JP6784794B2 - 自動運転車の経路計画用のドリフト補正の方法 - Google Patents

自動運転車の経路計画用のドリフト補正の方法 Download PDF

Info

Publication number
JP6784794B2
JP6784794B2 JP2019076991A JP2019076991A JP6784794B2 JP 6784794 B2 JP6784794 B2 JP 6784794B2 JP 2019076991 A JP2019076991 A JP 2019076991A JP 2019076991 A JP2019076991 A JP 2019076991A JP 6784794 B2 JP6784794 B2 JP 6784794B2
Authority
JP
Japan
Prior art keywords
route
adv
current
drift
correction factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019076991A
Other languages
English (en)
Other versions
JP2019189214A (ja
Inventor
チュー,ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baidu USA LLC
Original Assignee
Baidu USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baidu USA LLC filed Critical Baidu USA LLC
Publication of JP2019189214A publication Critical patent/JP2019189214A/ja
Application granted granted Critical
Publication of JP6784794B2 publication Critical patent/JP6784794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0082Automatic parameter input, automatic initialising or calibrating means for initialising the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0085Setting or resetting initial positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems

Description

本願の実施形態は、総体的に自動運転車の操作に関し、より具体的には、自動運転車用のゼロ・ドリフトの経路計画に関する。
自動運転モード(例えば、ドライバーレス)で走行している車両は、乗員、特に人間の運転手をいくつかの運転に関する役割から解放できる。自動運転モードで走行しているとき、車両は、車載センサを使用して様々な位置までにナビゲートされることが可能であり、最小限のヒューマンコンピュータインタラクションや乗客がいないなどの状況で走行することが可能となった。
行動計画と制御は、自動運転の中の肝要な操作である。しかし、ドリフトは、自動運転車(ADV)の経路計画に重大な影響を及ぼす系列的問題である。ドリフトは、複数の要素によって引き起こされる可能性があり、タイヤ摩耗、ホイールアライメント、タイヤ圧、道路状況などが含まれるが、これらに限定されない。このようなドリフトは、経路計画の精度に影響を与える。経路計画の時に、ADVのドリフトを考慮した精密で有効な方法はなかった。
本発明の一実施形態は、自動運転車の運転経路を計画するためのコンピュータ実装方法であって、自動運転車(ADV)に取り付けられた複数のセンサーから取得したセンサーデータに基づき、前記ADVの現在位置を特定することと、前記現在位置から前記ADVを所定の期間運転するための現走行周期の経路を計画することと、前の走行周期において決められた前の経路に基づいて計算された前記ADVの予期位置を特定することと、
前記ADVの前記現在位置と前記予期位置との間のドリフト誤差を計算することと、
前記ドリフト誤差に基づき、少なくとも前記現走行周期に対して計画された経路の起点を修正し、修正された経路を生成することと、前記修正された経路に従って前記ADVの走行を制御することとを含む自動運転車の経路の計画用のコンピュータ実装方法に関する。
本発明の他の一実施形態は、指令を記憶している非一時的機械可読メディアであって、前記指令は、プロセッサーによって実行される場合に、自動運転車(ADV)に取り付けられた複数のセンサーから取得したセンサーデータに基づき、前記ADVの現在位置を特定することと、
前記現在位置から前記ADVを所定の期間運転するための現走行周期の経路を計画することと、
前の走行周期において決められた前の経路に基づいて計算された前記ADVの予期位置を特定することと、前記ADVの前記現在位置と前記予期位置との間のドリフト誤差を計算することと、前記ドリフト誤差に基づき、少なくとも前記現走行周期に対して計画された経路の起点を修正し、修正された経路を生成することと、前記修正された経路に従って前記ADVの走行を制御することと、を含む、自動運転車を操作するため操作を前記プロセッサーに実行させる、非一時的機械可読メディアに関する。
本発明の他の一実施形態は、データ処理システムであって、プロセッサーと、前記プロセッサーに接続され、命令を記憶するメモリとを含み、前記指令は、プロセッサーによって実行される場合に、自動運転車(ADV)に取り付けられた複数のセンサーから取得したセンサーデータに基づき、前記ADVの現在位置を特定することと、前記現在位置から前記ADVを所定の時間運転するための現走行周期の経路を計画することと、前の走行周期において決められた前の経路に基づき計算された前記ADVの予期位置を特定することと、前記ADVの前記現在位置と前記予期位置との間のドリフト誤差を計算することと、
前記ドリフト誤差に基づき、少なくとも前記現走行周期に対して計画された経路の起点を修正し、修正された経路を生成することと、前記修正された経路に従って前記ADVの走行を制御することとを、前記プロセッサーを実行させるようにさせるデータ処理システムに関する。
本発明の実施態様は図面の各図において限定的ではなく例示的に示され、図面において同一の参照符号が同様な素子を示す。
一実施形態に係るネットワークシステムを示すブロック図である。 一実施形態に係る自動運転車両の一例を示すブロック図である。 図3Aは、一実施形態に係る自動運転車両と共に使用される感知・計画システムの一例を示すブロック図である。 図3Bは、一実施形態に係る自動運転車両と共に使用される感知・計画システムの一例を示すブロック図である。 一実施形態に係る、ドリフト補正による経路の最適化を行うプロセスを示す図である。 他の一実施形態に係る、ドリフト誤差を特定するプロセスを示す図である。 一実施形態に係る、ドリフト補正による経路の最適化を行うプロセスを示すフローチャート図である。 一実施形態に係る、ドリフト補正による経路の最適化を行うプロセスを示すフローチャート図である。 一実施形態に係るデータ処理システムを示すブロック図である。
以下、説明の詳細を参照しながら本発明の様々な実施形態及び態様を説明し、前記様々な実施形態が図面に示される。以下の説明及び図面は、本発明を例示するためのものであり、限定するものとして解釈されるべきではない。本発明の様々な実施形態を全面的に理解するために、多くの特定の詳細を説明する。なお、本発明の実施形態を簡潔的に説明するように、周知又は従来技術の詳細について説明していない場合もある。
本明細書において、「一実施形態」又は「実施形態」とは、当該実施形態に基づいて説明された特定の特徴、構造又は特性が本発明の少なくとも一実施形態に含まれてもよいと意味する。「一実施形態では」という表現は、本明細書の全体において全てが同一の実施形態を指すとは限らない。
典型的に、自動運転プロセスは、計画周期または走行周期(例えば、100から200ミリ秒の周期)で実行され、以下、これについては更に詳しく説明する。各走行周期において、経路は、続きの所定の距離または所定の期間に用いられるように計画される。各走行周期が終了する時に、ADVの新しい走行周期に対し新しい経路が計画される。一実施形態により、現走行周期の経路を(ADVの次の所定の期間における走行を制御するために)計画する時に、前の走行周期に引き起こされたADVのドリフト誤差を特定する。ドリフト誤差に基づいてドリフト補正因子を決める。ドリフト補正因子に基づいて、少なくとも現走行周期に対して計画された経路の起点を修正または補正する。これにより、ADVは、より理想状況(すなわち、ドリフトがない状況)に近い経路に沿って走行することができる。計画段階でADVのドリフトを周期的に補正することにより、ADVは、比較的長い期間においてより計画経路に近い経路に沿って走行することができる。
