JP6801548B2 - 水素欠セル検出方法 - Google Patents

水素欠セル検出方法 Download PDF

Info

Publication number
JP6801548B2
JP6801548B2 JP2017059206A JP2017059206A JP6801548B2 JP 6801548 B2 JP6801548 B2 JP 6801548B2 JP 2017059206 A JP2017059206 A JP 2017059206A JP 2017059206 A JP2017059206 A JP 2017059206A JP 6801548 B2 JP6801548 B2 JP 6801548B2
Authority
JP
Japan
Prior art keywords
cell
hydrogen
channel
cells
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017059206A
Other languages
English (en)
Other versions
JP2018163748A (ja
Inventor
周重 紺野
周重 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017059206A priority Critical patent/JP6801548B2/ja
Publication of JP2018163748A publication Critical patent/JP2018163748A/ja
Application granted granted Critical
Publication of JP6801548B2 publication Critical patent/JP6801548B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、発電動作中の燃料電池において、供給される水素ガスが欠乏した状態のセルの有無を検出する方法に関する。
特許文献1には、下記の燃料電池システムが記載されている。この燃料電池システムでは、始動時に、空気供給量を低下させて燃料電池の発電損失を大きくした状態で発電する低効率発電によって暖機を行なうのに代えて、目標運転温度と燃料電池スタックのスタック温度の差分値に対応した空気供給量となるように空気供給手段を制御し、燃料電池スタックの出力電流が所定値に低下するまで水素供給手段を通じた水素ガスの供給を増加させる。そして、必要最低限の発電量を確保しつつ、水素ガスの供給量増加による水素極から空気極への水素の透過量を増加させ、出力電流が所定値に低下するまで水素と酸素との直接反応(非発電反応)を増加させる。そして、この非発電反応による発熱を促進し、従来の低効率発電による暖機に比べて短時間で暖機を達成する。
特開2010−20923号公報 特開2012−204125号公報 特開2016−85898号公報
ここで、発電動作中の燃料電池において、水素ガスの供給が欠乏した状態(水素欠乏状態)のセルを、そのまま放置すると、そのセル内では電極の腐食反応等による劣化が進み、破損を招く可能性がある。なお、本明細書では、水素欠乏状態は、全く水素ガスが供給されない状態だけでなく、水素ガスの供給が不足した状態を含む。
水素欠乏状態となったセルの電圧(セル電圧)は、0V未満の負電圧となるので、各セルのセル電圧を測定し、負電圧のセルを検出することにより、水素欠乏状態となったセルを検出することができる。しかしながら、複数のセルを1組のチャネルとし、チャネル単位でセル電圧を計測する方式のセルモニタを採用してセル電圧を測定する場合には、各チャネルのセル電圧は複数セルの平均値となる。このため、以下で説明するように、水素欠乏状態となったセルを含むチャネルを区別できない場合がある、という問題がある。なお、以下、本明細書では、水素欠乏状態となったセルを「水素欠セル」とも呼ぶ。
燃料電池システムにおいて、始動時に低効率発電によって暖機を行なう場合、燃料電池スタックの各セルのセル電圧は、供給される空気の状態に応じて大きくばらつく。大半のセルでは、供給される空気量が大きく不足した状態(空気欠乏状態)となって、各セル電圧が0Vに近い値(0V〜0.2V程度)となり、全セルのセル電圧の平均値は0Vに近い値(0V〜0.2V程度)となる。但し、一部のセルでは供給される空気量に応じて、通常の発電状態と同様にセル電圧が0.5〜1V程度となる場合も発生し得る。このため、正常なセルのみのチャネルと、水素欠セルを含むチャネルとが区別できない場合がある。例えば、正常な4つのセルを含むチャネルのセル電圧の平均値が0.1Vであるとする。