JP2018017218A - プラズマリアクタの放電異常検出装置 - Google Patents
プラズマリアクタの放電異常検出装置 Download PDFInfo
- Publication number
- JP2018017218A JP2018017218A JP2016150286A JP2016150286A JP2018017218A JP 2018017218 A JP2018017218 A JP 2018017218A JP 2016150286 A JP2016150286 A JP 2016150286A JP 2016150286 A JP2016150286 A JP 2016150286A JP 2018017218 A JP2018017218 A JP 2018017218A
- Authority
- JP
- Japan
- Prior art keywords
- current
- reactor
- voltage
- plasma reactor
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Plasma Technology (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
【課題】プラズマリアクタにおける放電の異常を検出できる、放電異常検出装置を提供する。
【解決手段】制御装置14は、第1ピーク検出部41、電流積算部42および異常判定部43を備えている。第1ピーク検出部41からは、リアクタ印加電流が正の値をとる期間におけるピーク値(最大値)に応じた電圧が出力される。電流積算部42からは、リアクタ印加電流が正の値をとる期間における電流積算値に応じた電圧が出力される。異常判定部43には、電圧センサ32の出力信号、第1ピーク検出部41の出力信号および電流積算部42の出力信号が入力される。異常判定部43は、電圧センサ32、第1ピーク検出部41および電流積算部42の出力信号から、それぞれ最大電圧値、リアクタ印加電流の最初のピーク値およびリアクタ印加電流の電流積算値を取得し、プラズマリアクタ1の放電の正常/異常を判定する。
【選択図】図3
【解決手段】制御装置14は、第1ピーク検出部41、電流積算部42および異常判定部43を備えている。第1ピーク検出部41からは、リアクタ印加電流が正の値をとる期間におけるピーク値(最大値)に応じた電圧が出力される。電流積算部42からは、リアクタ印加電流が正の値をとる期間における電流積算値に応じた電圧が出力される。異常判定部43には、電圧センサ32の出力信号、第1ピーク検出部41の出力信号および電流積算部42の出力信号が入力される。異常判定部43は、電圧センサ32、第1ピーク検出部41および電流積算部42の出力信号から、それぞれ最大電圧値、リアクタ印加電流の最初のピーク値およびリアクタ印加電流の電流積算値を取得し、プラズマリアクタ1の放電の正常/異常を判定する。
【選択図】図3
Description
本発明は、プラズマリアクタの放電異常検出装置に関する。
エンジン、とくにディーゼルエンジンから排出される排ガスには、CO(一酸化炭素)、HC(炭化水素)、NOx(窒素酸化物)およびPMなどが含まれる。
排ガスに含まれるPMを除去する手法として、プラズマリアクタを用いて、排ガスに含まれるPMを除去する手法が提案されている。プラズマリアクタは、複数の電極パネルを備えている。電極パネルは、たとえば、誘電体に電極を内蔵した構成であり、複数の電極パネルは、排ガスの流れ方向と直交する方向に間隔を空けて対向配置される。プラズマリアクタ用電源装置から電極間に電圧が印加されると、誘電体バリア放電が生じて、電極パネル間に低温プラズマ(非平衡プラズマ)が発生し、電極パネル間を流れる排ガス中のPMが酸化により除去される。
プラズマリアクタの電源装置には、フライバック型昇圧トランスが備えられている。フライバック型昇圧トランスの一次コイルには、スイッチング素子が直列に接続され、その一次コイルとスイッチング素子との直列回路には、直流電源が接続されている。フライバック型昇圧トランスの二次コイルは、プラズマリアクタの電極に接続されている。
スイッチング素子がオンされると、フライバック型昇圧トランスの一次コイルに電流が流れ、一次コイルにエネルギが蓄積される。その後、スイッチング素子がオフされると、一次コイルに蓄積されたエネルギが開放されて、一次コイルに起電力が生じ、フライバック型昇圧トランスの二次コイルに巻数比に応じた二次電圧が発生する。スイッチング素子のオン/オフが繰り返されることにより、二次電圧がパルス的に発生し、パルス波状に変化する二次電圧がプラズマリアクタの電極間に印加される。
