JP6794050B2 - Pm堆積検出装置 - Google Patents

Pm堆積検出装置 Download PDF

Info

Publication number
JP6794050B2
JP6794050B2 JP2017014719A JP2017014719A JP6794050B2 JP 6794050 B2 JP6794050 B2 JP 6794050B2 JP 2017014719 A JP2017014719 A JP 2017014719A JP 2017014719 A JP2017014719 A JP 2017014719A JP 6794050 B2 JP6794050 B2 JP 6794050B2
Authority
JP
Japan
Prior art keywords
plasma reactor
deposition
circuit
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014719A
Other languages
English (en)
Other versions
JP2018123711A (ja
Inventor
鉄也 佐藤
鉄也 佐藤
一哉 内藤
一哉 内藤
遼一 島村
遼一 島村
翔 松山
翔 松山
純人 藤崎
純人 藤崎
谷口 昌司
昌司 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017014719A priority Critical patent/JP6794050B2/ja
Publication of JP2018123711A publication Critical patent/JP2018123711A/ja
Application granted granted Critical
Publication of JP6794050B2 publication Critical patent/JP6794050B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Plasma Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

本発明は、エンジンの排ガスを浄化するプラズマリアクタに用いられて、プラズマリアクタにおけるPMの堆積を検出する装置に関する。
エンジン、とくにディーゼルエンジンから排出される排ガスには、CO(一酸化炭素)、HC(炭化水素)、NOx(窒素酸化物)およびPM(Particulate Matter:粒子状物質)などが含まれる。
排ガスに含まれるPMを除去する手法として、プラズマリアクタを用いて、排ガスに含まれるPMを除去する手法が提案されている。プラズマリアクタは、複数の電極パネルを備えている。電極パネルは、たとえば、誘電体に電極を内蔵した構成であり、複数の電極パネルは、排ガスの流れ方向と直交する方向に間隔を空けて積層される。互いに対向する電極間に電圧が印加されると、誘電体バリア放電が生じて、電極パネル間に低温プラズマ(非平衡プラズマ)が発生し、電極パネル間を流れる排ガス中のPMが酸化により除去される。
特開2005−61246号公報
ところが、電極パネル間を流れる排ガスに含まれるPM量が多い場合、排ガス中からPMを除去しきれずに、PMが電極パネルの表面に付着する。電極パネルにPMが付着して堆積すると、電極間での放電が弱くなり、PM除去性能が低下し、電極パネルにおけるPMのさらなる堆積を生じるおそれがある。
たとえば、排ガスに含まれるPMをDPF(Diesel particulate filter)で捕集し、そのDPFに捕集されたPMをプラズマの酸化作用により燃焼させる構成のプラズマリアクタでは、プラズマリアクタにPMが堆積すると、プラズマリアクタでの圧力損失が増大する。そこで、プラズマリアクタの前後(排ガスの流通方向の上流側および下流側)の差圧を検出して、その差圧からプラズマリアクタでの圧力損失を求め、圧力損失からプラズマリアクタにおけるPMの堆積を検出する手法が提案されている(たとえば、特許文献1参照)。
しかしながら、この手法では、プラズマリアクタの前後の差圧を検出する2個の圧力計が必要とされ、コストおよびスペースの増大が生じる。また、複数の電極パネルを平行に設けた構成では、DPFが用いられておらず、電極パネル(プラズマリアクタ)でのPMの堆積による圧力損失が小さいので、電極パネルにおけるPMの堆積を検出する精度が低くなる。
本発明の目的は、プラズマリアクタにおけるPMの堆積の検出に圧力損失を用いる構成と比較して、コスト面およびサイズ面で優れながら、PMの堆積を精度よく検出できる、PM堆積検出装置を提供することである。
前記の目的を達成するため、本発明の一の局面に係るPM堆積検出装置は、互いに間隔を空けて対向配置される複数の電極の間に電源装置から電圧を印加して、電極間に放電を生じさせ、その放電で発生するプラズマにより、エンジンの排ガスに含まれるPM(Particulate Matter:粒子状物質)を除去するプラズマリアクタに用いられて、プラズマリアクタでのPMの堆積を検出する装置であって、電極を流れる電流の最小値を取得する最小値取得手段と、最小値取得手段により取得される最小値に基づいて、プラズマリアクタでのPMの堆積を判定する堆積判定手段とを含む。