一実施形態により、ADVに対して現走行周期(または計画周期)の経路を計画する時に、ADVに取り付けられた各種のセンサー(例えば、LIDAR、RADAR、カメラ)により提供されたセンサーデータに基づいてADVの現在位置を特定する。現在位置からADVが所定の期間走行するための現走行周期の経路を生成する。経路は、ADVの運転環境を感知した感知データに基づいて生成可能であり、当該感知データは、センサーデータに基づいて決められる。なお、前の経路に基づいてADVの予期位置を計算し、当該前の経路は、前の走行周期(例えば、最後の走行周期)の期間で生成されるものである。ADVが理想的な運転条件でドリフトなく走行する場合に、ADVの予期位置は、前の経路の目標位置である。しかし、前記の各種の要因により、ADVの実際位置(例えば、ADVの現在位置)は、例えばドリフト誤差のため、予期位置と異なる。次いで、ADVの予期位置と現在位置に基づいて、ドリフト誤差を動的に計算する。このようなドリフト誤差は、異なる時刻の特定の運転環境(例えば、道路条件、天気条件、タイヤ圧、ホイールアライメント)によって異なる場合がある。ドリフト誤差に基づいて少なくとも現走行周期の経路の起点を修正し、修正された経路を生成する。そして修正された経路に従ってADVを制御する。
一実施形態において、ドリフト誤差は、ADVの予期位置と現在位置との間の(例えば、横方向における)差異に基づいて計算される。ドリフト誤差に基づいて、所定のドリフト補正アルゴリズムを使用してドリフト補正因子を計算する。そして、ドリフト補正因子に基づいて経路を修正する。一実施形態において、現走行周期において計算されたドリフト誤差に照らして、前の走行周期において計算された前のドリフト補正因子に基づいてドリフト補正因子を計算する。他の一実施形態により、少なくとも経路の起点を修正する時に、経路は、ステーション横方向(station−lateral、SL)空間またはSL地図にSL曲線として投影される。SL曲線は、経路に沿う経路点のADVの走行する車道の基準線に対する相対位置を表す。そして、ドリフト補正因子に基づいてSL曲線の起点を少なくとも横方向にシフトする。ADVのドリフト誤差を補正するように、シフトされたSL曲線を利用して経路を修正する。
図1は、本発明の一実施形態に係る自動運転車両のネットワーク構成を示すブロック図である。図1に示すように、ネットワーク構成100は、ネットワーク102を介して一つ以上のサーバ103〜104に通信可能に接続される自動運転車両101を含む。一つの自動運転車両のみが示されているが、複数の自動運転車両が、ネットワーク102を介して、互いに接続され、及び/又はサーバ103〜104に接続されてもよい。ネットワーク102は、任意のタイプのネットワーク、例えば、有線又は無線のローカルエリアネットワーク(LAN)、インターネットのようなワイドエリアネットワーク(WAN)、セルラーネットワーク、衛星ネットワーク又はそれらの組み合わせであってもよい。サーバ103〜104は、如何なるタイプのサーバ又はサーバクラスタであってもよく、例えば、ネットワーク又はクラウドサーバ、アプリサーバ、バックエンドサーバ又はそれらの組み合わせが挙げられる。サーバ103〜104は、データ解析サーバ、コンテンツサーバ、交通情報サーバ、地図及び関心地点(MPOI)サーバ、又は位置サーバなどであってもよい。
自動運転車両とは、自動運転モードになるように構成可能な車両を指し、前記自動運転モードにおいて、車両が運転手からの入力がほとんど又は全くない場合に環境を通過するようにナビゲートされる。このような自動運転車両は、車両動作環境に関連する情報を検出するように構成された一つ以上のセンサを有するセンサシステムを含んでもよい。前記車両及びその関連コントローラは、検出された情報を使用して前記環境を通過するようにナビゲートする。自動運転車両101は、手動モード、全自動運転モード、又は部分自動運転モードで動作することができる。
一実施形態では、自動運転車両101は、感知・計画システム110、車両制御システム111、無線通信システム112、ユーザインターフェースシステム113、及びセンサシステム115を含むが、それらに限定されない。自動運転車両101は更に、エンジン、車輪、ステアリングホイール、変速機などの従来の車両に含まれるいくつかの共通構成要素を含んでもよい。前記構成要素は、車両制御システム111及び/又は感知・計画システム110によって様々な通信信号及び/又は命令で制御されることができ、これらの様々な通信信号及び/又は命令は、例えば加速信号又は命令、減速信号又は命令、ステアリング信号又は命令、ブレーキ信号又は命令などを含む。
構成要素110〜115は、インターコネクト、バス、ネットワーク、又はこれらの組み合わせを介して互いに通信可能に接続することができる。例えば、構成要素110〜115は、コントローラエリアネットワーク(CAN)バスを介して互いに通信可能に接続することができる。CANバスは、ホストコンピュータなしのアプリケーションでマイクロコントローラ及びデバイスが相互に通信できるように設計された車両バス規格である。それは、もともと自動車内の多重電気配線のために設計されたメッセージに基づくプロトコルであるが、他の多くの環境にも用いられる。
ここで図2を参照すると、一実施形態では、センサシステム115は、一つ以上のカメラ211、全地球測位システム(GPS)ユニット212、慣性計測ユニット(IMU)213、レーダユニット214並びに光検出及び測距(LIDAR)ユニット215を含むが、それらに限定されない。GPSユニット212は、自動運転車両の位置に関する情報を提供するように動作可能な送受信機を含んでもよい。IMUユニット213は、慣性加速度に基づいて自動運転車両の位置及び配向の変化を検知することができる。レーダユニット214は、無線信号を利用して自動運転車両のローカル環境内のオブジェクトを検知するシステムを表すことができる。いくつかの実施形態では、オブジェクトを検知することに加えて、レーダユニット214は、オブジェクトの速度及び/又は進行方向を更に検知することができる。LIDARユニット215は、レーザを使用して自動運転車両の所在環境内のオブジェクトを検知することができる。LIDARユニット215は、他のシステム構成要素のほかに、一つ以上のレーザ源、レーザスキャナ、及び一つ以上の検出器を更に含むことができる。カメラ211は、自動運転車両の周囲の環境における画像を取り込むための一つ以上の装置を含むことができる。カメラ211は、スチルカメラ及び/又はビデオカメラであってもよい。カメラは、例えば、回転及び/又は傾斜のプラットフォームにカメラを取り付けることによって、機械的に移動されてもよい。
センサシステム115は、ソナーセンサ、赤外線センサ、ステアリングセンサ、スロットルセンサ、ブレーキセンサ、及びオーディオセンサ(例えば、マイクロフォン)などの他のセンサを更に含むことができる。オーディオセンサは、自動運転車両の周囲の環境から音を取得するように構成されてもよい。ステアリングセンサは、ステアリングホイール、車両の車輪、又はそれらの組み合わせの操舵角を検知するように構成されてもよい。スロットルセンサ及びブレーキセンサそれぞれは、車両のスロットル位置及びブレーキ位置を検知する。場合によっては、スロットルセンサとブレーキセンサを統合型スロットル/ブレーキセンサとして一体化することができる。
一実施形態では、車両制御システム111は、ステアリングユニット201、スロットルユニット202(加速ユニットともいう)、及びブレーキユニット203を含むが、それらに限定されない。ステアリングユニット201は、車両の方向又は進行方向を調整するために用いられる。スロットルユニット202は、モータ又はエンジンの速度を制御するために用いられ、モータ又はエンジンの速度によって更に車両の速度及び加速度を制御する。ブレーキユニット203は、摩擦を与えることによって車両の車輪又はタイヤを減速させることで、車両を減速させる。なお、図2に示す構成要素は、ハードウェア、ソフトウェア、又はそれらの組み合わせで実現されることができる。
図1を再び参照して、無線通信システム112は、自動運転車両101と、装置、センサ、他の車両などの外部システムとの間の通信を可能にするものである。例えば、無線通信システム112は、直接又は通信ネットワークを介して一つ以上の装置と無線通信することができ、例えば、ネットワーク102を介してサーバ103〜104と通信することができる。無線通信システム112は、任意のセルラー通信ネットワーク又は無線ローカルエリアネットワーク(WLAN)を使用することができ、例えば、WiFiを使用して別の構成要素又はシステムと通信することができる。無線通信システム112は、例えば、赤外線リンク、ブルートゥース(登録商標)などを使用して、装置(例えば、乗客のモバイルデバイス、表示装置、車両101内のスピーカ)と直接通信することができる。ユーザインターフェースシステム113は、車両101内に実現された周辺装置の部分(例えば、キーボード、タッチスクリーン表示装置、マイクロホン、及びスピーカなどを含む)であってもよい。
