、複合部品を付加製造するためのシステムの概略図である。 本開示の一又は複数の例による、図1のシステムの、ある容積の液体フォトポリマ樹脂を保持する容器の概略断面図である。 本開示の一又は複数の例による、図1のシステムの、ある容積の液体フォトポリマ樹脂を保持する容器の概略断面図である。 本開示の一又は複数の例による、図1のシステムによって堆積される連続可撓性ラインの概略断面図である。 本開示の一又は複数の例による、図1のシステムによって堆積される連続可撓性ラインの概略断面図である。 本開示の一又は複数の例による、連続可撓性ラインの2つの層が同時に硬化されている、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、供給ガイドが硬化エネルギー通路を備える図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、供給ガイドが硬化エネルギー通路を備え、かつ、硬化エネルギーがリングの形態で供給される、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、硬化エネルギーがリングの形態で供給される図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、図1のシステムの送りアセンブリ及び供給ガイドの概略図である。 本開示の一又は複数の例による、図1のシステムの送り機構のローラ及びスクレーパの概略図である。 本開示の一又は複数の例による、図1のシステムの圧縮ローラを備える圧縮機の概略図である。 本開示の一又は複数の例による、圧縮機が圧縮ローラを備えている、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、圧縮機が圧縮ローラを備えている、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、圧縮機が圧縮ワイパを備えている、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、圧縮機がスカート部を備えている、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、図1のシステムのアイリス絞りを備えるカッターの概略図である。 本開示の一又は複数の例による、カッターが供給ガイドに対して移動可能な2つの刃を備えている、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、カッターが供給ガイドの中に配置された少なくとも1つの刃を備えている、図1のシステムの一部分の概略図である。 本開示の一又は複数の例による、カッターが切断レーザを備えている、図1のシステムの概略図である。 本開示の一又は複数の例による、硬化エネルギーの供給源が一又は複数の硬化レーザを備えている、図1のシステムの概略図である。 本開示の一又は複数の例による、フレームと駆動アセンブリとを備える図1のシステムの図である。 本開示の一又は複数の例による、カッターと、圧縮機と、粗面機と、硬化レーザを備える硬化源とを有する、図1のシステムの一部分の図である。 本開示の一又は複数の例による、硬化源が1つの硬化レーザを備えている、図1のシステムの一部分の図である。 本開示の一又は複数の例による、圧縮機と、硬化レーザを備える硬化源とを有する、図1のシステムの一部分の図である。 本開示の一又は複数の例による、硬化源が1つの硬化レーザを備えている図1のシステムの一部分の図である。 本開示の一又は複数の例による、硬化源が2つの硬化レーザを備えている、図1のシステムの一部分の図である。 本開示の一又は複数の例による、硬化源が4つの硬化レーザを備えている、図1のシステムの一部分の図である。 本開示の一又は複数の例による、送り機構を有する図1のシステムの一部分の図である。 図29の部分の別の図である。 図29の部分の別の図である。 本開示の一又は複数の例による、カッターが供給ガイドに対して移動可能な2つの刃を備えている、図1のシステムの一部分の図である。 図32の部分の別の図である。 本開示の一又は複数の例による、複合部品を付加製造するための方法の、集合的なブロック図の一部である。 本開示の一又は複数の例による、複合部品を付加製造するための方法の、集合的なブロック図の一部である。 本開示の一又は複数の例による、複合部品を付加製造するための方法の、集合的なブロック図の一部である。 本開示の一又は複数の例による、複合部品を付加製造するための方法の、集合的なブロック図の一部である。 本開示の一又は複数の例による、複合部品を付加製造するための方法の、集合的なブロック図の一部である。 本開示の一又は複数の例による、複合部品を付加製造するための方法の、集合的なブロック図の一部である。 航空機の製造及び保守方法を表すブロック図である。 航空機の概略図である。 本開示の一又は複数の例による、供給ガイドと表面との間に12自由度が提供される、図1のシステムの概略図である。
上記で言及した図1において、様々な要素及び/又は構成要素を接続する実線が存在する場合、それらの実線は、機械的、電気的、流体的、光学的、電磁的な連結、及び他の連結、並びに/又はそれらの組み合せを表しうる。本書で使用される「連結された(coupled)」とは、直接的並びに間接的に関連付けられていることを意味する。例えば、部材Aは、部材Bに直接関連付けられてよく、例えば別の部材Cを介して、部材Bに間接的に関連付けられてもよい。開示されている様々な要素間の全ての関連が必ずしも表されているわけではないことが、理解されよう。そのため、概略図に図示されているもの以外の連結も存在しうる。様々な要素及び/又は構成要素を指し示すブロックを接続する破線が存在する場合、それらの破線は、実線によって表された連結に機能及び目的が類似した連結を表す。しかし、破線によって表された連結は、選択的に提供されるか、又は、本開示の代替例に関連するかのいずれかでありうる。同様に、破線で表された要素及び/又は構成要素が存在する場合、それらは本開示の代替例を示す。実線及び/又は破線内に示された一又は複数の要素は、本開示の範囲を逸脱することなく、特定の例から省略されうる。環境要素が存在する場合、それらは点線で表される。仮想的な架空要素も、明確性のために示されうる。図1に示す特徴のうちのいくつかは、図1、他の図、及び/又はそれらに伴う開示で説明される他の特徴を含むことを必要とせずに、様々な方法で組み合わされうるが、一又は複数のかかる組み合わせは本書で明示的に示されないことを、当業者は認識しよう。同様に、提示される例には限定されない追加の特徴も、本書で提示及び説明されている特徴の一部又は全部と組み合わされうる。
上記で言及した図34から図36では、ブロックは、工程及び/又はその部分を表してよく、様々なブロックを接続する線は、工程又はその部分のいかなる特定の順序又は従属関係も暗示しない。破線で表されたブロックは、代替工程及び/又はその部分を示す。様々なブロックを接続する破線が存在する場合、それらの破線は、工程又はその部分の代替的な従属関係を表す。開示されている様々な工程間の全ての従属関係が、必ずしも表されているわけではないことが、理解されよう。本書に明記された方法(複数可)の工程を説明する、図34から図36及びそれらに伴う開示は、工程が実行されるシーケンスを必然的に決定すると解釈すべきではない。むしろ、1つの例示的な順序が示されていても、工程のシーケンスは、適宜改変されうると理解されたい。そのため、ある工程は、異なる順序で、又は同時に、実行されうる。加えて、説明されている全ての工程を実行する必要はないことを、当業者は認識しよう。
以下の説明において、開示されている概念の完全な理解を提供するために、多数の特定詳細が明記されるが、開示されている概念は、それらの特定事項の一部又は全部がなくとも、実践されうる。他の事例では、開示を不必要に分かりにくくすることを回避するために、既知のデバイス及び/又はプロセスの詳細は省略されている。一部の概念は特定の例と併せて説明されることになるが、それらの例は限定を目的とするものではないことが理解されよう。
別途示されない限り、「第1(first)」「第2(second)」などの用語は、本書では単に符号として使用され、それらの用語が表すアイテムに順序、位置、又は序列についての要件を課すことを目的とはしていない。更に、例えば「第2」のアイテムへの言及は、例えば「第1」の、又はより小さい数がふられたアイテム、及び/又は、例えば「第3」の、又はより大きな数がふられたアイテムの存在を、必要とすることも、排除することもない。
本書における「一例」への言及は、その例に関連して説明される一又は複数の特徴、構造又は特性が、少なくとも1つの実行形態に含まれることを意味する。明細書内に頻出する「一例」という表現は、同一の例を表すことも、表さないこともありうる。
本書で使用される、特定の機能を実行する「よう構成され(configured to)」たシステム、装置、構造、物品、要素、又は構成要素は、実際には、単に更なる改変後にその特定の機能を実行する潜在能力を有するというよりは、いかなる変更も行わずに、その特定の機能を実行することが可能である。換言すると、システム、装置、構造、物品、要素、又は構成要素は、特定の機能を実行するという目的のために、特に選択され、作り出され、実装され、利用され、プログラムされ、かつ/又は設計される。本書で使用される、「よう構成され」は、システム、装置、構造、物品、要素、又は構成要素が特定の機能を実際に実行することを可能にする、システム、装置、構造、物品、要素、又は構成要素の特性が存在することを意味する。この開示において、特定の機能を実行する「よう構成され」ていると表現されるシステム、装置、構造、物品、要素、又は構成要素は、追加的又は代替的には、その機能を実行する「よう適合」している、及び/又は、実行する「よう作動可能」であると、表現されうる。
本開示を許容する主題の、特許請求されることも、されないこともありうる、例示的かつ非網羅的な例が、以下に提供される。
例えば図1を参照するに、複合部品102を付加製造するためのシステム100が開示されている。システム100は、表面114に対して移動可能な供給ガイド112を備える。供給ガイド112は、連続可撓性ライン106の少なくともセグメント120を、プリントパス122に沿って堆積させるよう構成される。プリントパス122は、表面114に対して静止している。システム100は更に、ある容積の液体フォトポリマ樹脂252を保持するよう、かつ、ある量の液体フォトポリマ樹脂252を非樹脂構成要素108に付着させるよう構成された、容器236を備える。システム100は更に、容器236に通して非樹脂構成要素108を引き出すよう、かつ、連続可撓性ライン106を供給ガイド112から押し出すよう構成された、送り機構104を備える。連続可撓性ライン106は非樹脂構成要素108を備え、容器236内で非樹脂構成要素108に付着した少なくともいくらかの液体フォトポリマ樹脂252を含む、フォトポリマ樹脂構成要素110を更に備える。システム100は更に、硬化エネルギー118の供給源116を備える。供給源116は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給するよう構成される。この段落の上述の記載は、本開示の例1を特徴付ける。
従って、システム100は、複合部品102が製造されている間に液体フォトポリマ樹脂252及び非樹脂構成要素108から作り出される少なくとも1つの複合材料から、複合部品102を製造するために使用されうる。更に、フォトポリマ樹脂構成要素110は、複合部品102が製造されている間に、すなわち原位置で、硬化エネルギー118の供給源116によって少なくとも部分的に硬化される。加えて、システム100は、例えば複合部品102の所望の性質を決定するために複合部品102全体を通じて所望の及び/又は既定の位置付けに配向される連続可撓性ライン106で、複合部品102を製造するために使用されうる。
連続可撓性ライン106は、複合部品102の製造中に容器236の中で作り出されることから、システム100は、複合部品102の中の種々の場所に種々の特性を備えた所望の複合部品102を、カスタマイズするか、若しくは作り出すために、種々の非樹脂構成要素108及び/又は種々の液体フォトポリマ樹脂252を選択することを可能にする、適応性を有する。
追加的又は代替的には、システム100のいくつかの例は3−Dプリンタと表現されうる。
上述のように、送り機構104は、連続可撓性ライン106を供給ガイド112から押し出すよう構成される。換言すると、連続可撓性ライン106をプリントパス122に沿って堆積させる供給ガイド112は、複合部品102がシステム100によって製造されている時の連続可撓性ライン106の移動の方向に関して、送り機構104の下流に配置される。
本書で使用される、「連続可撓性ライン(continuous flexible line)」とは、その長さに対して横方向又は垂直方向の寸法(例えば直径又は幅)よりも著しく長い長さを有する、細長い構造体である。例示的で非限定的な一例としては、連続可撓性ライン106は、その直径又は幅よりも、少なくとも100倍、少なくとも1000倍、少なくとも10000倍、少なくとも100000倍、又は、少なくとも1000000倍長い、長さを有しうる。
本書で使用される「フォトポリマ樹脂(photopolymer−resin)」とは、光を選択的に当てることによって硬化されるか、又は固化されるよう構成されている樹脂材料である。例示的で非限定的な例としては、液体フォトポリマ樹脂252、ひいてはフォトポリマ樹脂構成要素110は、紫外光、可視光、赤外光、及び/又はX線の形態の硬化エネルギー118が供給源116によって連続可撓性ライン106の部分124に供給されると、少なくとも部分的に硬化されるか又は固化されるよう構成されうる。
上述のように、供給ガイド112は、表面114に対して移動可能である。これは、いくつかの例では、システム100が、表面114に対して選択的に動かされるよう構成されている供給ガイド112を含みうることを意味し、かかる表面114は、システム100の一部、或いは、飛行機の翼又は胴体などのような構造体の一部でありうる。加えて、システム100が表面114を含む例では、表面114は、供給ガイド112に対して選択的に動かされうる。また、いくつかの例では、システム100は供給ガイド112及び表面114を含んでよく、その両方が、互いに対して選択的に動かされうる。
図1を概括的に参照しつつ、例えば図2、図3、及び図22を詳細に参照するに、容器236は、非樹脂構成要素108を受容するよう、かつ、連続可撓性ライン106を排出するよう構成される。この段落の上述の記載は、本開示の例2を特徴付けており、例2は上記の例1による記載も含む。
そのため、連続可撓性ライン106は、送り機構194によって、容器236に通し、ひいては、容器236の中に保持された液体フォトポリマ樹脂252の容積に通して、非樹脂構成要素108が引き出されるにつれて、容器236の中で作り出される。
図1を概括的に参照しつつ、例えば図2及び図3を詳細に参照するに、容器236は、入口部238であって、そこを通って非樹脂構成要素108が容器236内へと受容される入口部238と、出口部240であって、そこを通って連続可撓性ライン106が容器236から排出される出口部240とを備える。この段落の上述の記載は、本開示の例3を特徴付けており、例3は上記の例2による記載も含む。
入口部238及び出口部240を備える容器236は、非樹脂構成要素108が容器236に入り、連続可撓性ライン106が容器236から出るための、容器を通るディスクリートな経路を提供する。
図1を概括的に参照しつつ、例えば図2及び図3を詳細に参照するに、出口部240は、連続可撓性ライン106の部分として容器236から出る液体フォトポリマ樹脂252の量を制限するよう形作られた、収束通路242を備える。この段落の上述の記載は、本開示の例4を特徴付けており、例4は上記の例3による記載も含む。
従ってこの例では、収束通路242は、所望の量の液体フォトポリマ樹脂252が非樹脂構成要素108に付着して、連続可撓性ライン106を作り出すことを、確実にする。更に、収束通路242は、非樹脂構成要素108の構成に応じて、液体フォトポリマ樹脂252が非樹脂構成要素108に十分に浸透することを、容易にしうる。
図1を概括的に参照しつつ、例えば図2及び図3を詳細に参照するに、収束通路242は、液体フォトポリマ樹脂252の非樹脂構成要素108への均一な付着を容易にするよう形作られる。この段落の上述の記載は、本開示の例5を特徴付けており、例5は上記の例4による記載も含む。
従ってこの例では、収束通路242は、容器236内に保持された液体フォトポリマ樹脂252の容積に通して非樹脂構成要素108が引き出されるにつれて、液体フォトポリマ樹脂252の非樹脂構成要素108への均一な付着が実現することを、確実にする。液体フォトポリマ樹脂252のかかる均一な付着は、供給ガイド112を介して堆積される連続可撓性ライン106の層間の接着を容易にするため、並びに、複合部品102内に望ましくない空隙が形成されることを防止するために、望ましいかもしれない。
図1を概括的に参照しつつ、例えば図2及び図3を詳細に参照するに、容器236は更に、既定の経路に沿って、非樹脂構成要素108を送って容器236に通すよう配置された、ガイド244を備える。この段落の上述の記載は、本開示の例6を特徴付けており、例6は上記の例2から例5のいずれか1つによる記載も含む。
ガイド244は、任意の好適な構造をとってよく、非樹脂構成要素108が十分な容積の液体フォトポリマ樹脂252と接触状態になって、連続可撓性ライン106を作り出すことを確実にするために提供されうる。
図1を概括的に参照しつつ、例えば図2及び図3を詳細に参照するに、ガイド244は、非樹脂構成要素108が容器236を通って進行する際に、非樹脂構成要素108のいかなる2つの連続するセグメントの間にも60度未満の湾曲を付与しないよう配置される。この段落の上述の記載は、本開示の例7を特徴付けており、例7は上記の例6による記載も含む。
非樹脂構成要素108の湾曲を制限することで、非樹脂構成要素108への損傷が防止されうる。
図1を概括的に参照しつつ、例えば図2及び図3を詳細に参照するに、ガイド244は2つ以上のガイド構造体245を備える。この段落の上述の記載は、本開示の例8を特徴付けており、例8は上記の例6又は例7のいずれか1つによる記載も含む。
2つ以上のガイド構造体244を含むことで、所望の量の液体フォトポリマ樹脂252が連続可撓性ライン106を作り出すことが、容易になりうる。
図2は、容器236の上部から入る非樹脂構成要素108が、容器236内に保持された液体フォトポリマ樹脂252の容積を通って適切に送られるように配置された2つのガイド構造体245を有する、システム100の一例を示している。図3は、容器236の側部に配置された入口部238から入る非樹脂構成要素108が、容器236内に保持された液体フォトポリマ樹脂252の容積を通って適切に送られるように配置された3つのガイド構造体245を有する、システム100の一例を示している。
図1を概括的に参照しつつ、例えば図2及び図3を詳細に参照するに、ガイド244は一又は複数のローラ247を備える。この段落の上述の記載は、本開示の例9を特徴付けており、例9は上記の例6から例8のいずれか1つによる記載も含む。
ローラ247は、容器236に通して非樹脂構成要素108を引き出すことを容易にし、それによって、非樹脂構成要素108とガイド244との間の摩擦を低減し、非樹脂構成要素108への損傷を防止しうる。
図1を概括的に参照するに、少なくとも1つのローラ247は、容器236を通る非樹脂構成要素108の移動を容易にするよう構成された、モータ駆動のローラ249を含む。この段落の上述の記載は、本開示の例10を特徴付けており、例10は上記の例9による記載も含む。
モータ駆動のローラ249を含むことによって、容器236を通る非樹脂構成要素108の移動が容易になる。更に、モータ駆動のローラ249の作動は、容器236に通して非樹脂構成要素108を引き出すことを容易にするために、送り機構104と関連して選択的に制御されうる。
図1では、モータ駆動のローラ249は、別のローラ247(オプションで、モータ駆動されてもされなくてもよい)の反対側に概略的にオプションで示されており、容器236を通る非樹脂構成要素108の移動を容易にするために、2つのローラの間に非樹脂構成要素108が係合されている。
図1を概括的に参照するに、容器236は、容器236内の液体フォトポリマ樹脂252の高さが下方閾値高さ以下である場合にそれを検出するよう配置された、低位センサ246を備える。この段落の上述の記載は、本開示の例11を特徴付けており、例11は上記の例1から例10のいずれか1つによる記載も含む。
低位センサ246を含むことは、容器236内の液体フォトポリマ樹脂252の高さが低く、補充が必要であることをオペレータに警告するために、使用されうる。追加的又は代替的には、低位センサ246は、容器236内の液体フォトポリマ樹脂252の自動補充を容易にするために使用されうる。
図1を概括的に参照するに、システム100は更に、液体フォトポリマ樹脂252の補給源262を備える。補給源262は、液体フォトポリマ樹脂252の高さが下方閾値高さ以下になると液体フォトポリマ樹脂252を容器236に選択的に供給するよう、構成される。この段落の上述の記載は、本開示の例12を特徴付けており、例12は上記の例11による記載も含む。
補給源262に、低位に反応して液体フォトポリマ樹脂252を容器236に自動的に供給させることによって、望ましい量の液体フォトポリマ樹脂252が、オペレータが手動でそれを補充することを必要とせずに、容器236内に維持されうる。
図1を概括的に参照するに、容器236は更に、容器236内の液体フォトポリマ樹脂252の高さが上方閾値高さ以上である場合にそれを検出するよう配置された、高位センサ248を備える。この段落の上述の記載は、本開示の例13を特徴付けており、例13は上記の例11による記載も含む。
高位センサ248を含むことは、液体フォトポリマ樹脂252を容器236に過剰充填することを防止するために使用されうる。
図1を概括的に参照するに、システム100は更に、液体フォトポリマ樹脂252の補給源262を備える。補給源262は、液体フォトポリマ樹脂252の高さが下方閾値高さ以下になると液体フォトポリマ樹脂252を容器236に選択的に供給するよう、かつ、液体フォトポリマ樹脂252の高さが上方閾値高さ以上になると液体フォトポリマ樹脂252の容器236への供給を選択的に止めるよう、構成される。この段落の上述の記載は、本開示の例14を特徴付けており、例14は上記の例13による記載も含む。
補給源262に、低位に反応して液体フォトポリマ樹脂252を容器236に自動的に供給させ、高位に反応して液体フォトポリマ樹脂252の容器236への供給を自動的に止めさせることによって、望ましい量の液体フォトポリマ樹脂252が、オペレータが手動でそれを補充することを必要とせずに、容器236内に維持されうる。
図1を概括的に参照しつつ、例えば図4及び図5を詳細に参照するに、非樹脂構成要素108は、繊維、炭素繊維、ガラス繊維、合成有機繊維、アラミド繊維、天然繊維、木質繊維、ホウ素繊維、炭化ケイ素繊維、光ファイバ、繊維束、繊維トウ、繊維織り、ワイヤ、金属ワイヤ、導電ワイヤ、又はワイヤ束のうちの一又は複数を含む。この段落の上述の記載は、本開示の例15を特徴付けており、例15は上記の例1から例14のいずれか1つによる記載も含む。
連続可撓性ライン106内に一又は複数の繊維を含むことで、複合部品102の所望の性質を選択することが可能になる。更に、繊維の特定の材料の選択及び/又は繊維の特定の構成(例えば、束、トウ、及び/又は織り)の選択が、複合部品102の所望の性質の正確な選択を可能にしうる。複合部品102の例示的な性質は、強度、剛性、可撓性、延性、硬度、導電性、熱伝導性等を含む。非樹脂構成要素108は、特定された例に限定されず、他の種類の非樹脂構成要素108も使用されうる。
図3は、フォトポリマ樹脂構成要素110のマトリクスの中に非樹脂構成要素108として単一の繊維を伴う、連続可撓性ライン106を概略的に表している。図4は、フォトポリマ樹脂構成要素110のマトリクスの中に非樹脂構成要素108として1を上回る数の繊維を伴う、連続可撓性ライン106を概略的に表している。
図1を概括的に参照するに、液体フォトポリマ樹脂252は、紫外光フォトポリマ樹脂、可視光フォトポリマ樹脂、赤外光フォトポリマ、又はX線フォトポリマ樹脂のうちの少なくとも1つを含む。この段落の上述の記載は、本開示の例16を特徴付けており、例16は上記の例1から例15のいずれか1つによる記載も含む。
紫外光フォトポリマ樹脂、赤外光フォトポリマ樹脂、又はX線フォトポリマ樹脂は、可視光による不用意な硬化を回避するため、かつ/又は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後の、連続可撓性ライン106のセグメント120の部分124への硬化エネルギー118の正確な方向付けを可能にするために、選択されうる。その一方で、可視光フォトポリマは、供給源116が、部分124を硬化させるために可視光を供給することしか必要としないように、選択されうる。
図1を概括的に参照するに、システム100は更に、非樹脂構成要素108の発給源126を備える。この段落の上述の記載は、本開示の例17を特徴付けており、例17は上記の例1から例16のいずれか1つによる記載も含む。
発給源126を備えたシステム100は、材料であって、それ自体が非樹脂構成要素108を決定する材料を含む。発給源126は、それが提供される場合には、例えば、第1の所望の性質を備えた第1非樹脂構成要素108と、第1の所望の性質とは異なる第2の所望の性質を備えた第2非樹脂構成要素108とを含む、一又は複数の非樹脂構成要素108を提供しうる。例えば、1を上回る数の非樹脂構成要素108が提供される場合、複合部品102の所望の性質のために、一又は複数が選択されうる。
図1を概括的に参照するに、非樹脂構成要素108の発給源126は、非樹脂構成要素108のスプール128を含む。この段落の上述の記載は、本開示の例18を特徴付けており、例18は上記の例17による記載も含む。
スプール128の形態の発給源126は、製造工程において容易に補充又は交換される小型の容積で、かなりの長さの非樹脂構成要素108を提供しうる。
そのため、送り機構104は、非樹脂構成要素108をスプール128から取り出すか、又は引き出すよう構成されうる。
追加的又は代替的には非樹脂構成要素108の発給源126は、複数の個別の長さの非樹脂構成要素108を含みうる。
図1を概括的に参照しつつ、例えば図6から図8、図14、図21、及び図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、送り機構104がプリントパス122に向けて連続可撓性ライン106を押し供給ガイド112に通すにつれて、連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後に、連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給するよう構成される。この段落の上述の記載は、本開示の例19を特徴付けており、例19は上記の例1から例18のいずれか1つによる記載も含む。