この構成によれば、プラズマリアクタの電極間に電圧が印加されると、電極間に放電が生じ、その放電によるプラズマが発生する。プラズマの酸化作用により、エンジンの排ガスに含まれるPMが酸化されて除去される。
プラズマリアクタの電極に流れる電流は、電極間における放電の状態によって変化する。本願発明者らによる鋭意研究の結果、プラズマリアクタ(電極を内蔵した誘電体の表面)にPMが堆積すると、PMが堆積していない初期状態と比較して、電極間での放電が弱くなり、放電時に電極を流れる電流(放電電流)の最小値が大きくなることが判った。
そこで、放電時に電極を流れる電流の最小値に基づいて、プラズマリアクタでのPMの堆積を判定する。たとえば、放電時に電極を流れる電流の最小値が所定の閾値以上である場合に、プラズマリアクタにPMが堆積していると判定される。これにより、プラズマリアクタにおけるPMの堆積による圧力損失の変化が現れる前に、そのPMの堆積を検出することができる。しかも、プラズマリアクタの放電を制御するための構成には、電極を流れる電流を検出する電流センサが備えられているので、その電流の最小値を取得する構成(回路)を追加すれば、プラズマリアクタの前後の差圧を検出するための圧力計を追加することなく、プラズマリアクタにおけるPMの堆積を検出できる。
また、本発明の他の局面に係るPM堆積検出装置は、互いに間隔を空けて対向配置される複数の電極の間に電源装置から電圧を印加して、電極間に放電を生じさせ、その放電で発生するプラズマにより、エンジンの排ガスに含まれるPM(Particulate Matter:粒子状物質)を除去するプラズマリアクタに用いられて、プラズマリアクタでのPMの堆積を検出する装置であって、電源装置から電極間に印加される電圧により電極を流れる電流の向きと逆向きに電極を流れるマイナス電流の値を所定期間にわたって積算し、そのマイナス電流の積算値を取得する積算値取得手段と、積算値取得手段により取得される積算値に基づいて、プラズマリアクタでのPMの堆積を判定する堆積判定手段とを含む。
この構成によれば、プラズマリアクタの電極間に電圧が印加されると、電極間に放電が生じ、その放電によるプラズマが発生する。プラズマの酸化作用により、エンジンの排ガスに含まれるPMが酸化されて除去される。
プラズマリアクタの電極に流れる電流は、電極間における放電の状態によって変化する。本願発明者らによる鋭意研究の結果、プラズマリアクタ(電極を内蔵した誘電体の表面)にPMが堆積すると、PMが堆積していない初期状態と比較して、電極間での放電が弱くなり、電源装置から電極間に印加される電圧により電極を流れる電流の向きと逆向きに電極を流れるマイナス電流の積算値が小さくなることが判った。
そこで、放電時に電極を流れるマイナス電流の積算値に基づいて、プラズマリアクタでのPMの堆積を判定する。たとえば、放電時に電極を流れるマイナス電流の積算値が所定の閾値未満である場合に、プラズマリアクタにPMが堆積していると判定される。これにより、プラズマリアクタにおけるPMの堆積による圧力損失の変化が現れる前に、そのPMの堆積を検出することができる。しかも、プラズマリアクタの放電を制御するための構成には、電極を流れる電流を検出する電流センサが備えられているので、マイナス電流の積算値を取得する構成(回路)を追加すれば、プラズマリアクタの前後の差圧を検出するための圧力計を追加することなく、プラズマリアクタにおけるPMの堆積を検出できる。
よって、本発明の一の局面および他の局面に係るPM堆積検出装置では、プラズマリアクタにおけるPMの堆積の検出に圧力損失を用いる構成と比較して、コスト面およびサイズ面で優れながら、そのPMの堆積を精度よく検出することができる。
そして、プラズマリアクタにおけるPMの堆積が検出された場合に、電極間での放電の弱化を抑制する対策を講じることにより、放電弱化によるPM除去性能の低下を抑制でき、放電弱化とプラズマリアクタへのPMの堆積の増大とが繰り返される悪循環に陥ることを抑制できる。
本発明によれば、プラズマリアクタにおけるPMの堆積の検出に圧力損失を用いる構成と比較して、コスト面およびサイズ面で優れながら、そのPMの堆積を精度よく検出することができる。
プラズマリアクタの構成を図解的に示す断面図である。 プラズマリアクタ用電源装置の構成を示す回路図である。 本発明の一実施形態に係る制御装置の機能的な構成を示すブロック図である。 制御装置のピーク値検出部の構成を示す回路図である。 制御装置のPM堆積判定部に含まれる最小値検出回路の構成を示す回路図である。 電流センサの検出信号(電流センサ信号)の波形の一例を示す図である。 最小値検出回路のハイパス回路の出力信号の波形の一例を示す図である。 電流センサの検出信号(電流センサ信号)の波形の一例を示す図であり、プラズマリアクタの電極パネルにPMが付着していない状態(初期状態)での波形を実線で示し、PMが堆積(付着)している状態での波形を二点鎖線で示す。 第1の実施形態におけるPM堆積判定処理の流れを示すフローチャートである。 本発明の第2の実施形態に係るPM堆積判定部に含まれるマイナス電流積算値検出回路の構成を示す回路図である。 電流センサの検出信号(電流センサ信号)の波形の一例を示す図である。 マイナス電流積算値検出回路のダイオード回路の出力信号の波形の一例を示す図である。 マイナス電流積算値検出回路の積算回路の出力信号の波形の一例を示す図である。 マイナス電流積算値検出回路の反転増幅器の出力信号の波形の一例を示す図である。 マイナス電流の積算値(マイナス電流積算値)の時間変化の一例を示す図であり、プラズマリアクタの電極パネルにPMが付着していない状態(初期状態)での変化を実線で示し、PMが堆積(付着)している状態での変化を二点鎖線で示す。 第2の実施形態におけるPM堆積判定処理の流れを示すフローチャートである。