特に自動運転モードで動作しているときに、自動運転車両101の機能の一部又は全部は、感知・計画システム110によって制御又は管理することができる。感知・計画システム110は、必要なハードウェア(例えば、プロセッサ、メモリ、記憶装置)及びソフトウェア(例えば、オペレーティングシステム、計画及びルーティングプログラム)を備え、センサシステム115、制御システム111、無線通信システム112、及び/又はユーザインターフェースシステム113から情報を受信し、受信した情報を処理し、出発地から目的地までのルート又は経路を計画し、その後、計画・制御情報に基づいて車両101を運転する。
あるいは、感知・計画システム110を車両制御システム111と統合することができる。
例えば、乗客としてのユーザは、例えば、ユーザインターフェースを介して、旅程の出発地位置及び目的地を指定することができる。感知・計画システム110は旅程関連データを取得する。例えば、感知・計画システム110は、MPOIサーバから位置及びルート情報を取得することができ、前記MPOIサーバはサーバ103〜104の一部であってもよい。位置サーバは位置サービスを提供し、MPOIサーバは地図サービス及び特定の位置のPOIを提供する。あるいは、そのような位置及びMPOI情報は、感知・計画システム110の永続的記憶装置にローカルキャッシュされることが可能である。
自動運転車両101がルートに沿って移動するとき、感知・計画システム110は交通情報システム又はサーバ(TIS)からリアルタイム交通情報を取得することもできる。なお、サーバ103〜104は第三者エンティティによって操作されることが可能である。あるいは、サーバ103〜104の機能は、感知・計画システム110と統合することができる。リアルタイム交通情報、MPOI情報、及び位置情報、並びにセンサシステム115によって検出又は検知されたリアルタイムローカル環境データ(例えば、障害物、オブジェクト、周辺車両)に基づいて、感知・計画システム110は、指定された目的地までに安全かつ効率的に到着するように、最適なルートを計画し、計画されたルートに従って、例えば、制御システム111によって車両101を運転する。
サーバー103は、様々なクライアントにデータ解析サービスを提供するデータ解析システムであってもよい。本発明の一実施形態において、データ解析システム103は、データコレクタ121及び機械学習エンジン122を備える。データコレクタ121は、様々な車両(自動運転車、又は操作者が運転する普通車両)から運転統計データ123を収集する。運転統計データ123は、発された運転命令(例えば、変速、ブレーキ、ステアリング命令等)を指示する情報や、車載センサーが異なる時点で採集した車両の応答(例えば、速度、加速度、減速度、方向等)を含む。運転統計データ123は、ルート(出発地位置と目的位置)、MPOI、天気状況、道路状況のような異なる時点の運転環境を記述する情報を含んでも良い。
機械学習エンジン122は、運転統計データ123に基づいて様々な目的で、1組のルール、アルゴリズム及び/又は予測モデル124を生成、トレーニングする。一実施形態において、アルゴリズム124は、前の走行周期と現走行周期との間におけるADVのドリフト誤差を検出と計算するアルゴリズムを含む。アルゴリズム124は、ドリフト補正因子(ドリフト補正係数とも呼ばれる)を計算するアルゴリズムと、現走行周期の経路を修正するアルゴリズムとを更に含むことができる。その後、アルゴリズム124は、リアルタイムの自動運転の期間でドリフト補正に用いられるように、ADVにアップロードされることが可能である。
図3A及び図3Bは、一実施形態に係る自動運転車両と共に使用される感知・計画システムの一例を示すブロック図である。システム300は、図1の自動運転車101の一部分として実装することができ、感知・計画システム110と、制御システム111と、センサーシステム115とを含むが、これらに限定されない。図3Aと図3Bに示すように、感知・計画システム110は、測位モジュール301と、感知モジュール302と、予測モジュール303と、決定モジュール304と、計画モジュール305と、制御モジュール306と、ルーティングモジュール307と、ドリフト補正モジュール308とを含むが、これらに限定されない。
モジュール301〜308のうちの一部又は全部は、ソフトウェア、ハードウェア又はそれらの組み合わせで実現されてもよい。例えば、これらのモジュールは、永続的記憶装置352にインストールされ、メモリ351にロードされ、一つ以上のプロセッサ(図示せず)によって実行されることができる。なお、これらのモジュールの一部又は全部は、図2の車両制御システム111のモジュールの一部又は全部と通信可能に接続されるか、又は一体化されてもよい。モジュール301〜309のいくつかは、集積モジュールとして一体化されてもよい。モジュール301〜308の中の幾つかは、一体に集積モジュールとして集積されても良い。
測位モジュール301は、自動運転車両300の現在の位置(例えば、GPSユニット212を利用して)を特定し、ユーザの旅程又はルートに関連する如何なるデータを管理する。測位モジュール301(地図及びルーティングモジュールともいう)は、ユーザの旅程又はルートに関連する如何なるデータを管理する。ユーザは、例えば、ユーザインターフェースを介してログインして、旅程の出発地位置及び目的地を指定することができる。測位モジュール301は、自動運転車両300の地図・ルート情報311のような他の構成要素と通信して、旅程関連データを取得する。例えば、測位モジュール301は、位置サーバ並びに地図及びPOI(MPOI)サーバから位置及びルート情報を取得することができる。位置サーバは位置サービスを提供し、MPOIサーバは、地図サービス及び特定の位置のPOIを提供し、地図・ルート情報311の一部としてキャッシュすることができる。自動運転車両300がルートに沿って移動するとき、測位モジュール301は交通情報システム又はサーバからリアルタイム交通情報を得ることもできる。
感知モジュール302は、センサシステム115により提供されたセンサデータと、測位モジュール301により取得された測位情報とに基づいて、周囲環境への感知を特定する。感知情報は、一般的な運転手が運転手により運転されている車両の周囲で感知すべきものを表すことができる。感知は、例えばオブジェクトの形態を採用する車線構成(例えば、直進車線又はカーブ車線)、信号機信号、他の車両の相対位置、歩行者、建築物、横断歩道、又は他の交通関連標識(例えば、止まれ標識、ゆずれ標識)などを含んでもよい。
感知モジュール302は、一つ以上のカメラによって取り込まれた画像を処理及び解析して、自動運転車両の環境内のオブジェクト及び/又は特徴を認識するためのコンピュータビジョンシステム又はコンピュータビジョンシステムの機能を含むことができる。前記オブジェクトは、交通信号、道路境界、他の車両、歩行者及び/又は障害物などを含むことができる。コンピュータビジョンシステムは、オブジェクト認識アルゴリズム、ビデオトラッキング、及び他のコンピュータビジョン技術を使用することができる。いくつかの実施形態では、コンピュータビジョンシステムは、環境地図を描き、オブジェクトを追跡し、オブジェクトの速度などを推定することができる。感知モジュール302は、レーダ及び/又はLIDARのような他のセンサによって提供される他のセンサデータに基づいてオブジェクトを検出することもできる。
各オブジェクトについて、予測モジュール303は、その環境ではオブジェクトがどのように挙動するかを予測する。予測とは、地図・ルート情報311と交通ルール312のセットを考慮して、当該時点における運転環境を感知する感知データに基づいて実行される。例えば、オブジェクトが反対方向の車両であり、かつ現在の運転環境が交差点を含む場合に、予測モジュール303は、車両が直進するか、又は旋回するかを予測する。感知データが、交差点に信号機がないことを示す場合、予測モジュール303は、交差点に入る前に車両が完全に停止する必要があると予測する可能性がある。感知データが、車両が現在左折専用車線又は右折専用車線にあることを示す場合、予測モジュール303は、車両がそれぞれ左折又は右折する可能性がより高いと予測することができる。
それぞれのオブジェクトに対して、決定モジュール304はオブジェクトをどのように処理するかを決定する。例えば、特定のオブジェクト(例えば、交差のルートにおける他の車両)及びオブジェクトを記述するメタデータ(例えば、速度、方向、操舵角)について、決定モジュール304は前記オブジェクトと遇うときに如何に対応するか(例えば、追い越し、道譲り、停止、追い抜き)を決定する。決定モジュール304は、交通ルール又は運転ルール312のようなルールセットに基づいてそのような決定を行うことができ、前記ルールセットは永続的記憶装置352に記憶することができる。