これに対して、1つの水素欠セルを含む4つのセルの各電圧が0.6V,0.6V,0.5V,−1.3Vの場合の平均値も0.1Vなる。このため、正常セルのみを含むチャネルも水素欠セルを含むチャネルも全セルにおけるセル電圧の平均値と同等となり、水素欠チャネルを区別して検出することができない。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、燃料電池を含む燃料電池システムにおいて、要求される発電量に基づく理論上の空気量に対する供給される空気量を示すストイキ比を、通常発電時に比べて低下させて発電を行なう低効率発電状態として前記燃料電池を動作させる期間において、供給される水素が欠乏した状態の水素欠セルの有無を検出する水素欠セル検出方法が提供される。この水素欠セル検出方法は、前記低効率発電状態における前記燃料電池からの掃引電流を、前記低効率発電状態に対応する電流値から一時的に低減して掃引電流低減状態とする工程と;前記掃引電流低減状態において、複数のセルを1組としたチャネル単位で各チャネルにおけるセル電圧の平均値を求めるとともに、全セルにおけるセル電圧の平均値を求める工程と;前記各チャネルにおけるセル電圧の平均値を、前記全セルにおけるセル電圧の平均値に基づいて定められる閾値と比較し、前記閾値よりも下回るチャネルを、前記水素欠セルを含むチャネルであると判定する工程と;を備える。
この形態の水素欠セル検出方法によれば、低効率発電状態として燃料電池を動作させる期間、例えば、始動時の暖機運転の期間において、燃料電池からの掃引電流を、低効率発電状態に対応する電流値から一時的に低減して掃引電流低減状態とすることにより、水素欠セル以外のセルのセル電圧を不安定な電圧ではなく、通常の発電時の電圧に近い安定な電圧とすることができる。これにより、水素欠セルを含むチャネルのセル電圧の平均値を、全セルにおけるセル電圧の平均値に比べて低くすることができる。従って、全セルにおけるセル電圧の平均値に基づいて定められる閾値と比較し、閾値よりも下回るチャネルを、水素欠セルを含むチャネルであると判定することができる。
本発明は、上述した水素欠セル検出方法以外の種々の形態で実現することも可能である。例えば、上述した水素欠セル検出を行なう燃料電池システム、燃料電池システムの制御方法等の形態で実現することができる。
本発明の一実施形態としての燃料電池システムの概略構成を示す説明図。 暖機運転時における発電特性の一例を通常発電時における発電特性の一例と比較して示すグラフ。 暖機運転期間において実行される水素欠検査のタイミングを示す説明図。 暖機運転期間において実行される水素欠検査の手順を示すフローチャート。 計測期間における各チャネルに含まれる各セルのセル電圧の一例を示す説明図。 比較例として低効率発電期間における各チャネルに含まれる各セルのセル電圧の一例を示す説明図。
図1は本発明の一実施形態としての燃料電池システム10の概略構成を示す説明図である。燃料電池システム10は、例えば、車両に搭載され、運転者からの要求に応じて、車両の動力源となる電力を出力する。燃料電池システム10は、燃料電池20と、水素供給排出機構50と、空気供給排出機構30と、冷却水循環機構70と、制御部80と、DC/DCコンバータ90と、セルモニタ95と、を備える。燃料電池システム10は、不図示のパワースイッチのON操作によって始動し、OFF操作によって停止する。
燃料電池20は、エンドプレート21と、絶縁板22と、集電板23と、複数のセル24と、集電板23と、絶縁板22と、エンドプレート21とが、この順に積層されたスタック構造を有する。
水素供給排出機構50は、制御部80の制御に従って、燃料電池20のアノードに水素の供給及び排出を行なう。水素供給排出機構50は、水素タンク40と、シャットバルブ41と、水素供給流路60と、レギュレータ51と、水素ポンプ55と、気液分離部56と、排水シャットバルブ57と、排出流路58と、インジェクタ54と、とを備える。
水素タンク40は、水素を貯蔵する。水素タンク40には、数十MPaを有する高圧の水素ガスが貯蔵されている。水素供給流路60は、水素タンク40と燃料電池20とを接続する配管である。シャットバルブ41は、水素タンク40から水素供給流路60への水素の供給を遮断する弁であり、主止弁とも呼ばれる。シャットバルブ41は、制御部80によってその開閉が制御される。制御部80の制御によってシャットバルブ41が開かれると、水素タンク40から水素供給流路60を通じて燃料電池20に水素ガスが供給され、シャットバルブ41が閉じられると、水素ガスの供給が遮断される。
レギュレータ51は、制御部80の制御により、水素タンク40に貯蔵された水素の圧力を調整する。インジェクタ54は、レギュレータ51によって圧力が調整された水素を、制御部80の制御に従いアノードに向けて噴射する。