供給ガイド112によりセグメント120が堆積された後に連続可撓性ライン106のセグメント120の部分124に硬化エネルギー118を供給することによって、部分124の中のフォトポリマ樹脂構成要素110が少なくとも部分的に硬化され、部分124は、供給ガイド112によって既に堆積されているセグメント120の残りの部分に相関して所望の場所に効果的に確定される。換言すると、供給源116は、システム100によって複合部品102が製造されていくにつれて、複合部品102の原位置での硬化を提供する。
図1を概括的に参照しつつ、例えば図6から図8、図14、図21、及び図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を制御された速度で供給するよう構成される。この段落の上述の記載は、本開示の例20を特徴付けており、例20は上記の例1から例19のいずれか1つによる記載も含む。
既定の量又は能動的に決定される量の硬化エネルギー118を制御された速度で供給することの結果として、複合部品102の製造中のいかなる時点においても、セグメント120の部分124に関して、所望の硬化レベル又は硬化程度が達成されうる。例えば、複合部品102の製造において、1つの部分124を別の部分124よりも高次に、又は低次に硬化することが望ましいかもしれない。硬化エネルギー118の既定の量は、例えば、フォトポリマ樹脂構成要素110に使用されるフォトポリマ樹脂に基づきうる。硬化エネルギー118の能動的に決定される量は、例えば、連続可撓性ライン106が堆積されていくにつれて連続可撓性ライン106から検知される、硬度、色、温度、グロウ等を含む(ただしそれらだけに限定されるわけではない)リアルタイムデータに基づきうる。
図1を概括的に参照しつつ、例えば図6から図8、図14、図21、及び図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、少なくとも1つの光源134を備える。少なくとも1つの光源134は、一又は複数の硬化レーザを含む。この段落の上述の記載は、本開示の例21を特徴付けており、例21は上記の例1から例20のいずれか1つによる記載も含む。
一又は複数の硬化レーザを含むことは、複合部品102の製造中に硬化エネルギー118がセグメント120の部分124に選択的かつ正確に方向付けられうるように、硬化エネルギー118が集約され、方向付けられて流れることを容易にする。
図1を概括的に参照しつつ、例えば図6から図8、図14、図21、及び図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、少なくとも1つの光源134を備える。少なくとも1つの光源134は、一又は複数の紫外光源を含む。この段落の上述の記載は、本開示の例22を特徴付けており、例22は上記の例1から例21のいずれか1つによる記載も含む。
一又は複数の紫外光源を含むことで、紫外光の存在中で硬化されるよう構成されているフォトポリマ樹脂252を使用することが可能になる。
図1を概括的に参照しつつ、例えば図6から図8、図14、図21、及び図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、少なくとも1つの光源134を備える。少なくとも1つの光源134は、一又は複数の可視光源を含む。この段落の上述の記載は、本開示の例23を特徴付けており、例23は上記の例1から例22のいずれか1つによる記載も含む。
一又は複数の可視光源を含むことで、可視光の存在中で更に硬化されるよう構成されているフォトポリマ樹脂252を使用することが可能になる。
図1を概括的に参照しつつ、例えば図6から図8、図14、図21、及び図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、少なくとも1つの光源134を備える。少なくとも1つの光源134は、一又は複数の赤外光源、一又は複数の紫外光源、及び/又は、一又は複数のX線源を含む。この段落の上述の記載は、本開示の例24を特徴付けており、例24は上記の例1から例23のいずれか1つによる記載も含む。
一又は複数の赤外光源を含むことで、赤外光の存在中で更に硬化されるよう構成されているフォトポリマ樹脂252を使用することが可能になる。一又は複数の紫外光源を含むことで、紫外光の存在中で更に硬化されるよう構成されているフォトポリマ樹脂252を使用することが可能になる。一又は複数のX線源を含むことで、X線の存在中で更に硬化されるよう構成されているフォトポリマ樹脂252を使用することが可能になる。
図1を概括的に参照するに、硬化エネルギー118の供給源116は熱源136を含む。この段落の上述の記載は、本開示の例25を特徴付けており、例25は上記の例1から例24のいずれか1つによる記載も含む。
熱源136を含むことで、熱の存在中で硬化されるよう構成されているフォトポリマ樹脂252を使用することが可能になる。
図1を概括的に参照しつつ、例えば図8、及び図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、供給ガイド112に作動的に連結され、供給ガイド112と共に動くよう構成される。この段落の上述の記載は、本開示の例26を特徴付けており、例26は上記の例1から例25のいずれか1つによる記載も含む。
そのため、供給源116は、硬化エネルギー118がセグメント120の部分124に常に方向付けられるように、かつ、供給ガイド112が動くにつれて、供給源118が供給ガイド112と共に動くように、配置され、位置合わせされ、若しくは構成されうる。その結果として、供給源116は、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、セグメント120の部分124への硬化エネルギー118の供給を維持するための、複雑な機構を含む必要がなくなる。
図1を概括的に参照しつつ、例えば図23から図25を詳細に参照するに、硬化エネルギー118の供給源116は、供給ガイド112に対して回転可能である。この段落の上述の記載は、本開示の例27を特徴付けており、例27は上記の例1から例26のいずれか1つによる記載も含む。
供給源116は、供給ガイド112に対して回転可能であることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、セグメント120の部分124に硬化エネルギー118を供給するよう、選択的に配置されうる。
図1を概括的に参照しつつ、例えば図23から図28を詳細に参照するに、硬化エネルギー118の供給源116は、供給ガイド112が表面114に対して動く時に、供給ガイド112を追跡するよう構成される。この段落の上述の記載は、本開示の例28を特徴付けており、例28は上記の例1から例27のいずれか1つによる記載も含む。
供給源116は、供給ガイド112を追跡することによって、部分124が供給ガイド112から出た直後にセグメント120の部分124に硬化エネルギー118を供給するよう、選択的に配置される。
図1を概括的に参照しつつ、例えば図8、図9、及び図21を詳細に参照するに、硬化エネルギー118の供給源116は、連続可撓性ライン106のセグメント120と交差する、硬化エネルギー118のリング148を供給するよう構成される。この段落の上述の記載は、本開示の例29を特徴付けており、例29は上記の例1から例28のいずれか1つによる記載も含む。
硬化エネルギー118のリング148がセグメント120と交差する時に、リング148は、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、セグメント120が供給ガイド112から出ていく方向にかかわらず、硬化エネルギー118が部分124に供給されることを、確実にする。
硬化エネルギー118のリング148は、任意の好適なプロセス及び/又は構造によって画定されうる。例えば、図10を参照するに、かつ本書に記載されているように、供給ガイド112は硬化エネルギー通路146を備えてよく、硬化エネルギー118の供給源116は、硬化エネルギー118がリング148を画定するように、硬化エネルギー通路146を通じて硬化エネルギー118を供給するよう構成されうる。追加的又は代替的には、図21を参照するに、こちらも本書に記載されているように、エネルギー源116は、セグメント120の部分124に硬化エネルギー118のリング148を供給するよう構成されている、少なくとも1つの検流式鏡位置決めシステム(galvanometer mirror−positioning system)150を備えうる。
図1を概括的に参照しつつ、例えば図21を詳細に参照するに、硬化エネルギー118の供給源116は、供給ガイド112と共に動くようには構成されない。この段落の上述の記載は、本開示の例30を特徴付けており、例30は上記の例1から例25のいずれか1つによる記載も含む。
システム100のかかる例は、供給ガイド112に関連付けられたより扱いやすいアセンブリを提供し、例えば製造されている複合部品102の構成、及びその所望の性質に基づいて、供給ガイド112が、表面114に対して、及び/又はその逆に、より容易に微細な移動及び旋回、又は角度変更を行うことを可能にしうる。
図21は、エネルギー源116は、供給ガイド120が表面114に対して動く際に供給ガイド112に対して静止している2つの検流式鏡位置決めシステム150を備えるが、検流式鏡位置決めシステム150は、連続可撓性ライン106が供給ガイド112から出るにつれてそのセグメント120の部分124に硬化エネルギー118を供給するよう構成されている、システム100の一例を提供している。
図1を概括的に参照しつつ、例えば図21を詳細に参照するに、硬化エネルギー118の供給源116は、表面114に対する供給ガイド112の移動に対応して連続可撓性ライン106のセグメント120の少なくとも部分124に硬化エネルギー118を供給するよう構成された、少なくとも1つの検流式鏡位置決めシステム150を備える。この段落の上述の記載は、本開示の例31を特徴付けており、例31は上記の例1から例25、及び例30のいずれか1つによる記載も含む。
換言すると、一又は複数の検流式鏡位置決めシステム150は、連続可撓性ライン112が供給ガイド112から出るにつれて、セグメント120の部分124に硬化エネルギー118を能動的に方向付けうる。
図6を参照するに、硬化エネルギー118の供給源116は、連続可撓性ライン106のセグメント120の第1層140を、第1層140の少なくとも一部分が表面114に接して供給ガイド112によって堆積されていくにつれて部分的に硬化するよう、かつ、第2層142が第1層140に接して供給ガイド112によって堆積されていくにつれて、第1層140を更に硬化し、第2層142を部分的に硬化するよう、構成される。この段落の上述の記載は、本開示の例32を特徴付けており、例32は上記の例1から例31のいずれか1つによる記載も含む。
第1層140が堆積されていくにつれて第1層140を部分的にのみ硬化することによって、第1層140は、粘着性を保ち、又はねばねばしたままでありうる。それによって、第2層142が第1層140に接して堆積されるにつれて第1層140に第2層142を接着することが、容易になりうる。次いで、第2層142に接する後続層が堆積される間に第2層142が部分的に硬化されていくにつれて、第1層140は更に硬化され、以下同様である。
第1層140を更に硬化することによって、第1層140が完全に硬化されうるか、又は、完全硬化に至らない程度に硬化されうることが、意図される。例えば、一部の応用では、システム100による製造における完全硬化に至らない程度の複合部品102の硬化が、例えばシステム100から分離されたプロセスで、複合部品102全体が完全に硬化される前の複合部品102に対する後続加工を可能にすることが、望ましいかもしれない。例えば、複合部品102は、最終硬化のために、ベーキングされ、加熱され、かつ/又はオートクレーブに入れられうる。
図1を概括的に参照しつつ、例えば図6を詳細に参照するに、硬化エネルギー118の供給源116は、連続可撓性ライン106のセグメント120の第1層140を、第1層140の少なくとも一部分が表面114に接して供給ガイド112によって堆積されていくにつれて部分的に硬化するよう、かつ、第2層142が第1層140に接して供給ガイド112によって堆積されていくにつれて、第1層140を完全に硬化し、第2層142を部分的に硬化するよう、構成される。この段落の上述の記載は、本開示の例33を特徴付けており、例33は上記の例1から例31のいずれか1つによる記載も含む。
繰り返すが、第1層140が堆積されていくにつれて第1層140を部分的にのみ硬化することによって、第1層140は、粘着性を保ち、又はねばねばしたままでありうる。それによって、第2層142が第1層140に接して堆積されるにつれて第1層140に第2層142を接着することが、容易になりうる。しかし、この例42により、第2層142が部分的に硬化されていくにつれて、第1層140は完全に硬化される。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に粗面機144を備える。硬化エネルギー118の供給源116は、粗面機144を用いて部分124の表面を研磨する以前に、連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給するよう構成される。この段落の上述の記載は、本開示の例34を特徴付けており、例34は上記の例1から例33のいずれか1つによる記載も含む。
粗面機144は、それが存在する場合には、部分124を研磨し、その表面積を、そこに接して堆積される後続層の接着をより良好にするために増大させる。更に、硬化エネルギー118の部分124への供給の後にはフォトポリマ樹脂構成要素110の粘性が低下することから、粗面機(144)が部分124を研磨する以前に硬化エネルギー118を部分124に供給することによって、増大した表面積が元に戻ることも、研磨の程度が低い状態に戻ることもなくなりうる。
図1を概括的に参照するに、システム100は更に、粗面機144を備える。硬化エネルギー118の供給源116は、粗面機144を用いて部分124の表面を研磨した後に、連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給するよう構成される。この段落の上述の記載は、本開示の例35を特徴付けており、例35は上記の例1から例33のいずれか1つによる記載も含む。
例34と対照的に、例35は、部分124の増大した表面積又は研磨が、そこに接して連続可撓性ライン106の後続層が堆積されるまでそれが所望の研磨状態に保たれるように、硬化エネルギー118によって少なくとも一時的に確定されることを、可能にしうる。
図1を概括的に参照しつつ、例えば図23から図25を詳細に参照するに、システム100は更に、供給ガイド112が表面114に対して動くにつれて枢動アーム152が供給ガイド112を追跡するように、供給ガイド112に相関して連結された、枢動アーム152を備える。硬化エネルギー118の供給源116は、枢動アーム152に連結される。この段落の上述の記載は、本開示の例36を特徴付けており、例36は上記の例1から例29のいずれか1つによる記載も含む。
例27及び例28と同様に、供給源116は、枢動アーム152に連結されることによって、部分124が供給ガイド112から出た直後にセグメント120の部分124に硬化エネルギー118を供給するよう、選択的に配置される。
図1を概括的に参照しつつ、例えば図23から図25を詳細に参照するに、システム100は更に、枢動アーム152に作動的に連結され、かつ、供給ガイド112が表面114に対して動くにつれて、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御するよう構成された、枢動アームアクチュエータ188を備える。この段落の上述の記載は、本開示の例37を特徴付けており、例37は上記の例36による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御することによって、供給源116が、部分124が供給ガイド112から出た直後にセグメント120の部分124に硬化エネルギー118を供給するよう選択的に配置されるように、供給源116が供給ガイド112を追跡することを、確実にする。
図1を概括的に参照しつつ、例えば図23から図25を詳細に参照するに、枢動アームアクチュエータ188は、枢動アーム152の回転位置を、表面114に対する供給ガイド112の移動に能動的に連携させるよう構成される。この段落の上述の記載は、本開示の例38を特徴付けており、例38は上記の例37による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対して枢動アーム152の回転位置を能動的に連携させることによって、供給源116が、部分124が供給ガイド112から出た直後にセグメント120の部分124に硬化エネルギー118を供給するよう選択的に配置されるように、供給源116が供給ガイド112を追跡することを、確実にする。
図1を概括的に参照しつつ、例えば図10、及び図23から図30を詳細に参照するに、送り機構104は供給ガイド112に連結される。この段落の上述の記載は、本開示の例39を特徴付けており、例39は上記の例1から例38のいずれか1つによる記載も含む。
供給ガイド112に連結された送り機構104を有することで、送り機構104が、供給ガイド112を通して連続可撓性ライン106を作動的に押しうることが、容易になる。
図1を概括的に参照しつつ、例えば図10、及び図23から図30を詳細に参照するに、供給ガイド112は送り機構104から延びる。この段落の上述の記載は、本開示の例40を特徴付けており、例40は上記の例1から例39のいずれか1つによる記載も含む。
供給ガイド112は、送り機構104から延びることによって、プリントパス122に沿った所望の場所に連続可撓性ライン106を選択的に堆積するように配置されうる。
図1を概括的に参照しつつ、例えば図10、及び図23から図30を詳細に参照するに、供給ガイド112は、ガイド入口部284と、ガイド出口部206であって、それを通って連続可撓性ライン106が供給ガイド112から出るガイド出口部206と、ガイド入口部284からガイド出口部206へと延びるガイドライン通路154とを備える。送り機構104は、ガイドライン通路154を通して連続可撓性ライン106を押すよう構成される。送り機構104は、支持フレーム156と、それぞれの回転軸159を有する対向ローラ157とを備える。対向ローラ157は、支持フレーム156に回転可能に連結される。対向ローラ157は、連続可撓性ライン106の両側に係合するよう構成される。対向ローラ157は、ライン通路154を通して連続可撓性ライン106を押すために、選択的に回転するよう構成される。この段落の上述の記載は、本開示の例41を特徴付けており、例41は上記の例1から例40のいずれか1つによる記載も含む。
支持フレーム156は、対向ローラ157を含む送り機構104の構成要素部分のための支持を提供する。対向ローラ157は、選択的に回転する時に、連続可撓性ライン106に摩擦係合するよう作用し、それによって、対向ローラ157の間に連続可撓性ライン106を送り、それをガイド入口部284の中へ押し込んで、ガイドライン通路154に通す。
図9を概括的に参照しつつ、例えば図29及び図30を詳細に参照するに、対向ローラ157は互いに接触している。この段落の上述の記載は、本開示の例42を特徴付けており、例42は上記の例41による記載も含む。
対向ローラ157間の接触で、対向ローラ157が共に回転することが確実になり、連続可撓性ライン106がローラ間に引き込まれる際に連続可撓性ライン106を曲げるか、若しくは連続可撓性ライン106に内部湾曲付勢をもたらすことになる、不均一なトルクの付与が回避されうる。追加的又は代替的には、対向ローラ157間の接触で、対向ローラ157の一方のみがモータによって直接駆動されるが、対向ローラ157の他方は、被駆動ローラに係合されている結果として単に回転することが、可能になりうる。
図9を概括的に参照しつつ、例えば図29及び図30を詳細に参照するに、対向ローラ157の各々は、連続可撓性ライン106に接触するよう構成された、円周チャネル161を備える。この段落の上述の記載は、本開示の例43を特徴付けており、例43は上記の例41又は例42のいずれか1つによる記載も含む。
対向ローラ157の各々に円周チャネル161を含むことにより、連続可撓性ライン106が延びうる通路が作り出され、対向ローラ157と連続可撓性ライン106との接触の表面積がより大きくなり、それによって、連続可撓性ライン106がガイド入口部284の中に押し込まれ、ガイドライン通路154に通されることが、容易になる。
図9を概括的に参照しつつ、例えば図29及び図30を詳細に参照するに、対向ローラ157の一方は、連続可撓性ライン106に接触するよう構成された、円周チャネル161を備える。この段落の上述の記載は、本開示の例44を特徴付けており、例44は上記の例41又は例42のいずれか1つによる記載も含む。
例43と同様に、1つの円周チャネル161を含むことで、連続可撓性ライン106が延びうる通路が作り出され、対向ローラ157と連続可撓性ライン106との接触の表面積がより大きくなり、それによって、連続可撓性ライン106がガイド入口部284の中に押し込まれ、ガイドライン通路154に通されることが、容易になる。
図1を概括的に参照しつつ、例えば図29及び図30を詳細に参照するに、対向ローラ157は別様にサイズ決定される。この段落の上述の記載は、本開示の例45を特徴付けており、例45は上記の例41から例44のいずれか1つによる記載も含む。
別様にサイズ決定された対向ローラ157は、送り機構104の効率的なパッケージングを可能にしうる。追加的又は代替的には、別様にサイズ決定された対向ローラ157は、被駆動ローラ158とアイドルローラ160との間での所望のトルク伝達を提供しうる。
図1を概括的に参照しつつ、例えば図10を詳細に参照するに、対向ローラ157は一様にサイズ決定される。この段落の上述の記載は、本開示の例46を特徴付けており、例46は上記の例41から例44のいずれか1つによる記載も含む。
一様にサイズ決定された対向ローラ157は、送り機構104の効率的なパッケージングを可能にしうる。追加的又は代替的には、一様にサイズ決定された対向ローラ157は、被駆動ローラ158とアイドルローラ160との間での所望のトルク伝達を提供しうる。
図1を概括的に参照しつつ、例えば図10、及び図23から図31を詳細に参照するに、送り機構104は更に、対向ローラ157の少なくとも一方に作動的に連結され、かつ、対向ローラ157の少なくとも一方を選択的に回転させるよう構成された、モータ162を備える。この段落の上述の記載は、本開示の例47を特徴付けており、例47は上記の例41から例46のいずれか1つによる記載も含む。
モータ162は、送り機構104が供給ガイド112を通して連続可撓性ライン106を押すために対向ローラ157を回転させる、原動力を提供する。
図1を概括的に参照しつつ、例えば図10、及び図29から図31を詳細に参照するに、対向ローラ157は、連続可撓性ライン106の両側に作動的に係合するための、モータ162に作動的に連結された被駆動ローラ158と、被駆動ローラ158に向けて付勢されたアイドルローラ160とを備える。この段落の上述の記載は、本開示の例48を特徴付けており、例48は上記の例47による記載も含む。
被駆動ローラ158に向けて付勢されたアイドルローラ160を有することによって、アイドルローラ160は、送り機構104が供給ガイド112を通して連続可撓性ライン106を押すために、モータによって直接駆動される必要がなくなる。その代わりに、アイドルローラ160は、アイドルローラ160が被駆動ローラ158に係合していることによって、かつ/又は、被駆動ローラ158に係合されている連続可撓性ライン106に係合していることによって、回転する。
アイドルローラ160は、コイルばねのようなばねでありうる付勢部材164によって、被駆動ローラ158に向けて付勢されうる。
図1を概括的に参照しつつ、例えば図29から図31を詳細に参照するに、送り機構104は更に、ロッカアーム169を備える。ロッカアーム169は、支持フレーム156に枢動可能に連結される。アイドルローラ160は、ロッカアーム169に回転式に連結される。ロッカアーム169は、アイドルローラ160が被駆動ローラ158に向けて付勢されるように、支持フレーム156に相関して付勢される。ロッカアーム169は、アイドルローラ160を、被駆動ローラ158から遠ざかるように選択的に枢動させるよう構成される。この段落の上述の記載は、本開示の例49を特徴付けており、例49は上記の例48による記載も含む。
ロッカアーム169は、ユーザが、アイドルローラ160を係合し、付勢部材164の付勢に抗して被駆動ローラ158から遠ざかるように枢動させるための構造を提供する。そのため、ユーザは、例えば、システム100の初期セットアップ時に対向ローラ157の間への連続可撓性ライン106の初期挿入を容易にするために、かつ/又は、複合部品102の製造中に連続可撓性ライン106を変化させるために、アイドルローラ160を選択的に枢動させうる。
本書で使用される「付勢する(to bias)」とは、一定の強度を有することも、有しないこともありうる力を、連続的に印加することを意味する。
図1を概括的に参照しつつ、例えば図29から図31を詳細に参照するに、送り機構104は更に、アイドルローラ160を被駆動ローラ158に向けて付勢するためにロッカアーム169に印加される力を選択的に調整するよう構成された、ロッカアーム調整器171を備える。この段落の上述の記載は、本開示の例50を特徴付けており、例50は上記の例49による記載も含む。
ロッカアーム調整器171は、ユーザが、被駆動ローラ158に向かうアイドルローラ160の付勢力、ひいては、対向ローラ157の間の連続可撓性ライン106に印加される力を、選択的に調整することを可能にする。例えば、種々の強度の力が、システム100によって使用されうる種々の構成及び/又は種々のサイズの連続可撓性ライン106の種々の材料特性と関連する、システム100の作動を容易にする。
図1を概括的に参照しつつ、例えば図10、図29、及び図30を詳細に参照するに、供給ガイド112は更に、第1端部163、第2端部165、及び、第1端部163と第2端部165との間の接合部167を備える。第1端部163は対向ローラ157の一方を補完するよう形作られ、第2端部165は、対向ローラ157の他方を補完するよう形作られる。この段落の上述の記載は、本開示の例51を特徴付けており、例51は上記の例41から例50のいずれか1つによる記載も含む。
対向ローラ157を補完する第1端部163及び第2端部135を有することで、供給ガイド112は、対向ローラ157の直近に配置されうる。そのため、送り機構104が連続可撓性ライン106を、供給ガイド112の中に押し込んで通す時に、連続可撓性ライン106が、バンチングし、よじれ、詰まり、若しくは、送り機構104から供給ガイド112へと不適切に送り込まれる可能性が低くなる。