ルーティングモジュール307は、出発地から目的地までの一つ以上のルート又は経路を提供するように構成される。ルーティングモジュール307は、出発地位置から目的地位置までの所与の行程(例えば、ユーザから受信された所与の旅程)について、地図・ルート情報311を取得し、出発地位置から目的地位置までのすべての可能なルート又は経路を決定する。ルーティングモジュール307は、出発地位置から目的地位置までの各ルートを決定する地形図の形の基準線を生成することができる。基準線とは、他の車両、障害物、又は交通状況などからの如何なる干渉を受けていない理想的なルート又は経路を指す。つまり、道路に他の車両、歩行者又は障害物がない場合、ADVは基準線に精確的に又は密接的に従うべきである。そして、地形図を決定モジュール304及び/又は計画モジュール305に提供する。決定モジュール304及び/又は計画モジュール305は、他のモジュールにより提供された他のデータ(例えば測位モジュール301からの交通状况、感知モジュール302により感知された運転環境及び予測モジュール303により予測された交通状况)に応じて、全ての走行可能なルートを検査して最適ルートのうちの一つを選択及び補正する。特定時点における特定の運転環境に応じて、ADVを制御するための実際の経路又はルートは、ルーティングモジュール307によって提供される基準線に近いか又は異なっていてもよい。
感知されたオブジェクトのそれぞれに対する決定に基づいて、計画モジュール305は、ルーティングモジュール307によって提供される基準線をベースとし、自動運転車両に対して経路又はルート並びに運転パラメータ(例えば、距離、速度及び/又は操舵角)を計画する。言い換えれば、特定のオブジェクトについて、決定モジュール304は当該オブジェクトに対して何をするかを決定し、計画モジュール305はどのようにするかを決定する。例えば、特定のオブジェクトについて、決定モジュール304は前記オブジェクトを追い抜くかを決定することができ、計画モジュール305は前記オブジェクトを左側から追い抜くか又は右側から追い抜くかを決定することができる。計画・制御データは、計画モジュール305により生成され、車両300が次の移動周期(例えば、次のルート/経路区間)にはどのように移動するかを記述する情報を含む。例えば、計画・制御データは、車両300に時速30マイル(mph)で10m移動し、次に25マイル(mph)で右車線に変更するように指示することができる。
制御モジュール306は、計画・制御データに基づいて、計画・制御データにより限定されたルート又は経路に応じて適当な命令又は信号を車両制御システム111に送信することにより自動運転車両を制御及び運転する。前記計画・制御データは、経路又はルートに沿って異なる時点で適切な車両配置又は運転パラメータ(例えば、スロットル、ブレーキ、及びステアリング命令)を使用して、車両をルート又は経路の第1の点から第2の点まで運転するのに十分な情報を含む。
一実施形態では、計画段階は、例えば、時間間隔が100ミリ秒(ms)の周期など、複数の計画周期(命令周期ともいう)で実行される。計画周期又は命令周期のそれぞれについて、計画・制御データに基づいて一つ以上の制御命令を発する。すなわち、100msごとに、計画モジュール305は、次のルート区間又は経路区間(例えば、目標位置及びADVが目標位置に到着するのに必要な時間が含まれる)を計画する。あるいは、計画モジュール305は、具体的な速度、方向、及び/又は操舵角などを更に指定することができる。一実施形態では、計画モジュール305は、次の所定期間(例えば、5秒)のルート区間又は経路区間を計画する。計画周期のそれぞれに対し、計画モジュール305は、前の周期で計画された目標位置に基づいて、現在の周期(例えば、次の5秒)のための目標位置を計画する。次に、制御モジュール306は、現在の周期の計画・制御データに基づいて、一つ以上の制御命令(例えば、スロットル、ブレーキ、ステアリング制御命令)を生成する。
なお、決定モジュール304及び計画モジュール305は、集積モジュールとして一体化されてもよい。決定モジュール304/計画モジュール305は、自動運転車両の走行経路を決定するためのナビゲーションシステム又はナビゲーションシステムの機能を含んでもよい。例えば、ナビゲーションシステムは、自動運転車両の以下の経路に沿った移動を達成するための一連の速度及び進行方向を決定することができる。前記経路では、自動運転車両が最終的な目的地に通じる走行車線ベースの経路に沿って前進するとともに、感知した障害物を実質的に回避できる。目的地は、ユーザインターフェースシステム113を介したユーザ入力に従って設定することができる。ナビゲーションシステムは、自動運転車両が走行している間に走行経路を動的に更新することができる。ナビゲーションシステムは、自動運転車両のための走行経路を決定するために、GPSシステム及び一つ以上の地図からのデータを取り入れることができる。
一実施形態において、ADVに対して現走行周期(または計画周期)の経路を計画する時、ADVの現在位置は、ADVに取り付けられた各種のセンサー(例えば、LIDAR、RADAR、カメラ)によって提供されたセンサーデータに基づいて特定されることが可能である。ADVの現在位置は、測位モジュール301及び/または感知モジュール302によって特定することができる。計画モジュール305は、その後、制御モジュール306が現在位置からADVを所定の期間運転することができるように、現走行周期の経路を計画する。経路は、ADVの運転環境を感知した感知データに基づいて生成することができ、運転環境は、センサーデータに基づいて確定することができる。
一実施形態において、計画の際に、ドリフト補正モジュール308を呼び出して、前の経路計算によるADVの予期位置を特定する。ドリフト補正モジュール308は、計画モジュール305の一部分として実現されても良い。前の経路は、前の走行周期(例えば、直前の走行周期)の期間において計画モジュール305によって生成することができる。ADVが理想的な運転条件の下でドリフトすることなく走行する場合に、ADVの予期位置は、前の経路の目標位置である。しかし、例えば、ドリフト誤差などの前記の各種の要因のために、ADVの実際位置(例えば、現運転周期のADVの現在位置)は、前の走行周期で予期した位置と異なることがある。そして、ドリフト補正モジュール308は、ADVの予期位置と現在位置に基づき、動的にドリフト誤差を計算する。このようなドリフト誤差は、異なる時刻の特定の運転環境(例えば、道路条件、天気条件、タイヤ圧、ホイールアライメント等)によって異なる場合がある。ドリフト誤差に基づき、計画モジュール305は、少なくとも現走行周期の経路の起点を修正し、修正された経路を生成する。そして、制御モジュール306は、現走行周期の修正された経路に従って、例えば、修正された経路に沿う異なる時刻で適切な制御命令(例えば、スロットル、ブレーキ、ステアリング命令)を発行することにより、ADVを制御する。
なお、過去経路及び予期位置に関する情報は、運転統計データ313の一部分として保持されることが可能である。なお、前記の通り、ADVの自動運転中に、前の経路に沿うADVの位置、速度及び進行方向は、採集されて運転統計データ313の一部分として記憶されることが可能である。後続する走行周期の経路計画の時、運転統計データ313を使用することができる。
一実施形態において、ドリフト補正モジュール308は、ADVの予期位置と現在位置との間の(例えば、横方向における)差異に基づいてドリフト誤差を計算するように配置される。ドリフト誤差に基づいて、ドリフト補正モジュール308は、所定のドリフト補正アルゴリズムを使用して更にドリフト補正因子を計算する。そして、ドリフト補正因子に基づいて、計画モジュール305により経路を修正する。一実施形態において、現走行周期において計算されたドリフト誤差に応じて、前の走行周期において計算された前のドリフト補正因子に基づいてドリフト補正因子を計算する。前のドリフト補正因子は、ドリフト補正因子314の一部として保持することができる。他の一実施形態により、少なくとも経路の起点を修正する時に、計画モジュール305は、経路をSL空間またはSL地図にSL曲線として投影またはマッピングされる。SL曲線は、経路に沿う経路点のADVの走行する車道の基準線に対する相対位置を表す。そして、ドリフト補正因子に基づいてSL曲線の起点を少なくとも横方向にシフトする。そして、ADVのドリフト誤差を補正するように、シフトされたSL曲線を利用して経路を修正する。
図4に示すように、説明するために、ADVが時刻t1において位置401に位置すると仮定する。時刻t1において、計画モジュール305は、第1の走行周期の第1の軌跡411を計画する。第1の走行周期が終了すると、時刻t2において、計画モジュール305は、次の走行周期となる第2の走行周期の新軌跡を計画することになる。故に、時刻t1において、ADVは、軌跡411に従って前に向かって走行するように制御される。時刻t2において、ADVは、軌跡412に従って前に向かって走行するように制御され、軌跡411は捨てられることになる。時刻t2において、第1の走行周期の軌跡411に基づき、ADVが位置402に位置すると予期される。しかし、ドリフトに起因して、位置403においてADVはドリフト誤差405を持って走行が終了する。ドリフト誤差405を考慮せずに新軌跡を生成する場合、新軌跡は、軌跡412となる。図4に示すように、ドリフト誤差405に起因して、時刻t1から開始された第1の走行周期の軌跡411と、時刻t2から開始されて第2の走行周期の軌跡412は、平滑的に連結していない。このような、二つの走行周期の間の軌跡の非平滑的な連結は、乗客に不安全及び/または不快をもたらすことがある。
