JP6798262B2 - 光学ユニット及び測距センサ - Google Patents

光学ユニット及び測距センサ Download PDF

Info

Publication number
JP6798262B2
JP6798262B2 JP2016219625A JP2016219625A JP6798262B2 JP 6798262 B2 JP6798262 B2 JP 6798262B2 JP 2016219625 A JP2016219625 A JP 2016219625A JP 2016219625 A JP2016219625 A JP 2016219625A JP 6798262 B2 JP6798262 B2 JP 6798262B2
Authority
JP
Japan
Prior art keywords
light
reflecting surface
incident
light receiving
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016219625A
Other languages
English (en)
Other versions
JP2018077156A (ja
Inventor
俊佑 齋木
俊佑 齋木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2016219625A priority Critical patent/JP6798262B2/ja
Publication of JP2018077156A publication Critical patent/JP2018077156A/ja
Application granted granted Critical
Publication of JP6798262B2 publication Critical patent/JP6798262B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、光を照射する投光部と光を取得する受光部とを備えた光学ユニット、及びこのような光学ユニットを備えた測距センサに関する。
従来、予め設定された所定の範囲に光を照射し、物体により反射された光を取得して、物体の有無を検出する技術が利用されてきた。このような技術にあっては、入射された光(光ビーム)のサイズの変換や、光(光ビーム)の合成を目的として、光学デバイスが用いられる(例えば特許文献1及び2)。
光ビームのサイズ変換に用いられるビームエキスパンダは、一般的に、各種調整に手間を要したり、複数枚のレンズを用いて構成するのでサイズが大きくなったりする。特許文献1に記載の光学素子では、このような課題を改善すべく、カセグレン光学系を単一の光学素子内で構成することで調整の手間を省き、且つ、小型化している。
また、特許文献2に記載の距離測定装置では、カセグレン光学系の副鏡を投光部と一体化させて小型化し、投光光学系の光軸と受光光学系の光軸とが同一になるように構成している。
特開2010−60728号公報 特開平8−15413号公報
特許文献1に記載の技術は、第1反射面及び第2反射面の双方で光を反射させるために例えば金属反射膜等の表面処理が必要となる。このような金属反射膜は反射率が100%ではないので、特許文献1に記載の技術のように複数回の反射により光の減衰量が多くなり、反射効率が悪化する可能性がある。また、特許文献1に記載の技術では、2つの放物面が同一の焦点位置に対して互いに対向するように配置している。このため、光学素子を例えば樹脂を用いて射出成型により形成した場合、2つの放物面の間隔精度は両側の金型の合わせ面の精度に依存することになるので、反射面の光学面精度だけでなく、金型嵌合面の精度も高める必要がある。
特許文献2に記載の技術は、受光光学系を折り返して構成することにより小型化しているが、投光光学系を同軸上に直列配置したことにより装置の厚みが増加する。また、受光光学系において主鏡及び副鏡の光軸調整と位置調整とが必要になり、投光光学系においても光源及びレンズの光軸調整と位置調整とが必要となる。また、受光側の副鏡と投光光学系とを一体とすることで、却って調整が煩雑となる可能性がある。また、投光光学系と受光光学系とを同軸にし、且つ、投光側光学系を装置の最も手前に配置することから、投光ビーム(ビームのビーム径)よりも物理的に大きな(大きな径を有する)投光レンズや周辺の保持部材により受光面の一部が遮られ、距離性能の低下の原因となり得る。更には、測距対象物が近距離の位置にある場合、反射光は投光ビーム周辺に集中するため、装置自体の投光光学系により遮られてしまい、正しく検出できない可能性がある。また、測距方向を変化させるために平面鏡を組み合わせたポリゴンミラーが用いられるが、特許文献2に記載の技術では回転鏡の回転軸が光軸上にあるため、回転中心にポリゴンミラーの複数面を配置することは容易ではない。回転軸と光軸とを互いにずらすことにより複数方向への操作が容易に行えるようになるが、ポリゴンミラーのミラー面と受光光学系の受光面とが大きくずれてしまい、受光量の損失が多くなる。