プラズマリアクタでは、電極パネル間での放電に異常が発生すると、プラズマが良好に発生しない。そのため、排ガスからのPMの除去にプラズマリアクタが用いられる場合、電極パネル間での放電に異常が発生すると、PM除去性能(PM除去率)にばらつきが生じ、PMがプラズマリアクタ(電極パネル間)の下流側に排出される、いわゆるPMスリップを生じるおそれがある。
本発明の目的は、プラズマリアクタにおける放電の異常を検出できる、放電異常検出装置を提供することである。
前記の目的を達成するため、本発明の一の局面に係るプラズマリアクタの放電異常検出装置は、互いに平行をなして間隔を空けて配置される複数の電極パネルの各間に誘電体バリア放電が発生するプラズマリアクタに適用され、放電の異常を検出する放電異常検出装置であって、プラズマリアクタに印加される電圧値を取得する電圧値取得手段と、プラズマリアクタに印加される電流の電流積算値を取得する電流積算値取得手段と、電圧値取得手段によって取得される電圧値と電流積算値取得手段によって取得される電流積算値と関係から、放電の正常/異常を判定する判定手段とを含む。
この構成に想到する過程において、本願発明者らは、プラズマリアクタに印加される電圧値を横軸にとり、プラズマリアクタに蓄積される電荷を縦軸にとって、リサジュー図形を描いた。そのリサジュー図形の概形を図8および図9に示す。
図8に示されるリサジュー図形では、プラズマリアクタに印加される電圧が相対的に低い範囲において、プラズマリアクタが相対的に高温の場合(リアクタ高温時)と相対的に低温の場合(リアクタ低温時)とで、電圧値の上昇に対する電荷の上昇の傾き(以下、単に「傾き」という。)がほぼ同じ第1の傾きになっている。また、プラズマリアクタに印加される電圧が相対的に高い範囲では、リアクタ高温時とリアクタ低温時とで、ほぼ同じ第2の傾きになっている。第2の傾きは、第1の傾きよりも大きい。一方、図9に示されるリサジュー図形では、プラズマリアクタに印加される電圧が相対的に高い範囲において、リアクタ高温時の傾きがリアクタ低温時の傾きよりも小さい。
このような傾きの相違は、プラズマリアクタが有する静電容量の相違に起因すると考えられる。
すなわち、電極パネル間での放電開始前にプラズマリアクタが有する静電容量は、電極パネルを構成する誘電体の静電容量(Cd)と電極パネル間のギャップの静電容量(Cg)との合成容量(Cd×Cg/(Cd+Cg))となる。電極パネル間での放電開始後にプラズマリアクタが有する静電容量は、電極パネルを構成する誘電体の静電容量(Cd)のみとなる。図8に示されるリサジュー図形における第1の傾きと第2の傾きとの相違は、電極パネル間での放電開始前後の静電容量の相違によるものと考えられる。
また、リアクタ高温時に、たとえば、電極パネルの熱膨張などが原因で保持体による電極パネルの保持力が低下し、これにより電極パネル間のギャップに大小が生じると、放電が発生している電極パネル間と放電が発生していない電極パネル間が生じる。放電が発生している電極パネル間の静電容量は0になるので、各電極パネル間で放電が発生していないリアクタ低温時と比較して、リアクタ高温時には、電極パネルを構成する誘電体の静電容量と電極パネル間のギャップの静電容量との合成容量が小さくなる。この合成容量の相違が原因で、図9に示されるリサジュー図形では、プラズマリアクタに印加される電圧が相対的に高い範囲において、リアクタ高温時の傾きがリアクタ低温時の傾きよりも小さくなっていると考えられる。
よって、電圧値取得手段によって取得される電圧値と電流積算値取得手段によって取得される電流積算値と関係、つまりプラズマリアクタに印加される電圧値とプラズマリアクタに印加される電流の電流積算値との関係から、放電の正常/異常を判定することができる。
放電異常検出手段は、プラズマリアクタに印加される電流の電流ピーク値を取得するピーク値取得手段をさらに含み、判定手段は、電圧値取得手段によって取得される電圧値、電流積算値取得手段によって取得される電流積算値およびピーク値取得手段によって取得される電流ピーク値の関係から放電の正常/異常を判定してもよい。