一実施形態において、計画モジュール405が時刻t2において軌跡412を計画する時、時刻t2におけるADVの現在位置403と、軌跡411に基づくADVの予期位置402に基づき、ドリフト誤差405を検出し計算するように、ドリフト補正モジュール308は、呼び出される。前の走行周期となる第1の走行周期において軌跡411を計画する時、予期位置402を特定し、予期位置402は、例えば走行統計データ313の一部分として、永続的記憶装置に保持され記憶されることが可能である。一実施形態において、ドリフト補正モジュール308は、時刻t2におけるADVの現在位置403と、軌跡411に基づくADVの時刻t2における予期位置402との間の差(メートル)に基づき、ドリフト誤差405を計算する。
一実施形態において、予期位置402(Lexpected)の横方向座標から、実際位置403(Lactual)の横方向座標を引くことによって、ドリフト誤差405を計算する。すなわち、ドリフト誤差405=Lexpected−Lactual。図4に示すように、ドリフト誤差405は、正の値であっても良く、負の値であっても良い。ドリフト誤差405の正の値は、ADVの実際位置が前の走行周期の予期位置の右側に位置することを表す。ドリフト誤差405の負の値は、ADVの実際位置が前の走行周期の予期位置の左側に位置することを表す。
ドリフト誤差405に基づき、ドリフト補正因子(ドリフト補正値とも呼ばれる)を計算する。一実施形態において、前の走行周期においてで決められたドリフト補正因子(y_old)に照らして、ドリフト誤差405(k)に基づき、ドリフト補正因子(y_new)を計算する。特定の実施形態において、現走行周期のドリフト補正因子y_new=y_old+k/time_window、ただし、time_windowは所定の期間である。一実施形態において、time_windowの範囲は、100から200までであり、直接的にまたは間接的に運転周期の持続時間(例えば、100−200ms)を表すことができる。ドリフト誤差405(k)と同様に、ADVが予期位置に対する相対位置によって、ドリフト補正因子y_newとy_oldは、正の値であっても良く、負の値であっても良い。
一実施形態により、ドリフト補正因子に基づき、ドリフト誤差を補正するように、少なくとも軌跡412の起点を横方向にシフトする。例えば、図4に示すように、ADVの実際位置403が予期位置402の右側に位置しているとドリフト補正因子が示すと、図5に示すように、少なくとも軌跡の起点または軌跡412全体をドリフト補正因子に基づいて左へシフトする。一方、ADVの実際位置403が予期位置402の左側に位置しているとドリフト補正因子が示すと、少なくとも軌跡の起点または軌跡412全体をドリフト補正因子に基づいて右へシフトする。
図6は、一実施形態に係る、軌跡を計画する時にドリフトを特定して補正するプロセスを示すブロック図である。プロセス600は、処理ロジックによって実行することができ、処理ロジックは、ソフトウェア、ハードウェアまたはその組み合わせを含むことができる。例えば、プロセス600は、ドリフト補正モジュール308、計画モジュール305及び/または制御モジュール306により実行されることが可能である。図6に示すように、操作601において、処理ロジックは、各種センサー(例えば、LIDAR、RIDAR、GPS、カメラ)から取得したセンサーデータに基づき、ADVの現在位置(例えば、実際位置)を特定する。操作602において、処理ロジックは、ADVを現在位置から既定時間(例えば、走行周期の持続時間)運転するための現走行周期の経路を計画する。操作603において、処理ロジックは、前の走行周期において決められた前の経路に基づき計算されたADVの予期位置を特定する。操作604において、処理ロジックは、ADVの現在位置と予期位置との間のドリフト誤差を計算する。処理605において、処理ロジックは、ドリフト誤差に基づき、少なくとも現走行周期の経路の起点を修正して、修正された経路を生成する。操作606において、処理ロジックは、修正された経路に従ってADVを制御する。
図7は、一実施形態にかかる、ドリフト補正を利用した経路の最適化を行うプロセスを示すフローチャート図である。図7に示すように、操作701において、最初に、前の計画周期と関連するドリフト補正値(y_old)はゼロに設定される。操作702において、現計画周期に対して経路を計画する。操作703において、ADVの現在位置と、前の計画周期で特定されたADVの予期位置とを比較して、ドリフト誤差(k)を特定する。操作704において、現計画周期のドリフト補正値y_newは、y_new= y_old + k / time_windowのように更新される。操作705において、現計画周期のドリフト補正値y_newに基づき、経路を修正する。より多い計画周期がさらに存在する場合に、操作706において、現計画周期のドリフト補正値を前の計画周期のドリフト補正値とし、次の計画周期に対して前記プロセスを繰り返す。
なお、以上に例示及び説明された構成要素の一部又は全ては、ソフトウェア、ハードウェア、又はそれらの組み合わせで実現されることが可能である。例えば、このような構成要素は、永続的記憶装置にインストールされるとともに記憶されるソフトウェアとして実現されてもよく、前記ソフトウェアは、本願にわたって記載されたプロセス又は動作を実現するように、プロセッサ(図示せず)によってメモリにロードして実行されてもよい。あるいは、このような構成要素は、集積回路(例えば、特定用途向け集積回路又はASIC)、デジタルシグナルプロセッサ(DSP)、又はフィールドプログラマブルゲートアレイ(FPGA)のような専用ハードウェアにプログラミング又は埋め込まれた実行可能なコードとして実現されてもよく、前記実行可能なコードは、アプリケーションからの対応するドライバー及び/又はオペレーティングシステムを介してアクセスすることができる。また、このような構成要素は、ソフトウェア構成要素が一つ以上の特定の命令によってアクセス可能な命令セットの一部として、プロセッサ又はプロセッサコアにおける特定のハードウェアロジックとして実現されることができる。
図8は、本発明の一実施形態と共に使用可能なデータ処理システムの一例を示すブロック図である。例えば、システム1500は、前記プロセス又は方法のいずれかを実行する前記データ処理システムのいずれか(例えば、図1の感知・計画システム110、又はサーバ103〜104のいずれか)を表すことができる。システム1500は、いくつかの異なる構成要素を含んでもよい。これらの構成要素は、集積回路(IC)、集積回路の一部、ディスクリート型電子デバイス、又は回路基板(例えば、コンピュータシステムのマザーボード若しくはアドインカード)に適するその他のモジュールとして実現されることが可能であり、又は、他の形態でコンピュータシステムのシャーシ内に組み込まれる構成要素として実現されることが可能である。
なお、システム1500は、コンピュータシステムのいくつかの構成要素の高レベルビューを示すことを意図している。しかしながら、特定の実施例において付加的構成要素が存在してもよく、また、その他の実施例において示された構成要素を異なる配置にすることが可能であると理解すべきである。システム1500は、デスクトップコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、サーバ、携帯電話、メディアプレヤー、パーソナルデジタルアシスタント(PDA)、スマートウォッチ、パーソナルコミュニケーター、ゲーム装置、ネットワークルーター又はハブ、無線アクセスポイント(AP)又はリピーター、セット・トップボックス、又はそれらの組み合わせを表すことができる。また、単一の機械又はシステムのみが示されたが、「機械」又は「システム」という用語は、本明細書で説明されるいずれか一種以上の方法を実現するための、単独で又は共同で一つ(又は複数)の命令セットを実行する機械又はシステムのいずれかの組み合わせも含まれると解釈されるべきである。
一実施形態では、システム1500は、バス又はインターコネクト1510を介して接続される、プロセッサ1501と、メモリ1503と、装置1505〜1508とを含む。プロセッサ1501は、単一のプロセッサコア又は複数のプロセッサコアが含まれる単一のプロセッサ又は複数のプロセッサを表すことができる。プロセッサ1501は、マイクロプロセッサ、中央処理装置(CPU)などのような、一つ以上の汎用プロセッサを表すことができる。より具体的には、プロセッサ1501は、複雑命令セットコンピューティング(CISC)マイクロプロセッサ、縮小命令セットコンピューティング(RISC)マイクロプロセッサ、超長命令語(VLIW)マイクロプロセッサ、又はその他の命令セットを実行するプロセッサ、又は命令セットの組み合わせを実行するプロセッサであってもよい。プロセッサ1501は更に、例えば、特定用途向け集積回路(ASIC)、セルラー又はベースバンドプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、デジタルシグナルプロセッサ(DSP)、ネットワークプロセッサ、グラフィックプロセッサ、通信プロセッサ、暗号化プロセッサ、コプロセッサ、組込みプロセッサ、又は命令を処理可能な任意の他のタイプのロジックのような、一つ以上の専用プロセッサであってもよい。