そこで、反射効率が良い小型の光学ユニット、及びこのような光学ユニットを備えた測距センサが求められる。
本発明に係る光学ユニットの特徴構成は、光を照射する光源と前記光源から照射された光を平行光に変換する投光レンズとが設けられる投光部と、平行光が入射される入射面、当該入射面に入射された平行光を一点に集めることが可能な放物面からなる第1反射面、前記第1反射面と前記一点との間において前記第1反射面で反射された光が入射され、前記一点とは異なる他の一点に集めることが可能な双曲面からなる第2反射面、及び前記第2反射面と前記他の一点との間において前記第2反射面で反射された光が入射され、前記他の一点を前記第2反射面側に反転させる平面からなる第3反射面を有する受光レンズと前記第3反射面により前記他の一点が反転された位置に設けられ、前記第3反射面で反射された光を検出する受光センサとが設けられる受光部と、を備えている点にある。
このような特徴構成とすれば、入射面、第1反射面、第2反射面、第3反射面の夫々において、互いに対向する面同士の形状を異ならせることができる。また、平行光から収束光への変換を行うことが可能となる。また、上記特徴構成とすれば、入射面と第3反射面とを一方側に配置し、第1反射面と第2反射面とを他方側に配置することで、集光に必要な光学性能面を全て片側(他方側)に配置することができ、製造時の誤差要因を減らすことが可能となる。更には、光路を折り返して構成することで、入射面から受光センサまでの距離を短縮し薄型にできる。したがって、反射効率が良い小型の光学ユニットを実現できる。
また、前記第1反射面及び前記第2反射面は全反射を行う反射面であると好適である。
このような構成とすれば、第1反射面及び第2反射面では光の減衰が無いので、光の反射効率を高めることができる。したがって、光学ユニットにおける光の損失を低減することが可能となる。
また、前記第3反射面は、前記受光レンズにおける前記入射面側の端面に設けられた凹部に形成されていると好適である。
このような構成とすれば、受光レンズの軸方向に沿った長さを短縮することができる。したがって、光学ユニットを小型化することができる。
また、前記投光部は、前記受光レンズにおける前記第1反射面の裏面側に設けられ、前記受光レンズは、前記第1反射面の一部に前記投光部からの光を通過させる切欠部が形成されていると好適である。
このような構成とすれば、投光部から照射される光が受光レンズで減衰されることを防止できる。
また、前記受光レンズは、前記第3反射面と前記受光センサとの間に、前記第3反射面で反転された光を前記受光センサの検出面に集める集光面が設けられると好適である。
このような構成とすれば、第3反射面で反射された光を受光センサの検出面に集め易くすることができる。したがって、受光レンズにおける受光効率を高めることが可能となる。
また、本発明に係る測距センサは、前記光学ユニットと、前記投光部からの光を所定の範囲に亘って走査させ、走査された光が前記所定の範囲内に存在する物体にあたって反射した反射光を前記入射面に対して直交する方向に変換する変換部と、を備えると好適である。
このような構成とすれば、薄型で、且つ、高効率の受光レンズを用いることにより、小型で広角広範囲の測距センサを実現できる。
光学ユニットの側面図である。 受光レンズの斜視図である。 受光レンズの斜視図である。 測距センサによる物体の検知範囲の一例を示した図である。 測距センサの側方断面図である。
1.光学ユニット
本発明に係る光学ユニットは、光の反射効率が良く、小型で構成される。以下、本実施形態の光学ユニット1について説明する。
図1には、光学ユニット1の側面図が示される。光学ユニット1は、投光部10及び受光部20を備えて構成される。投光部10は光源11と投光レンズ12とが設けられ、受光部20は受光レンズ30と受光センサ40とが設けられる。図1では、理解を容易にするために、受光レンズ30が断面図で示される。
光源11は、例えばレーザーやLEDを用いて構成され、光を照射する。光源11から照射された光は、後述する投光レンズ12に入射される。
投光レンズ12は、光源11から照射された光を平行光に変換する。光源11から照射された光は、放射状に広がる。投光レンズ12は、このように放射状に広がる光を、所定の方向に沿って進む平行光に変換する。これにより、光源11からの光を、所定の方向にのみ照射することが可能となる。投光レンズ12からの平行光は、光学ユニット1の外部に照射される。なお、以下では投光レンズ12から照射される平行光を、必要に応じて「投光ビーム」と称して説明する。