図1を概括的に参照しつつ、例えば図10を参照するに、接合部167と、対向ローラ157のそれぞれの回転軸159を包含する平面173との間の最短距離Dは、対向ローラ157の小さい方の半径よりも短い。この段落の上述の記載は、本開示の例52を特徴付けており、例52は上記の例51による記載も含む。
繰り返すが、例えば平面173の距離Dの範囲内に接合部167がある状態で、対向ローラ157の直近に供給ガイド112を有することで、連続可撓性ライン106は、作動的に、供給ガイド112の中に押し込まれて通されうる。
図1を概括的に参照しつつ、例えば図10、図29、及び図30を詳細に参照するに、接合部167はエッジを備える。この段落の上述の記載は、本開示の例53を特徴付けており、例53は上記の例51又は例52のいずれか1つによる記載も含む。
接合部167がエッジを備える場合、エッジは、対向ローラ157の間の界面、及び、対向ローラ157と連続可撓性ライン106と間の界面の直近に配置されうる。
いくつかの例では、エッジは線形でありうる。いくつかの例では、エッジは鋭いエッジでありうる。いくつかの例では、エッジは丸みを帯びたエッジでありうる。
図1を概括的に参照しつつ、例えば図10、図29、及び図30を詳細に参照するに、送り機構104は更に、対向ローラ157が回転して連続可撓性ライン106を選択的に直進させ、ガイドライン通路154を通して連続可撓性ライン106を押す際に対向ローラ157と連続可撓性ライン106との係合によって発生した、フォトポリマ樹脂構成要素110の残留物を除去するために、対向ローラ157の少なくとも一方と接触しているスクレーパ172を備える。この段落の上述の記載は、本開示の例54を特徴付けており、例54は上記の例41から例53のいずれか1つによる記載も含む。
スクレーパ172は、対向ローラ上に樹脂が蓄積して送り機構104の作動を妨害しないことを確実にするために、対向ローラ157からフォトポリマ樹脂構成要素110の残留物を除去する。
スクレーパ172は、対向ローラ157から樹脂を作動的に除去するか、又はこすり取るために、任意の好適な形態をとりうる。例えば、図29及び図30を参照するに、スクレーパ172は、対向ローラ157の一方の、例えば3mm、2mm、1mm、0.5mm以内の直近に延びるか、又は、対向ローラ157の一方に物理的に係合するように延びる、長方形等の突起でありうる。より具体的には、図29及び図30で分かるように、スクレーパ172は、対向ローラ157の、対向ローラが連続可撓性ライン106に係合する領域の近くに延びうる。
図11を参照するに、対向ローラ157の少なくとも一方は、連続可撓性ライン106に接触するよう構成された、円周チャネル161を備える。スクレーパ172は、対向ローラ157が回転して連続可撓性ライン106を選択的に直進させ、ライン通路154を通して連続可撓性ライン106を押す際に、円周チャネル161と連続可撓性ライン106との係合によって発生した、フォトポリマ樹脂構成要素110の残留物を、円周チャネル161から除去するよう構成された、突起175を備える。この段落の上述の記載は、本開示の例55を特徴付けており、例55は上記の例54による記載も含む。
円周チャネル161を含む対向ローラ157の例では、対向ローラ157内に延びる突起175を有するスクレーパ172は、対向ローラ157と連続可撓性ライン106との係合によって発生した、フォトポリマ樹脂構成要素110のいかなる残留物もこすり取ること、又は除去することを容易にする。
図1を概括的に参照しつつ、例えば図10、図29、及び図30を詳細に参照するに、送り機構104は更に、支持フレーム156に連結された収集リザーバ174を備える。収集リザーバ174は、スクレーパ172によって除去されたフォトポリマ樹脂構成要素110の残留物を収集するよう構成される。この段落の上述の記載は、本開示の例56を特徴付けており、例56は上記の例54又は例55のいずれか1つによる記載も含む。
上述のように、収集リザーバ174は、スクレーパ172によって除去される残留物を収集する。そのため、残留物は、送り機構104の他の構成要素と干渉せず、複合部品102の製造を妨害する望ましくない粒子をもたらすことはない。更に、収集リザーバ174は、例えば、一杯になった時、又は、システム100によって実行されるプロセスの終了時に、ユーザによって選択的に空にされうる。
図1を概括的に参照しつつ、例えば図7から図9を詳細に参照するに、供給ガイド112は更に、硬化エネルギー通路146を備える。硬化エネルギー118の供給源116は、連続可撓性ライン106のセグメント120の少なくとも部分124へと、硬化エネルギー通路146を通じて硬化エネルギー118を供給するよう構成される。硬化エネルギー通路146は、ガイドライン通路154から光学的に隔離される。この段落の上述の記載は、本開示の例57を特徴付けており、例57は上記の例41から例56のいずれか1つによる記載も含む。
例57によるシステムは、連続可撓性ライン106が供給ガイド112から出ていくにつれて、部分124への硬化エネルギー118の正確な方向付けを提供する。更に、硬化エネルギー通路146は、ガイドライン通路154から光学的に隔離されることによって、硬化エネルギー118が、連続可撓性ライン106が供給ガイド112から出る前の連続可撓性ライン106に接触することを制限する。
例57により(例えば図8を参照するに)、硬化エネルギー118の硬化エネルギー通路146からの退出が、例えば本書の例38による、硬化エネルギー118のリング148をもたらすように、硬化エネルギー通路146は、ガイドライン通路154を取り囲んでよく、ガイドライン通路154のガイド出口部206の周囲に環状の出口部を有しうる。
図1を概括的に参照しつつ、例えば図12から図16、及び図23から図25を詳細に参照するに、システム100は更に、圧縮機138を備える。硬化エネルギー118の供給源116は、圧縮機138による圧縮後の場所の、連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給するよう構成される。この段落の上述の記載は、本開示の例58を特徴付けており、例58は上記の例1から例57のいずれか1つによる記載も含む。
圧縮機138は、プリントパス122に沿って供給ガイド112によって堆積された、連続可撓性ライン106の隣接する層を圧縮する。圧縮機138による圧縮に続いて硬化エネルギー118が部分124に供給されると、このことは、連続可撓性ライン106のフォトポリマ樹脂構成要素110の硬化又は固化以前の圧縮の発生を可能にする。
図1を概括的に参照しつつ、例えば図12から図16及び図23から図25を詳細に参照するに、システム100は更に、供給アセンブリ266に作動的に連結され、かつ、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域180に圧縮力を付与するよう構成された、圧縮機138を備える。この段落の上述の記載は、本開示の例59を特徴付けており、例59は上記の例1から例58のいずれか1つによる記載も含む。
繰り返すが、圧縮機138は、プリントパス122に沿って供給ガイド112によって堆積された、連続可撓性ライン106の隣接する層を圧縮する。
図1を概括的に参照しつつ、例えば図12から図14を詳細に参照するに、圧縮機138は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域180の上を転がるよう構成されている圧縮ローラ表面184を有する、圧縮ローラ182を備える。この段落の上述の記載は、本開示の例60を特徴付けており、例60は上記の例59による記載も含む。
圧縮ローラ182は、圧縮機138の代替例と比較すると、圧縮中に、セグメント120に沿ったフォトポリマ樹脂構成要素110の軸方向移動を減少させうる。加えて、圧縮機138の代替例と比較すると、圧縮ローラ182は、圧縮力のより望ましい、直角又は垂直な成分を提供しうる。
図1を概括的に参照しつつ、例えば図12を詳細に参照するに、圧縮ローラ表面184はテクスチャ加工される。この段落の上述の記載は、本開示の例61を特徴付けており、例61は上記の例60による記載も含む。
圧縮ローラ表面184がテクスチャ加工されると、圧縮ローラ表面184は、セグメント120にテクスチャを付与するか、又はセグメント120を研磨し、その表面積を、そこに接して堆積される連続可撓性ライン106の後続層の接着をより良好にするために増大させる。
図1を概括的に参照しつつ、例えば図13を詳細に参照するに、圧縮ローラ表面184は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域180に既定の断面形状を付与するよう形作られる。この段落の上述の記載は、本開示の例62を特徴付けており、例62は上記の例60又は例61のいずれか1つによる記載も含む。
一部の応用では、連続可撓性ライン106が供給ガイド112によって堆積されていくにつれて、それに既定の断面形状を付与することが望ましいかもしれない。
図1を概括的に参照しつつ、例えば図15を詳細に参照するに、圧縮機138は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域180に接して引きずられるよう構成されているワイパドラッグ表面186を有する、圧縮ワイパ185を備える。この段落の上述の記載は、本開示の例63を特徴付けており、例63は上記の例59による記載も含む。
圧縮ワイパ185は、圧縮機138の代替例と比較すると、圧縮中に、セグメント120に沿ったフォトポリマ樹脂構成要素110の軸方向移動を増大させうる。
図1を概括的に参照しつつ、例えば図15を詳細に参照するに、ワイパドラッグ表面186はテクスチャ加工される。この段落の上述の記載は、本開示の例64を特徴付けており、例64は上記の例63による記載も含む。
ドラッグ表面186がテクスチャ加工されると、ドラッグ表面186は、セグメント120にテクスチャを付与するか、又はセグメント120を研磨し、その表面積を、そこに接して堆積される連続可撓性ライン106の後続層の接着をより良好にするために増大させる。
図1を概括的に参照しつつ、例えば図15を詳細に参照するに、ワイパドラッグ表面186は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120に既定の断面形状を付与するよう形作られる。この段落の上述の記載は、本開示の例65を特徴付けており、例65は上記の例63又は例64のいずれか1つによる記載も含む。
上述のように、一部の応用では、連続可撓性ライン106が供給ガイド112によって堆積されていくにつれて、それに既定の断面形状を付与することが望ましいかもしれない。
図1を概括的に参照しつつ、例えば図14、図23、及び図25を詳細に参照するに、圧縮機138は、連続可撓性ライン106のセグメント120の区域180に向けて付勢される。この段落の上述の記載は、本開示の例66を特徴付けており、例66は上記の例59から例65のいずれか1つによる記載も含む。
圧縮機138は、区域180に向けて付勢されることによって、区域180に対して所望の圧縮力を付与する。
圧縮機138は、例えば、ばね181又は他の付勢部材によって、区域180に向けて付勢されうる。
図1を概括的に参照しつつ、例えば図14、図23、及び図25を詳細に参照するに、圧縮機138は、供給ガイド112に対して回転可能である。この段落の上述の記載は、本開示の例67を特徴付けており、例67は上記の例59から例66のいずれか1つによる記載も含む。
圧縮機138は、供給ガイド112に対して回転可能であることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、セグメント120の区域180に対して圧縮機138の圧縮力を付与するよう、選択的に配置されうる。
図14は、供給ガイド112に対して自由に回転する圧縮ローラ182を、概略的に示している。図23及び図25は、本書に記載されているように、枢動アームアクチュエータ188によって選択的かつ能動的に回転する、圧縮ローラ182を示している。
図1を概括的に参照しつつ、例えば図14、図23、及び図25を詳細に参照するに、圧縮機138は、供給ガイド112が表面114に対して動く時に、供給ガイド112を追跡するよう構成される。この段落の上述の記載は、本開示の例68を特徴付けており、例68は上記の例59から例67のいずれか1つによる記載も含む。
圧縮機138は、供給ガイド112を追跡することによって、区域180が供給ガイド112から出た直後にセグメント120の区域180に対して圧縮機138の圧縮力を付与するよう、選択的に配置される。
図16を参照するに、圧縮機138は、供給ガイド112に連結されたスカート部190を備える。スカート部190は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域180に接して引きずられるよう配置されている、スカートドラッグ表面192を備える。この段落の上述の記載は、本開示の例69を特徴付けており、例69は上記の例59による記載も含む。
スカート部190は、供給ガイド112から、出口部206の周囲を取り巻くように延びる。そのため、表面114に対する供給ガイド112の移動、及び/又はその逆の移動の方向にかかわらず、スカート部190は、連続可撓性ライン106が堆積されていくにつれて、そのセグメント120の区域180を圧縮するよう配置される。
図1を概括的に参照しつつ、例えば図23及び図25を詳細に参照するに、システム100は更に、供給アセンブリ266に作動的に連結され、かつ、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域180に圧縮力を付与するよう構成された、圧縮機138を備える。システム100は更に、供給ガイド112が表面114に対して動くにつれて枢動アーム152が供給ガイド112を追跡するように、供給アセンブリ266に相関して連結された、枢動アーム152を備える。圧縮機138は、枢動アーム152に連結される。この段落の上述の記載は、本開示の例70を特徴付けており、例70は上記の例1による記載も含む。
枢動アーム152は、供給ガイド112に対する圧縮機138の選択的な枢動を提供する。そのため、圧縮機138は、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、セグメント120の区域180に対して圧縮機138の圧縮力を付与するよう、選択的に配置されうる。
図1を概括的に参照しつつ、例えば図23及び図25を詳細に参照するに、システム100は更に、枢動アーム152に作動的に連結され、かつ、供給ガイド112が表面114に対して動くにつれて、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御するよう構成された、枢動アームアクチュエータ188を備える。この段落の上述の記載は、本開示の例71を特徴付けており、例71は上記の例70による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対する枢動アーム152の、ひいては圧縮機138の、選択的な枢動を提供する。そのため、圧縮機138は、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、セグメント120の区域180に対して圧縮機138の圧縮力を付与するよう、選択的に配置されうる。
図1を概括的に参照しつつ、例えば図23及び図25を詳細に参照するに、枢動アームアクチュエータ188は、枢動アーム152の回転位置を、表面114に対する供給ガイド112の移動に能動的に連携させるよう構成される。この段落の上述の記載は、本開示の例72を特徴付けており、例72は上記の例71による記載も含む。
そのため、圧縮機138は、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、セグメント120の区域180に対して圧縮機138の圧縮力を付与するよう、選択的かつ能動的に配置されうる。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、供給アセンブリ112に作動的に連結され、かつ、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域194を研磨するよう構成された、粗面機144を備える。この段落の上述の記載は、本開示の例73を特徴付けており、例73は上記の例1から例33のいずれか1つによる記載も含む。
粗面機144は、区域194を研磨し、その表面積を、そこに接して堆積される後続層の接着をより良好にするために増大させる。
図1を参照するに、粗面機144は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域194を回転式に研磨するよう構成されている、粗面化ローラ196を備える。この段落の上述の記載は、本開示の例74を特徴付けており、例74は上記の例73による記載も含む。
粗面化ローラ196は、粗面機144の代替例と比較すると、セグメント120の研磨中に、セグメント120に沿ったフォトポリマ樹脂構成要素110の軸方向移動を減少させうる。
図1を概括的に参照するに、粗面化ローラ196は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120に既定の断面形状を付与するよう形作られた、粗面化ローラ表面198を備える。この段落の上述の記載は、本開示の例75を特徴付けており、例75は上記の例74による記載も含む。
一部の応用では、連続可撓性ライン106が供給ガイド112によって堆積されていくにつれて、それに既定の断面形状を付与することが望ましいかもしれない。
図23を参照するに、粗面機144は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の少なくとも区域194を線形運動によって研磨するよう構成されている、粗面化ドラッグ表面200を備える。この段落の上述の記載は、本開示の例76を特徴付けており、例76は上記の例73による記載も含む。
粗面化ドラッグ表面200は、粗面機144の代替例と比較すると、セグメント120の研磨中に、セグメント120に沿ったフォトポリマ樹脂構成要素110の軸方向移動を増大させうる。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、粗面機144は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に、連続可撓性ライン106のセグメント120の区域194に向けて付勢される。この段落の上述の記載は、本開示の例77を特徴付けており、例77は上記の例73から例76のいずれか1つによる記載も含む。
粗面機144は、区域194に向けて付勢されることによって、区域194に対して所望の研磨力を付与する。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、粗面機144は、供給アセンブリ266に対して回転可能である。この段落の上述の記載は、本開示の例78を特徴付けており、例78は上記の例73から例77のいずれか1つによる記載も含む。
粗面機144は、供給ガイド112に対して回転可能であることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、区域194を研磨するよう、選択的に配置されうる。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、粗面機144は、供給ガイド112が表面114に対して動く時に、供給ガイド112を追跡するよう構成される。この段落の上述の記載は、本開示の例79を特徴付けており、例79は上記の例73から例78のいずれか1つによる記載も含む。
粗面機144は、供給ガイド112を追跡することによって、セグメント120が供給ガイド112から出た直後に区域194を研磨するよう、選択的に配置される。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、供給ガイド112が表面114に対して動くにつれて枢動アーム152が供給ガイド112を追跡するように構成された、枢動アーム152を備える。粗面機144は、枢動アーム152に連結される。この段落の上述の記載は、本開示の例80を特徴付けており、例80は上記の例73から例79のいずれか1つによる記載も含む。
枢動アーム152は、供給ガイド112に対する粗面機144の選択的な枢動を提供する。そのため、粗面機144は、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、区域194を研磨するよう、選択的に配置されうる。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、枢動アーム152に作動的に連結され、かつ、供給ガイド112が表面114に対して動くにつれて、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御するよう構成された、枢動アームアクチュエータ188を備える。この段落の上述の記載は、本開示の例81を特徴付けており、例81は上記の例80による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対する枢動アーム152の、ひいては粗面機144の、選択的な枢動を提供する。そのため、粗面機144は、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、区域194を研磨するよう、選択的に配置されうる。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、枢動アームアクチュエータ188は、枢動アーム152の回転位置を、表面114に対する供給ガイド112の移動に能動的に連携させるよう構成される。この段落の上述の記載は、本開示の例82を特徴付けており、例82は上記の例81による記載も含む。
そのため、粗面機144は、供給ガイド112が表面114に対して、及び/又はその逆に、動く(方向を変えることも含む)につれて、区域194を研磨するよう、選択的かつ能動的に配置されうる。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、圧縮機138を備える。粗面機144は、圧縮機138による少なくとも区域194の圧縮に続き、連続可撓性ライン106のセグメント120の少なくとも区域194を研磨するよう配置される。この段落の上述の記載は、本開示の例83を特徴付けており、例83は上記の例73から例82のいずれか1つによる記載も含む。
例83によるシステムは、圧縮機138と粗面機144の両方を含む。圧縮機138による圧縮に続き区域194を研磨するよう配置された、粗面機144を有することによって、区域194の研磨は、区域194の後続の圧縮により妨害されることも、鈍化することもなくなる。そのため、区域194の研磨は、表面積を、そこに接して堆積される後続層の接着をより良好にするために増大させる。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、粗面機144で連続可撓性ライン106のセグメント120の少なくとも区域194を研磨することから生じるデブリを収集するよう構成された、デブリ吸入部202を備える。この段落の上述の記載は、本開示の例84を特徴付けており、例84は上記の例73から例79のいずれか1つによる記載も含む。
粗面機144による区域194の研磨から生じるデブリをデブリ吸入部202によって収集することで、フォトポリマ樹脂構成要素110の望ましくない遊離粒子であって、連続可撓性ライン106の堆積される隣接層の間に入り込む遊離粒子が回避される。遊離粒子は、回避されなければ、複合部品102の望ましくない性質をもたらしうる。
図1を参照するに、システム100は更に、デブリ吸入部202に選択的に連通するように連結された真空源203を備える。この段落の上述の記載は、本開示の例85を特徴付けており、例85は上記の例84による記載も含む。
真空源202は、デブリ吸入部202を通じて、隣接する区域194から空気及びデブリを吸引する。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、供給ガイド112が表面114に対して動くにつれて枢動アーム152が供給ガイド112を追跡するように、供給ガイド112に相関して連結された、枢動アーム152を備える。デブリ吸入部202は、枢動アーム152に作動的に連結される。この段落の上述の記載は、本開示の例86を特徴付けており、例86は上記の例84又は例85のいずれか1つによる記載も含む。
デブリ吸入部202は、枢動アーム152に連結されることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、隣接する区域194から直接デブリを収集するよう、選択的に配置される。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、枢動アーム152に作動的に連結され、かつ、供給ガイド112が表面114に対して動くにつれて、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御するよう構成された、枢動アームアクチュエータ188を備える。この段落の上述の記載は、本開示の例87を特徴付けており、例87は上記の例86による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御することによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、デブリ吸入部202が区域194の直近でデブリを収集するよう選択的に配置されるように、デブリ吸入部202が供給ガイド112を追跡することを、確実にする。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、枢動アームアクチュエータ188は、枢動アーム152の回転位置を、表面114に対する供給ガイド112の移動に能動的に連携させるよう構成される。この段落の上述の記載は、本開示の例88を特徴付けており、例88は上記の例87による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対して枢動アーム152の回転位置を能動的に連携させることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、デブリ吸入部202が区域194の直近でデブリを収集するよう選択的に配置されるように、デブリ吸入部202が供給ガイド112を追跡することを、確実にする。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、加圧ガスを用いて、粗面機144による連続可撓性ライン106のセグメント120の粗面化から生じるデブリを消散させるよう構成された、加圧ガス放出部204を備える。この段落の上述の記載は、本開示の例89を特徴付けており、例89は上記の例73から例88のいずれか1つによる記載も含む。