以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
<プラズマリアクタ>
図1は、プラズマリアクタ1の構成を図解的に示す断面図である。
プラズマリアクタ1は、車両のエンジン(図示せず)から排出される排ガスからPMを除去するために、たとえば、エキゾーストパイプなどの排気管2の途中部に介装される。プラズマリアクタ1は、リアクタボディ(ケース)3と、リアクタボディ3内に収容された複数の電極パネル4とを備えている。
リアクタボディ3は、ステンレス鋼(SUS)などの金属からなり、四角筒状を有している。リアクタボディ3の一端の開口は、排気管2から排ガスを流入させる流入口であり、他端の開口は、排気管2に排ガスを流出させる流出口である。エンジンから排気管2に排出される排ガスは、排気管2を流通する途中で、流入口からリアクタボディ3内に流入して、リアクタボディ3内を流通し、流出口から流出する。
電極パネル4は、誘電体からなる平板状の誘電体平板5に電極6が厚さ方向に挟み込まれた構成を有している。誘電体平板5の材料である誘電体としては、Al(アルミナ)を例示することができる。電極6の材料としては、タングステンを例示することができる。複数の電極パネル4は、たとえば、排ガスの流通方向(リアクタボディ3の流入口と流出口との対向方向)と直交する積層方向に間隔を空けて、互いに平行をなして、それぞれ排ガスの流通方向に延びるように配置されている。
電極パネル4の電極6には、電極パネル4の積層方向の一方側から順に、プラス配線7およびマイナス配線8が交互に接続されている。プラス配線7およびマイナス配線8には、プラズマリアクタ用電源装置9からパルス波状の高電圧が印加される。この高電圧の印加により、その高電圧が積層方向に互いに隣り合う電極パネル4の電極6間に印加される。この高電圧が電極6間に印加されることにより、電極パネル4間に誘電体バリア放電が生じ、その誘電体バリア放電によるプラズマが発生する。一方、電極パネル4間には、リアクタボディ3の流入口側から排ガスが流入し、その排ガスがリアクタボディ3の流出口側に向けて流通する。電極パネル4間に発生するプラズマの酸化作用により、電極パネル4間を流通する排ガスに含まれるPMが酸化(燃焼)されて除去される。
<プラズマリアクタ用電源装置>
図2は、プラズマリアクタ用電源装置9の構成を示す回路図である。
プラズマリアクタ用電源装置9は、フライバック型昇圧トランス11、通電制御用MOSFET12、ゲートドライブ回路13および制御装置14を備えている。
フライバック型昇圧トランス11は、一次コイル21および二次コイル22を有している。一次コイル21の一端は、配線23に接続されている。一次コイル21の他端は、通電制御用MOSFET12を介して、グランドに接続(接地)されている。二次コイル22の一端および他端は、それぞれプラス端子およびマイナス端子を介して、プラズマリアクタ1において積層方向に互いに隣り合う電極パネル4の電極6に接続されている。
通電制御用MOSFET12は、たとえば、エンハンスメント型のnMOSFETであり、そのドレインがフライバック型昇圧トランス11の一次コイル21の他端に接続され、ソースがグランドに接続されている。
配線23には、ヒューズ24を介して、直流電源であるバッテリ25のプラス端子が接続されている。バッテリ25は、たとえば、公称電圧が12Vの鉛電池である。
ゲートドライブ回路13は、通電制御用MOSFET12のゲートにパルス電圧(ゲート電圧)を印加する回路である。
制御装置14は、マイコン(マイクロコントローラユニット)を含む構成であり、車両に搭載された複数のECU(Electronic Control Unit:電子制御ユニット)のうちの1つであってもよいし、ECUの1つに組み込まれていてもよい。マイコンには、たとえば、CPU、ROMおよびRAM、データフラッシュ(フラッシュメモリ)などが内蔵されている。
制御装置14は、ゲートドライブ回路13を制御し、ゲートドライブ回路13からのパルス電圧(ゲート電圧)の出力/停止を切り替える。制御装置14からゲートドライブ回路13にオン指示信号が入力されると、ゲートドライブ回路13から出力されるパルス電圧が立ち上がり、そのパルス電圧が通電制御用MOSFET12のゲートに印加されることにより、通電制御用MOSFET12がオンになる。制御装置14からゲートドライブ回路13にオフ指示信号が入力されると、ゲートドライブ回路13から出力されるパルス電圧が立ち下がり、通電制御用MOSFET12のゲートへのパルス電圧の印加がなくなることにより、通電制御用MOSFET12がオフになる。
通電制御用MOSFET12がオンになると、フライバック型昇圧トランス11の一次コイル21にバッテリ25の電圧が一次電圧として印加され、一次コイル21にエネルギが蓄積される。その後、通電制御用MOSFET12がオフになると、一次コイル21に蓄積されたエネルギが開放されて、一次コイル21に起電力が生じ、フライバック型昇圧トランス11の二次コイル22に巻数比に応じた二次電圧が発生する。通電制御用MOSFET12のオン/オフが繰り返されることにより、二次電圧がパルス的に発生し、パルス波状に変化する二次電圧がプラズマリアクタ1の電極6間に印加される。