本実施形態では、受光レンズ30は、入射面31、第1反射面32、第2反射面33、第3反射面34、集光面35を有し、これら4つの面は、互いの軸心が同軸心上に配置される。
入射面31は、平行光が入射される。詳細は後述するが、平行光とは投光レンズ12か光学ユニット1の外部に照射され、測距対象の物体に当たって反射した光である。入射面31は、平面で、且つ、光を透過するように構成される。入射面31に入射される平行光は、入射面31に対して直交する方向に沿って入射されると好適である。
第1反射面32は、入射面31に入射された平行光を一点に集めることが可能な放物面で構成される。放物面とは放物線を回転して形成される回転体が有する面(回転放物面)であり、放物面に対して平行に入射された光は、放物面における単一の焦点に集まる特徴を有するものである。本実施形態では、第1反射面32は、このような放物面を用いて構成され、入射面31を透過した平行光を所定の一点(上記「焦点」に相当)に集めることができるように構成されている。以下では、理解を容易にするために、「所定の一点」が点Aであるとして説明する。したがって、第1反射面32は、入射された平行光を点Aに集光できるような放物面で構成される。
また、第1反射面32は、全反射を行う反射面で構成されると好適である。したがって、第1反射面32は例えば鏡面を形成するようなコーティングは不要である。これにより、第1反射面32で光が反射される際、光の強度の減衰を防止できる。
第2反射面33は、第1反射面32と点Aとの間において第1反射面32で反射された光が入射され、点Aとは異なる他の一点に集めることが可能な双曲面で構成される。上述したように第1反射面32で反射された光は、点Aに集まるように構成される。第2反射面33は、第1反射面32と点Aとの間に配置され、入射された光を反射する。後述するように、第2反射面33は全反射を行う反射面で構成されることから、第1反射面32で反射された光は、実際には点Aには到達しない。
双曲面とは、一対の双曲線を同一の軸周りで回転させることにより得られる面であり、一方の双曲線により形成された面に対して光を入射した場合に、他方の双曲線により形成された面の焦点に光が集めることができるように構成された面である。第2反射面33は当該一対の双曲面のうちの一方を用いて構成される。したがって、第2反射面33は、第1反射面32により点Aの方向に向けて反射された光(集光される光)を、上記「他の一点」にあたる点B(第2反射面33の焦点に相当)に向けて反射する(集光する)。以下では、「他の一点」が点Bであるとして説明する。
また、第2反射面33は、全反射を行う反射面で構成されると好適である。したがって、第2反射面33は例えば鏡面を形成するようなコーティングは不要である。これにより、第2反射面33で光が反射される際、光の強度の減衰を防止できる。上述した第1反射面32及び第2反射面33により、受光レンズ30の例えば焦点距離等の物理量が略決定される。
第3反射面34は、第2反射面33と点Bとの間において第2反射面33で反射された光が入射され、点Bを第2反射面33側に反転させる平面で構成される。上述したように第2反射面33で反射された光は、点Bに集光されるように構成される。第3反射面34は、第2反射面33と点Bとの間に配置され、入射された光を反射する。したがって、第2反射面33で反射された光は、実際には点Bには到達しない。
第3反射面34は、所定の入射角で入射された光を、入射角と等しい反射角で反射するように構成される。したがって、点Bが点A側に反転されることになる。点Bが反転される位置は、第2反射面33と第3反射面34との間の距離、及び点Bと第3反射面34との間の距離によって決定されるが、本実施形態では、点Bが点Aの位置に反転されるとして説明する。このように第3反射面34は、光を集める面の位置や向きの反転に用いられる。
本実施形態では、第3反射面34は、受光レンズ30における入射面31側の端面に設けられる凹部50に形成される。第3反射面34は、凹部50の底面、すなわち凹部50が有する面のうち、点A側の面に形成される。このような第3反射面34は、凹部50に平面鏡を嵌め込んで形成しても良いし、凹部50の底面に対して例えば蒸着を行って鏡面を形成しても良い。
集光面35は、第3反射面34と受光センサ40との間に設けられ、第3反射面34で反転された光を受光センサ40の検出面に集める。ここで、受光センサ40は、第3反射面34により点Bが反転された位置に設けられ、第3反射面34で反射された光を検出する。本実施形態では、第3反射面34により点Bが反転された位置とは、点Aの位置である。したがって、受光センサ40は、点Aの位置に設けられ、この位置で第3反射面34により反射された光を検出する。受光センサ40による光の検出は、公知であるので説明は省略する。