本発明の他の局面に係るプラズマリアクタの放電異常検出装置は、互いに平行をなして間隔を空けて配置される複数の電極パネルを備え、電源装置から電極パネル間にパルス状に変化する電圧が印加されることにより放電が発生するプラズマリアクタに適用され、放電の異常を検出する放電異常検出装置であって、プラズマリアクタに印加される電流の立ち上がり後の2回目の電流ピーク値を取得するピーク値取得手段と、プラズマリアクタに印加される電流の立ち上がり後の最初の電流ピーク値が目標ピーク値に一致するように電源装置が制御されている状態において、ピーク値取得手段によって取得される電流ピーク値の傾向から、放電の正常/異常を判定する判定手段とを含む。
本願発明者らによる実験の結果、プラズマリアクタに印加される電流の立ち上がり後の最初の電流ピーク値が目標ピーク値に一致するように電源装置が制御されている場合、プラズマリアクタにおける放電が正常であるときには、図10に示されるように、リアクタ高温時とリアクタ低温時とで、プラズマリアクタに印加される電流の立ち上がり後の2回目の電流ピーク値がほぼ一致する。一方、プラズマリアクタにおける放電が正常であるときには、図11に示されるように、プラズマリアクタに印加される電流の立ち上がり後の2回目の電流ピーク値がリアクタ低温時にリアクタ高温時よりも大きくなる。また、放電の正常/異常にかかわらず、プラズマリアクタに印加される電流の電流積算値は、リアクタ高温時にリアクタ低温時よりも大きくなる。
よって、プラズマリアクタに印加される電流の立ち上がり後の2回目の電流ピーク値の傾向から、放電の正常/異常を判定することができる。
放電異常検出装置は、プラズマリアクタに印加される電流の電流積算値を取得する電流積算値取得手段をさらに含み、判定手段は、プラズマリアクタの温度が相対的に高いリアクタ高温時にピーク値取得手段によって取得される電流ピーク値が相対的に低いリアクタ低温時にピーク値取得手段によって取得される電流ピーク値以上であり、かつ、リアクタ高温時に電流積算値取得手段によって取得される電流積算値がリアクタ低温時に電流積算値取得手段によって取得される電流積算値以上である場合に、放電が異常であると判定してもよい。
本発明によれば、プラズマリアクタにおける放電の異常を検出することができる。
以下では、本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
<プラズマリアクタ>
図1は、プラズマリアクタ1の構成を図解的に示す断面図である。
図1は、プラズマリアクタ1の構成を図解的に示す断面図である。
プラズマリアクタ1は、車両のエンジン(図示せず)から排出される排ガスからPMを除去するために、たとえば、エキゾーストパイプなどの排気管2の途中部に介装される。プラズマリアクタ1は、ケース(ボディ)3と、ケース3内に収容された複数の電極パネル4とを備えている。
ケース3は、金属製であり、管状(筒状)に形成されている。ケース3の一方の開口は、排ガスを流入させる流入口であり、他方の開口は、排ガスを流出させる流出口である。エンジンから排気管2に排出される排ガスは、排気管2を流通する途中で、流入口からケース3内に流入して、ケース3内を流通し、流出口から流出する。
電極パネル4は、誘電体からなる平板状の誘電体平板5に電極6が厚さ方向に挟み込まれた構成を有している。誘電体平板5の材料である誘電体としては、Al2O3(アルミナ)を例示することができる。電極6の材料としては、タングステンを例示することができる。
複数の電極パネル4は、たとえば、ケース3の中心線と直交する方向に間隔を空けて、互いに平行をなして(それぞれケース3の中心線方向に延びるように)配置されている。各電極パネル4の電極6は、積層方向と直交する平面に沿う方向で同じ位置に配置され、それらの周縁は、積層方向に互いに対向している(積層方向に重なり合っている)。
電極パネル4の電極6には、電極パネル4の積層方向の一方側から順に、プラス配線7およびマイナス配線8が交互に接続されている。プラス配線7およびマイナス配線8は、それぞれプラズマリアクタ用電源装置9のプラス端子およびマイナス端子と電気的に接続されている。
積層方向に互いに隣り合う電極パネル4の電極6間には、プラズマリアクタ用電源装置9から出力されるパルス波状の高電圧が印加される。この高電圧が電極6間に印加されることにより、電極パネル4間に誘電体バリア放電が生じ、その誘電体バリア放電によるプラズマが発生する。一方、電極パネル4間には、ケース3の流入口側の端部から排ガスが流入し、その排ガスが流出口側の端部に向けて流通する。電極パネル4間におけるプラズマの発生によって、電極パネル4間を流通する排ガスに含まれるPMが酸化(燃焼)されて除去される。
<プラズマリアクタ用電源装置>
図2は、プラズマリアクタ用電源装置9の構成を示す回路図である。