制御装置14には、電流センサ31が接続されている。電流センサ31は、プラズマリアクタ1の電極パネル4の電極6に流れる電流を検出し、その電流値に応じた検出信号を出力する。
<制御装置の構成>
図3は、本発明の一実施形態に係る制御装置14の機能的な構成を示すブロック図である。
制御装置14は、ピーク値検出部41、目標ピーク値設定部42、減算部43、信号出力部44およびPM堆積判定部45を備えている。
ピーク値検出部41は、電流センサ31によって検出される電流のピーク値(最大値)である電流ピーク値を検出する回路であり、たとえば、図4に示されるように、ハイパス回路(Hi−Pass回路)51、反転増幅器52およびピークホールド・リセット回路53を含むアナログ回路からなる。
ハイパス回路51には、電流センサ31の検出信号が入力され、ハイパス回路51からは、その検出信号の時間微分(傾き)に比例した信号が出力される。
反転増幅器52には、ハイパス回路51の出力信号が入力され、反転増幅器52からは、その入力信号の波形を正負反転させて増幅した波形の信号が出力される。
ピークホールド・リセット回路53には、反転増幅器52の出力信号が入力される。ピークホールド・リセット回路53は、一般的なピークホールド回路とリセット回路とを組み合わせたものである。反転増幅器52からの入力信号(信号電圧)がピークホールド回路のホールドコンデンサの電圧よりも大きいときには、ホールドコンデンサが充電される。一方、反転増幅器52からの入力信号がホールドコンデンサの電圧以下であるときには、ホールドコンデンサの電圧が保持(ホールド)される。ピークホールド回路からは、ホールドコンデンサの電圧がインピーダンス変換されて出力される。リセット回路は、ホールドコンデンサと並列に設けられるリセットスイッチをオン/オフする回路である。リセット回路にリセット信号が入力されると、リセット回路からリセットスイッチに信号が入力されて、リセットスイッチがオンになる。リセットスイッチのオンにより、ホールドコンデンサに蓄積された電荷が開放(放電)される。
制御装置14からゲートドライブ回路13(図2参照)へのオン指示信号が出力される度に、そのオン指示信号の出力からオフ指示信号の出力までの期間内に、リセット回路にリセット信号が入力される。これにより、ピーク値検出部41からは、プラズマリアクタ用電源装置9からパルス波状の電圧が1パルス出力される度に、プラズマリアクタ1の電極6に流れる電流が正の値をとる期間におけるピーク値(最大値)に応じた信号が出力される。
図3を再び参照して、目標ピーク値設定部42は、プラズマリアクタ1の電極6間に印加される印加電流の目標ピーク値を設定する。具体的には、目標ピーク値設定部42は、エンジン(図示せず)から排出される排ガスの空燃比を取得し、空燃比から排ガスの単位体積に含まれるPM量を求める。制御装置14の不揮発性メモリ(ROM、フラッシュメモリまたはEEPROMなど)には、PM量と目標ピーク値との関係が2次元マップの形態で記憶されている。目標ピーク値設定部42は、その関係に基づいて、その求めたPM量に応じた目標ピーク値を設定する。
減算部43は、目標ピーク値設定部42により設定される目標ピーク値からピーク値検出部41によって検出される電流ピーク値を減算する。
信号出力部44は、減算部43により演算された減算値が0に近づくように、ゲートドライブ回路13へのオン指示信号およびオフ指示信号の入力を制御し、通電制御用MOSFET12のオン/オフを制御する。
PM堆積判定部45には、たとえば、図5に示される最小値検出回路61が含まれる。最小値検出回路61は、プラズマリアクタ1の電極6に流れる電流の最小値を検出(取得)する回路であり、ハイパス回路(Hi−Pass回路)62およびピークホールド・リセット回路63を含むアナログ回路からなる。
図6Aは、電流センサ31の検出信号(電流センサ信号)の波形の一例を示す図である。図6Bは、ハイパス回路62の出力信号の波形の一例を示す図である。
ハイパス回路62には、電流センサ信号が入力される。ハイパス回路62からは、図6Bに示されるように、図6Aに示される電流センサ信号を正負反転させて増幅した信号が出力される。
ピークホールド・リセット回路63は、図4に示されるピークホールド・リセット回路53と同一の構成である。ピークホールド・リセット回路63には、ハイパス回路62の出力信号が入力される。ピークホールド・リセット回路63は、一般的なピークホールド回路とリセット回路とを組み合わせたものである。ハイパス回路62からの入力信号(信号電圧)がピークホールド回路のホールドコンデンサの電圧よりも大きいときには、ホールドコンデンサが充電される。一方、ハイパス回路62からの入力信号がホールドコンデンサの電圧以下であるときには、ホールドコンデンサの電圧が保持(ホールド)される。ピークホールド回路からは、ホールドコンデンサの電圧がインピーダンス変換されて出力される。リセット回路は、ホールドコンデンサと並列に設けられるリセットスイッチをオン/オフする回路である。リセット回路にリセット信号が入力されると、リセット回路からリセットスイッチに信号が入力されて、リセットスイッチがオンになる。リセットスイッチのオンにより、ホールドコンデンサに蓄積された電荷が開放(放電)される。