ここで、第3反射面34で反射された光が点Aの位置に集まるように受光レンズ30が構成されるが、受光レンズ30の形成誤差によっては、多少、点Aの位置に対して光が集まる位置がずれる可能性がある。そこで、集光面35は、第3反射面34とこのような受光センサ40との間に設けられ、第3反射面34により反射された光を受光センサ40の検出面に集めるレンズとして用いられる。このような集光面35は、球面状で、且つ、光が透過する透過面として構成される。また、集光面35は、最終集光面と光軸との交点を中心とした球面で構成し、集光する光(光束)が直交する方向から入射されるように構成すると好適である。これにより、集光する光(光束)への屈折作用を極力抑えることが可能となる。なお、集光面35は、集光面35において光を屈折させて受光センサ40の検出面に集光するように構成しても良い。
光学ユニット1は上述したように構成されるが、光学ユニット1はコンパクトに形成すべく、投光部10が受光レンズ30における第1反射面32の裏面側に設けられる。「受光レンズ30における第1反射面32の裏面側」とは、受光レンズ30が有する面のうち、第1反射面32が形成された面の裏側の面よりも外側である。また、投光部10は、照射する光が受光レンズ30の受光面内の外周付近を通過するように受光レンズ30の軸心に対してオフセットして配置される。
投光部10は、このような位置に設けられるが、投光部10からの光が透過できるように、受光レンズ30には第1反射面32の一部に切欠部51が形成されている。図2には、第1反射面32の裏面側から見た受光レンズ30の斜視図が示され、図3には、入射面31を受光レンズ30の外側から見た受光レンズ30の斜視図が示される。受光レンズ30は、図2及び図3に示されるような形状で、例えば射出成型により透明な樹脂(例えばアクリル、ポリカーボネート、ポリマー等)を用いて構成される。このように受光レンズ30を単一部品とすることで、受光センサ40との位置合わせを容易にすることが可能となる。また、射出成型時に第1反射面32の一部及び入射面31の外周部の一部を切り欠くような切欠部51が形成される(図2及び図3参照)。投光部10は、この切欠部51を投光部10からの光が通り抜けるように配置される。したがって、投光部10からの光が減衰されることを防止できる。
2.測距センサ
次に、本発明に係る測距センサについて説明する。測距センサは、当該測距センサから所定の範囲内に存在する物体までの距離を検出するのに利用される。本実施形態の測距センサ2は、図4に示されるように車両3(例えば車両3の前端部)に備えられ、車両3の周囲(図4の例では、車両3の前方)に存在する物体までの距離を検出する。
図5には、測距センサ2の側方断面図が示される。図5に示されるように、測距センサ2は、上述した光学ユニット1と変換部5とを備えて構成される。光学ユニット1については、上述したので説明は省略する。変換部5は、投光部10からの光を所定の範囲に亘って走査させ、更に、走査された光が所定の範囲内に存在する物体に当たって反射した光を入射面31に対して直交する方向に変換する。変換部5は、凹面鏡や凸面鏡、更には複数の平面鏡を組み合わせて形成したポリゴンミラー等を用いて構成すると好適である。このような変換部5に投光部10からの光を照射しつつ、受光レンズ30の軸心と非平行に配置された回転軸を有するモータで回転させることにより図4に示されるような範囲Rに窓部52を介して投光部10からの光を照射することが可能となる。
投光部10からの光は、所定の範囲(図2にあっては範囲R)に存在する物体に当たると反射する。反射した光が窓部52を介して測距センサ2の方に戻ると、当該光が入射面31に対して直交する方向で入射されるように、変換部5は光の方向を変換する。変換された光は、上述したように光学ユニット1の受光センサ40に入射される。
なお、投光部10及び受光センサ40は単一の基板45に実装され、当該基板45を支持するハウジング46と受光レンズ30とを互いに固定することで、受光レンズ30に対する投光部10及び受光センサ40の位置決めを行うことが可能である。また、受光レンズ30から投光部10の着脱を容易にでき、軸調整を行い易くできる。更には、投光部10及び受光センサ40を単一の基板45に実装することで、複数の基板を用いる場合に比べてコストダウンを行うことが可能となる。
また、少ない面数のポリゴンミラー(面数が少ない程、広角にできる)の外周部に沿って、ポリゴンミラーの径方向に長く、周方向に細い矩形の照射領域を有する光を照射することで、水平走査角度を大きくすることができ、且つ、受光面積も広くすることができるため、広範囲(水平方向と距離方向)に亘って物体の検知が可能となる。また、少ない面数の設定により、光が面間を跨ぐ回数を少なくし、有効に走査できる区間を増やし、照射する光の照射領域を細くすることでポリゴンミラーの面間を跨ぐ区間を短くすると好適である。