気液分離部56は、アノードから排出された気体と液体とを分離する。水素ポンプ55は、気液分離部56によって分離された気体を、燃料電池20に再度供給する。気液分離部56によって分離された気体は、主に、消費されずに排出された水素と燃料電池が備える膜電極接合体を介してカソード側から透過した窒素と、気液分離部56で分離されなかった水分である。排出流路58は、気液分離部56と、空気供給排出機構30に備えられる空気排出流路39(後述)とを接続する配管である。排水シャットバルブ57は、排出流路58上に設けられている。排水シャットバルブ57は、気液分離部56によって分離された液体と窒素を排出するために開かれる。インジェクタ54と排水シャットバルブ57の制御によって、燃料電池20への水素の供給量が調整される。
空気供給排出機構30は、制御部80の制御に従って、燃料電池20のカソードに空気の供給及び排出をする。空気供給排出機構30は、コンプレッサ31と、空気供給流路32と、分流弁33と、調圧弁36と、バイパス流路38と、空気排出流路39とを備える。
空気供給流路32は、燃料電池20と空気供給流路32の大気開放口を接続する配管である。空気排出流路39は、燃料電池20と空気排出流路39の大気開放口とを接続する配管である。バイパス流路38は、空気供給流路32の燃料電池20よりも上流側から分岐して、空気排出流路39に接続される配管である。コンプレッサ31は、空気供給流路32の途中に設けられ、空気供給流路32の大気開放口側から空気を吸入して圧縮する。コンプレッサ31が設けられる位置は、空気供給流路32とバイパス流路38との接続部位よりも大気開放口に近い位置である。
分流弁33は、空気供給流路32において、コンプレッサ31の下流側、つまりコンプレッサ31と燃料電池20との間であって、空気供給流路32とバイパス流路38との接続部位に設けられる。分流弁33は、コンプレッサ31から流れてくる空気の流れる方向を燃料電池20側とバイパス流路38側とのいずれかに切り替える。このような分流弁33は、三方弁とも呼ばれる。バイパス流路38は、分流弁33と空気排出流路39とを接続する配管である。調圧弁36は、空気排出流路39において、空気排出流路39とバイパス流路38との接続部位よりも燃料電池20側に設けられる。調圧弁36は、開度に応じて空気排出流路39の流路断面積を調整する。調圧弁36を通過した空気は、バイパス流路38との接続部位を通過した後、大気開放口から大気に排出される。コンプレッサ31、分流弁33、及び調圧弁36の動作は、制御部80からの制御に従って調整される。
冷却水循環機構70は、制御部80の制御に従って燃料電池20を冷却する。冷却水循環機構70は、ラジエータ71と、冷却水ポンプ72と、冷却水排出流路73と、冷却水供給流路74と、を備える。
冷却水供給流路74は、ラジエータ71と燃料電池20との間を接続する流路であり、燃料電池20に冷却水を供給するための配管である。冷却水排出流路73は、燃料電池20とラジエータ71とを接続する流路であり、燃料電池20から冷却水を排出するための配管である。冷却水ポンプ72は、ラジエータ71と燃料電池20との間の冷却水供給流路74に設けられており、冷却水ポンプ72によって冷却水が循環される。ラジエータ71及び冷却水ポンプ72の動作は、制御部80からの制御に従って調整される。
制御部80は、CPUとRAMとROMとを備えるコンピュータとして構成されており、具体的にはECU(Electronic Control Unit)である。制御部80は、燃料電池システム10の動作を制御するための信号を出力する。制御部80は、発電要求を受けて、燃料電池システム10の各部を制御して燃料電池20を発電させる。また、制御部80は、水素欠検査部82として機能し、後述する水素欠検査を実行する。
DC/DCコンバータ90は、燃料電池20から出力される電力を、制御部80からの制御に応じて負荷に供給可能な電力(電圧及び電流)に変換して出力する電力制御回路である。例えば、燃料電池20からの掃引電流を制御して、燃料電池20の出力電圧を制御することにより発電動作を制御するとともに、負荷へ出力する電圧及び電流を制御する。後述する水素欠乏状態のセル(水素欠セル)の有無の検査において行われる掃引電流の制御は、制御部80の制御に従ってDC/DCコンバータ90によって実行される。