制御装置14からゲートドライブ回路13(図2参照)へのオン指示信号が出力される度に、そのオン指示信号の出力からオフ指示信号の出力までの期間内に、リセット回路にリセット信号が入力される。これにより、最小値検出回路61からは、プラズマリアクタ用電源装置9からパルス波状の電圧が1パルス出力される度に、プラズマリアクタ1の放電時に電極6に流れる電流の最小値に応じた信号が出力される。
<PM堆積判定>
図7は、電流センサ31の検出信号(電流センサ信号)の波形の一例を示す図であり、プラズマリアクタ1の電極パネル4にPMが付着していない状態(初期状態)での波形を実線で示し、PMが堆積(付着)している状態での波形を二点鎖線で示す。
プラズマリアクタ1の電極6に流れる電流は、電極6間における放電の状態によって変化する。本願発明者らによる鋭意研究の結果、プラズマリアクタ1の電極パネル4の表面にPMが堆積すると、PMが堆積していない初期状態と比較して、電極6間での放電が弱くなり、図7に実線で示される波形と二点鎖線で示される波形とを比較して理解されるように、放電時に電極6を流れる電流(放電電流)の最小値が大きくなることが判った。
図8は、PM堆積判定処理の流れを示すフローチャートである。
PM堆積判定部45は、プラズマリアクタ用電源装置9からパルス波状の電圧が1パルス出力される度に、図8に示されるPM堆積判定処理を実行する。
PM堆積判定処理では、最小値検出回路61により検出される最小値(電流最小値)が所定の閾値以上であるか否かが判定される(ステップS1)。
電流最小値が閾値以上である場合(ステップS1のYES)、電極パネル4の表面にPMが堆積していると判定される(ステップS2)。
一方、電流最小値が閾値未満である場合(ステップS1のNO)、電極パネル4の表面にPMが付着していない(非付着)と判定される(ステップS3)。
<作用効果>
以上のように、プラズマリアクタ1の放電時に電極6を流れる電流の最小値が所定の閾値以上である場合に、プラズマリアクタ1の電極パネル4の表面にPMが堆積していると判定される。これにより、プラズマリアクタ1におけるPMの堆積による圧力損失の変化が現れる前に、そのPMの堆積を検出することができる。しかも、プラズマリアクタ1の放電を制御するための構成には、電極6を流れる電流を検出する電流センサ31が備えられているので、その電流の最小値を取得する最小値検出回路61を追加すれば、プラズマリアクタ1の前後の差圧を検出するための圧力計を追加することなく、プラズマリアクタ1におけるPMの堆積を検出できる。
よって、プラズマリアクタ1におけるPMの堆積の検出に圧力損失を用いる構成と比較して、コスト面およびサイズ面で優れながら、そのPMの堆積を精度よく検出することができる。
そして、プラズマリアクタ1におけるPMの堆積が検出された場合に、たとえば、PM堆積判定部45から信号出力部44に、電極6間に印加される電圧を増大させる指令を入力するなど、電極6間での放電の弱化を抑制する対策を講じることにより、放電弱化によるPM除去性能の低下を抑制でき、放電弱化とプラズマリアクタ1へのPMの堆積の増大とが繰り返される悪循環に陥ることを抑制できる。
<他の実施形態>
図9は、本発明の他の実施形態(第2の実施形態)に係るPM堆積判定部45に含まれるマイナス電流積算値検出回路71の構成を示す回路図である。
PM堆積判定部45は、図5に示される最小値検出回路61に代えて、図9に示されるマイナス電流積算値検出回路71を含む構成であってもよい。マイナス電流積算値検出回路71は、プラズマリアクタ1の電極6を流れるマイナス電流の積算値を検出(取得)する回路であり、ダイオード回路72、積算回路73、反転増幅器74およびピークホールド・リセット回路75を含むアナログ回路からなる。
図10Aは、電流センサ31の検出信号(電流センサ信号)の波形の一例を示す図である。図10Bは、ダイオード回路72の出力信号の波形の一例を示す図である。図10Cは、積算回路73の出力信号の波形の一例を示す図である。図10Dは、反転増幅器74の出力信号の波形の一例を示す図である。
ダイオード回路72には、電流センサ信号が入力される。プラズマリアクタ用電源装置9から電極6間にパルス波状の電圧が印加される度に、プラズマリアクタ1の電極6には、正の値のプラス電流が流れた後、その電流の向きと逆向きのマイナス電流が流れる。ダイオード回路72からは、図10Bに示されるように、図10Aに示される電流センサ信号のうちのマイナス信号の波形を正負反転させた波形の信号が出力される。
積算回路73は、ダイオード回路72の出力信号(信号電圧)が入力される。積算回路73からは、図10Cに示されるように、ダイオード回路72から入力される信号電圧の時間積分に比例した電圧が出力される。
反転増幅器74には、積算回路73の出力信号(信号電圧)が入力される。反転増幅器74からは、図10Dに示されるように、積算回路73から入力される信号の波形を正負反転させて増幅した波形の信号が出力される。