プロセッサ1501は、超低電圧プロセッサのような低電力マルチコアプロセッサソケットであってもよく、前記システムの様々な構成要素と通信するための主処理ユニット及び中央ハブとして機能することができる。このようなプロセッサは、システムオンチップ(SoC)として実現されることができる。プロセッサ1501は、本明細書で説明される動作及びステップを実行するための命令を実行するように構成される。システム1500は、更に所望によるグラフィックサブシステム1504と通信するグラフィックインターフェースを含むことができ、グラフィックサブシステム1504は、表示コントローラ、グラフィックプロセッサ、及び/又は表示装置を含むことができる。
プロセッサ1501は、メモリ1503と通信することができ、メモリ1503は、一実施形態では、所定量のシステムメモリを提供するための複数のメモリ装置によって実現されることができる。メモリ1503は、ランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)、シンクロナスDRAM(SDRAM)、スタティックRAM(SRAM)、又はその他のタイプの記憶装置のような、一つ以上の揮発性記憶(又はメモリ)装置を含むことができる。メモリ1503は、プロセッサ1501又はその他の任意の装置により実行される命令シーケンスを含む情報を記憶することができる。例えば、様々なオペレーティングシステム、デバイスドライバ、ファームウェア(例えば、ベーシックインプット/アウトプットシステム又はBIOS)、及び/又はアプリケーションの実行可能なコード及び/又はデータは、メモリ1503にロードされ、プロセッサ1501により実行されることができる。オペレーティングシステムは、例えば、ロボットオペレーティングシステム(ROS)、Microsoft(登録商標)社のWindows(登録商標)オペレーティングシステム、アップル社のMacOS(登録商標)/iOS(登録商標)、Google(登録商標)社のAndroid(登録商標)、LINUX(登録商標)、UNIX(登録商標)、又はその他のリアルタイム若しくは組込みオペレーティングシステムのような、任意のタイプのオペレーティングシステムであってもよい。
システム1500は、更に、ネットワークインターフェース装置1505、所望による入力装置1506、及びその他の所望によるI/O装置1507を含む装置1505〜1508のようなI/O装置を含むことができる。ネットワークインターフェース装置1505は、無線送受信機及び/又はネットワークインターフェースカード(NIC)を含むことができる。前記無線送受信機は、WiFi送受信機、赤外線送受信機、ブルートゥース送受信機、WiMax送受信機、無線携帯電話送受信機、衛星送受信機(例えば、全地球測位システム(GPS)送受信機)、又はその他の無線周波数(RF)送受信機、又はそれらの組み合わせであってもよい。NICは、イーサネット(登録商標)カードであってもよい。
入力装置1506は、マウス、タッチパネル、タッチスクリーン(表示装置1504と統合されてもよい)、ポインター装置(例えば、スタイラス)、及び/又はキーボード(例えば、物理キーボード又はタッチスクリーンの一部として表示された仮想キーボード)を含むことができる。例えば、入力装置1506は、タッチスクリーンと接続するタッチスクリーンコントローラを含むことができる。タッチスクリーン及びタッチスクリーンコントローラは、例えば、様々なタッチ感応技術(コンデンサ、抵抗、赤外線、及び表面弾性波の技術を含むが、それらに限定されない)のいずれか、並びにその他の近接センサアレイ、又は、タッチスクリーンと接触する一つ以上の点を決定するためのその他の素子を用いて、それらの接触及び移動又は間欠を検出することができる。
I/O装置1507は、音声装置を含むことができる。音声装置は、音声認識、音声複製、デジタル記録、及び/又は電話機能のような音声サポート機能を促進するために、スピーカ及び/又はマイクロフォンを含んでもよい。その他のI/O装置1507は、更に、ユニバーサルシリアルバス(USB)ポート、パラレルポート、シリアルポート、プリンタ、ネットワークインターフェース、バスブリッジ(例えば、PCI−PCIブリッジ)、センサ(例えば、加速度計のようなモーションセンサ、ジャイロスコープ、磁力計、光センサ、コンパス、近接センサなど)、又はそれらの組み合わせを含むことができる。装置1507は、更に結像処理サブシステム(例えば、カメラ)を含むことができ、前記結像処理サブシステムは、写真及びビデオ断片の記録のようなカメラ機能を促進するための、電荷結合素子(CCD)又は相補型金属酸化物半導体(CMOS)光学センサのような光学センサを含むことができる。特定のセンサは、センサハブ(図示せず)を介してインターコネクト1510に接続されることができ、キーボード又はサーマルセンサのようなその他の装置はシステム1500の具体的な配置又は設計により、組込みコントローラ(図示せず)により制御されることができる。
データ、アプリケーション、一つ以上のオペレーティングシステムなどの情報の永続的記憶を提供するために、プロセッサ1501には、大容量記憶装置(図示せず)が接続されることができる。様々な実施形態において、より薄くてより軽量なシステム設計を可能にしながら、システムの応答性を向上するために、このような大容量記憶装置は、ソリッドステート装置(SSD)によって実現されることができる。しかしながら、その他の実施形態において、大容量記憶装置は、主にハードディスクドライブ(HDD)を使用して実現することができ、より小さい容量のSSD記憶装置をSSDキャッシュとして機能することで、停電イベントの間にコンテキスト状態及び他のそのような情報の不揮発性記憶を可能にし、それによりシステム動作が再開するときに通電を速く実現することができる。また、フラッシュデバイスは、例えば、シリアルペリフェラルインターフェース(SPI)を介してプロセッサ1501に接続されることができる。このようなフラッシュデバイスは、前記システムのBIOS及びその他のファームウェアを含むシステムソフトウェアの不揮発性記憶のために機能することができる。
記憶装置1508は、コンピュータアクセス可能な記憶媒体1509(機械可読記憶媒体又はコンピュータ可読記憶媒体ともいう)を含むことができ、前記コンピュータアクセス可能な記憶媒体1509には、本明細書で記載されたいずれか一種以上の方法又は機能を具現化する一つ以上の命令セット又はソフトウェア(例えば、モジュール、ユニット、及び/又はロジック1528)が記憶されている。処理モジュール/ユニット/ロジック1528は、例えば、図3Aにおけるドリフト補正モジュール308のような、前記構成要素のいずれかを表すことができる。処理モジュール/ユニット/ロジック1528は、更に、データ処理システム1500、メモリ1503、及びプロセッサ1501による実行中に、メモリ1503内及び/又はプロセッサ1501内に完全的に又は少なくとも部分的に存在してもよく、データ処理システム1500、メモリ1503、及びプロセッサ1501も機械アクセス可能な記憶媒体を構成する。処理モジュール/ユニット/ロジック1528は、更に、ネットワークによってネットワークインターフェース装置1505を経由して送受信されてもよい。
コンピュータ可読記憶媒体1509は、以上に説明されたいくつかのソフトウェア機能を永続的に記憶するために用いることができる。コンピュータ可読記憶媒体1509は、例示的な実施形態において単一の媒体として示されるが、「コンピュータ可読記憶媒体」という用語は、前記一つ以上の命令セットが記憶される単一の媒体又は複数の媒体(例えば、集中型又は分散型データベース、及び/又は関連するキャッシュとサーバ)を含むと解釈されるものとする。「コンピュータ可読記憶媒体」という用語は、更に、命令セットを記憶又は符号化できる任意の媒体を含むと解釈されるものであり、前記命令セットは機械により実行され、本発明のいずれか一種以上の方法を前記機械に実行させるためのものである。それゆえに、「コンピュータ可読記憶媒体」という用語は、ソリッドステートメモリ、光学媒体及び磁気媒体、又はその他の任意の非一時的な機械可読媒体を含むが、それらに限定されないと解釈されるものとする。
本明細書に記載の処理モジュール/ユニット/ロジック1528、構成要素及びその他の特徴は、ディスクリートハードウェア構成要素として実現されてもよく、又はハードウェア構成要素(例えば、ASICS、FPGA、DSP又は類似の装置)の機能に統合されてもよい。また、処理モジュール/ユニット/ロジック1528は、ハードウェア装置におけるファームウェア又は機能性回路として実現されてもよい。また、処理モジュール/ユニット/ロジック1528は、ハードウェア装置とソフトウェア構成要素の任意の組み合わせで実現されてもよい。
なお、システム1500は、データ処理システムの様々な構成要素を有するものとして示されているが、構成要素を相互接続する任意の特定のアーキテクチャ又は方式を表すことを意図するものではなく、そのような詳細は、本発明の実施形態と密接な関係がない。また、より少ない構成要素又はより多くの構成要素を有するネットワークコンピュータ、ハンドヘルドコンピュータ、携帯電話、サーバ、及び/又はその他のデータ処理システムも、本発明の実施形態と共に使用することができることを理解されたい。