セルモニタ95は、燃料電池20の各セル24のセル電圧をモニタする回路である。但し、燃料電池20に含まれるセルの数は数百枚(例えば、320枚以上)と多数であるため、1セル毎にセル電圧を計測する構成は、回路規模や製造コスト、計測時間等の点で効率が悪い。このため、通常、複数のセルを1つのチャネルとし、チャネル単位で各チャネルにおける複数のセル電圧の合計電圧(以下、「チャネル電圧」とも呼ぶ)を測定する構成が採用される。但し、セルの総数が1チャネルを構成するセルの数で割り切れない場合には、例えば、その端数のセルについては、その端数のセルを1つのチャネルとして調整すればよい。測定したチャネル電圧をセル数で除すれば、各チャネルにおけるセル電圧の平均値を求めることができる。また、各チャネルのチャネル電圧の合計値あるいは各チャネルのセル電圧の平均値の合計値を全セル数で除すれば、全セルにおけるセル電圧の平均値を求めることができる。このようにして求められた各チャネルにおけるセル電圧の平均値及び全セルにおけるセル電圧の平均値は、後述する水素欠セルの有無の検査に利用される。なお、本例では、1チャネルは4つのセルで構成されるものとする。但し、これに限定されるものではなく、2以上の複数のセルで1チャネルを構成するようにしてもよい。また、燃料電池20に含まれるセルの数は上述した320枚以上に限定されるものではなく、320枚以下であってもよい。
ここで、前提として、予め定めた低温(例えば、氷点下)で燃料電池システム10を始動させる際において、燃料電池20を急速に昇温させるために暖機運転が実施される。
図2は、暖機運転時における発電特性の一例を通常発電時における発電特性の一例と比較して示すグラフである。横軸は燃料電池(1つのセル)を流れる電流密度[A/cm]であり、縦軸はセルの電圧(セル電圧)[V]である。破線で示す曲線は十分な水素ガス及び空気(酸素ガス)が供給された通常発電状態における発電特性(I−V特定)の一例を示し、実線で示す曲線は供給される空気が絞られた低効率発電状態における発電特性の一例を示している。低効率発電状態では、燃料電池20の発電効率が低下し発電損失が増大する。この発電損失は熱に変換されて燃料電池20を急速に昇温させることができる。すなわち、暖機運転においては、低効率発電状態で燃料電池20を動作させることにより、燃料電池20を急速に昇温させて燃料電池20を暖機することができる。例えば、図2に示すように、通常発電状態における動作状態A1から、空気供給量(エア流量)を低下させて、空気のストイキ比を低下させ、低効率発電状態で発電を行なう動作状態B1とすることにより、発電損失を増大させて燃料電池20を急速に昇温させる。なお、「ストイキ比」は、要求される発電量に基づく理論上の反応ガス量に対する供給される反応ガス量の比を示す。また、「通常発電」は、燃料電池20に供給される空気量を、上述の低効率発電状態における空気量よりも十分に増加させた状態で、低効率発電状態よりも効率良く行われる発電を意味している。
ここで、暖機運転期間においても、水素欠乏状態のセル(水素欠セル)の有無を検査することは、燃料電池の劣化を抑制し破損を抑制する点で重要である。特に、低温始動時においては、水素ガスの流路中のフラッディングや水の凍結による閉塞によって水素欠セルが発生する可能性が高い。そこで、本実施形態の燃料電池システム10においては、以下で説明するように、暖機運転期間において水素欠セルの有無を検査する。
図3は、暖機運転期間において実行される水素欠検査のタイミングを示す説明図である。図3に示すように、暖機運転期間においては、燃料電池20(図1)に供給される空気)の供給量(エア流量)を通常発電時よりも低下させ、空気のストイキ比を通常発電時よりも低くする。これにより、燃料電池20の発電状態は、全体的に低効率発電の状態とされる(図2の動作状態B1)。そして、水素欠検査は、後述するように、各計測周期Tmcの計測期間Tmで繰り返し実行される。計測周期Tmc中の計測期間Tm以外の低効率発電期間Teでは上述した低効率発電状態による暖機運転が実行される。
計測期間Tmでは、図3に示すように、燃料電池20からの掃引電流が、低効率発電期間Teでの掃引電流よりも低減された状態とされる。掃引電流の低減は、上述したように、DC/DCコンバータ90(図1)の動作を制御することにより行われる。DC/DCコンバータ90は、電力変換の制御を高速に(数ms〜数十ms)で実行可能であり、掃引電流の制御も同様の速度で高速に実行可能である。