ピークホールド・リセット回路75は、図4に示されるピークホールド・リセット回路53と同一の構成である。ピークホールド・リセット回路75には、反転増幅器74の出力信号が入力される。ピークホールド・リセット回路75は、一般的なピークホールド回路とリセット回路とを組み合わせたものである。反転増幅器74からの入力信号(信号電圧)がピークホールド回路のホールドコンデンサの電圧よりも大きいときには、ホールドコンデンサが充電される。一方、反転増幅器74からの入力信号がホールドコンデンサの電圧以下であるときには、ホールドコンデンサの電圧が保持(ホールド)される。ピークホールド回路からは、ホールドコンデンサの電圧がインピーダンス変換されて出力される。リセット回路は、ホールドコンデンサと並列に設けられるリセットスイッチをオン/オフする回路である。リセット回路にリセット信号が入力されると、リセット回路からリセットスイッチに信号が入力されて、リセットスイッチがオンになる。リセットスイッチのオンにより、ホールドコンデンサに蓄積された電荷が開放(放電)される。
制御装置14からゲートドライブ回路13(図2参照)へのオン指示信号が出力される度に、そのオン指示信号の出力からオフ指示信号の出力までの期間内に、リセット回路にリセット信号が入力される。これにより、マイナス電流積算値検出回路71からは、プラズマリアクタ用電源装置9からパルス波状の電圧が1パルス出力される度に、プラズマリアクタ1の放電時に電極6に流れるマイナス電流の積算値に応じた信号が出力される。
<PM堆積判定>
図11は、プラズマリアクタ1の放電時に電極6に流れるマイナス電流の積算値(マイナス電流積算値)の時間変化の一例を示す図であり、プラズマリアクタ1の電極パネル4にPMが付着していない状態(初期状態)での変化を実線で示し、PMが堆積(付着)している状態での変化を二点鎖線で示す。
プラズマリアクタ1の電極6に流れる電流は、電極6間における放電の状態によって変化する。本願発明者らによる鋭意研究の結果、プラズマリアクタ1の電極パネル4の表面にPMが堆積すると、PMが堆積していない初期状態と比較して、電極6間での放電が弱くなり、図11に実線で示される変化と二点鎖線で示される変化とを比較して理解されるように、マイナス電流積算値が小さくなることが判った。
図12は、PM堆積判定処理の流れを示すフローチャートである。
PM堆積判定部45は、プラズマリアクタ用電源装置9からパルス波状の電圧が1パルス出力される度に、図12に示されるPM堆積判定処理を実行する。
PM堆積判定処理では、マイナス電流積算値検出回路71により検出されるマイナス電流積算値が所定の閾値未満以上であるか否かが判定される(ステップS11)。
電流最小値が閾値未満である場合(ステップS11のYES)、電極パネル4の表面にPMが堆積していると判定される(ステップS12)。
一方、電流最小値が閾値以上である場合(ステップS11のNO)、電極パネル4の表面にPMが付着していない(非付着)と判定される(ステップS13)。
<作用効果>
以上のように、プラズマリアクタ1の放電時に電極6を流れるマイナス電流の積算値が所定の閾値未満である場合に、プラズマリアクタ1の電極パネル4の表面にPMが堆積していると判定される。これにより、プラズマリアクタ1におけるPMの堆積による圧力損失の変化が現れる前に、そのPMの堆積を検出することができる。しかも、プラズマリアクタ1の放電を制御するための構成には、電極6を流れる電流を検出する電流センサ31が備えられているので、マイナス電流の積算値を取得するマイナス電流積算値検出回路71を追加すれば、プラズマリアクタ1の前後の差圧を検出するための圧力計を追加することなく、プラズマリアクタ1におけるPMの堆積を検出できる。
よって、プラズマリアクタ1におけるPMの堆積の検出に圧力損失を用いる構成と比較して、コスト面およびサイズ面で優れながら、そのPMの堆積を精度よく検出することができる。また、プラズマリアクタ1の放電時に電極6を流れるマイナス電流の積算値を用いてPMの堆積が判定されるので、プラズマリアクタ1の放電時に電極6を流れる電流の最小値を用いてPMの堆積を判定する構成、つまり前述の第1の実施形態に係る構成よりも高精度にPMの堆積を判定(検出)することができる。
そして、プラズマリアクタ1におけるPMの堆積が検出された場合に、たとえば、PM堆積判定部45から信号出力部44に、電極6間に印加される電圧を増大させる指令を入力するなど、電極6間での放電の弱化を抑制する対策を講じることにより、放電弱化によるPM除去性能の低下を抑制でき、放電弱化とプラズマリアクタ1へのPMの堆積の増大とが繰り返される悪循環に陥ることを抑制できる。
<変形例>
以上、本発明の2つの実施形態について説明したが、本発明は、さらに他の形態で実施することもできる。
たとえば、PM堆積判定部45に、図5に示される最小値検出回路61と図9に示されるマイナス電流積算値検出回路71との両方が備えられて、プラズマリアクタ1の放電時に電極6を流れる電流の最小値が所定の閾値以上であるか、または、プラズマリアクタ1の放電時に電極6を流れるマイナス電流の積算値が所定の閾値未満である場合に、プラズマリアクタ1の電極パネル4の表面にPMが堆積していると判定されてもよい。また、プラズマリアクタ1の放電時に電極6を流れる電流の最小値が所定の閾値以上であり、かつ、プラズマリアクタ1の放電時に電極6を流れるマイナス電流の積算値が所定の閾値未満である場合に、プラズマリアクタ1の電極パネル4の表面にPMが堆積していると判定されてもよい。
その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1:プラズマリアクタ
6:電極
9:プラズマリアクタ用電源装置
14:制御装置(PM堆積検出装置)
45:PM堆積判定部(堆積判定手段)
61:最小値検出回路(最小値取得手段)
71:マイナス電流積算値検出回路(積算値取得手段)