図2は、プラズマリアクタ用電源装置9の構成を示す回路図である。
プラズマリアクタ用電源装置9は、フライバック型昇圧トランス11、通電制御用MOSFET12、ゲートドライブ回路13および制御装置14を備えている。
フライバック型昇圧トランス11は、一次コイル21および二次コイル22を有している。一次コイル21の一端は、配線23に接続されている。一次コイル21の他端は、通電制御用MOSFET12を介して、グランドに接続(接地)されている。二次コイル22の一端および他端は、それぞれプラス端子およびマイナス端子を介して、プラズマリアクタ1において積層方向に互いに隣り合う電極パネル4の電極6に接続されている。
通電制御用MOSFET12は、たとえば、エンハンスメント型のnMOSFETであり、そのドレインがフライバック型昇圧トランス11の一次コイル21の他端に接続され、ソースがグランドに接続されている。
配線23には、ヒューズ24を介して、直流電源であるバッテリ25のプラス端子が接続されている。バッテリ25は、たとえば、公称電圧が12Vの鉛電池である。
ゲートドライブ回路13は、通電制御用MOSFET12のゲートにパルス電圧(ゲート電圧)を印加する回路である。
制御装置14は、CPUおよびメモリなどを含む構成であり、車両に搭載された複数のECU(Electronic Control Unit:電子制御ユニット)のうちの1つであってもよいし、ECUの1つに組み込まれていてもよい。メモリには、たとえば、ROMおよびRAMのほか、フラッシュメモリなどの書換可能な不揮発性メモリが含まれる。
制御装置14は、ゲートドライブ回路13を制御し、ゲートドライブ回路13からのパルス電圧(ゲート電圧)の出力/停止を切り替える。制御装置14からゲートドライブ回路13にオン指示信号が入力されると、ゲートドライブ回路13から出力されるパルス電圧が立ち上がり、そのパルス電圧が通電制御用MOSFET12のゲートに印加されることにより、通電制御用MOSFET12がオンになる。制御装置14からゲートドライブ回路13にオフ指示信号が入力されると、ゲートドライブ回路13から出力されるパルス電圧が立ち下がり、通電制御用MOSFET12のゲートへのパルス電圧の印加がなくなることにより、通電制御用MOSFET12がオフになる。
通電制御用MOSFET12がオンになると、フライバック型昇圧トランス11の一次コイル21にバッテリ25の電圧が一次電圧として印加され、一次コイル21にエネルギが蓄積される。その後、通電制御用MOSFET12がオフになると、一次コイル21に蓄積されたエネルギが開放されて、一次コイル21に起電力が生じ、フライバック型昇圧トランス11の二次コイル22に巻数比に応じた二次電圧が発生する。通電制御用MOSFET12のオン/オフが繰り返されることにより、二次電圧がパルス的に発生し、パルス波状に変化する二次電圧がプラズマリアクタ1の電極6間に印加される。
制御装置14には、電流センサ31が接続されている。電流センサ31は、プラズマリアクタ用電源装置9からプラズマリアクタ1に印加されるリアクタ印加電流を検出し、その電流値に応じた検出信号を出力する。
制御装置14は、後述する第1ピーク検出部41の機能により、電流センサ31が出力する検出信号から、プラズマリアクタ1に印加されるリアクタ印加電流の立ち上がり後の最初のピーク値(以下、単に「最初のピーク値」という。)を取得する。一方、制御装置14は、エンジン(図示せず)から排出される排ガスの空燃比を取得し、空燃比から排ガスの単位体積に含まれるPM量を求める。制御装置14の不揮発性メモリ(ROM、フラッシュメモリまたはEEPROMなど)には、PM量と目標ピーク値との関係がマップの形態で記憶されている。制御装置14は、PM量と目標ピーク値との関係に基づいて、PM量に応じた目標ピーク値を設定し、リアクタ印加電流の最初のピーク値が目標ピーク値と一致するように、ゲートドライブ回路13を制御する。
<放電異常検出機能>
図3は、制御装置14の放電異常検出機能に関する構成を示すブロック図である。図4は、リアクタ印加電流のピーク値、リアクタ印加電流の電流積算値およびリアクタ電圧値の関係を示す図である。
図3は、制御装置14の放電異常検出機能に関する構成を示すブロック図である。図4は、リアクタ印加電流のピーク値、リアクタ印加電流の電流積算値およびリアクタ電圧値の関係を示す図である。
制御装置14には、電圧センサ32がさらに接続されている。電圧センサ32は、プラズマリアクタ用電源装置9からプラズマリアクタ1に印加されるリアクタ印加電圧を検出し、その電圧値に応じた検出信号を出力する。