粗面機144による区域194の研磨から生じるデブリを加圧ガス放出部204によって消散させることで、フォトポリマ樹脂構成要素110の望ましくない遊離粒子であって、連続可撓性ライン106の堆積される隣接層の間に入り込む遊離粒子が回避される。遊離粒子は、回避されなければ、複合部品102の望ましくない性質をもたらしうる。
図1を参照するに、システム100は更に、加圧ガス放出部204に選択的に連通するよう連結された加圧ガス源205を備える。この段落の上述の記載は、本開示の例90を特徴付けており、例90は上記の例89による記載も含む。
加圧ガス源205は、加圧ガス放出部204を介して区域194に供給される加圧ガスの供給源を提供する。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、供給ガイド112が表面114に対して動くにつれて枢動アーム152が供給ガイド112を追跡するように構成された、枢動アーム152を備える。加圧ガス放出部204は、枢動アーム152に作動的に連結される。この段落の上述の記載は、本開示の例91を特徴付けており、例91は上記の例89又は例90のいずれか1つによる記載も含む。
加圧ガス放出部204は、枢動アーム152に連結されることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、隣接する区域194から直接デブリを収集するよう、選択的に配置される。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、システム100は更に、枢動アーム152に作動的に連結され、かつ、供給ガイド112が表面114に対して動くにつれて、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御するよう構成された、枢動アームアクチュエータ188を備える。この段落の上述の記載は、本開示の例92を特徴付けており、例92は上記の例91による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御することによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、加圧ガス放出部204が区域194の直近でデブリを消散させるよう選択的に配置されるように、加圧ガス放出部204が供給ガイド112を追跡することを、確実にする。
図1を概括的に参照しつつ、例えば図23を詳細に参照するに、枢動アームアクチュエータ188は、枢動アーム152の回転位置を、表面114に対する供給ガイド112の移動に能動的に連携させるよう構成される。この段落の上述の記載は、本開示の例93を特徴付けており、例93は上記の例92による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対して枢動アーム152の回転位置を能動的に連携させることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、加圧ガス放出部204が区域194の直近でデブリを消散させるよう選択的に配置されるように、加圧ガス放出部204が供給ガイド112を追跡することを、確実にする。
図1を概括的に参照しつつ、例えば図17から図20、図23、図32、及び図33を詳細に参照するに、供給ガイド112は、ガイドライン通路154であって、それを通って連続可撓性ライン106がプリントパス122に供給されるガイドライン通路154を備える。ライン通路154はガイド出口部206を備える。システム100は更に、ガイド出口部206の近くで連続可撓性ライン106を選択的に切断するよう構成された、カッター208を備える。この段落の上述の記載は、本開示の例94を特徴付けており、例94は上記の例1から例93のいずれか1つによる記載も含む。
カッター208を含むことで、供給ガイド112による、連続可撓性ライン106の供給の選択的な停止及び開始が可能になる。出口部206の近くで連続可撓性ライン106を切断するよう構成されたカッター208を有することによって、連続可撓性ライン106は、硬化エネルギー118によって少なくとも部分的に硬化される以前に、連続可撓性ライン106が連続可撓性ライン106の事前に堆積された層にまだ接触していないうちに、オプションではその層に接して圧縮されないうちに、切断されうる。換言すると、カッター208による、連続可撓性ライン106の外周全体へのアクセスが可能になる。
図1を概括的に参照しつつ、例えば図17から図19、図23、図32、及び図33を詳細に参照するに、カッター208は、供給ガイド112に対して移動可能な、少なくとも1つの刃210を備える。この段落の上述の記載は、本開示の例95を特徴付けており、例95は上記の例94による記載も含む。
図1を概括的に参照しつつ、例えば図17を詳細に参照するに、カッター208はアイリス絞り212である。この段落の上述の記載は、本開示の例96を特徴付けており、例96は上記の例94又は例95のいずれか1つによる記載も含む。
アイリス絞り212は、連続可撓性ライン106の複数の側からの、連続可撓性ライン106の切断を可能にする。そのため、連続可撓性ライン106の断面形状は、カッター208による変形が、カッター208の他の例によって生じうる変形よりも少なくなりうる。
図1を概括的に参照しつつ、例えば図19を詳細に参照するに、カッター208は供給ガイド112の中に配置される。この段落の上述の記載は、本開示の例97を特徴付けており、例97は上記の例94から例96のいずれか1つによる記載も含む。
カッター208を供給ガイド112の中に配置することで、表面114に対する供給ガイドの移動、及び/又はその逆の移動をカッター208が妨げないような、システム100の小型のアセンブリが提供される。
図1を概括的に参照しつつ、例えば図20を詳細に参照するに、カッター208は切断レーザ213を備える。この段落の上述の記載は、本開示の例98を特徴付けており、例98は上記の例94による記載も含む。
連続可撓性ライン106を切断するために切断レーザ213を使用することで、複合部品102の製造中の、所望の場所における連続可撓性ライン106の正確な切断が容易になる。
図1を概括的に参照しつつ、例えば図20を詳細に参照するに、カッター208は更に、出口部206の近くで連続可撓性ライン106を選択的に切断するために切断レーザ213を方向付けるよう構成された、少なくとも1つの検流式鏡位置決めシステム214を備える。この段落の上述の記載は、本開示の例99を特徴付けており、例99は上記の例98による記載も含む。
換言すると、一又は複数の検流式鏡位置決めシステム214は、連続可撓性ライン106が供給ガイド112から出るにつれて、切断レーザ213を連続可撓性ライン106に能動的に方向付けうる。
図1を概括的に参照しつつ、例えば図22を詳細に参照するに、システム100は更に、供給ガイド112又は表面114の少なくとも一方に作動的に連結され、かつ、供給ガイド112又は表面114の少なくとも一方を、他方に対して作動的かつ選択的に動かすよう構成された、駆動アセンブリ216を備える。この段落の上述の記載は、本開示の例100を特徴付けており、例100は上記の例1から例99のいずれか1つによる記載も含む。
駆動アセンブリ216は、供給ガイド112を介して連続可撓性ライン106が堆積されるにつれて、連続可撓性ライン106から複合部品102が製造されるように、供給ガイド112と表面114との相対移動を容易にする。
図1を概括的に参照しつつ、例えば図22を詳細に参照するに、駆動アセンブリ216は、X軸駆動体217、Y軸駆動体219、及びZ軸駆動体215を備え、それらのうちの少なくとも1つは、供給アセンブリ266又は表面114の少なくとも一方に作動的に連結される。この段落の上述の記載は、本開示の例101を特徴付けており、例101は上記の例100による記載も含む。
例101によるシステムは、供給ガイド112と表面114との三次元相対移動を提供する。
図1を参照するに、駆動アセンブリ216は、ロボット式アーム218を備える。この段落の上述の記載は、本開示の例102を特徴付けており、例102は上記の例100又は例101のいずれか1つによる記載も含む。
供給ガイド112を表面114に対して、及び/又はその逆に、作動的かつ選択的に動かすためにロボット式アーム218を使用することで、複数の自由度、及び複雑な三次元複合部品102の製造が可能になる。
図1を概括的に参照しつつ、例えば図22を詳細に参照するに、駆動アセンブリ216は、供給ガイド112又は表面114の少なくとも一方を他方に対して、三次元において直交するように、作動的かつ選択的に動かすよう構成される。この段落の上述の記載は、本開示の例103を特徴付けており、例103は上記の例100から例102のいずれか1つによる記載も含む。
例103によるシステムは、三次元で複合部品102を製造しうる。
図1を概括的に参照しつつ、例えば図22を詳細に参照するに、駆動アセンブリ216は、供給ガイド112又は表面114の少なくとも一方を他方に対して、少なくとも3自由度を伴って三次元において、作動的かつ選択的に動かすよう構成される。この段落の上述の記載は、本開示の例104を特徴付けており、例104は上記の例100から例102のいずれか1つによる記載も含む。
例104によるシステムは、複雑な三次元複合部品102を製造しうる。
図1を概括的に参照するに、駆動アセンブリ216は、供給ガイド112又は表面114の少なくとも一方を他方に対して、少なくとも6自由度を伴って三次元において、作動的かつ選択的に動かすよう構成される。この段落の上述の記載は、本開示の例105を特徴付けており、例105は上記の例100から例102のいずれか1つによる記載も含む。
例105によるシステムは、複雑な三次元複合部品102を製造しうる。
図1を参照するに、駆動アセンブリ216は、供給ガイド112又は表面114の少なくとも一方を他方に対して、少なくとも9自由度を伴って三次元において、作動的かつ選択的に動かすよう構成される。この段落の上述の記載は、本開示の例106を特徴付けており、例106は上記の例100から例102のいずれか1つによる記載も含む。
例106によるシステムは、複雑な三次元複合部品102を製造しうる。
図1を参照しつつ、例えば図38を詳細に参照するに、駆動アセンブリ216は、供給ガイド112又は表面114の少なくとも一方を他方に対して、少なくとも12自由度を伴って三次元において、作動的かつ選択的に動かすよう構成される。この段落の上述の記載は、本開示の例107を特徴付けており、例107は上記の例100から例102のいずれか1つによる記載も含む。
例107によるシステムは、複雑な三次元複合部品102を製造しうる。
図38を参照するに、線形運動要素290及び回転要素292が供給ガイド112と表面114との間に12自由度を提供し、かつ、コントローラ294が、線形運動要素290及び回転要素292に通信可能に作動的に連結されている、例107による概略図が提示されている。
図1を参照するに、システム100は更に、セグメント120が供給ガイド112から出た後に連続可撓性ライン106のセグメント120にシールドガス221を供給することによって、連続可撓性ライン106のセグメント120を少なくとも部分的に酸化から保護するよう構成された、シールドガス放出部220を備える。この段落の上述の記載は、本開示の例108を特徴付けており、例108は上記の例1から例107のいずれか1つによる記載も含む。
シールドガス放出部220を含むこと、及び、そこからセグメント120にシールドガス221を供給することで、連続可撓性ライン106の、供給源116によって少なくとも部分的に硬化される以前の、及び/又は、硬化されている時の、酸化が制限される。
図1を参照するに、システム100は更に、シールドガス放出部220に選択的に連通するように連結されたシールドガス源222を備える。この段落の上述の記載は、本開示の例109を特徴付けており、例109は上記の例108による記載も含む。
シールドガス源222は、シールドガス放出部220を介してセグメント120に供給されるシールドガス221の供給源を提供する。
図1を参照するに、システム100は更に、セグメント120が供給ガイド112から出た後に連続可撓性ライン106のセグメント120にシールドガス221を供給することによって、連続可撓性ライン106のセグメント120を少なくとも部分的に酸化から保護するよう構成された、シールドガス放出部220を備える。システム100は更に、供給ガイド112が表面114に対して動くにつれて枢動アーム152が供給ガイド112を追跡するように、供給ガイド112に相関して連結された、枢動アーム152を備える。シールドガス放出部220は、枢動アーム152に作動的に連結される。この段落の上述の記載は、本開示の例110を特徴付けており、例110は上記の例1による記載も含む。
シールドガス放出部220は、枢動アーム152に連結されることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、シールドガス221をセグメント120に供給するよう、選択的に配置される。
図1を参照するに、システム100は更に、枢動アーム152に作動的に連結され、かつ、供給ガイド112が表面114に対して動くにつれて、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御するよう構成された、枢動アームアクチュエータ188を備える。この段落の上述の記載は、本開示の例111を特徴付けており、例111は上記の例110による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対する枢動アーム152の回転位置を能動的に制御することによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、シールドガス放出部220がセグメント120にシールドガス221を供給するよう選択的に配置されるように、シールドガス放出部220が供給ガイド112を追跡することを、確実にする。
図1を参照するに、枢動アームアクチュエータ188は、枢動アーム152の回転位置を、表面114に対する供給ガイド112の移動に能動的に連携させるよう構成される。この段落の上述の記載は、本開示の例112を特徴付けており、例112は上記の例111による記載も含む。
枢動アームアクチュエータ188は、供給ガイド112に対して枢動アーム152の回転位置を能動的に連携させることによって、供給ガイド112が表面114に対して、及び/又はその逆に、動くにつれて、シールドガス放出部220がセグメント120にシールドガス221を供給するよう選択的に配置されるように、シールドガス放出部220が供給ガイド112を追跡することを、確実にする。
図1を参照するに、システム100は更に、連続可撓性ライン106のセグメント120が供給ガイド112から出た後に連続可撓性ライン106のセグメント120における不具合を検出するよう構成された、不具合検出器224を備える。この段落の上述の記載は、本開示の例113を特徴付けており、例113は上記の例1から例112のいずれか1つによる記載も含む。
セグメント120における不具合を検出することで、複合部品102の完成以前に、不具合を有する複合部品102を選択的に廃棄することが可能になる。そのため、材料の無駄が少なくなりうる。更に、検出されなければ様々な種類の不具合検出器による視認から隠されることになる不具合が、連続可撓性ライン106の後続層が不具合を視認から見えにくくするか、又は隠す以前に、不具合検出器224によって検出されうる。
図1を参照するに、不具合検出器224は、光学検出器226、又は超音波検出器227を含む。この段落の上述の記載は、本開示の例114を特徴付けており、例114は上記の例113による記載も含む。
一部の応用では、光学検出器226が、連続可撓性ライン106のセグメント120における不具合の検出によく適合しうる。一部の応用では、超音波検出器227が、連続可撓性ライン106のセグメント120における不具合の検出によく適合しうる。
図1を参照するに、不具合検出器224はカメラ228を備える。この段落の上述の記載は、本開示の例115を特徴付けており、例115は上記の例113による記載も含む。
カメラ228は、連続可撓性ライン106のセグメント120における不具合の検出によく適合しうる。
図1を参照するに、システム100は更に、コントローラ230と、連続可撓性ライン106の発給源126、枢動アームアクチュエータ188、圧縮機138、粗面機144、モータ162、デブリ吸入部202、デブリ吸入部202に選択的に連通するように連結された真空源203、加圧ガス放出部204、加圧ガス放出部204に選択的に連通するように結合された加圧ガス源205、カッター208、駆動アセンブリ216、シールドガス放出部220、シールドガス放出部220に選択的に連通するように連結されたシールドガス源222、不具合検出器224、低位センサ246、高位センサ248、液体フォトポリマ樹脂252の補給源262、及びモータ駆動のローラ249、のうちの一又は複数とを備える。コントローラ230は、供給ガイド112、送り機構104、硬化エネルギー118の供給源116、連続可撓性ライン106の発給源126、枢動アームアクチュエータ188、圧縮機138、粗面機144、モータ162、真空源203、加圧ガス源205、カッター208、駆動アセンブリ216、シールドガス源222、不具合検出器224、低位センサ246、高位センサ248、液体フォトポリマ樹脂252の補給源262、及びモータ駆動のローラ249、のうちの一又は複数を選択的に作動させるようプログラムされる。この段落の上述の記載は、本開示の例116を特徴付けており、例116は上記の例1から例115のいずれか1つによる記載も含む。
コントローラ230は、システム100の様々な構成要素部分の作動を制御する。例えば、供給ガイド112及び/又は表面114の互いに対する正確な移動が、所望の三次元複合部品102を製造するために制御されうる。圧縮機138による圧縮力を正確に供給すること、硬化エネルギー118を正確に供給すること、粗面機144によって連続可撓性ライン106を正確に研磨することなどのために、枢動アームアクチュエータ188による枢動アーム152の正確な枢動が制御されうる。加えて、様々な構成要素部分の作動は、複合部品102の所望の性質及び構成をもたらすために、複合部品102の製造において、コントローラ230によって選択的に開始され、停止されうる。
図1では、コントローラ230とシステム100の様々な構成要素部分との間の通信が、稲妻のマークによって概略的に表されている。かかる通信は、事実上、有線及び/又は無線でありうる。
コントローラ230は、システム100の少なくとも一部分の作動を自動的に制御するよう、適合し、構成され、設計され、構築され、かつ/又はプログラムされうる、任意の好適な構造を含みうる。例示的で非限定的な例としては、コントローラ230は、電子コントローラ、専用コントローラ、特定用途コントローラ、パソコン、ディスプレイデバイス、論理デバイス、及び/又はメモリデバイスを含んでよく、かつ/又はそれらでありうる。加えて、コントローラ230は、システム100の作動を自動的に制御するために、一又は複数のアルゴリズムを実行するようプログラムされうる。これは、コントローラ230に基づきうる、かつ/又は、コントローラ230に、本書で開示されている方法300及び方法400を実行するようシステム100に命令させうる、アルゴリズムを含みうる。
図1を概括的に参照しつつ、例えば図22を詳細に参照するに、システム100は更にフレーム232を備える。フレーム232は、送り機構104及び表面114を支持する。この段落の上述の記載は、本開示の例117を特徴付けており、例117は上記の例1から例116のいずれか1つによる記載も含む。
フレーム232は、送り機構104が供給ガイド112を表面114に対して、及び/又はその逆に、作動的かつ選択的に動かしうるように、送り機構104及び表面114を構造的に支持する。
例えば図1、図4から図10、図14、及び図21から図28を参照しつつ、図34を詳細に参照するに、複合部品102を付加製造する方法300が開示されている。方法300は、(ブロック302)連続可撓性ライン106のセグメント120を、プリントパス122に沿って堆積させることを含む。連続可撓性ライン106は、非樹脂構成要素108を備え、硬化されていないフォトポリマ樹脂構成要素110を更に備える。方法300は更に、(ブロック304)連続可撓性ライン106をプリントパス122に向けて進行させつつ、連続可撓性ライン106のセグメント120がプリントパス120に沿って堆積された後に、連続可撓性ライン106のセグメント120の少なくとも部分124を少なくとも部分的に硬化させるために、連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することを含む。この段落の上述の記載は、本開示の例118を特徴付ける。
従って方法300は、初期には未硬化状態であるフォトポリマ樹脂構成要素110を含み、かつ、複合部品102が製造されている間に、すなわち原位置で、硬化エネルギー118によって少なくとも部分的に硬化される、少なくとも1つの複合材料から複合部品102を製造するために、実行されうる。既定の量又は能動的に決定される量の硬化エネルギー118を制御された速度で供給することの結果として、複合部品102の製造中のいかなる時点においても、セグメント120の部分124に関して、所望の硬化レベル又は硬化程度が達成されうる。例えば本書に記載されているように、いくつかの例では、複合部品102の製造において、1つの部分124を別の部分124よりも高次に、又は低次に硬化することが望ましいかもしれない。更に、方法300は、例えば複合部品102の所望の性質を決定するために複合部品102全体を通じて所望の及び/又は既定の位置付けに配向される連続可撓性ライン106で、複合部品102を製造するために実行されうる。
方法300は、システム100によって実行されうる。
例えば図1から図3、及び図22を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック306)供給ガイド112を通して連続可撓性ライン106を押している間に液体フォトポリマ樹脂252を非樹脂構成要素108に付着させることを含む。フォトポリマ樹脂構成要素110は、非樹脂構成要素108に付着した少なくともいくらかの液体フォトポリマ樹脂252を含む。この段落の上述の記載は、本開示の例119を特徴付けており、例119は上記の例118による記載も含む。
複合部品102の製造中に液体フォトポリマ樹脂252を非樹脂構成要素108に付着させることによって、複合部品102の製造中に連続可撓性ライン106が作り出される。そのため、種々の非樹脂構成要素108及び/又は種々の液体フォトポリマ樹脂252が、複合部品102の中の種々の場所に種々の特性を備えた所望の複合部品102をカスタマイズするか、若しくは作り出すために、方法300の実行中に選択されうる。
例えば図1から図3、及び図22を参照しつつ、図34を詳細に参照するに、(ブロック306)供給ガイド112を通して連続可撓性ライン106を押している間に液体フォトポリマ樹脂252を非樹脂構成要素108に付着させることは、(ブロック308)ある容積の液体フォトポリマ樹脂252を包含する容器236に通して非樹脂構成要素108を引き出すことを含む。この段落の上述の記載は、本開示の例120を特徴付けており、例120は上記の例119による記載も含む。
容器236内に保持された液体フォトポリマ樹脂252に通して非樹脂構成要素108を引き出すことによって、非樹脂構成要素108は液体フォトポリマ樹脂252内でコーティングされることになり、それによって、フォトポリマ樹脂構成要素110及び連続可撓性ライン106を作り出す。
例えば図1を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック310)容器236の中の液体フォトポリマ樹脂252の高さを検出すること、及び、液体フォトポリマ樹脂252の容積が下方閾値高さ以下である場合に液体フォトポリマ樹脂252を容器236に選択的に供給することを含む。この段落の上述の記載は、本開示の例121を特徴付けており、例121は上記の例120による記載も含む。
容器236内の液体フォトポリマ樹脂252の低位を検出することは、容器236内の液体フォトポリマ樹脂252の高さが低く、補充が必要であることをオペレータに警告するために、使用されうる。追加的又は代替的には、低位を検出することは、容器236内の液体フォトポリマ樹脂252の自動補充を容易にするために使用されうる。
例えば図1から図3を参照しつつ、図34を詳細に参照するに、(ブロック308)容器236に通して非樹脂構成要素108を引き出すことは、(ブロック312)容器236から出る液体フォトポリマ樹脂252の量を制限することを含む。この段落の上述の記載は、本開示の例122を特徴付けており、例122は上記の例120又は例121のいずれか1つによる記載も含む。
容器236から出る液体フォトポリマ樹脂252の量を制限することによって、所望の量の液体フォトポリマ樹脂252が非樹脂構成要素108に付着して、連続可撓性ライン106を作り出しうる。追加的又は代替的には、かかる制限は、例えば、液体フォトポリマ樹脂252の液だれ、漏れ、若しくは、複合部品102又はシステム100の構成要素との望ましくない接触を防止しうる。
例えば図1から図3を参照しつつ、図34を詳細に参照するに、(ブロック308)容器236に通して非樹脂構成要素108を引き出すことは、(ブロック314)液体フォトポリマ樹脂252を非樹脂構成要素108に均一に付着させることを含む。この段落の上述の記載は、本開示の例123を特徴付けており、例123は上記の例120から例122のいずれか1つによる記載も含む。
液体フォトポリマ樹脂252を非樹脂構成要素108に均一に付着させることによって、連続可撓性ライン106が所望の性質を伴って作り出され、例えば、非樹脂構成要素108が液体フォトポリマ樹脂242で適切にコーティングされること、いくつかの例では十分に含浸されることを、確実にしうる。
例えば図1から図3を参照しつつ、図34を詳細に参照するに、(ブロック308)容器236に通して非樹脂構成要素108を引き出すことは、(ブロック316)容器236の中で、非樹脂構成要素108のいかなる2つの連続するセグメントの間にも60度未満の湾曲を有しないように、非樹脂構成要素108を構成することを含む。この段落の上述の記載は、本開示の例124を特徴付けており、例124は上記の例120から例123のいずれか1つによる記載も含む。
非樹脂構成要素108の湾曲を制限することで、非樹脂構成要素108への損傷が防止されうる。