受光センサ40により光が検出されたことを示す結果は、図示しない演算部に伝達される。一方、演算部には、投光部10が光を照射したことを示す情報も伝達される。演算部は、投光部10が光を照射してから、受光センサ40が光を受光するまでの時間を算定し、光の速度と当該時間の1/2との積により測距センサ2から物体までの距離を演算することが可能である。もちろん、上記時間について、各機能部の信号処理に要する遅延時間を補正して用いることも可能である。
なお、投光レンズ12と受光レンズ30との境界部には、窓部52の反射光を受光しないように、最小限の遮光を施すと好適である。比較的近距離にある物体の反射光で受光レンズ30に対して直交する方向から入射できる(受光センサ40が受光できる)成分は投光される光周辺にしかなく、投光される光を受光レンズ30の受光面よりも外側に配置すると、近距離の物体が検知できなくなるためである。また、反対に投光される光を受光レンズ30の中心に近づけると窓部52からの反射が大きくなり、結果的に近距離の物体の反射光が埋もれてしまい検知できなくなるためである。更には仮に窓部52からの反射光を遮光した場合であっても、受光面積の低下を招き測距センサ2の距離能力が低下するためである。
更には、投光レンズ12と受光レンズ30とは、光軸方向に対しても互いにオフセットを設け、特に受光レンズ30の方が投光レンズ12よりも窓部52側に配置すると良い。オフセットを設けることにより、受光レンズ30の隙間に投光レンズ12を配置し、投受光回路を一体にすることができ、測距センサ2をコンパクトに構成することが可能となる。
また、投光レンズ12は受光レンズ30の後方(受光レンズ30を入射面31側から見て後方)に配置することにより、平行光に整形された光だけが受光レンズ30の受光面内外周付近を通過するようにできる。したがって、投光レンズ12や保持部材によって受光レンズ30を遮る部分の大きさを小さくすることができ、投光レンズ12を介して照射される光の大きさだけ通過できる程度となり、大きな集光面積を確保することが可能となる。
なお、図4に示したように測距センサ2は車両3に設けられるが、上述したように投光光軸を測距センサ2の最前面に設けることで、車体等の周辺部で照射された光が遮られることなく水平方向に広範囲に亘って走査することが可能となる。また、広範囲に亘る走査を実現しつつ、測距センサ2が車両3から突出するように配置することを防止でき、デザインの自由度にも貢献できる。
3.その他の実施形態
上記実施形態では、第1反射面32及び第2反射面33は全反射を行う反射面であるとして説明したが、第1反射面32及び第2反射面33の双方、或いは一方が全反射を行わない反射面であっても良い。すなわち、第1反射面32及び第2反射面33の双方、或いは一方が、例えば蒸着によって鏡面を形成しても良い。
上記実施形態では、第3反射面34は、受光レンズ30における入射面31側の端面に設けられた凹部50に形成されているとして説明したが、第3反射面34は凹部50に形成されず、入射面31の一部に形成されても良い。
上記実施形態では、投光部10は、受光レンズ30における第1反射面32の裏面側に設けられ、受光レンズ30は、第1反射面32の一部に投光部10からの光を通過させる切欠部51が形成されているとして説明したが、投光部10は受光レンズ30の側方に配置しても良い。この場合、投光部10からの光の経路(光路)において、受光レンズ30が存在しない場合(受光レンズ30を光が通過しない場合)には、受光レンズ30に切欠部51を設けなくても良い。
上記実施形態では、第3反射面34は、第2反射面33の焦点である点Bを、第1反射面32の焦点である点Aの位置に反転させるとして説明したが、第3反射面34は第2反射面33の焦点である点Bを、第1反射面32の焦点である点Aの位置とは異なる位置に反転させるように配置することも可能である。
上記実施形態では、図4において測距センサ2が車両3の前端部に備えられ、車両3の前方に存在する物体までの距離を検出するとして説明したが、測距センサ2を用いて、車両3の後方に存在する物体までの距離を検出するように構成することも可能であるし、車両3の側方に存在する物体までの距離を検出するように構成することも可能である。これらの場合、夫々車両3の後端部や側端部に設けると好適である。
本発明は、光を照射する投光部と光を取得する受光部とを備えた光学ユニット、及びこのような光学ユニットを備えた測距センサに用いることが可能である。
1:光学ユニット
2:測距センサ
5:変換部
10:投光部
11:光源
12:投光レンズ
20:受光部
30:受光レンズ
31:入射面
32:第1反射面
33:第2反射面
33:第3反射面
35:集光面
40:受光センサ
50:凹部
51:切欠部