制御装置14は、第1ピーク検出部41、電流積算部42および異常判定部43を備えている。
第1ピーク検出部41は、たとえば、ハイパス回路、反転増幅器およびピークホールド・リセット回路を含むアナログ回路からなる。
ハイパス回路(微分回路)には、電流センサ31の検出信号(電圧)が入力され、ハイパス回路からは、その入力電圧の時間微分(傾き)に比例した電圧が出力される。
反転増幅器には、ハイパス回路の出力電圧が入力され、反転増幅器からは、その入力電圧が反転および増幅されて出力される。
ピークホールド・リセット回路には、反転増幅器の出力電圧が入力される。ピークホールド・リセット回路は、一般的なピークホールド回路とリセット回路とを組み合わせたものである。反転増幅器からの入力電圧がピークホールド回路のホールドコンデンサの電圧よりも大きいときには、ホールドコンデンサが充電される。一方、反転増幅器からの入力がホールドコンデンサの電圧以下であるときには、ホールドコンデンサの電圧が保持(ホールド)される。ピークホールド回路からは、ホールドコンデンサの電圧がインピーダンス変換されて出力される。リセット回路は、ホールドコンデンサと並列に設けられるリセットスイッチをオン/オフする回路である。リセット回路にリセット信号が入力されると、リセット回路からリセットスイッチに信号が入力されて、リセットスイッチがオンになる。リセットスイッチのオンにより、ホールドコンデンサに蓄積された電荷が開放(放電)される。
制御装置14からゲートドライブ回路13(図2参照)へのオン指示信号が出力される度に、そのオン指示信号の出力からオフ指示信号の出力までの期間内に、リセット回路にリセット信号が入力される。これにより、第1ピーク検出部41からは、プラズマリアクタ用電源装置9からパルス波状の二次電圧が1パルス出力される度に、リアクタ印加電流が正の値をとる期間におけるピーク値(最大値)に応じた電圧が出力される。
電流積算部42は、たとえば、積分回路、反転増幅器およびピークホールド・リセット回路を含むアナログ回路からなる。
積分回路には、電流センサ31の検出信号(電圧)が入力され、積分回路からは、その入力電圧の時間積分に比例した電圧が出力される。
反転増幅器には、積分回路の出力電圧が入力され、反転増幅器からは、その入力電圧が反転および増幅されて出力される。
ピークホールド・リセット回路には、反転増幅器の出力電圧が入力される。ピークホールド・リセット回路は、一般的なピークホールド回路とリセット回路とを組み合わせたものであり、第1ピーク検出部41のピークホールド・リセット回路と同一の構成である。
制御装置14からゲートドライブ回路13(図2参照)へのオン指示信号が出力される度に、そのオン指示信号の出力からオフ指示信号の出力までの期間内に、リセット回路にリセット信号が入力される。これにより、電流積算部42からは、プラズマリアクタ用電源装置9からパルス波状の二次電圧が1パルス出力される度に、リアクタ印加電流が正の値をとる期間における電流積算値に応じた電圧が出力される。
異常判定部43には、電圧センサ32の出力信号、第1ピーク検出部41の出力信号(電圧)および電流積算部42の出力信号(電圧)が入力される。
制御装置14の不揮発性メモリには、プラズマリアクタ1における放電が正常な場合(放電正常時)におけるリアクタ印加電流の最初のピーク値、リアクタ印加電流が正の値をとる期間における電流積算値およびリアクタ電圧値の最大値である最大電圧値の関係が記憶されている。それらの関係は、たとえば、図4に示されるように、複数の異なる最初のピーク値の各値に電流積算値と最大電圧値との関係を示すマップを対応づけた形態で記憶されている。
異常判定部43は、フライバック型昇圧トランス11の一次コイル21にパルス波状に変化する電圧の1パルスが入力される度に、電圧センサ32、第1ピーク検出部41および電流積算部42の出力信号から、それぞれ最大電圧値、リアクタ印加電流の最初のピーク値およびリアクタ印加電流の電流積算値を取得する。次いで、異常判定部43は、その取得したピーク値に対応づけられた電流積算値と最大電圧値とのマップを参照し、取得した電流積算値に対応する最大電圧値をマップから読み出す。そして、異常判定部43は、電圧センサ32の出力信号から取得した最大電圧値とマップから読み出した最大電圧値との差分が所定の判定値以上である場合、プラズマリアクタ1の放電が異常であると判定し、その差分が判定値未満である場合、プラズマリアクタ1の放電が正常であると判定する。
<作用効果>