例えば図4及び図5を参照しつつ、図34を詳細に参照するに、非樹脂構成要素108は、繊維、炭素繊維、ガラス繊維、合成有機繊維、アラミド繊維、天然繊維、木質繊維、ホウ素繊維、炭化ケイ素繊維、光ファイバ、繊維束、繊維トウ、繊維織り、ワイヤ、金属ワイヤ、導電ワイヤ、又はワイヤ束のうちの一又は複数を含む。この段落の上述の記載は、本開示の例125を特徴付けており、例125は上記の例118から例124のいずれか1つによる記載も含む。
連続可撓性ライン106内に一又は複数の繊維を含むことで、複合部品102の所望の性質を選択することが可能になる。更に、繊維の特定の材料の選択及び/又は繊維の特定の構成(例えば、束、トウ、及び/又は織り)の選択が、複合部品102の所望の性質の正確な選択を可能にしうる。複合部品102の例示的な性質は、強度、剛性、可撓性、延性、硬度、導電性、熱伝導性等を含む。非樹脂構成要素108は、特定された例に限定されず、他の種類の非樹脂構成要素108も使用されうる。
図3は、フォトポリマ樹脂構成要素110のマトリクスの中に非樹脂構成要素108として単一の繊維を伴う、連続可撓性ライン106を概略的に表している。図4は、フォトポリマ樹脂構成要素110のマトリクスの中に非樹脂構成要素108として1を上回る数の繊維を伴う、連続可撓性ライン106を概略的に表している。
例えば図1を参照しつつ、図34を詳細に参照するに、フォトポリマ樹脂構成要素110は、紫外光フォトポリマ樹脂、可視光フォトポリマ樹脂、赤外光フォトポリマ樹脂、又はX線フォトポリマ樹脂のうちの少なくとも1つを含む。この段落の上述の記載は、本開示の例126を特徴付けており、例126は上記の例118から例125のいずれか1つによる記載も含む。
紫外光フォトポリマ樹脂、赤外光フォトポリマ樹脂、又はX線フォトポリマ樹脂は、可視光による不用意な硬化を回避するため、かつ/又は、連続可撓性ライン106のセグメント120が供給ガイド112から出た後の、連続可撓性ライン106のセグメント120の部分124への硬化エネルギー118の正確な方向付けを可能にするために、選択されうる。その一方で、可視光フォトポリマは、供給源116が、部分124を硬化するために可視光を供給することしか必要としないように、選択されうる。
例えば図1及び図6を参照しつつ、図34を詳細に参照するに、(ブロック302)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させることは、(ブロック318)連続可撓性ライン106をそれ自体、又は事前に堆積されたセグメント120に接するように層形成して、複合部品102を付加製造することを含む。この段落の上述の記載は、本開示の例127を特徴付けており、例127は上記の例118から例126のいずれか1つによる記載も含む。
連続可撓性ライン106をそれ自体に、又は事前に堆積されたセグメント120に接するように層形成することによって、方法300の実行により三次元複合部品102が製造されうる。
そのため、方法300は、3Dプリンティング方法、及び/又は付加製造方法と表現されうる。
例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック302)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させることは、(ブロック320)連続可撓性ライン106を既定のパターンに堆積させて、複合部品102の一又は複数の物理特性を選択的に制御することを含む。この段落の上述の記載は、本開示の例128を特徴付けており、例128は上記の例118から例127のいずれか1つによる記載も含む。
複合部品102の一又は複数の物理特性を制御することによって、従来型の複合レイアップ法により製造される類似の部品と比較した場合、使用される材料全体が減少し、かつ/又は、特定の部品のサイズが低減しうる。
例えば、複合材料の平面プライの複数層で構築された複合部品とは対照的に、複合部品102は、連続可撓性ライン106、ひいては非樹脂構成要素108の配向が所望の性質をもたらすように、製造されうる。一例としては、部品が穴を含む場合、連続可撓性ラインは、穴の周囲に概して同心円又は螺旋状に配置され、結果的に、穴の境界において連続可撓性ライン106には中断がなくなりうるか、又はほとんどなくなりうる。その結果として、部品の強度は、穴の周囲で、従来型の複合レイアップ法によって構築された類似の部品よりも著しく大きくなりうる。加えて、部品は、穴の境界における亀裂及びその伝播が起こりにくくなりうる。更に、穴の周囲の所望の性質により、従来型の複合レイアップ法によって構築される類似の部品と比較した場合、部品の全体的な厚み、容積、及び/又は質量が低減されうると共に、所望の性質が実現される。
例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック302)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させること、又は、(ブロック304)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することの少なくとも一方が、複合部品102の種々の場所に種々の物理特性を提供する。この段落の上述の記載は、本開示の例129を特徴付けており、例129は上記の例118から例128のいずれか1つによる記載も含む。
連続可撓性ライン106の制御された堆積、及び/又は、硬化エネルギー118の制御された供給は、複合部品102の種々の場所に所望の物理的特性をもたらすよう選択されうる。例えば、複合部品102の製造において、連続可撓性ライン106の1つの部分を連続可撓性ライン106の別の部分よりも高次に、又は低次に硬化することが望ましいかもしれない。一部の応用では、例えば、材料を除去するため、かつ/又は、複合部品102に構造成分又は他の構成要素を付加するために、硬化の程度が低い部分が後続プロセスによって後で加工されうるように、硬化の程度が低い部分があるとよいかもしれない。
例えば図1を参照しつつ、図34を詳細に参照するに、物理特性は、強度、剛性、可撓性、延性、又は硬度のうちの少なくとも1つを含む。この段落の上述の記載は、本開示の例130を特徴付けており、例130は上記の例128又は例129のいずれか1つによる記載も含む。
上記の物理特性の各々は、特定の目的のために選択されうる。例えば、複合部品であって、使用時にそのサブパートに複合部品の残部と比較して著しいトルクを受ける複合部品においては、複合部品の他の部分よりも、かかるサブパートの剛性を小さく、かつ/又は可撓性を大きくすることが、望ましいかもしれない。加えて、複合部品102の特定の応用に応じて、様々な理由のために、あるサブパートには、複合部品102の他の部分よりも大きな強度を組み込むことが望ましいかもしれない。
例えば図1及び図6を参照しつつ、図34を詳細に参照するに、(ブロック304)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック322)連続可撓性ライン106のセグメント120の第1層140を、第1層140が堆積されていくにつれて部分的に硬化し、第2層142が第1層140に接して堆積されていくにつれて、第1層140を更に硬化することを含む。この段落の上述の記載は、本開示の例131を特徴付けており、例131は上記の例118から例130のいずれか1つによる記載も含む。
第1層140が堆積されていくにつれて第1層140を部分的にのみ硬化することによって、第1層140は、粘着性を保ち、又はねばねばしたままでありうる。それによって、第2層142が第1層140に接して堆積されるにつれて第1層140に第2層142を接着することが、容易になりうる。次いで、第2層142に接する後続層が堆積される間に第2層142が部分的に硬化されていくにつれて、第1層140は更に硬化され、以下同様である。
例えば図1及び図6を参照しつつ、図34を詳細に参照するに、(ブロック304)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック324)連続可撓性ライン106のセグメント120の第1層140を、第1層140が堆積されていくにつれて部分的に硬化し、第2層142が第1層140に接して堆積されていくにつれて、第1層140を完全に硬化することを含む。この段落の上述の記載は、本開示の例132を特徴付けており、例132は上記の例118から例131のいずれか1つによる記載も含む。
繰り返すが、第1層140が堆積されていくにつれて第1層140を部分的にのみ硬化することによって、第1層140は、粘着性を保ち、又はねばねばしたままでありうる。それによって、第2層142が第1層140に接して堆積されるにつれて第1層140に第2層142を接着することが、容易になりうる。しかし、この例132により、第2層142が部分的に硬化されていくにつれて、第1層140は完全に硬化される。
例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック304)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック326)複合部品102を全体硬化に至らない程度に硬化させることを含む。この段落の上述の記載は、本開示の例133を特徴付けており、例133は上記の例118から例132のいずれか1つによる記載も含む。
一部の応用では、例えば、材料を除去するため、かつ/又は、複合部品102に構造成分又は他の構成要素を付加するために、硬化の程度が低い部分が後続プロセスによって後で加工されうるように、硬化の程度が低い部分があるとよいかもしれない。
例えば図1を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック328)複合部品102の少なくとも一部分を限定的に硬化することを含む。この段落の上述の記載は、本開示の例134を特徴付けており、例134は上記の例118から例133のいずれか1つによる記載も含む。
繰り返すが、一部の応用では、例えば、材料を除去するため、かつ/又は、複合部品102に構造成分又は他の構成要素を付加するために、硬化の程度が低い部分が後続プロセスによって後で加工されうるように、硬化の程度が低い部分があるとよいかもしれず、硬化の程度が低い部分は、硬化プロセスの制限から生じうる。
例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック330)複合部品102の部分は、その部分の後続処理を容易にするために、限定的に硬化される。この段落の上述の記載は、本開示の例135を特徴付けており、例135は上記の例134による記載も含む。
例えば材料を除去するため、かつ/又は、複合部品102に構造成分又は他の構成要素を付加するために、複合部品102に対する後続処理が望ましいかもしれない。
例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック332)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック332)複合部品102に変動物理特性を付与するために、硬化エネルギー118の供給速度又は供給時間の少なくとも一方を選択的に変えることを含む。この段落の上述の記載は、本開示の例136を特徴付けており、例136は上記の例118から例135のいずれか1つによる記載も含む。
複合部品102の変動物理特性を付与することによって、カスタマイズされた複合部品102が、他のサブパートとは異なる望ましい性質を有するサブパートを伴って製造されうる。
例えば図1を参照しつつ、図34を詳細に参照するに、変動物理特性は、強度、剛性、可撓性、延性、又は硬度のうちの少なくとも1つを含む。この段落の上述の記載は、本開示の例137を特徴付けており、例137は上記の例136による記載も含む。
上述のように、上記の特性の各々は、特定の目的のために選択されうる。例えば、複合部品102であって、使用時にそのサブパートに複合部品102の残部と比較して著しいトルクを受ける複合部品102においては、複合部品102の他の部分よりも、かかるサブパートの剛性を小さく、かつ/又は可撓性を大きくすることが、望ましいかもしれない。加えて、複合部品102の特定の応用に応じて、様々な理由のために、あるサブパートには、複合部品102の他の部分よりも大きな強度を組み込むことが望ましいかもしれない。
例えば図1、図12から図16、図22、図23、及び図25を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック334)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させるのと同時に、連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後の連続可撓性ライン106のセグメント120の少なくとも区域180を圧縮することを含む。この段落の上述の記載は、本開示の例138を特徴付けており、例138は上記の例118から例137のいずれか1つによる記載も含む。
方法300の実行中に連続可撓性ライン106の区域180を圧縮することで、方法300の実行中に堆積される連続可撓性ライン106の隣接する層の間の接着が容易になる。
例えば図1及び図13を参照しつつ、図34を詳細に参照するに、(ブロック334)連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後の連続可撓性ライン106のセグメント120の少なくとも区域180を圧縮することは、(ブロック336)連続可撓性ライン106のセグメント120に所望の断面形状を付与することを含む。この段落の上述の記載は、本開示の例139を特徴付けており、例139は上記の例138による記載も含む。
一部の応用では、連続可撓性ライン106が堆積されていくにつれて、それに既定の断面形状を付与することが望ましいかもしれない。
例えば図1及び図23を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック338)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させるのと同時に、連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後の連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化することを含む。この段落の上述の記載は、本開示の例140を特徴付けており、例140は上記の例118から例139のいずれか1つによる記載も含む。
連続可撓性ライン106の区域194を粗面化することで、その表面積が増大し、方法300の実行中にそこに接して堆積される連続可撓性ライン106の後続層の接着に役立つ。
例えば図1及び図23を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック340)連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化するのと同時に、連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化することから生じるデブリを収集することを含む。この段落の上述の記載は、本開示の例141を特徴付けており、例141は上記の例140による記載も含む。
区域194を粗面化することから生じるデブリを収集することで、フォトポリマ樹脂構成要素110の望ましくない遊離粒子であって、連続可撓性ライン106の堆積される隣接層の間に入り込む遊離粒子が回避される。遊離粒子は、回避されなければ、複合部品102の望ましくない性質をもたらしうる。
例えば図1及び図23を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック342)連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化するのと同時に、連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化することから生じるデブリを消散させることを含む。この段落の上述の記載は、本開示の例142を特徴付けており、例142は上記の例140又は例141のいずれか1つによる記載も含む。
区域194を粗面化することから生じるデブリを消散させることで、フォトポリマ樹脂構成要素110の望ましくない遊離粒子であって、連続可撓性ライン106の堆積される隣接層の間に入り込む遊離粒子が回避される。遊離粒子は、回避されなければ、複合部品102の望ましくない性質をもたらしうる。
例えば図1、図17から図20、図23、図32、及び図33を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック344)連続可撓性ライン106を選択的に切断することを含む。この段落の上述の記載は、本開示の例143を特徴付けており、例143は上記の例118から例142のいずれか1つによる記載も含む。
方法300の実行において連続可撓性ライン106を選択的に切断することで、複合部品102の種々の場所における連続可撓性ライン106の終了及び開始が可能になる。
例えば図1、図17から図20、図23、図32、及び図33を参照しつつ、図34を詳細に参照するに、(ブロック346)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させるのと同時に、連続可撓性ライン106は選択的に切断される。この段落の上述の記載は、本開示の例144を特徴付けており、例144は上記の例143による記載も含む。
連続可撓性ライン106の切断と供給とを同時に行うことで、プリントパス122に沿った、連続可撓性ライン106の制御された堆積が提供される。
例えば図1を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック348)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給するのと同時に、連続可撓性ライン106のセグメント120の少なくとも部分124を、セグメント120が供給ガイド112から出た後の酸化から少なくとも部分的に保護することを含む。この段落の上述の記載は、本開示の例145を特徴付けており、例145は上記の例118から例144のいずれか1つによる記載も含む。
部分124を酸化から保護することで、部分124の、後続の及び/又は同時的な硬化が容易になりうる。
例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック350)連続可撓性ライン106のセグメント120の少なくとも部分124は、シールドガスを用いて、酸化から少なくとも部分的に保護される。この段落の上述の記載は、本開示の例146を特徴付けており、例146は上記の例145による記載も含む。
繰り返すが、部分124を酸化から保護することで、部分124の、後続の及び/又は同時的な硬化が容易になりうる。
例えば図1を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック352)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積するのと同時に、複合部品102における不具合を検出することを含む。この段落の上述の記載は、本開示の例147を特徴付けており、例147は上記の例118から例146のいずれか1つによる記載も含む。
セグメント120における不具合を検出することで、複合部品102の完成以前に、不具合を有する複合部品102を選択的に廃棄することが可能になる。そのため、材料の無駄が少なくなりうる。更に、検出されなければ様々な種類の不具合検出器による視認から隠されることになる不具合が、連続可撓性ライン106の後続層が不具合を視認から見えにくくするか、又は隠す以前に、検出されうる。
例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック302)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させることは、(ブロック354)連続可撓性ライン106のセグメント120の少なくとも一部分を犠牲層の上に堆積させることを含む。この段落の上述の記載は、本開示の例148を特徴付けており、例148は上記の例118から例147のいずれか1つによる記載も含む。
犠牲層を使用することで、初期層の初期堆積のための外型、表面114、又は他の剛性構造を必要とすることなく、連続可撓性ライン106の初期層の空中での堆積が可能になりうる。つまり、犠牲層は、犠牲層ではない層の後続堆積のための外型となりうる。
例えば図1を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック356)犠牲層を除去して複合部品102を形成することを含む。この段落の上述の記載は、本開示の例149を特徴付けており、例149は上記の例148による記載も含む。
犠牲層を除去することで、所望の状態の複合部品102がもたらされ、所望の状態とは、完成状態でありうるか、又は、その後に方法300の完了後のプロセスによって処理される状態でありうる。
例えば図1を参照しつつ、図34を詳細に参照するに、方法300は更に、(ブロック358)連続可撓性ライン106Aのセグメント120Aをプリントパス122に沿って堆積させることを含む。この段落の上述の記載は、本開示の例150を特徴付けており、例150は上記の例118から例149のいずれか1つによる記載も含む。
換言すると、種々の構成の連続可撓性ライン106が、方法300の実行において使用されうる。
例えば、種々の連続可撓性ライン106の種々の性質が、複合部品102の種々のサブパートに関して選択されうる。一例としては、連続可撓性ライン106は、複合部品102のかなりの部分について炭素繊維を含む非樹脂構成要素108を備えうるが、連続可撓性ライン106は、電子部品との接続に不可欠な電路を画定するために、別の部分については銅配線を含む非樹脂構成要素108を備えうる。追加的又は代替的には、複合部品102の内部のために選択された非樹脂構成要素108とは異なる非樹脂構成要素108が、複合部品102の外表面のために選択されうる。他の様々な例も、例161の範囲に含まれる。
例えば図1を参照しつつ、図34を詳細に参照するに、連続可撓性ライン106Aは、非樹脂構成要素108又はフォトポリマ樹脂構成要素110の少なくとも一方が、連続可撓性ライン106とは異なる。この段落の上述の記載は、本開示の例151を特徴付けており、例151は上記の例150による記載も含む。
方法300の実行において非樹脂構成要素108及び/又はフォトポリマ樹脂構成要素110が変わることで、カスタマイズされた複合部品102を、複合部品102全体を通じて変わる所望の性質を伴って製造することが可能になる。
例えば図1、図10、及び図23から図31を参照しつつ、図34を詳細に参照するに、(ブロック302)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させることは、(ブロック360)供給ガイド112を通して連続可撓性ライン106を押すことを含む。この段落の上述の記載は、本開示の例152を特徴付けており、例152は上記の例118から例151のいずれか1つによる記載も含む。
供給ガイド112を通して連続可撓性ライン106を押すことによって、供給ガイド112は、本書の送り機構104のような連続可撓性ライン106を押す原動力の供給源の下流に配置されうる。その結果として、原動力のかかる供給源は連続可撓性ライン106の堆積を邪魔せず、供給ガイド112は、方法300の実行中に、複雑な三次元パターンにおいてより容易に操作されうる。
図34を参照するに、方法300は更に、(ブロック362)オートクレーブ又はオーブン内で複合部品102を硬化することを含む。この段落の上述の記載は、本開示の例153を特徴付けており、例153は上記の例118から例152のいずれか1つによる記載も含む。
そのため、硬化エネルギー118の原位置での供給は、例えば、本書に記載されいているように、複合部品102に対する後続加工を可能にするために複合部品102を部分的にのみ硬化させてよく、その後に複合部分102の完全硬化が、必要に応じて、オートクレーブ又はオーブン内で実現されうる。
例えば図1から図11、図14、及び図21から図31を参照しつつ、図35を詳細に参照するに、複合部品102を付加製造する方法400が開示されている。方法400は、(ブロック402)ある容積の液体フォトポリマ樹脂252を包含する容器236に通して非樹脂構成要素108を引き出すことによって、液体フォトポリマ樹脂252を非樹脂構成要素108に付着させて、連続可撓性ライン106を作り出すことを含む。連続可撓性ライン106は、非樹脂構成要素108と、非樹脂構成要素108に付着した少なくともいくらかの液体フォトポリマ樹脂252を含む、フォトポリマ樹脂構成要素110とを備える。方法400は更に、(ブロック404)連続可撓性ライン106を供給ガイド112内へと送ることと、(ブロック406)連続可撓性ライン106を供給ガイド112から押し出すことと、(ブロック408)連続可撓性ライン106のセグメント120をプリントパス122に沿って、供給ガイド112を介して、堆積させることと、(ブロック410)連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給することとを含む。この段落の上述の記載は、本開示の例154を特徴付ける。
従って方法400は、初期には未硬化状態であるフォトポリマ樹脂構成要素110を含み、かつ、複合部品102が製造されている間に、すなわち原位置で、硬化エネルギー118によって少なくとも部分的に硬化される、少なくとも1つの複合材料から複合部品102を製造するために、実行されうる。複合部品102の製造中に液体フォトポリマ樹脂252を非樹脂構成要素108に付着させることによって、複合部品102の製造中に連続可撓性ライン106が作り出される。そのため、種々の非樹脂構成要素108及び/又は種々の液体フォトポリマ樹脂252が、複合部品102の中の種々の場所に種々の特性を備えた所望の複合部品102をカスタマイズするか、若しくは作り出すために、方法400の実行中に選択されうる。更に、方法400は、例えば複合部品102の所望の性質を決定するために複合部品102全体を通じて所望の及び/又は既定の位置付けに配向される連続可撓性ライン106で、複合部品102を製造するために実行されうる。
方法400は、システム100によって実行されうる。
例えば図1を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック412)容器236の中の液体フォトポリマ樹脂252の高さを検出すること、及び、液体フォトポリマ樹脂252の容積が下方閾値高さ以下である場合に液体フォトポリマ樹脂252を容器236に選択的に供給することを含む。この段落の上述の記載は、本開示の例155を特徴付けており、例155は上記の例154による記載も含む。
そのため、オペレータは、容器236の中の液体フォトポリマ樹脂252の高さが低く、補充が必要であることを警告されうる。追加的又は代替的には、液体フォトポリマ樹脂252は、容器236内の低位の検出に鑑みて、自動的に補充されうる。