Claims (6)

  1. 光を照射する光源と前記光源から照射された光を平行光に変換する投光レンズとが設けられる投光部と、
    平行光が入射される入射面、当該入射面に入射された平行光を一点に集めることが可能な放物面からなる第1反射面、前記第1反射面と前記一点との間において前記第1反射面で反射された光が入射され、前記一点とは異なる他の一点に集めることが可能な双曲面からなる第2反射面、及び前記第2反射面と前記他の一点との間において前記第2反射面で反射された光が入射され、前記他の一点を前記第2反射面側に反転させる平面からなる第3反射面を有する受光レンズと前記第3反射面により前記他の一点が反転された位置に設けられ、前記第3反射面で反射された光を検出する受光センサとが設けられる受光部と、
    を備えた光学ユニット。
  2. 前記第1反射面及び前記第2反射面は全反射を行う反射面である請求項1に記載の光学ユニット。
  3. 前記第3反射面は、前記受光レンズにおける前記入射面側の端面に設けられた凹部に形成されている請求項1又は2に記載の光学ユニット。
  4. 前記投光部は、前記受光レンズにおける前記第1反射面の裏面側に設けられ、
    前記受光レンズは、前記第1反射面の一部に前記投光部からの光を通過させる切欠部が形成されている請求項1から3のいずれか一項に記載の光学ユニット。
  5. 前記受光レンズは、前記第3反射面と前記受光センサとの間に、前記第3反射面で反転された光を前記受光センサの検出面に集める集光面が設けられる請求項1から4のいずれか一項に記載の光学ユニット。
  6. 請求項1から5のいずれか一項に記載の光学ユニットと、
    前記投光部からの光を所定の範囲に亘って走査させ、走査された光が前記所定の範囲内に存在する物体にあたって反射した反射光を前記入射面に対して直交する方向に変換する変換部と、
    を備える測距センサ。
JP2016219625A 2016-11-10 2016-11-10 光学ユニット及び測距センサ Active JP6798262B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016219625A JP6798262B2 (ja) 2016-11-10 2016-11-10 光学ユニット及び測距センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219625A JP6798262B2 (ja) 2016-11-10 2016-11-10 光学ユニット及び測距センサ