以上のように、制御装置14の放電異常検出機能により、プラズマリアクタ1の放電が異常であった場合に、その異常を検出することができる。そのため、放電の異常によるPM除去性能の低下を未然に防止することができる。
以上のように、制御装置14の放電異常検出機能により、プラズマリアクタ1の放電が異常であった場合に、その異常を検出することができる。そのため、放電の異常によるPM除去性能の低下を未然に防止することができる。
<第2実施形態>
図5は、本発明の第2実施形態に係る制御装置14に備えられる第2ピーク検出部51の構成を示すブロック図である。
図5は、本発明の第2実施形態に係る制御装置14に備えられる第2ピーク検出部51の構成を示すブロック図である。
第2実施形態に係る制御装置14には、第2ピーク検出部51が備えられる。第2ピーク検出部51は、ハイパス回路52、反転増幅器53、ピークホールド・リセット回路54およびシュミット回路(ヒステリシスコンパレータ)55を含むアナログ回路からなる。
ハイパス回路52には、電流センサ31の検出信号(電圧)が入力され、ハイパス回路からは、ノイズとなる低周波成分を除去した電圧が出力される。
反転増幅器53には、ハイパス回路52の出力電圧が入力され、反転増幅器53からは、その入力電圧が反転および増幅されて出力される。
ピークホールド・リセット回路54には、反転増幅器53の出力電圧が入力される。ピークホールド・リセット回路54は、一般的なピークホールド回路とリセット回路とを組み合わせたものである。
反転増幅器53からの入力電圧がピークホールド回路のホールドコンデンサの電圧よりも大きいときには、ホールドコンデンサが充電される。一方、反転増幅器からの入力がホールドコンデンサの電圧以下であるときには、ホールドコンデンサの電圧が保持(ホールド)される。ピークホールド回路からは、ホールドコンデンサの電圧がインピーダンス変換されて、第2ピーク検出部51の検出信号として出力される。
リセット回路は、ホールドコンデンサと並列に設けられるリセットスイッチをオン/オフする回路である。リセット回路には、シュミット回路55からリセットパルスが入力される。リセット回路にリセットパルスが入力されると、リセット回路からリセットスイッチに信号が入力されて、リセットスイッチがオンになる。リセットスイッチのオンにより、ホールドコンデンサに蓄積された電荷が開放(放電)される。
シュミット回路55には、電流センサ31の検出信号(電圧)が入力される。その入力電圧が所定の第1基準電圧を超えると、シュミット回路55からハイレベルの電圧がリセットパルスとして出力される。シュミット回路55からリセットパルスが出力されると、その後、シュミット回路55に入力される電圧が所定の第2基準電圧に低下するまでリセットパルスが出力され続ける。シュミット回路55に入力される電圧が第2基準電圧に低下すると、シュミット回路55からローレベルの電圧が出力される(リセットパルスの出力が停止される)。
図6は、リアクタ印加電流、リセットパルスおよび第2ピーク検出部51の検出信号の時間変化の概略を示す図である。
シュミット回路55の第1基準電圧は、リアクタ印加電流がその立ち上がり後の2回目のピーク値(以下、単に「2回目のピーク値」という。)をとるときの電流センサ31の検出信号よりも高く、かつ、リアクタ印加電流が最初のピーク値をとるときの電流センサ31の検出信号よりも低い値に設定されている。また、第2基準電圧は、第1基準電圧以下であって、リアクタ印加電流が2回目のピーク値をとるときの電流センサ31の検出信号よりもさらに低い値に設定されている。
これにより、リアクタ印加電流が最初のピーク値をとる前に、シュミット回路55からのリセットパルスの出力が開始され、リアクタ印加電流が最初のピーク値をとった後に、シュミット回路55からのリセットパルスの出力が停止される。そのため、第2ピーク検出部51からは、リアクタ印加電流の2回目のピーク値に応じた検出信号が出力される。
図7は、放電異常検出処理の流れを示すフローチャートである。
制御装置14は、車両のエンジンが始動されて、プラズマリアクタ1の暖機が終了した後、プラズマリアクタ1における放電の異常を検出するため、図7に示される放電異常検出処理を実行する。
放電異常検出処理では、まず、プラズマリアクタ1の温度が予め定める低温(たとえば、50℃)であるリアクタ低温時に、第2ピーク検出部51の検出信号から、リアクタ印加電流の2回目のピーク値が取得される。また、電流積算部42(図3参照)の出力信号から、リアクタ印加電流の電流積算値が取得される(ステップS1)。