例えば図1から図3を参照しつつ、図35を詳細に参照するに、(ブロック402)容器236に通して非樹脂構成要素108を引き出すことは、容器236から出る液体フォトポリマ樹脂252の量を制限することを含む。この段落の上述の記載は、本開示の例156を特徴付けており、例156は上記の例154又は例155のいずれか1つによる記載も含む。
容器236から出る液体フォトポリマ樹脂252の量を制限することによって、所望の量の液体フォトポリマ樹脂252が非樹脂構成要素108に付着して、連続可撓性ライン106を作り出しうる。加えて、かかる制限で、余分な液体フォトポリマ樹脂252とシステム100の構成要素部分との、又は複合部品102の部分との、望ましくない接触が回避されうる。
例えば図1から図3を参照しつつ、図35を詳細に参照するに、(ブロック402)容器236に通して非樹脂構成要素108を引き出すことは、液体フォトポリマ樹脂252を非樹脂構成要素108に均一に付着させることを含む。この段落の上述の記載は、本開示の例157を特徴付けており、例157は上記の例154から例156のいずれか1つによる記載も含む。
液体フォトポリマ樹脂252を均一に付着させることは、供給ガイド112を介して堆積される連続可撓性ライン106の層間の接着を容易にするため、並びに、複合部品102内に望ましくない空隙が形成されることを防止するために、望ましいかもしれない。
例えば図1から図3を参照しつつ、図35を詳細に参照するに、(ブロック402)容器236に通して非樹脂構成要素108を引き出すことは、容器236の中で、非樹脂構成要素108のいかなる2つの連続するセグメントの間にも60度未満の湾曲を有しないように、非樹脂構成要素108を構成することを含む。この段落の上述の記載は、本開示の例158を特徴付けており、例158は上記の例154から例157のいずれか1つによる記載も含む。
非樹脂構成要素108の湾曲を制限することで、非樹脂構成要素108への損傷が防止されうる。
例えば図1、図6から図9、図14、図21、及び図23から図28を参照しつつ、図35を詳細に参照するに、(ブロック420)プリントパス122に向けて、供給ガイド112を通して連続可撓性ライン106が押されるにつれて、連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後に、硬化エネルギー118は連続可撓性ライン106のセグメント120の少なくとも部分124に供給される。この段落の上述の記載は、本開示の例159を特徴付けており、例159は上記の例154から例158のいずれか1つによる記載も含む。
硬化と押圧とを同時に行うことで、複合部品102の原位置での硬化がもたらされ、例えばオートクレーブ内での後続硬化は必要なくなるかもしれない。
例えば図1、図6から図9、図14、図21、及び、図23から図28を参照しつつ、図35を詳細に参照するに、(ブロック410)連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給することは、(ブロック422)連続可撓性ライン106をプリントパス122に向けて進行させつつ、連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後に、連続可撓性ライン106のセグメント120の少なくとも部分124を少なくとも部分的に硬化させるために、連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することを含む。この段落の上述の記載は、本開示の例160を特徴付けており、例160は上記の例154から例159のいずれか1つによる記載も含む。
既定の量又は能動的に決定される量の硬化エネルギー118を制御された速度で供給することの結果として、複合部品102の製造中のいかなる時点においても、セグメント120の部分124に関して、所望の硬化レベル又は硬化程度が達成されうる。例えば本書に記載されているように、いくつかの例では、複合部品102の製造において、1つの部分124を別の部分124よりも高次に、又は低次に硬化することが望ましいかもしれない。
161.例えば図1及び図6を参照しつつ、図35を詳細に参照するに、(ブロック422)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック424)連続可撓性ライン106のセグメント120の第1層140を、第1層140が堆積されていくにつれて部分的に硬化し、第2層142が第1層140に接して堆積されていくにつれて、第1層140を更に硬化することを含む。この段落の上述の記載は、本開示の例161を特徴付けており、例161は上記の例160による記載も含む。
第1層140が堆積されていくにつれて第1層140を部分的にのみ硬化することによって、第1層140は、粘着性を保ち、又はねばねばしたままでありうる。それによって、第2層142が第1層140に接して堆積されるにつれて第1層140に第2層142を接着することが、容易になりうる。次いで、第2層142に接する後続層が堆積される間に第2層142が部分的に硬化されていくにつれて、第1層140は更に硬化され、以下同様である。
例えば図1及び図6を参照しつつ、図35を詳細に参照するに、(ブロック422)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック426)連続可撓性ライン106のセグメント120の第1層140を、第1層140が堆積されていくにつれて部分的に硬化し、第2層142が第1層140に接して堆積されていくにつれて、第1層140を完全に硬化することを含む。この段落の上述の記載は、本開示の例162を特徴付けており、例162は上記の例160又は例161のいずれか1つによる記載も含む。
繰り返すが、第1層140が堆積されていくにつれて第1層140を部分的にのみ硬化することによって、第1層140は、粘着性を保ち、又はねばねばしたままでありうる。それによって、第2層142が第1層140に接して堆積されるにつれて第1層140に第2層142を接着することが、容易になりうる。しかし、この例162により、第2層142が部分的に硬化されていくにつれて、第1層140は完全に硬化される。
例えば図1を参照しつつ、図35を詳細に参照するに、(ブロック422)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック428)複合部品102を全体硬化に至らない程度に硬化させることを含む。この段落の上述の記載は、本開示の例163を特徴付けており、例163は上記の例160から例162のいずれか1つによる記載も含む。
一部の応用では、例えば、材料を除去するため、かつ/又は、複合部品102に構造成分又は他の構成要素を付加するために、硬化の程度が低い部分が後続プロセスによって後で加工されうるように、硬化の程度が低い部分があるとよいかもしれない。
164.例えば図1を参照しつつ、図34を詳細に参照するに、(ブロック422)連続可撓性ライン106のセグメント120の少なくとも部分124に、既定の量又は能動的に決定される量の硬化エネルギー118を、制御された速度で供給することは、(ブロック430)複合部品102に変動物理特性を付与するために、硬化エネルギー118の供給速度又は供給時間の少なくとも一方を選択的に変えることを含む。この段落の上述の記載は、本開示の例164を特徴付けており、例164は上記の例160から例163のいずれか1つによる記載も含む。
複合部品102の変動物理特性を付与することによって、カスタマイズされた複合部品102が、他のサブパートとは異なる望ましい性質を有するサブパートを伴って製造されうる。
例えば図1を参照しつつ、図35を詳細に参照するに、変動物理特性は、強度、剛性、可撓性、延性、又は硬度のうちの少なくとも1つを含む。この段落の上述の記載は、本開示の例165を特徴付けており、例165は上記の例164による記載も含む。
上述のように、上記の特性の各々は、特定の目的のために選択されうる。例えば、複合部品102であって、使用時にそのサブパートに複合部品102の残部と比較して著しいトルクを受ける複合部品102においては、複合部品102の他の部分よりも、かかるサブパートの剛性を小さく、かつ/又は可撓性を大きくすることが、望ましいかもしれない。加えて、複合部品102の特定の応用に応じて、様々な理由のために、あるサブパートには、複合部品102の他の部分よりも大きな強度を組み込むことが望ましいかもしれない。
例えば図1、図4、及び図5を参照しつつ、図35を詳細に参照するに、非樹脂構成要素108は、繊維、炭素繊維、ガラス繊維、合成有機繊維、アラミド繊維、天然繊維、木質繊維、ホウ素繊維、炭化ケイ素繊維、光ファイバ、繊維束、繊維トウ、繊維織り、ワイヤ、金属ワイヤ、導電ワイヤ、又はワイヤ束のうちの一又は複数を含む。この段落の上述の記載は、本開示の例166を特徴付けており、例166は上記の例154から例165のいずれか1つによる記載も含む。
連続可撓性ライン106内に一又は複数の繊維を含むことで、複合部品102の所望の性質を選択することが可能になる。更に、繊維の特定の材料の選択及び/又は繊維の特定の構成(例えば、束、トウ、及び/又は織り)の選択が、複合部品102の所望の性質の正確な選択を可能にしうる。複合部品102の例示的な性質は、強度、剛性、可撓性、延性、硬度、導電性、熱伝導性等を含む。非樹脂構成要素108は、特定された例に限定されず、他の種類の非樹脂構成要素108も使用されうる。
例えば図1を参照しつつ、図35を詳細に参照するに、液体フォトポリマ樹脂252は、紫外光フォトポリマ樹脂、可視光フォトポリマ樹脂、赤外光フォトポリマ樹脂、又はX線フォトポリマ樹脂のうちの少なくとも1つを含む。この段落の上述の記載は、本開示の例167を特徴付けており、例167は上記の例154から例166のいずれか1つによる記載も含む。
紫外光フォトポリマ、赤外フォトポリマ樹脂、又はX線フォトポリマ樹脂は、可視光による不用意な硬化を回避するため、かつ/又は、連続可撓性ライン106のセグメント120の部分124への硬化エネルギー118の正確な方向付けを可能にするために、選択されうる。その一方で、部分124を硬化させるために可視光の形態の硬化エネルギー118が使用されうるように、可視光フォトポリマが選択されうる。
例えば図1及び図6を参照しつつ、図35を詳細に参照するに、(ブロック408)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させることは、(ブロック432)連続可撓性ライン106をそれ自体、又は事前に堆積されたセグメント120に接するように層形成して、複合部品102を付加製造することを含む。この段落の上述の記載は、本開示の例168を特徴付けており、例168は上記の例154から例167のいずれか1つによる記載も含む。
連続可撓性ライン106をそれ自体に接するように層形成することによって、方法400の実行により三次元複合部品102が製造されうる。
例えば図1を参照しつつ、図35を詳細に参照するに、(ブロック408)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させることは、(ブロック434)連続可撓性ライン106を既定のパターンに堆積させて、複合部品102の一又は複数の物理特性を選択的に制御することを含む。この段落の上述の記載は、本開示の例169を特徴付けており、例169は上記の例154から例168のいずれか1つによる記載も含む。
複合部品102の一又は複数の物理特性を制御することによって、従来型の複合レイアップ法により製造される類似の部品と比較した場合、使用される材料全体が減少し、かつ/又は、特定の部品のサイズが低減しうる。
例えば、複合材料の平面プライの複数層で構築された複合部品とは対照的に、複合部品102は、連続可撓性ライン106、ひいては非樹脂構成要素108の配向が所望の性質をもたらすように、製造されうる。一例としては、部品が穴を含む場合、連続可撓性ラインは、穴の周囲に概して同心円又は螺旋状に配置され、結果的に、穴の境界において連続可撓性ライン106には中断がなくなりうるか、又はほとんどなくなりうる。その結果として、部品の強度は、穴の周囲で、従来型の複合レイアップ法によって構築された類似の部品よりも著しく大きくなりうる。加えて、部品は、穴の境界における亀裂及びその伝播が起こりにくくなりうる。更に、穴の周囲の所望の性質により、従来型の複合レイアップ法によって構築される類似の部品と比較した場合、部品の全体的な厚み、容積、及び/又は質量が低減されうると共に、所望の性質が実現される。
例えば図1を参照しつつ、図35を詳細に参照するに、(ブロック408)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させること、又は、(ブロック410)連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給することの少なくとも一方が、複合部品102の種々の場所に種々の物理特性を提供する。この段落の上述の記載は、本開示の例170を特徴付けており、例170は上記の例154から例169のいずれか1つによる記載も含む。
繰り返すが、様々な理由及び応用のために、種々の場所に種々の特性を備えた複合部品102を製造することが望ましいかもしれない。
例えば図1を参照しつつ、図35を詳細に参照するに、物理特性は、強度、剛性、可撓性、延性、又は硬度のうちの少なくとも1つを含む。この段落の上述の記載は、本開示の例171を特徴付けており、例171は上記の例169又は例170のいずれか1つによる記載も含む。
上記の特性の各々は、特定の目的のために選択されうる。例えば、複合部品であって、使用時にそのサブパートに複合部品の残部と比較して著しいトルクを受ける複合部品においては、複合部品の他の部分よりも、かかるサブパートの剛性を小さく、かつ/又は可撓性を大きくすることが、望ましいかもしれない。加えて、複合部品102の特定の応用に応じて、様々な理由のために、あるサブパートには、複合部品102の他の部分よりも大きな強度を組み込むことが望ましいかもしれない。
例えば図1を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック436)複合部品102の少なくとも一部分を限定的に硬化することを含む。この段落の上述の記載は、本開示の例172を特徴付けており、例172は上記の例154から例171のいずれか1つによる記載も含む。
繰り返すが、一部の応用では、例えば、材料を除去するため、かつ/又は、複合部品102に構造成分又は他の構成要素を付加するために、硬化の程度が低い部分が後続プロセスによって後で加工されうるように、硬化の程度が低い部分があるとよいかもしれず、硬化の程度が低い部分は、硬化プロセスの制限から生じうる。
例えば図1を参照しつつ、図35を詳細に参照するに、(ブロック438)複合部品102の部分は、その部分の後続処理を容易にするために、限定的に硬化される。この段落の上述の記載は、本開示の例173を特徴付けており、例173は上記の例172による記載も含む。
例えば材料を除去するため、かつ/又は、複合部品102に構造成分又は他の構成要素を付加するために、複合部品102の後続処理が望ましいかもしれない。
例えば図1、図12から図16、図23、及び図25を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック440)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させるのと同時に、連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後の連続可撓性ライン106のセグメント120の少なくとも区域180を圧縮することを含む。この段落の上述の記載は、本開示の例174を特徴付けており、例174は上記の例154から例173のいずれか1つによる記載も含む。
方法400の実行中に連続可撓性ライン106の区域180を圧縮することで、方法400の実行中に堆積される連続可撓性ライン106の隣接する層の間の接着が容易になる。
例えば図1及び図13を参照しつつ、図35を詳細に参照するに、(ブロック440)連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後の連続可撓性ライン106のセグメント120の少なくとも区域180を圧縮することは、(ブロック442)連続可撓性ライン106のセグメント120に所望の断面形状を付与することを含む。この段落の上述の記載は、本開示の例175を特徴付けており、例175は上記の例174による記載も含む。
一部の応用では、連続可撓性ライン106が堆積されていくにつれて、それに既定の断面形状を付与することが望ましいかもしれない。
例えば図1、図12、及び図23を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック444)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させるのと同時に、連続可撓性ライン106のセグメント120がプリントパス122に沿って堆積された後の連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化することを含む。この段落の上述の記載は、本開示の例176を特徴付けており、例176は上記の例154から例175のいずれか1つによる記載も含む。
連続可撓性ライン106の区域194を粗面化することで、その表面積が増大し、方法400の実行中にそこに接して堆積される連続可撓性ライン106の後続層の接着に役立つ。
例えば図1及び図23を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック446)連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化するのと同時に、連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化することから生じるデブリを収集することを含む。この段落の上述の記載は、本開示の例177を特徴付けており、例177は上記の例176による記載も含む。
区域194を粗面化することから生じるデブリを収集することで、フォトポリマ樹脂構成要素110の望ましくない遊離粒子であって、連続可撓性ライン106の堆積される隣接層の間に入り込む遊離粒子が回避される。遊離粒子は、回避されなければ、複合部品102の望ましくない性質をもたらしうる。
例えば図1及び図23を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック448)連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化するのと同時に、連続可撓性ライン106のセグメント120の少なくとも区域194を粗面化することから生じるデブリを消散させることを含む。この段落の上述の記載は、本開示の例178を特徴付けており、例178は上記の例176又は例177のいずれか1つによる記載も含む。
区域194を粗面化することから生じるデブリを消散させることで、フォトポリマ樹脂構成要素110の望ましくない遊離粒子であって、連続可撓性ライン106の堆積される隣接層の間に入り込む遊離粒子が回避される。遊離粒子は、回避されなければ、複合部品102の望ましくない性質をもたらしうる。
例えば図1、図17から図20、図23、図32、及び図33を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック450)連続可撓性ライン106を選択的に切断することを含む。この段落の上述の記載は、本開示の例179を特徴付けており、例179は上記の例154から例178のいずれか1つによる記載も含む。
方法300の実行において連続可撓性ライン106を選択的に切断することで、複合部品102の種々の場所における連続可撓性ライン106の終了及び開始が可能になる。
例えば図1、図17から図20、図23、図32、及び図33を参照しつつ、図35を詳細に参照するに、(ブロック452)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させるのと同時に、連続可撓性ライン106は選択的に切断される。この段落の上述の記載は、本開示の例180を特徴付けており、例180は上記の例179による記載も含む。
連続可撓性ライン106の切断と堆積とを同時に行うことで、プリントパス122に沿った、連続可撓性ライン106の制御された堆積が提供される。
例えば図1を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック454)連続可撓性ライン106のセグメント120の少なくとも部分124に、硬化エネルギー118を供給するのと同時に、連続可撓性ライン106のセグメント120の少なくとも部分124を、セグメント120が供給ガイド112から出た後の酸化から少なくとも部分的に保護することを含む。この段落の上述の記載は、本開示の例181を特徴付けており、例181は上記の例154から例180のいずれか1つによる記載も含む。
部分124を酸化から保護することで、部分124の、後続の及び/又は同時的な硬化が容易になりうる。
例えば図1を参照しつつ、図35を詳細に参照するに、(ブロック456)連続可撓性ライン106のセグメント120の少なくとも部分124は、シールドガスを用いて、酸化から少なくとも部分的に保護される。この段落の上述の記載は、本開示の例182を特徴付けており、例182は上記の例181による記載も含む。
繰り返すが、部分124を酸化から保護することで、部分124の、後続の及び/又は同時的な硬化が容易になりうる。
例えば図1を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック458)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させるのと同時に、複合部品102における不具合を検出することを含む。この段落の上述の記載は、本開示の例183を特徴付けており、例183は上記の例154から例182のいずれか1つによる記載も含む。
セグメント120における不具合を検出することで、複合部品102の完成以前に、不具合を有する複合部品102を選択的に廃棄することが可能になる。そのため、材料の無駄が少なくなりうる。更に、検出されなければ様々な種類の不具合検出器による視認から隠されることになる不具合が、連続可撓性ライン106の後続層が不具合を視認から見えにくくするか、又は隠す以前に、検出されうる。
例えば図1を参照しつつ、図35を詳細に参照するに、(ブロック408)連続可撓性ライン106のセグメント120をプリントパス122に沿って堆積させることは、(ブロック460)連続可撓性ライン106のセグメント120の少なくとも一部分を犠牲層の上に堆積させることを含む。この段落の上述の記載は、本開示の例184を特徴付けており、例184は上記の例154から例183のいずれか1つによる記載も含む。
犠牲層を使用することで、初期層の初期堆積のための外型、表面114、又は他の剛性構造を必要とすることなく、連続可撓性ライン106の初期層の空中での堆積が可能になりうる。つまり、犠牲層は、犠牲層ではない層の後続堆積のための外型となりうる。
例えば図1を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック462)犠牲層を除去して複合部品102を形成することを含む。この段落の上述の記載は、本開示の例185を特徴付けており、例185は上記の例184による記載も含む。
犠牲層を除去することで、所望の状態の複合部品102がもたらされ、所望の状態とは、完成状態でありうるか、又は、その後に方法400の完了後のプロセスによって処理される状態でありうる。
例えば図1を参照しつつ、図35を詳細に参照するに、方法400は更に、(ブロック464)連続可撓性ライン106Aのセグメント120Aをプリントパス122に沿って堆積させることを含む。この段落の上述の記載は、本開示の例186を特徴付けており、例186は上記の例154から例185のいずれか1つによる記載も含む。
換言すると、種々の構成の連続可撓性ライン106が、方法400の実行において使用されうる。
例えば、種々の連続可撓性ライン106の種々の性質が、複合部品102の種々のサブパートに関して選択されうる。一例としては、連続可撓性ライン106は、複合部品102のかなりの部分について炭素繊維を含む非樹脂構成要素108を備えうるが、連続可撓性ライン106は、電子部品との接続に不可欠な電路を画定するために、別の部分については銅配線を含む非樹脂構成要素108を備えうる。追加的又は代替的には、複合部品102の内部のために選択された非樹脂構成要素108とは異なる非樹脂構成要素108が、複合部品102の外表面のために選択されうる。他の様々な例も、例186の範囲に含まれる。
例えば図1を参照しつつ、図35を詳細に参照するに、連続可撓性ライン106Aは、非樹脂構成要素108又はフォトポリマ樹脂構成要素110の少なくとも一方が、連続可撓性ライン106とは異なる。この段落の上述の記載は、本開示の例187を特徴付けており、例187は上記の例186による記載も含む。
方法400の実行において非樹脂構成要素108及び/又はフォトポリマ樹脂構成要素110が変わることで、カスタマイズされた複合部品102を、複合部品102全体を通じて変わる所望の性質を伴って製造することが可能になる。
図35を参照するに、方法400は更に、(ブロック466)オートクレーブ又はオーブン内で複合部品102を硬化することを含む。この段落の上述の記載は、本開示の例188を特徴付けており、例188は上記の例154から例187のいずれか1つによる記載も含む。
そのため、硬化エネルギー118の原位置での供給は、例えば、本書に記載されいているように、複合部品102に対する後続加工を可能にするために複合部品102を部分的にのみ硬化させてよく、その後に複合部分102の完全硬化が、必要に応じて、オートクレーブ又はオーブン内で実現されうる。
本開示の例は、図35に示す航空機の製造及び保守方法1100、並びに、図36に示す航空機1102に照らして説明されうる。製造前の段階において、例示的な方法1100は、航空機1102の仕様及び設計(ブロック1104)と、材料調達(ブロック1106)とを含みうる。製造段階では、航空機1102の構成要素及びサブアセンブリの製造(ブロック1108)と、システムインテグレーション(ブロック1110)とが行われうる。その後、航空機1102は認可及び納品(ブロック1112)を経て運航(ブロック1114)に供されうる。運航期間中、航空機1102には、定期的な整備及び保守(ブロック1116)が予定されうる。定期的な整備及び保守は、航空機1102の一又は複数のシステムの改変、再構成、改修などを含みうる。
例示的な方法1100のプロセスの各々は、システムインテグレータ、第三者、及び/又は顧客などのオペレータによって実行又は実施されうる。本明細書においては、システムインテグレータは、任意の数の航空機製造業者及び主要システム下請業者を含みうるがそれらに限定されず、第三者は、任意の数のベンダー、下請業者、及び供給業者を含みうるがそれらに限定されず、かつ、オペレータは、航空会社、リース会社、軍事団体、サービス機関などでありうる。