燃料電池20に供給されるエア流量及び水素流量を変更することなく、燃料電池20からの掃引電流を低減することは、空気の供給量を増やして空気のストイキ比を高くした状態(図3に破線で示した状態)と実効的に同じ状態となる。この際、燃料電池20の電圧(セル電圧)は、掃引電流の低減量に応じて高くなる。例えば、図2に示すように、電圧が0Vに近い動作状態B1(図3の低効率発電期間Teにおける動作状態)から、通常発電時の同じ掃引電流における動作状態A2の電圧に近い電圧を出力する動作状態B2となる。但し、この際の発電損失は一時的に低下し、燃料電池20の昇温速度は一時的に低下する。掃引電流の低減量は、例えば、低効率発電期間Teにおける掃引電流の電流値(図2の動作状態B1,図3)の10%減〜50%減の範囲内で、空気の不足状態をどの程度改善して出力電圧をどの程度高めるかに応じて、予め定めた量に設定される。本例では、通常発電時の空気のストイキ比を1.5、低効率発電時の空気のストイキ比を1.0とする。また、計測期間Tmにおける掃引電流を25%減することにより、空気の供給量を増やすことなく、空気のストイキ比を実効的に1.25程度に高めるように設定する。なお、水素ガスのストイキ比は、通常発電時か低効率発電時かに関係なく、十分で水素ガスの供給状態とされている。例えば、水素ガスのストイキ比は1.25とされている。なお、水素欠検査を行なう計測期間Tmにおいて、掃引電流を低減して、電圧(セル電圧)を高める点については、後述する。
図4は、暖機運転期間において実行される水素欠検査の手順を示すフローチャートである。この暖機時水素欠検査は、暖機運転の開始に伴って、制御部80の水素欠検査部82(図1)が実行し、暖機運転の終了に伴って終了する(図4のステップS180)。
水素欠検査部82は、計測周期Tmcにおける計測期間Tmの開始タイミング(図3)を待って(ステップS110)、燃料電池20からの掃引電流を低減する(ステップS120)。掃引電流の低減は、上述したように、DC/DCコンバータ90を制御することによって実行される。この掃引電流を低減した燃料電池20の動作状態において、各チャネルについて、チャネル電圧をセルモニタ95によって計測し、セル電圧の平均値Vnを求める(ステップS130)。全チャネルについての計測終了後、全セルにおけるセル電圧の平均値Vmを求める(ステップS140)。なお、掃引電流を低減した燃料電池20の動作状態が「掃引電流低減状態」に相当する。そして、各チャネルにおけるセル電圧の平均値Vnを、後述するように、全セルにおけるセル電圧の平均値Vmと比較して、水素欠セルを含むチャネルの有無の判定(水素欠判定)を行なう(ステップS150)。そして、計測期間Tmの終了タイミング(図3)において(ステップS160)、燃料電池20からの掃引電流の低減を停止し(ステップS170)、低減前の掃引電流に戻す。そして、暖機運転がまだ継続し、検査終了でない場合には(ステップS180:NO)、ステップS110に戻って、計測期間Tmの開始タイミングを待って、上述の各処理を繰り返す。なお、ステップS140における全セルにおけるセル電圧の平均値Vmの計算及びステップS150における水素欠判定は、ステップS170の掃引電流の低減を停止後に行なうようにしてもよい。以下では、ステップS150における水素欠判定について、図5及び図6を利用して説明する。
図5は、計測期間Tmにおける各チャネルに含まれる各セルのセル電圧の一例を示す説明図である。図6は、比較例として低効率発電期間Teにおける各チャネルに含まれる各セルのセル電圧の一例を示す説明図である。図5及び図6は、いずれも、横軸は、チャネル単位のセル積層位置を、n1〜n6の6つの隣接チャネルを例として示しており、縦軸は、電圧(セル電圧)[V]を示している。各チャネル内の白丸(○)および黒丸(●)は、各チャネルに含まれる4つのセルのセル電圧を個別に示した値を示している。左端のn1チャネル及び右端のn6チャネルにそれぞれ水素欠乏状態の水素欠セルが1つ含まれており、その他のn2チャネル〜n5チャネルは全てのセルが正常である状態を示している。
図6に示すように、低効率発電期間Teでは、各チャネルにおける各セルのセル電圧は、供給される空気の量が絞られた状態であるので、供給される空気の状態に応じて大きくばらつく。大半のセルでは、供給される空気量が絞られて欠乏した動作状態となって、セル電圧が0Vに近い値(0V〜0.2V程度)となる。また、セルの中には、空気量が絞られた状態よりも多く空気が供給されるセルもあり、このようなセルでは、供給される空気量に応じて、通常の発電状態に近いセル電圧(0.3V〜1V程度)が発生し得る。但し、このようなセルの数はごく少数であるため、全セルにおけるセル電圧の平均値Vmは、大半のセルのセル電圧と同様に、0Vに近い値(0V〜0.2V程度)となる。このため、セルモニタ95がチャネル単位で複数セルの合計電圧(チャネル電圧)を測定する構成の場合、正常なセルのみのチャネルのセル電圧の平均値と、水素欠セルを含むチャネルのセル電圧の平均値とが区別できない場合がある。