次に、プラズマリアクタ1の温度が予め定める高温(たとえば、200℃)であるリアクタ高温時に、第2ピーク検出部51の検出信号から、リアクタ印加電流の2回目のピーク値が取得される。また、電流積算部42の出力信号から、リアクタ印加電流の電流積算値が取得される(ステップS2)。
その後、リアクタ高温時に取得されたピーク値がリアクタ低温時に取得されたピーク値以上であるか否かが判定される。また、リアクタ高温時に取得された電流積算値がリアクタ低温時に取得された電流積算値以上であるか否かが判定される(ステップS3)。
そして、リアクタ高温時に取得されたピーク値がリアクタ低温時に取得されたピーク値以上であり、かつ、リアクタ高温時に取得された電流積算値がリアクタ低温時に取得された電流積算値以上である場合(ステップS3のYES)、プラズマリアクタ1における放電が異常であると判定されて(ステップS4)、放電異常検出処理が終了される。
一方、リアクタ高温時に取得されたピーク値がリアクタ低温時に取得されたピーク値未満であるか、または、リアクタ高温時に取得された電流積算値がリアクタ低温時に取得された電流積算値未満である場合には(ステップS3のNO)、リアクタ低温時およびリアクタ高温時に、リアクタ印加電流の2回目のピーク値およびリアクタ印加電流の電流積算値が再び取得されて(ステップS1,S2)、ステップS3の判定が再び実行される。
<作用効果>
以上のように、放電異常検出処理の実行により、プラズマリアクタ1の放電が異常であった場合に、その異常を検出することができる。そのため、放電の異常によるPM除去性能の低下を未然に防止することができる。
以上のように、放電異常検出処理の実行により、プラズマリアクタ1の放電が異常であった場合に、その異常を検出することができる。そのため、放電の異常によるPM除去性能の低下を未然に防止することができる。
<変形例>
以上、本発明の2つの実施形態について説明したが、本発明は、他の形態で実施することもできる。
以上、本発明の2つの実施形態について説明したが、本発明は、他の形態で実施することもできる。
たとえば、通電制御用MOSFET12に代えて、IGBTなど、他のスイッチング素子が採用されてもよい。
その他、前述の構成には、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 プラズマリアクタ
4 電極パネル
9 プラズマリアクタ用電源装置
14 制御装置(放電異常検出装置、電圧値取得手段、電流積算値取得手段、ピーク値取得手段、判定手段)
31 電流センサ(電流積算値取得手段、ピーク値取得手段)
32 電圧センサ(電圧値取得手段)
42 電流積算部(電流積算値取得手段)
43 異常判定部(判定手段)
51 第2ピーク検出部(ピーク値取得手段)
4 電極パネル
9 プラズマリアクタ用電源装置
14 制御装置(放電異常検出装置、電圧値取得手段、電流積算値取得手段、ピーク値取得手段、判定手段)
31 電流センサ(電流積算値取得手段、ピーク値取得手段)
32 電圧センサ(電圧値取得手段)
42 電流積算部(電流積算値取得手段)
43 異常判定部(判定手段)
51 第2ピーク検出部(ピーク値取得手段)
Claims (2)
- 互いに平行をなして間隔を空けて配置される複数の電極パネルの各間に誘電体バリア放電が発生するプラズマリアクタに適用され、放電の異常を検出する放電異常検出装置であって、
前記プラズマリアクタに印加される電圧値を取得する電圧値取得手段と、
前記プラズマリアクタに印加される電流の電流積算値を取得する電流積算値取得手段と、
前記電圧値取得手段によって取得される電圧値と前記電流積算値取得手段によって取得される前記電流積算値との関係から、放電の正常/異常を判定する判定手段とを含む、放電異常検出装置。 - 互いに平行をなして間隔を空けて配置される複数の電極パネルを備え、電源装置から前記電極パネル間にパルス状に変化する電圧が印加されることにより放電が発生するプラズマリアクタに適用され、放電の異常を検出する放電異常検出装置であって、
前記プラズマリアクタに印加される電流の立ち上がり後の2回目の電流ピーク値を取得するピーク値取得手段と、