Publications (2)

Publication Number Publication Date
JP2018077156A JP2018077156A (ja) 2018-05-17
JP6798262B2 true JP6798262B2 (ja) 2020-12-09

Family

ID=62149051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219625A Active JP6798262B2 (ja) 2016-11-10 2016-11-10 光学ユニット及び測距センサ

Country Status (1)

Country Link
JP (1) JP6798262B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102505049B1 (ko) * 2021-12-09 2023-03-03 주식회사 이엘티센서 이동 광원의 위치 확인이 가능한 광센서

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262529A (ja) * 1987-04-20 1988-10-28 Masami Yamakawa 光電センサ
JPH1164518A (ja) * 1997-08-12 1999-03-05 Mitsubishi Electric Corp 車両用光レーダ装置
JP2000214356A (ja) * 1998-11-20 2000-08-04 Taiyo Yuden Co Ltd 集光器と受光装置
JP4166887B2 (ja) * 1998-12-25 2008-10-15 浜松ホトニクス株式会社 光半導体装置
US6507024B2 (en) * 2001-02-07 2003-01-14 Litton Systems, Inc. Low cost infrared camera
JP2002318157A (ja) * 2001-04-24 2002-10-31 Nec Corp 電磁波検出装置
JP2007201209A (ja) * 2006-01-27 2007-08-09 Oki Electric Ind Co Ltd 光モジュール
JP5078419B2 (ja) * 2006-11-06 2012-11-21 パナソニック株式会社 発光モジュールおよび受光モジュール
JP2007310419A (ja) * 2007-08-06 2007-11-29 Rabo Sufia Kk バルク型レンズ、発光体、受光体、照明器具及びバルク型レンズの製造方法
US20090056789A1 (en) * 2007-08-30 2009-03-05 Vladimir Draganov Solar concentrator and solar concentrator array
JP2015219135A (ja) * 2014-05-19 2015-12-07 株式会社リコー 光学センサモジュール、光学センサモジュールの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102505049B1 (ko) * 2021-12-09 2023-03-03 주식회사 이엘티센서 이동 광원의 위치 확인이 가능한 광센서

Also Published As

Publication number Publication date
JP2018077156A (ja) 2018-05-17

Similar Documents

Publication Publication Date Title
JP7501864B2 (ja) コリメートを行うカバー要素によって覆われたスキャンミラーを備えた送信器
JP4702200B2 (ja) 受光器及び当該受光器を備えたレーダ装置
JP5237813B2 (ja) 電気光学的測定装置
CN109960024B (zh) 气体传感器用光腔及具有该光腔的气体传感器
EP2701209B1 (en) Reflective photoelectric sensor
JP3976021B2 (ja) 位置計測システム
US20180017668A1 (en) Ranging system, integrated panoramic reflector and panoramic collector
US10067222B2 (en) Laser rangefinder
KR20180126927A (ko) 8채널형 라이다
JP6798262B2 (ja) 光学ユニット及び測距センサ
JP2018156008A (ja) 受光光学系
JP2011149760A (ja) 光波距離測定装置
JP5128232B2 (ja) 反射型光電センサ
JP3828755B2 (ja) 変位光量変換装置
KR101959932B1 (ko) 보조반사경을 구비한 프레넬 렌즈
JP2017072464A (ja) 測量機の光学系
JP6732442B2 (ja) 光波距離測定装置
US20220291357A1 (en) Optical sensing system
JP2023019759A (ja) 光学特性測定装置
JP7264749B2 (ja) ステレオカメラ、及びステレオカメラ一体型ライトユニット
JP7475145B2 (ja) 電磁波検知装置及びスキャナ
JP7343657B2 (ja) 光電センサ及び物体検出方法
JP2017194424A (ja) 投受光装置及び測距装置
JP2531890Y2 (ja) 光学センサ
JP4745860B2 (ja) 光受信器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R151 Written notification of patent or utility model registration

Ref document number: 6798262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151