例えば、全セルにおけるセル電圧の平均値Vmは0.1Vであるとする。そして、n2チャネル〜n5チャネルの正常なセルのみのチャネルのそれぞれのセル電圧の平均値Vn2〜Vn5は、0V以上であり、全セルにおけるセル電圧の平均値Vmと同等以上と判定できる。このため、n2チャネル〜n5チャネルは、正常なチャネルであると判定できる。また、n1チャネルの場合、正常な3つのセルのセル電圧が、例えば、0.1V,0.1V,0.1Vであり、水素欠セルのセル電圧が−1.2Vであるとすると、n1チャネルにおけるセル電圧の平均値Vn1は−0.23Vとなる。この場合、セル電圧の平均値Vn1が全セルにおけるセル電圧の平均値Vmよりも低く、かつ、負電圧となるので、n1チャネルは水素欠セルを含むチャネルであると判定することができる。これに対して、n6チャネルの場合、正常な3つのセルのセル電圧が、例えば、0.6V,0.5V,0.6Vであり、水素欠セルのセル電圧が−1.3Vであるとすると、n6チャネルにおけるセル電圧の平均値Vn6は0.1Vとなる。この場合、Vn6=Vmとなるので、水素欠セルを含むチャネルであるのにも関わらず、そのように判定することができない。
以上のように、低効率発電期間Teにおいて、単に各チャネルについてチャネル電圧を計測して、各チャネルにおけるセル電圧の平均値を求め、全セルにおけるセル電圧の平均値と比較した場合、水素欠セルを含むチャネルを検出することができない可能性がある。
一方、計測期間Tmにおいて掃引電流を低減させた状態での各チャネルの各セルは、上述したように、供給される空気のストイキ比が高められた状態(図3)と実質的に同等な状態となり、安定に空気が供給された状態となる。このため、図5に示すように、水素欠セルを除く各セルは、供給された空気量及び掃引電流に応じて、安定なセル電圧を出力する。本例では、水素欠セルを除く各セルのセル電圧はほぼ0.6Vであり、全セルにおけるセル電圧の平均値Vmも同様に0.6Vであるとする。
水素欠セルを含むn1チャネルにおいては、正常な3つのセルのセル電圧が、0.6V,0.6V,0.6Vであり、水素欠セルのセル電圧が−1.2Vであるので、n1チャネルにおけるセル電圧の平均値Vn1は0.15Vとなる。また、比較例とは異なり、水素欠セルを含むn6チャネルにおいても、正常な3つのセルのセル電圧が0.6V,0.6V,0.6Vであり、水素欠セルのセル電圧が−1.3Vであるので、n6チャネルにおけるセル電圧の平均値Vn6は0.125Vとなる。すなわち、n1チャネルにおけるセル電圧の平均値Vn1もn6チャネルにおけるセル電圧の平均値Vn6も、全セルにおけるセル電圧の平均値Vmよりも低くなる。このように、水素欠セルを含むチャネルにおけるセル電圧の平均値Vnは、全セルにおけるセル電圧の平均値Vmよりも低くなる。従って、各チャネルにおけるセル電圧の平均値Vnを全セルにおけるセル電圧の平均値Vmと比較することにより、水素欠セルを含むチャネルの有無を判定することができる。
なお、水素ガスの流路中のフラッディングや水の凍結による閉塞による水素欠セルの発生は、掃引電流の低減だけでは、電圧の回復は困難である。このため、上述のように、掃引電流の低減により、水素欠セルを含むチャネルを、セル電圧の平均値にて分離することが可能となる。
また、セル電圧として負電圧が発生する要因としては、水素欠乏状態以外に、酸素欠乏状態及びドライアップ状態が考えられるが、上述したように、低効率発電状態の水素ガスと空気の供給条件、及び、掃引電流を低減する条件の場合には、酸素欠乏状態及びドライアップ状態は考慮しなくて良い。従って、上記のように、各チャネルにおけるセル電圧の平均値Vnを全セルにおけるセル電圧の平均値Vmと比較すれば、水素欠セルを含むチャネルの有無を判定することができる。
なお、上述した図4の水素欠判定(ステップS150)では、全セルにおけるセル電圧の平均値Vmと各チャネルにおけるセル電圧の平均値Vnとの比較の具体的な手段として、例えば、以下で説明する手段が適用可能である。
(a)あるチャネルにおけるセル電圧の平均値Vnが閾値Vth(Vthは正数)を下回ったか否かによって、水素欠セルを含むチャネルか否か判定することができる。すなわち、Vn<Vthならば、そのチャネルは水素欠セルを含むチャネルであると判定し、Vn≧Vthならば、そのチャネルは水素欠セルを含まないチャネルであると判定する。
閾値Vthは、例えば、水素欠セルが含まれるチャネルにおいて計測されるチャネル電圧から求められるセル電圧の平均値のうち、取り得る最大値が用いられる。この最大値は、例えば、計測期間Tmにおける水素ガスおよび空気の供給条件において、全セルにおけるセル電圧の平均値、及び、水素欠セルで発生し得る負電圧の最大値を用いて、1チャネルにおけるセル電圧の平均値を求めることによって設定することができる。なお、1チャネルに含まれる水素欠セルの数は、通常、最大1つと考えて差し支えない。
(b)また、(Vm−Vn)が閾値Vthを超えたか否かによって、水素欠セルを含むチャネルか否か判定することもできる。すなわち、(Vm−Vn)>Vthならば、そのチャネルは水素欠セルを含むチャネルであると判定し、(Vm−Vn)≦Vthならば、そのチャネルは水素欠セルを含まないチャネルであると判定する。