図36に示すように、例示的な方法1100によって製造された航空機1102は、複数の高レベルシステム1120及び内装1122を備えた機体1118を含みうる。高レベルシステム1120の例は、推進システム1124、電気システム1126、油圧システム1128、及び環境システム1130のうちの一又は複数を含む。任意の数の他のシステムも含まれうる。航空宇宙産業の例を示しているが、本書で開示されている原理は、自動車産業のような他の産業にも適用されうる。そのため、本書で開示されている原理は、航空機1102に加え、陸上ビークル、海洋ビークル、宇宙ビークルなどといった他のビークルにも適合しうる。
本書で示され、説明されている装置(複数可)及び方法(複数可)は、製造及び保守方法1100の、一又は複数の任意の段階において用いられうる。例えば、構成要素及びサブアセンブリの製造(ブロック1108)に対応する構成要素又はサブアセンブリは、航空機1102の運航(ブロック1114)期間中に製造される構成要素又はサブアセンブリと同様の様態で製作又は製造されうる。また、装置(複数可)、方法(複数可)又はそれらの組み合わせの一又は複数の例は、例えば、航空機1102の組立てを著しく効率化するか、又はコストを削減することにより、製造段階1108及び1110において利用されうる。同様に、装置又は方法を実現する一又は複数の例、或いはそれらの組み合わせは、限定するわけではないが例としては、航空機1102の運航(ブロック1114)期間中に、及び/又は整備及び保守(ブロック1116)において、利用されうる。
本書で開示されている装置(複数可)及び方法(複数可)の種々の例は、多種多様な構成要素、特徴及び機能を含む。本書で開示されている装置(複数可)及び方法(複数可)の様々な例は、本書で開示されている装置(複数可)及び方法(複数可)のその他の例のうちの任意のものの、任意の構成要素、特徴及び機能を、任意の組み合わせにおいて含む可能性があり、かつ、かかる可能性は全て本開示の範囲に含まれると意図されていることを、理解すべきである。
上述の説明および関連図面に提示した教示の恩恵を得る、本開示に関連する当業者には、本書に明示された例の多数の変形例が想起されよう。
従って、本開示は例示された特定の例に限定されることがないこと、及び、変形例及びその他の例は付随する特許請求の範囲に含まれると意図されていることを、理解されたい。更に、上述の説明及び関連図面は、要素及び/又は機能のある例示的な組み合わせに照らして本開示の例を説明しているが、付随する特許請求の範囲から逸脱せずに、代替的な実行形態によって、要素及び/又は機能の種々の組み合わせが提供されうることを、認識すべきである。そのため、付随する特許請求の範囲に挿入される参照番号は、例示目的でのみ提示されており、特許請求される主題の範囲を本開示内で提供されている特定の例に限定することを意図しているわけではない。

Claims (20)

  1. 複合部品(102)を付加製造するためのシステム(100)であって、
    表面(114)に対して移動可能であり、かつ、連続可撓性ライン(106)の少なくとも1つのセグメント(120)を、前記表面(114)に対して静止しているプリントパス(122)に沿って堆積させるよう構成された、供給ガイド(112)と、
    ある容積の液体フォトポリマ樹脂(252)を保持するよう、かつ、ある量の前記液体フォトポリマ樹脂(252)を非樹脂構成要素(108)に付着させるよう構成された、容器(236)と、
    前記容器(236)に通して前記非樹脂構成要素(108)を引き出し、かつ、前記非樹脂構成要素(108)を備え、前記容器(236)内で前記非樹脂構成要素(108)に付着した少なくともいくらかの前記液体フォトポリマ樹脂(252)を含むフォトポリマ樹脂構成要素(110)を更に備える前記連続可撓性ライン(106)を、前記供給ガイド(112)から押し出すよう構成された、送り機構(104)と、
    前記連続可撓性ライン(106)の前記セグメント(120)が前記供給ガイド(112)から出た後に、前記連続可撓性ライン(106)の前記セグメント(120)の少なくとも一部分(124)に硬化エネルギー(118)を供給するよう構成されている、前記硬化エネルギー(118)の供給源(116)とを備え
    前記容器(236)は、前記非樹脂構成要素(108)を受容するよう、かつ、前記連続可撓性ライン(106)を排出するよう構成され、
    前記容器(236)は、入口部(238)であって、そこを通って前記非樹脂構成要素(108)が前記容器(236)内へと受容される入口部(238)と、出口部(240)であって、そこを通って前記連続可撓性ライン(106)が前記容器(236)から排出される出口部(240)とを備え、
    前記出口部(240)は、前記連続可撓性ライン(106)の部分として前記容器(236)から出る前記液体フォトポリマ樹脂(252)の量を制限するよう形作られた、収束通路(242)を備える、システム(100)。
  2. 前記収束通路(242)は、前記液体フォトポリマ樹脂(252)の前記非樹脂構成要素(108)への均一な付着を容易にするよう形作られる、請求項に記載のシステム(100)。
  3. 記容器(236)は更に、既定の経路に沿って、前記非樹脂構成要素(108)を送って前記容器(236)に通すよう配置された、ガイド(244)を備える、請求項1又は2に記載のシステム(100)。
  4. 前記ガイド(244)は、前記非樹脂構成要素(108)が前記容器(236)を通って進行する際に、前記非樹脂構成要素(108)のいかなる2つの連続するセグメントの間にも60度未満の湾曲を付与しないよう配置される、請求項に記載のシステム(100)。
  5. 前記ガイド(244)は2つ以上のガイド構造体(245)を備える、請求項又はに記載のシステム(100)。
  6. 前記ガイド(244)は一又は複数のローラ(247)を備える、請求項からのいずれか一項に記載のシステム(100)。
  7. 前記一又は複数のローラ(247)のうちの少なくとも1つは、前記容器(236)を通る前記非樹脂構成要素(108)の移動を容易にするよう構成された、モータ駆動のローラ(249)を含む、請求項に記載のシステム(100)。
  8. 更に、前記液体フォトポリマ樹脂(252)の補給源(262)を備え、
    前記容器(236)は、前記容器(236)内の前記液体フォトポリマ樹脂(252)の高さが下方閾値高さ以下である場合にそれを検出するよう配置された、低位センサ(246)を備え、
    前記補給源(262)は、前記液体フォトポリマ樹脂(252)の高さが前記下方閾値高さ以下になると前記液体フォトポリマ樹脂(252)を前記容器(236)に選択的に供給するよう構成される、請求項に記載のシステム(100)。
  9. 更に、前記液体フォトポリマ樹脂(252)の前記補給源(262)を備え、
    前記容器(236)は更に、前記容器(236)内の前記液体フォトポリマ樹脂(252)の高さが上方閾値高さ以上である場合にそれを検出するよう配置された、高位センサ(248)を備え、
    前記補給源(262)は、前記液体フォトポリマ樹脂(252)の高さが前記下方閾値高さ以下になると前記液体フォトポリマ樹脂(252)を前記容器(236)に選択的に供給するよう、かつ、前記液体フォトポリマ樹脂(252)の高さが前記上方閾値高さ以上になると前記液体フォトポリマ樹脂(252)の前記容器(236)への供給を選択的に止めるよう、構成される、請求項に記載のシステム(100)。
  10. 前記硬化エネルギー(118)の前記供給源(116)は、前記送り機構(104)が前記プリントパス(122)に向けて前記供給ガイド(112)を通して前記連続可撓性ライン(106)を押すにつれて、前記連続可撓性ライン(106)の前記セグメント(120)が前記プリントパス(122)に沿って堆積された後に、前記連続可撓性ライン(106)の前記セグメント(120)の少なくとも前記部分(124)に、前記硬化エネルギー(118)を供給するよう構成される、請求項1からのいずれか一項に記載のシステム(100)。
  11. 前記硬化エネルギー(118)の前記供給源(116)は、前記連続可撓性ライン(106)の前記セグメント(120)の少なくとも前記部分(124)に、既定の量又は能動的に決定される量の前記硬化エネルギー(118)を制御された速度で供給するよう構成される、請求項1から10のいずれか一項に記載のシステム(100)。
  12. 前記硬化エネルギー(118)の前記供給源(116)は、前記供給ガイド(112)に作動的に連結され、前記供給ガイド(112)と共に動くよう構成されている、請求項1から11のいずれか一項に記載のシステム(100)。
  13. 前記硬化エネルギー(118)の前記供給源(116)は、前記連続可撓性ライン(106)の前記セグメント(120)の第1層(140)を、前記第1層(140)の少なくとも一部分が前記表面(114)に接して前記供給ガイド(112)によって堆積されていくにつれて、部分的に硬化するよう、かつ、第2層(142)が前記第1層(140)に接して前記供給ガイド(112)によって堆積されていくにつれて、前記第1層(140)を更に硬化し、前記第2層(142)を部分的に硬化するよう構成される、請求項1から12のいずれか一項に記載のシステム(100)。
  14. 前記供給ガイド(112)は、ガイド入口部(284)と、ガイド出口部(206)であって、そこを通って前記連続可撓性ライン(106)が前記供給ガイド(112)から出るガイド出口部(206)と、前記ガイド入口部(284)から前記ガイド出口部(206)へと延びるガイドライン通路(154)とを備え、
    前記送り機構(104)は、前記ガイドライン通路(154)を通して前記連続可撓性ライン(106)を押すよう構成され、
    前記送り機構(104)は、支持フレーム(156)と、それぞれの回転軸(159)を有する対向ローラ(157)とを備え、
    前記対向ローラ(157)は、前記支持フレーム(156)に回転可能に連結され、
    前記対向ローラ(157)は、前記連続可撓性ライン(106)の両側に係合するよう構成され、
    前記対向ローラ(157)は、前記ガイドライン通路(154)を通して前記連続可撓性ライン(106)を押すために、選択的に回転するよう構成される、請求項1から13のいずれか一項に記載のシステム(100)。
  15. 更に、前記供給ガイド(112)に作動的に連結され、かつ、前記連続可撓性ライン(106)の前記セグメント(120)が前記供給ガイド(112)から出た後に、前記連続可撓性ライン(106)の前記セグメント(120)の少なくとも一区域(180)に圧縮力を付与するよう構成された、圧縮機(138)を備える、請求項1から14のいずれか一項に記載のシステム(100)。
  16. 前記圧縮機(138)は、前記供給ガイド(112)に対して回転可能である、請求項15に記載のシステム(100)。
  17. 更に、前記供給ガイド(112)に作動的に連結され、かつ、前記連続可撓性ライン(106)の前記セグメント(120)が前記供給ガイド(112)から出た後に、前記連続可撓性ライン(106)の前記セグメント(120)の少なくとも一区域(194)を研磨するよう構成された、粗面機(144)を備える、請求項1から13のいずれか一項に記載のシステム(100)。
  18. 前記供給ガイド(112)は、ガイドライン通路(154)であって、それを通って前記連続可撓性ライン(106)が前記プリントパス(122)に供給されるガイドライン通路(154)を備え、前記ガイドライン通路(154)はガイド出口部(206)を備え、システム(100)は更に、前記ガイド出口部(206)の近くで前記連続可撓性ライン(106)を選択的に切断するよう構成されたカッター(208)を備える、請求項1から17のいずれか一項に記載のシステム(100)。
  19. 更に、前記連続可撓性ライン(106)の前記セグメント(120)が前記供給ガイド(112)から出た後に、前記連続可撓性ライン(106)の前記セグメント(120)における不具合を検出するよう構成された、不具合検出器(224)を備える、請求項1から18のいずれか一項に記載のシステム(100)。
  20. 複合部品(102)を付加製造するためのシステム(100)であって、
    表面(114)に対して移動可能であり、かつ、連続可撓性ライン(106)の少なくとも1つのセグメント(120)を、前記表面(114)に対して静止しているプリントパス(122)に沿って堆積させるよう構成された、供給ガイド(112)と、
    ある容積の液体フォトポリマ樹脂(252)を保持するよう、かつ、ある量の前記液体フォトポリマ樹脂(252)を非樹脂構成要素(108)に付着させるよう構成された、容器(236)と、
    前記容器(236)に通して前記非樹脂構成要素(108)を引き出し、かつ、前記非樹脂構成要素(108)を備え、前記容器(236)内で前記非樹脂構成要素(108)に付着した少なくともいくらかの前記液体フォトポリマ樹脂(252)を含むフォトポリマ樹脂構成要素(110)を更に備える前記連続可撓性ライン(106)を、前記供給ガイド(112)から押し出すよう構成された、送り機構(104)と、
    前記連続可撓性ライン(106)の前記セグメント(120)が前記供給ガイド(112)から出た後に、前記連続可撓性ライン(106)の前記セグメント(120)の少なくとも一部分(124)に硬化エネルギー(118)を供給するよう構成されている、前記硬化エネルギー(118)の供給源(116)と、
    前記供給ガイド(112)に作動的に連結され、かつ、前記連続可撓性ライン(106)の前記セグメント(120)が前記供給ガイド(112)から出た後に、前記連続可撓性ライン(106)の前記セグメント(120)の少なくとも一区域(194)を研磨するよう構成された、粗面機(144)と、
    を備える、システム(100)。
JP2016141076A 2015-07-31 2016-07-19 複合部品を付加製造するためのシステム及び方法 Active JP6806478B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562199665P 2015-07-31 2015-07-31
US62/199,665 2015-07-31
US14/920,748 2015-10-22
US14/920,748 US10201941B2 (en) 2015-07-31 2015-10-22 Systems for additively manufacturing composite parts

Publications (2)

Publication Number Publication Date
JP2017077723A JP2017077723A (ja) 2017-04-27
JP6806478B2 true JP6806478B2 (ja) 2021-01-06

Family

ID=55967082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141076A Active JP6806478B2 (ja) 2015-07-31 2016-07-19 複合部品を付加製造するためのシステム及び方法

Country Status (5)

Country Link
US (1) US10201941B2 (ja)
EP (2) EP3741544B1 (ja)
JP (1) JP6806478B2 (ja)
KR (1) KR102534738B1 (ja)
CN (1) CN106393686A (ja)

Families Citing this family (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
GB201304968D0 (en) * 2013-03-19 2013-05-01 Eads Uk Ltd Extrusion-based additive manufacturing
CA2955969A1 (en) 2014-05-16 2015-11-19 Divergent Technologies, Inc. Modular formed nodes for vehicle chassis and their methods of use
SG10201806531QA (en) 2014-07-02 2018-09-27 Divergent Technologies Inc Systems and methods for fabricating joint members
US11654623B2 (en) * 2015-11-11 2023-05-23 Xerox Corporation Additive manufacturing system with layers of reinforcing mesh
ITUB20155642A1 (it) 2015-11-17 2017-05-17 Milano Politecnico Apparecchiatura e metodo per la stampa tridimensionale di materiali compositi a fibra continua
US10611073B2 (en) * 2015-12-28 2020-04-07 Thermwood Corporation Machine and method for forming articles
US10232551B2 (en) 2016-04-15 2019-03-19 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US10105910B2 (en) 2016-04-15 2018-10-23 Cc3D Llc Method for continuously manufacturing composite hollow structure
US10173255B2 (en) 2016-06-09 2019-01-08 Divergent Technologies, Inc. Systems and methods for arc and node design and manufacture
US20180065317A1 (en) 2016-09-06 2018-03-08 Cc3D Llc Additive manufacturing system having in-situ fiber splicing
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US10216165B2 (en) 2016-09-06 2019-02-26 Cc3D Llc Systems and methods for controlling additive manufacturing
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US10717512B2 (en) 2016-11-03 2020-07-21 Continuous Composites Inc. Composite vehicle body
US20210094230A9 (en) 2016-11-04 2021-04-01 Continuous Composites Inc. System for additive manufacturing
US10953598B2 (en) 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
US10457033B2 (en) 2016-11-07 2019-10-29 The Boeing Company Systems and methods for additively manufacturing composite parts
US11440261B2 (en) 2016-11-08 2022-09-13 The Boeing Company Systems and methods for thermal control of additive manufacturing
US10766241B2 (en) 2016-11-18 2020-09-08 The Boeing Company Systems and methods for additive manufacturing
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US10857726B2 (en) 2017-01-24 2020-12-08 Continuous Composites Inc. Additive manufacturing system implementing anchor curing
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US20180229092A1 (en) 2017-02-13 2018-08-16 Cc3D Llc Composite sporting equipment
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
US10759159B2 (en) 2017-05-31 2020-09-01 The Boeing Company Feedstock lines for additive manufacturing
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US20190001563A1 (en) 2017-06-29 2019-01-03 Cc3D Llc Print head for additive manufacturing system
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10814550B2 (en) 2017-07-06 2020-10-27 The Boeing Company Methods for additive manufacturing
US10821672B2 (en) * 2017-07-06 2020-11-03 The Boeing Company Methods for additive manufacturing
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
DE102017119936A1 (de) * 2017-08-30 2019-02-28 Airbus Operations Gmbh Applikationsvorrichtung und Verfahren zum Ausgeben eines Formfaserverbundstrangs
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10786946B2 (en) * 2017-09-13 2020-09-29 Thermwood Corporation Apparatus and methods for compressing material during additive manufacturing
US10618222B2 (en) 2017-09-15 2020-04-14 The Boeing Company Systems and methods for additively manufacturing an object
US10543645B2 (en) 2017-09-15 2020-01-28 The Boeing Company Feedstock lines for additive manufacturing of an object
US10525635B2 (en) 2017-09-15 2020-01-07 The Boeing Company Systems and methods for creating feedstock lines for additive manufacturing of an object
US10603890B2 (en) 2017-09-15 2020-03-31 The Boeing Company Systems and methods for creating feedstock lines for additive manufacturing of an object
US10105893B1 (en) 2017-09-15 2018-10-23 The Boeing Company Feedstock lines for additive manufacturing of an object, and systems and methods for creating feedstock lines
US10189237B1 (en) 2017-09-15 2019-01-29 The Boeing Company Feedstock lines for additive manufacturing of an object
US10611081B2 (en) 2017-09-15 2020-04-07 The Boeing Company Systems and methods for creating feedstock lines for additive manufacturing of an object
CN107498854B (zh) * 2017-10-10 2023-02-28 中南大学 一种超声塑化熔融沉积成型3d打印装置
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
EP3495114B1 (de) * 2017-12-05 2022-11-16 Medizinische Hochschule Hannover Verfahren zur herstellung eines bauteils sowie anlage dafür
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US10759114B2 (en) * 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US20210370583A1 (en) * 2018-02-08 2021-12-02 Essentium, Inc. Multiple layer filament and method of manufacturing
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
US11173645B2 (en) 2018-04-09 2021-11-16 The Boeing Company Apparatuses and methods for applying radius filler
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11110654B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