Claims (2)

  1. 互いに間隔を空けて対向配置される複数の電極の間に電源装置から電圧を印加して、前記電極間に放電を生じさせ、その放電で発生するプラズマにより、エンジンの排ガスに含まれるPM(Particulate Matter:粒子状物質)を除去するプラズマリアクタに用いられて、前記プラズマリアクタでのPMの堆積を検出する装置であって、
    前記電極を流れる電流の最小値を取得する最小値取得手段と、
    前記最小値取得手段により取得される最小値に基づいて、前記プラズマリアクタでのPMの堆積を判定する堆積判定手段とを含む、PM堆積検出装置。
  2. 互いに間隔を空けて対向配置される複数の電極の間に電源装置から電圧を印加して、前記電極間に放電を生じさせ、その放電で発生するプラズマにより、エンジンの排ガスに含まれるPM(Particulate Matter:粒子状物質)を除去するプラズマリアクタに用いられて、前記プラズマリアクタでのPMの堆積を検出する装置であって、
    前記電源装置から前記電極間に印加される電圧により前記電極を流れる電流の向きと逆向きに前記電極を流れるマイナス電流の値を所定期間にわたって積算し、そのマイナス電流の積算値を取得する積算値取得手段と、
    前記積算値取得手段により取得される積算値に基づいて、前記プラズマリアクタでのPMの堆積を判定する堆積判定手段とを含む、PM堆積検出装置。
JP2017014719A 2017-01-30 2017-01-30 Pm堆積検出装置 Active JP6794050B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014719A JP6794050B2 (ja) 2017-01-30 2017-01-30 Pm堆積検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014719A JP6794050B2 (ja) 2017-01-30 2017-01-30 Pm堆積検出装置