前記具体的な説明の一部は、既に、コンピュータメモリにおけるデータビットに対する演算のアルゴリズムと記号表現で示される。これらのアルゴリズムの説明及び表現は、データ処理分野における当業者によって使用される、それらの作業実質を所属分野の他の当業者に最も効果的に伝達する方法である。本明細書では、一般的に、アルゴリズムは、所望の結果につながるセルフコンシステントシーケンスと考えられる。これらの動作は、物理量の物理的処置が必要なものである。
しかしながら、念頭に置くべきなのは、これらの用語及び類似の用語の全ては、適切な物理量に関連付けられるものであり、これらの量を標識しやすくするためのものに過ぎない。以上の説明で他に明示的に記載されていない限り、本明細書の全体にわたって理解すべきなのは、用語(例えば、添付された特許請求の範囲に記載のもの)による説明とは、コンピュータシステム、又は類似の電子式計算装置の動作又はプロセスを指し、前記コンピュータシステム又は電子式計算装置は、コンピュータシステムのレジスタ及びメモリにおける物理(電子)量として示されたデータを制御するとともに、前記データをコンピュータシステムメモリ又はレジスタ又はこのようなその他の情報記憶装置、伝送又は表示装置において同様に物理量として示された別のデータに変換する。
本発明の実施形態は、本明細書の動作を実行するための装置にも関する。このようなコンピュータプログラムは、非一時的なコンピュータ可読媒体に記憶される。機械可読媒体は、機械(例えば、コンピュータ)により可読な形式で情報を記憶するための任意のメカニズムを含む。例えば、機械可読(例えば、コンピュータ可読)媒体は、機械(例えば、コンピュータ)可読記憶媒体(例えば、読み出し専用メモリ(「ROM」)、ランダムアクセスメモリ(「RAM」)、磁気ディスク記憶媒体、光学記憶媒体、フラッシュメモリ装置)を含む。
上述した図面において説明されたプロセス又は方法は、ハードウェア(例えば、回路、専用ロジックなど)、ソフトウェア(例えば、非一時的なコンピュータ可読媒体に具現化されるもの)、又は両方の組み合わせを含む処理ロジックにより実行されることができる。前記プロセス又は方法は、以上で特定の順序に応じて説明されたが、前記動作の一部が異なる順序で実行されてもよいことを理解されたい。また、一部の動作は、順番ではなく並行して実行されてもよい。
本発明の実施形態は、いずれの特定のプログラミング言語を参照することなく記載されている。理解すべきなのは、本明細書に記載の本発明の実施形態の教示を実現するために、様々なプログラミング言語を使用することができる。
前記明細書において、本発明の実施形態は、既にその具体的な例示的な実施形態を参照しながら記載された。明らかなように、添付された特許請求の範囲に記載された本発明のより広い趣旨及び範囲を逸脱しない限り、本発明に対して様々な変更を行うことができる。それゆえに、本明細書及び図面は、限定的な意味でなく、例示的な意味で理解されるべきである。

Claims (22)

  1. 自動運転車の運転経路を計画するためのコンピュータ実装方法であって、
    自動運転車(ADV)に取り付けられた複数のセンサーから取得したセンサーデータに基づき、前記ADVの現在位置を特定することと、
    前記現在位置から前記ADVを所定の期間運転するための現走行周期の経路を計画することと、
    前の走行周期において決められた前の経路に基づいて計算された前記ADVの予期位置を特定することと、
    前記ADVの前記現在位置と前記予期位置との間のドリフト誤差を計算することと、
    前記ドリフト誤差に基づき、少なくとも前記現走行周期に対して計画された経路の起点を修正し、修正された経路を生成することと、
    前記修正された経路に従って前記ADVの走行を制御することとを含む自動運転車の経路の計画用のコンピュータ実装方法。
  2. 前記ドリフト誤差は、前記ADVの前記予期位置と前記現在位置との間の差異を表す請求項1に記載の方法。
  3. 所定のドリフト補正アルゴリズムを利用し、前記ドリフト誤差に基づき、ドリフト補正因子を計算することと、
    前記ドリフト補正因子に基づき、少なくとも前記計画された経路の起点を修正することとを更に含む請求項1に記載の方法。
  4. 前記ドリフト補正因子は、現在のドリフト補正因子を表し、
    前記現在のドリフト補正因子は、前記前の走行周期において決められた前のドリフト補正因子と、前記現走行周期において特定された前記ドリフト誤差とに基づいて計算される請求項3に記載の方法。
  5. 前記現在のドリフト補正因子(ycurrent)は、下記の式(1)により計算し、
    current=yprior+k/time_window_value (1)
    ただし、kは、前記ドリフト誤差を表し、time_window_valueは、所定の時間ウィンドウの時間間隔を表す、請求項4に記載の方法。
  6. 前記time_window_valueは、200〜400の範囲内にある請求項5に記載の方法。
  7. 前記少なくとも前記現走行周期に対して計画された経路の起点を修正することは、
    前記経路をSL曲線としてステーション横方向(SL)地図に投影し、前記SL曲線は、前記経路の複数の経路点の、前記ADVの走行している車道の基準線に対する相対位置を表すことと、
    ドリフト補正因子に基づき、SL曲線の起点を少なくとも横方向にシフトし、シフトされたSL曲線を利用して前記経路を修正することと、を含む請求項1に記載の方法。
  8. 指令を記憶している非一時的機械可読メディアであって、
    前記指令は、プロセッサーによって実行される場合に、
    自動運転車(ADV)に取り付けられた複数のセンサーから取得したセンサーデータに基づき、前記ADVの現在位置を特定することと、
    前記現在位置から前記ADVを所定の期間運転するための現走行周期の経路を計画することと、
    前の走行周期において決められた前の経路に基づいて計算された前記ADVの予期位置を特定することと、
    前記ADVの前記現在位置と前記予期位置との間のドリフト誤差を計算することと、
    前記ドリフト誤差に基づき、少なくとも前記現走行周期に対して計画された経路の起点を修正し、修正された経路を生成することと、
    前記修正された経路に従って前記ADVの走行を制御することと、
    を含む、自動運転車を操作するため操作を前記プロセッサーに実行させる、非一時的機械可読メディア。
  9. 前記ドリフト誤差は、前記ADVの前記予期位置と前記現在位置との間の差異を表す請求項8に記載の非一時的機械可読メディア。
  10. 前記操作は、
    所定のドリフト補正アルゴリズムを利用し、前記ドリフト誤差に基づき、ドリフト補正因子を計算することと、
    前記ドリフト補正因子に基づき、少なくとも前記計画された経路の起点を修正することとを更に含む請求項8に記載の非一時的機械可読メディア。
  11. 前記ドリフト補正因子は、現在のドリフト補正因子を表し、
    前記現在のドリフト補正因子は、前記前の走行周期において決められた前のドリフト補正因子と、現走行周期において特定された前記ドリフト誤差に基づいて計算される請求項10に記載の非一時的機械可読メディア。
  12. 前記現在のドリフト補正因子(ycurrent)は、下記の式(1)により計算し、
    current=yprior+k/time_window_value
    ただし、kは、前記ドリフト誤差を表し、time_window_valueは、所定の時間ウィンドウの時間間隔を表す、請求項11に記載の非一時的機械可読メディア。
  13. 前記time_window_valueは、200〜400の範囲内にある、請求項12に記載の非一時的機械可読メディア。
  14. 前記少なくとも前記現走行周期に対して計画された経路の起点を修正することは、
    前記経路をSL曲線としてステーション横方向(SL)地図に投影し、前記SL曲線は、前記経路の複数の経路点の、ADVの走行している車道の基準線に対する相対位置を表すことと、
    ドリフト補正因子に基づき、SL曲線の起点を少なくとも横方向にシフトし、シフトされたSL曲線を利用して前記経路を修正することと、を含む請求項8に記載の非一時的機械可読メディア。
  15. データ処理システムであって、
    プロセッサーと、
    前記プロセッサーに接続され、命令を記憶するメモリとを含み、
    前記指令は、プロセッサーによって実行される場合に、
    自動運転車(ADV)に取り付けられた複数のセンサーから取得したセンサーデータに基づき、前記ADVの現在位置を特定することと、
    前記現在位置から前記ADVを所定の時間運転するための現走行周期の経路を計画することと、
    前の走行周期において決められた前の経路に基づき計算された前記ADVの予期位置を特定することと、
    前記ADVの前記現在位置と前記予期位置との間のドリフト誤差を計算することと、