CN112512779B (zh) * 2018-06-01 2023-02-14 福姆实验室公司 改进的立体光刻技术及相关系统和方法
US11035511B2 (en) 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11292202B2 (en) * 2018-06-18 2022-04-05 Hewlett-Packard Development Company, L.P. Applying an additive manufacturing agent based on actual platform displacement
FI128761B (en) * 2018-06-28 2020-11-30 Planmeca Oy A stereolithography apparatus comprising a resin capsule and a method of operating said apparatus
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US20200086563A1 (en) 2018-09-13 2020-03-19 Cc3D Llc System and head for continuously manufacturing composite structure
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
US11325304B2 (en) 2018-10-26 2022-05-10 Continuous Composites Inc. System and method for additive manufacturing
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
US20200238603A1 (en) 2019-01-25 2020-07-30 Continuous Composites Inc. System for additively manufacturing composite structure
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US20200376758A1 (en) 2019-05-28 2020-12-03 Continuous Composites Inc. System for additively manufacturing composite structure
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US20210394451A1 (en) 2020-06-23 2021-12-23 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
US11904558B2 (en) * 2020-10-09 2024-02-20 The Boeing Company Placement and compaction of multiple objects via vacuum heads with floating end effectors
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
KR102331860B1 (ko) * 2021-01-07 2021-12-01 삼성엔지니어링 주식회사 출력물 표면 처리형 건설용 3d 프린터
KR102331858B1 (ko) * 2021-01-07 2021-12-01 삼성엔지니어링 주식회사 출력물 표면 정리형 건설용 3d 프린터
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
EP4304865A1 (en) 2021-03-09 2024-01-17 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
US11926099B2 (en) 2021-04-27 2024-03-12 Continuous Composites Inc. Additive manufacturing system
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities
US20230073782A1 (en) * 2021-09-04 2023-03-09 Continuous Composites Inc. Print head and method for additive manufacturing system
EP4253007A3 (de) * 2023-07-05 2024-02-07 Apium Additive Technologies GmbH Verfahren zur oberflächenbearbeitung eines 3d-druckobjektes

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600272A (en) 1968-08-29 1971-08-17 Scott Paper Co Polyethyleneimine cured epoxy-modified paper
US3813976A (en) 1973-06-20 1974-06-04 Guardian Industries Photographic print cutter
US4154634A (en) 1977-09-22 1979-05-15 Plas/Steel Products, Inc. Method for fabricating improved fiber reinforced plastic rods having a smooth surface
JPS6052208B2 (ja) 1979-09-25 1985-11-18 住友化学工業株式会社 炭素繊維トウの製造方法
US4435246A (en) 1982-10-04 1984-03-06 Franchise Mailing Systems Label dispensing and applying apparatus
US4943472A (en) 1988-03-03 1990-07-24 Basf Aktiengesellschaft Improved preimpregnated material comprising a particulate thermosetting resin suitable for use in the formation of a substantially void-free fiber-reinforced composite article
US5495328A (en) 1988-04-18 1996-02-27 3D Systems, Inc. Apparatus and method for calibrating and normalizing a stereolithographic apparatus
CA1336483C (en) 1989-01-30 1995-08-01 Hatsuo Ishida Process for preparing composites
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5204124A (en) 1990-10-09 1993-04-20 Stanley Secretan Continuous extruded bead object fabrication apparatus
US5398193B1 (en) 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
US5936861A (en) * 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
US6129872A (en) * 1998-08-29 2000-10-10 Jang; Justin Process and apparatus for creating a colorful three-dimensional object
US6149856A (en) * 1998-11-13 2000-11-21 Anvik Corporation Ultraviolet-based, large-area scanning system for photothermal processing of composite structures
US6395210B1 (en) * 1999-05-12 2002-05-28 A&P Technology, Inc. Pultrusion method and device for forming composites using pre-consolidated braids
US6722872B1 (en) 1999-06-23 2004-04-20 Stratasys, Inc. High temperature modeling apparatus
US6214279B1 (en) 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
US20050104241A1 (en) 2000-01-18 2005-05-19 Objet Geometried Ltd. Apparatus and method for three dimensional model printing
US6574523B1 (en) 2000-05-05 2003-06-03 3D Systems, Inc. Selective control of mechanical properties in stereolithographic build style configuration
US6899777B2 (en) 2001-01-02 2005-05-31 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
GB2378150A (en) * 2001-07-31 2003-02-05 Dtm Corp Fabricating a three-dimensional article from powder
CA2480484C (en) * 2002-03-29 2010-11-16 Huntsman International Llc Process for filament winding
US20040119188A1 (en) 2002-12-20 2004-06-24 Lowe Kenneth A. Impregnated fiber precursors and methods and systems for producing impregnated fibers and fabricating composite structures
US20050023719A1 (en) 2003-07-28 2005-02-03 Nielsen Jeffrey Allen Separate solidification of build material and support material in solid freeform fabrication system
DE10342882A1 (de) 2003-09-15 2005-05-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Formkörpers
JP2005319634A (ja) * 2004-05-07 2005-11-17 Roland Dg Corp 三次元造形装置および三次元造形方法
WO2006020685A2 (en) 2004-08-11 2006-02-23 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US7114943B1 (en) 2005-05-11 2006-10-03 3D Systems, Inc. Post processor for three-dimensional objects
JP4744200B2 (ja) * 2005-06-20 2011-08-10 シーメット株式会社 平滑化した造形端面を有する立体造形物
US7681615B2 (en) 2005-08-04 2010-03-23 The Boeing Company Tow width adaptable placement head device and method
DE102005050665A1 (de) 2005-10-20 2007-04-26 Bego Medical Gmbh Schichtweises Herstellungsverfahren mit Korngrößenbeeinflussung
US7879177B2 (en) 2006-11-20 2011-02-01 The Boeing Company Apparatus and method for composite material trim-on-the-fly
US8691037B2 (en) * 2006-12-14 2014-04-08 The Boeing Company Method for minimizing fiber distortion during fabrication of one-piece composite barrel section
EP2117793B1 (en) * 2007-02-12 2014-07-16 Stratasys, Inc. Pump system
US20080315462A1 (en) 2007-06-25 2008-12-25 General Electric Company Systems and methods for monitoring a composite cure cycle
WO2009052263A1 (en) 2007-10-16 2009-04-23 Ingersoll Machine Tools, Inc. Fiber placement machine platform system having interchangeable head and creel assemblies
EP2052693B2 (en) 2007-10-26 2021-02-17 Envisiontec GmbH Process and freeform fabrication system for producing a three-dimensional object
CN102083615B (zh) * 2008-04-10 2014-08-13 战略系统有限公司 用于三维模型打印的系统和方法
US7942987B2 (en) 2008-06-24 2011-05-17 Stratasys, Inc. System and method for building three-dimensional objects with metal-based alloys
GB0818468D0 (en) 2008-10-08 2008-11-12 Alta Innovations Ltd A resin applicator
US7960024B2 (en) 2009-01-27 2011-06-14 Milliken & Company Multi-layered fiber
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
EP2616229B1 (en) 2010-09-17 2019-09-04 Stratasys, Inc. Extrusion-based additive manufacturing method
US20120077397A1 (en) 2010-09-23 2012-03-29 Saint-Gobain Adfors Canada, Ltd. Reinforcing carbon fibers and material containing the fibers
US9623437B2 (en) * 2011-04-29 2017-04-18 Ticona Llc Die with flow diffusing gate passage and method for impregnating same fiber rovings
JP5831791B2 (ja) * 2011-08-23 2015-12-09 コニカミノルタ株式会社 立体物造形装置及び立体物造形方法
PE20142126A1 (es) 2011-12-16 2015-01-11 Alan Erdman Dispositivo y un metodo para reencauchar neumaticos
KR20130108026A (ko) 2012-03-23 2013-10-02 주식회사 엘지화학 유기발광소자
GB201212629D0 (en) 2012-07-16 2012-08-29 Prec Engineering Technologies Ltd A machine tool
US9511543B2 (en) * 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
WO2014047514A1 (en) 2012-09-21 2014-03-27 Conformis, Inc. Methods and systems for optimizing design and manufacture of implant components using solid freeform fabrication
US9102098B2 (en) 2012-12-05 2015-08-11 Wobbleworks, Inc. Hand-held three-dimensional drawing device
US20140265000A1 (en) 2013-03-14 2014-09-18 Bayer Materialscience, Llc Water-clear aliphatic polyurethane pultrusion formulations and processes
US9527240B2 (en) 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
US9138940B2 (en) 2013-03-15 2015-09-22 Type A Machines, Inc. Winchester print head
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9149988B2 (en) * 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
US20140291886A1 (en) 2013-03-22 2014-10-02 Gregory Thomas Mark Three dimensional printing
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
DE102013103973A1 (de) 2013-04-19 2014-10-23 Fit Fruth Innovative Technologien Gmbh Werkzeugkopf
US9789462B2 (en) 2013-06-25 2017-10-17 The Boeing Company Apparatuses and methods for accurate structure marking and marking-assisted structure locating
EP3022046B1 (en) 2013-07-17 2019-12-18 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9751260B2 (en) * 2013-07-24 2017-09-05 The Boeing Company Additive-manufacturing systems, apparatuses and methods
GB201313840D0 (en) 2013-08-02 2013-09-18 Rolls Royce Plc Method of Manufacturing a Component
JP2015074164A (ja) * 2013-10-09 2015-04-20 コニカミノルタ株式会社 三次元造形装置および三次元造形方法
US20150174824A1 (en) 2013-12-19 2015-06-25 Karl Joseph Gifford Systems and methods for 3D printing with multiple exchangeable printheads
US9102099B1 (en) 2014-02-05 2015-08-11 MetaMason, Inc. Methods for additive manufacturing processes incorporating active deposition
CN103817937B (zh) 2014-02-19 2016-04-06 浙江大学宁波理工学院 蠕动泵式3d打印笔
JP6306907B2 (ja) 2014-03-14 2018-04-04 富士機械製造株式会社 立体造形物の製造方法及び製造装置
US9650537B2 (en) 2014-04-14 2017-05-16 Ut-Battelle, Llc Reactive polymer fused deposition manufacturing
US20170129180A1 (en) 2014-06-09 2017-05-11 Hybrid Manufacturing Technologies Limited Material processing methods and related apparatus
WO2015193819A2 (en) 2014-06-16 2015-12-23 Sabic Global Technologies B.V. Method and apparatus for increasing bonding in material extrusion additive manufacturing
CN204160774U (zh) * 2014-09-15 2015-02-18 余金文 一种熔融堆积3d打印机
MX2017004009A (es) 2014-09-29 2017-12-04 Natural Machines Inc Aparato y metodo para calentar y preparar alimentos usando rayos laser y radiacion electromagnetica.
EP3218160A4 (en) * 2014-11-14 2018-10-17 Nielsen-Cole, Cole Additive manufacturing techniques and systems to form composite materials
US20160159009A1 (en) * 2014-12-05 2016-06-09 Philip L. Canale Combined thermal and uv/visible light curing stereolithography
EP4238732A3 (en) 2015-02-02 2023-12-13 Massivit 3D Printing Technologies Ltd. Curing system having ring-form geometry
EP3253558B1 (en) * 2015-02-05 2020-04-08 Carbon, Inc. Method of additive manufacturing by fabrication through multiple zones
WO2016139059A1 (en) 2015-03-03 2016-09-09 Philips Lighting Holding B.V. Stitching by inserting curable compliant materials of parts produced via additive manufacturing techniques for improved mechanical properties
DE102015002967A1 (de) 2015-03-07 2016-10-13 Willi Viktor LAUER 3D-Druckwerkzeug und 3D-Druck von Bündeln
WO2016149181A1 (en) 2015-03-19 2016-09-22 Board Of Regents, The University Of Texas System Structurally integrating metal objects into additive manufactured structures
US10016932B2 (en) * 2015-05-13 2018-07-10 The Boeing Company Fiber placement system and method with modulated laser scan heating

Also Published As

Publication number Publication date
KR102534738B1 (ko) 2023-05-18
EP3124214B1 (en) 2020-12-09
JP2017077723A (ja) 2017-04-27
CN106393686A (zh) 2017-02-15
EP3124214A3 (en) 2017-04-26
EP3124214A2 (en) 2017-02-01
EP3741544A1 (en) 2020-11-25
US20170028633A1 (en) 2017-02-02
KR20170015220A (ko) 2017-02-08
EP3741544B1 (en) 2022-03-30
US10201941B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
JP6806478B2 (ja) 複合部品を付加製造するためのシステム及び方法
JP6803694B2 (ja) 複合部品を付加製造するためのシステム及び方法
JP6861482B2 (ja) 複合部品を付加製造するためのシステム及び方法
JP6852995B2 (ja) 複合部品を付加製造するためのシステム及び方法
JP6833376B2 (ja) 複合部品を付加製造するためのシステム及び方法
JP6859041B2 (ja) 複合部品を付加製造するためのシステム及び方法
US10166753B2 (en) Systems and methods for additively manufacturing composite parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250