Publications (2)

Publication Number Publication Date
JP2018123711A JP2018123711A (ja) 2018-08-09
JP6794050B2 true JP6794050B2 (ja) 2020-12-02

Family

ID=63111178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014719A Active JP6794050B2 (ja) 2017-01-30 2017-01-30 Pm堆積検出装置

Country Status (1)

Country Link
JP (1) JP6794050B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059969B2 (ja) * 2019-03-05 2022-04-26 日本電産株式会社 プラズマ処理装置
JP7067516B2 (ja) * 2019-03-26 2022-05-16 日本電産株式会社 プラズマ処理装置
JP7168511B2 (ja) * 2019-03-29 2022-11-09 日本特殊陶業株式会社 放電制御装置および方法
JP2021026810A (ja) * 2019-07-31 2021-02-22 日本電産株式会社 プラズマ処理装置
JP7393999B2 (ja) 2020-03-30 2023-12-07 ダイハツ工業株式会社 排気ガス浄化用プラズマリアクタ装置
JP7393998B2 (ja) 2020-03-30 2023-12-07 ダイハツ工業株式会社 排気ガス浄化用プラズマリアクタ装置

Also Published As

Publication number Publication date
JP2018123711A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6794050B2 (ja) Pm堆積検出装置
US20230221234A1 (en) Soot sensor system
JP6704641B2 (ja) プラズマリアクタ用制御装置
US10677123B2 (en) Exhaust purification device
JP2020105990A (ja) 排気システム
JP6379838B2 (ja) センサ
JP6713200B2 (ja) プラズマリアクタ用制御装置
JP6858441B2 (ja) プラズマリアクタの異常検出装置
JP6713199B2 (ja) プラズマリアクタ用制御装置
WO2017002828A1 (ja) プラズマリアクタの印加電圧制御装置及びプラズマリアクタ用制御装置
JP6752519B2 (ja) リアクタ印加電圧推定装置
JP6461731B2 (ja) プラズマリアクタの印加電圧制御装置
JP6957125B2 (ja) プラズマリアクタの制御装置
JP2000292411A (ja) ガス濃度検出装置
JP6713216B2 (ja) リアクタ印加電圧推定装置
JP6707287B2 (ja) リアクタ温度推定装置
JP6927818B2 (ja) プラズマリアクター用電源システム
JP2018018778A (ja) プラズマリアクタの放電異常検出装置
JP2018017218A (ja) プラズマリアクタの放電異常検出装置
JP6675786B2 (ja) プラズマリアクタの電源装置
JP7168511B2 (ja) 放電制御装置および方法
JP7393998B2 (ja) 排気ガス浄化用プラズマリアクタ装置
WO2017002845A1 (ja) プラズマリアクタ用電源装置
JP2006170021A (ja) 排ガス浄化装置
JP7168510B2 (ja) 放電制御装置および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201110

R150 Certificate of patent or registration of utility model

Ref document number: 6794050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250