前記プラズマリアクタに印加される電流の立ち上がり後の最初の電流ピーク値が目標ピーク値に一致するように前記電源装置が制御されている状態において、前記ピーク値取得手段によって取得される電流ピーク値の傾向から、放電の正常/異常を判定する判定手段とを含む、放電異常検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150286A JP2018017218A (ja) | 2016-07-29 | 2016-07-29 | プラズマリアクタの放電異常検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150286A JP2018017218A (ja) | 2016-07-29 | 2016-07-29 | プラズマリアクタの放電異常検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018017218A true JP2018017218A (ja) | 2018-02-01 |
Family
ID=61075968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016150286A Pending JP2018017218A (ja) | 2016-07-29 | 2016-07-29 | プラズマリアクタの放電異常検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018017218A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021156268A (ja) * | 2020-03-30 | 2021-10-07 | ダイハツ工業株式会社 | 排気ガス浄化用プラズマリアクタ装置 |
JP2021156269A (ja) * | 2020-03-30 | 2021-10-07 | ダイハツ工業株式会社 | 排気ガス浄化用プラズマリアクタ装置 |
-
2016
- 2016-07-29 JP JP2016150286A patent/JP2018017218A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021156268A (ja) * | 2020-03-30 | 2021-10-07 | ダイハツ工業株式会社 | 排気ガス浄化用プラズマリアクタ装置 |
JP2021156269A (ja) * | 2020-03-30 | 2021-10-07 | ダイハツ工業株式会社 | 排気ガス浄化用プラズマリアクタ装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6794050B2 (ja) | Pm堆積検出装置 | |
KR102450353B1 (ko) | 수트 센서 시스템 | |
US9606040B2 (en) | Sensor controller | |
JP5710307B2 (ja) | 漏電検知装置 | |
JP6064958B2 (ja) | 電動車両の燃料電池システム及びその制御方法 | |
JP6704641B2 (ja) | プラズマリアクタ用制御装置 | |
JP4396477B2 (ja) | 排気浄化装置 | |
US10677123B2 (en) | Exhaust purification device | |
JP2018017218A (ja) | プラズマリアクタの放電異常検出装置 | |
WO2017002828A1 (ja) | プラズマリアクタの印加電圧制御装置及びプラズマリアクタ用制御装置 | |
JP6107283B2 (ja) | 電源装置 | |
JP2018018778A (ja) | プラズマリアクタの放電異常検出装置 | |
JP2018018777A (ja) | プラズマリアクタの異常検出装置および制御装置 | |
JP2016208580A (ja) | リレー溶着判定装置 | |
JP6713200B2 (ja) | プラズマリアクタ用制御装置 | |
JP2000292411A (ja) | ガス濃度検出装置 | |
JP2018060597A (ja) | リアクタ印加電圧推定装置 | |
JP6713199B2 (ja) | プラズマリアクタ用制御装置 | |
JP6713216B2 (ja) | リアクタ印加電圧推定装置 | |
JP6707287B2 (ja) | リアクタ温度推定装置 | |
JP6957125B2 (ja) | プラズマリアクタの制御装置 | |
JP6461731B2 (ja) | プラズマリアクタの印加電圧制御装置 | |
WO2015194108A1 (ja) | 制御装置 | |
JP6675786B2 (ja) | プラズマリアクタの電源装置 | |
JP6536812B2 (ja) | 電力変換装置 |