但し、全セルにおけるセル電圧の平均値Vmと各チャネルにおけるセル電圧の平均値Vnとの比較の手段としては、これらに限定されるものではない。要するに、各チャネルにおけるセル電圧の平均値をそれぞれ、全セルにおけるセル電圧の平均値に基づいて定められる閾値と比較し、閾値よりも下回るチャネルを、水素欠セルを含むチャネルであると判定することができれば、どのような手段であってもよい。
なお、計測期間Tmでは、上述したように、掃引電流を低減することにより発電効率が一時的に改善されることになる。このため、計測期間Tmにおいては、低効率発電期間Teにおける燃料電池20の発熱に比べて発熱が減少する。但し、計測期間Tmで実行される掃引電流の低減は、空気の供給量を変化させる場合に比べて、高速(数ms〜数十ms)に実行できる。このため、暖機運転期間における燃料電池20の昇温速度に、計測期間Tmにおける発熱の減少が影響する度合いは小さく、若干の昇温速度の低下で、暖機運転期間において水素欠セルの有無の判定を行なうことが可能となる。
以上説明したように、複数のセルを含む1組とするチャネルの単位で複数のセルの合計電圧を計測する構成のセルモニタ95を採用した燃料電池システム10では、暖機運転期間においても水素欠セルの有無を検出することができる。また、暖機運転期間における燃料電池20の昇温速度の若干の低下で、水素欠セルの検出によるセルの保護と、チャネル単位でセルの電圧を計測する構成のセルモニタの採用による構成の簡素化及び低コスト化と、の両立を図ることができる。
本発明は、上述の実施形態や変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態や変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組合せを行うことが可能である。また、前述した実施形態及び各変形例における構成要素の中の、独立請求項で記載された要素以外の要素は、付加的な要素であり、適宜省略可能である。
10…燃料電池システム
20…燃料電池
21…エンドプレート
22…絶縁板
23…集電板
24…セル
30…空気供給排出機構
31…コンプレッサ
32…空気供給流路
33…分流弁
36…調圧弁
38…バイパス流路
39…空気排出流路
40…水素タンク
41…シャットバルブ
50…水素供給排出機構
51…レギュレータ
54…インジェクタ
55…水素ポンプ
56…気液分離部
57…排水シャットバルブ
58…排出流路
60…水素供給流路
70…冷却水循環機構
71…ラジエータ
72…冷却水ポンプ
73…冷却水排出流路
74…冷却水供給流路
80…制御部
82…水素欠検査部
90…DC/DCコンバータ
95…セルモニタ
A1,A2…動作状態
B1,B2…動作状態
Te…低効率発電期間
Tm…計測期間
Tmc…計測周期
Vm…全セルにおけるセル電圧の平均値
Vn…チャネルにおけるセル電圧の平均値
Vn1…n1チャネルにおけるセル電圧の平均値
Vn2…n2チャネルにおけるセル電圧の平均値
Vn3…n3チャネルにおけるセル電圧の平均値
Vn4…n4チャネルにおけるセル電圧の平均値
Vn5…n5チャネルにおけるセル電圧の平均値
Vn6…n6チャネルにおけるセル電圧の平均値
Vth…閾値

Claims (1)

  1. 燃料電池を含む燃料電池システムにおいて、要求される発電量に基づく理論上の空気量に対する供給される空気量を示すストイキ比を、通常発電時に比べて低下させて発電を行なう低効率発電状態として前記燃料電池を動作させる期間において、供給される水素が欠乏した状態の水素欠セルの有無を検出する水素欠セル検出方法であって、
    前記低効率発電状態における前記燃料電池からの掃引電流を、前記低効率発電状態に対応する電流値から一時的に低減して掃引電流低減状態とする工程と、
    前記掃引電流低減状態において、複数のセルを1組としたチャネル単位で各チャネルにおけるセル電圧の平均値を求めるとともに、全セルにおけるセル電圧の平均値を求める工程と、
    前記各チャネルにおけるセル電圧の平均値を、前記全セルにおけるセル電圧の平均値に基づいて定められる閾値と比較し、前記閾値よりも下回るチャネルを、前記水素欠セルを含むチャネルであると判定する工程と、
    を備える、水素欠セル検出方法。
JP2017059206A 2017-03-24 2017-03-24 水素欠セル検出方法 Active JP6801548B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059206A JP6801548B2 (ja) 2017-03-24 2017-03-24 水素欠セル検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059206A JP6801548B2 (ja) 2017-03-24 2017-03-24 水素欠セル検出方法

Publications (2)

Publication Number Publication Date
JP2018163748A JP2018163748A (ja) 2018-10-18
JP6801548B2 true JP6801548B2 (ja) 2020-12-16

Family

ID=63860223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059206A Active JP6801548B2 (ja) 2017-03-24 2017-03-24 水素欠セル検出方法

Country Status (1)

Country Link
JP (1) JP6801548B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055696B2 (ja) * 2004-12-22 2012-10-24 日産自動車株式会社 燃料電池システム
JP5168848B2 (ja) * 2006-08-10 2013-03-27 日産自動車株式会社 燃料電池システム
JP5023684B2 (ja) * 2006-10-20 2012-09-12 トヨタ自動車株式会社 燃料電池システム及び燃料電池の起動方法
US8691461B2 (en) * 2009-08-21 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2011085443A (ja) * 2009-10-14 2011-04-28 Toyota Motor Corp 電圧測定装置及びそれを用いた燃料電池システム
JP6131930B2 (ja) * 2014-10-28 2017-05-24 トヨタ自動車株式会社 発電監視装置、燃料電池システムおよび発電監視方法

Also Published As

Publication number Publication date
JP2018163748A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
US10090539B2 (en) Fuel cell system
US8778549B2 (en) Fuel cell system
US10276883B2 (en) Fuel cell system and dryness degree acquisition method
JP5790705B2 (ja) 燃料電池システムおよびその制御方法
US10411280B2 (en) Fuel cell system and method of shutting down the same
JP2008147093A (ja) 燃料電池システム
KR102161274B1 (ko) 연료 전지 시스템 및 그 제어 방법
US10892500B2 (en) Fuel cell system
JP2009158399A (ja) 燃料電池システム
JPWO2012036143A1 (ja) 燃料電池システム
CN109935863B (zh) 燃料电池系统
JP6907894B2 (ja) 燃料電池システム
US11621430B2 (en) Fuel cell system
US20170229721A1 (en) Fuel cell system and fuel cell system control method
JP2009123613A (ja) 燃料電池システムおよび燃料電池システムの制御方法
KR20110032077A (ko) 연료전지 저온 운전 제어방법
JP6801548B2 (ja) 水素欠セル検出方法
JP2015210908A (ja) 燃料電池システムおよびその制御方法
JP2018018697A (ja) 燃料電池システム及びその制御方法
JP2019053875A (ja) 燃料電池システム
JP6155870B2 (ja) 燃料電池システム
JP2020024785A (ja) 燃料電池システム
JP7298503B2 (ja) 燃料電池システムおよびその制御方法
US11158873B2 (en) Control device for fuel cell system
JP7006158B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151