    前記ドリフト誤差に基づき、少なくとも前記現走行周期に対して計画された経路の起点を修正し、修正された経路を生成することと、
    前記修正された経路に従って前記ADVの走行を制御することとを、
    前記プロセッサーを実行させるようにさせるデータ処理システム。
  16. 前記ドリフト誤差は、前記ADVの前記予期位置と前記現在位置との間の差異を表す請求項15に記載のシステム。
  17. 前記操作は、
    所定のドリフト補正アルゴリズムを利用し、前記ドリフト誤差に基づき、ドリフト補正因子を計算することと、
    前記ドリフト補正因子に基づき、少なくとも前記計画された経路の起点を修正することとを更に含む請求項15に記載のシステム。
  18. 前記ドリフト補正因子は、現在のドリフト補正因子を表し、
    前記現在のドリフト補正因子は、前記前の走行周期において決められた前のドリフト補正因子と、現走行周期において特定された前記ドリフト誤差に基づき計算される請求項17に記載のシステム。
  19. 前記現在のドリフト補正因子(ycurrent)は、下記の式(1)により計算し、
    current=yprior+k/time_window_value(1)
    ただし、kは、前記ドリフト誤差を表し、time_window_valueは、所定の時間ウィンドウの時間間隔を表す、請求項18に記載のシステム。
  20. 前記time_window_valueは、200〜400の範囲内にある、請求項19に記載のシステム。
  21. 前記少なくとも現走行周期に対して計画された経路の起点を修正することは、
    前記経路をSL曲線としてステーション横方向(SL)地図に投影し、前記SL曲線は、前記経路の複数の経路点の、ADVの走行している車道の基準線に対する相対位置を表すことと、
    ドリフト補正因子に基づき、SL曲線の起点を少なくとも横方向にシフトし、シフトされたSL曲線を利用して前記経路を修正することと、を含む請求項15に記載のシステム。
  22. コンピュータプログラムであって、
    前記コンピュータプログラムがプロセッサにより実行されると、請求項1〜7のいずれか一項に記載の方法を実現させるコンピュータプログラム。
JP2019076991A 2018-04-18 2019-04-15 自動運転車の経路計画用のドリフト補正の方法 Active JP6784794B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/955,699 US10990101B2 (en) 2018-04-18 2018-04-18 Method for drifting correction for planning a path for autonomous driving vehicles
US15/955,699 2018-04-18

Publications (2)

Publication Number Publication Date
JP2019189214A JP2019189214A (ja) 2019-10-31
JP6784794B2 true JP6784794B2 (ja) 2020-11-11

Family

ID=68236869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076991A Active JP6784794B2 (ja) 2018-04-18 2019-04-15 自動運転車の経路計画用のドリフト補正の方法

Country Status (3)

Country Link
US (1) US10990101B2 (ja)
JP (1) JP6784794B2 (ja)
CN (1) CN110389580B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11602999B1 (en) * 2018-05-01 2023-03-14 Zoox, Inc. Predictive control strategies for vehicles
US11199847B2 (en) * 2018-09-26 2021-12-14 Baidu Usa Llc Curvature corrected path sampling system for autonomous driving vehicles
CN111324680B (zh) * 2019-01-25 2021-05-18 北京嘀嘀无限科技发展有限公司 一种信息展示方法及装置
JP7259574B2 (ja) * 2019-06-17 2023-04-18 株式会社ジェイテクト 制御装置、および転舵装置
CN113492863B (zh) * 2020-03-18 2023-03-10 北京车和家信息技术有限公司 自动驾驶的控制方法及装置
CN113771851B (zh) * 2020-05-20 2023-06-06 杭州海康威视数字技术股份有限公司 一种轨迹规划方法及装置
US20200324794A1 (en) * 2020-06-25 2020-10-15 Intel Corporation Technology to apply driving norms for automated vehicle behavior prediction
DE102020208391A1 (de) * 2020-07-03 2022-01-05 Continental Automotive Gmbh Verfahren zur teil- oder vollautonomen Führung eines Kraftfahrzeugs
CN115734906A (zh) 2020-07-21 2023-03-03 松下知识产权经营株式会社 移动控制系统、移动控制方法、程序及移动体
CN114167849B (zh) * 2020-08-21 2023-12-08 富联精密电子(天津)有限公司 自走三角警示架及其行进控制方法
CN112009460B (zh) * 2020-09-03 2022-03-25 中国第一汽车股份有限公司 一种车辆控制方法、装置、设备及存储介质
CN112721914B (zh) * 2020-12-23 2022-04-05 同济大学 带有监督机制的智能电动汽车漂移入库分段式控制方法
CN113696910B (zh) * 2021-09-24 2022-03-18 紫清智行科技(北京)有限公司 一种自动驾驶车辆纠正横向漂移的方法及装置
CN116729422B (zh) * 2023-06-07 2024-03-08 广州市德赛西威智慧交通技术有限公司 车辆轨迹的偏离修正方法、车辆驾驶辅助方法及设备

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8402497A (nl) * 1984-08-14 1986-03-03 Philips Nv Voertuignavigatiesysteem voorzien van een adaptief traagheidsnavigatiesysteem gebaseerd op meting van de snelheid en de dwarsversnelling van het voertuig en voorzien van een correctie-eenheid voor het corrigeren van de gemeten waarden.
JPH0772926A (ja) * 1993-09-03 1995-03-17 Nissan Motor Co Ltd 推測航法における推測位置修正方法
JP3750877B2 (ja) * 1996-01-18 2006-03-01 株式会社小松製作所 無人車両走行コースのティーチング方法及び装置
DE19625561A1 (de) * 1996-06-26 1998-01-08 Raytheon Anschuetz Gmbh Verfahren zur Kursregelung von Wasserfahrzeugen über Grund
JP3755217B2 (ja) * 1996-11-29 2006-03-15 住友電気工業株式会社 車両の位置算出装置
US6109986A (en) * 1998-12-10 2000-08-29 Brunswick Corporation Idle speed control system for a marine propulsion system
JP2000330629A (ja) * 1999-05-17 2000-11-30 Taisei Corp 無人搬送車の走行・停止位置変更機構
FR2884953B1 (fr) * 2005-04-22 2007-07-06 Thales Sa Procede et dispositif embarque, pour aeronef, d'alerte d'incursion de piste
CN1750418A (zh) * 2005-07-27 2006-03-22 凯明信息科技股份有限公司 定时跟踪和捕捉方法
DE102008002699A1 (de) * 2008-06-27 2009-12-31 Robert Bosch Gmbh Vorrichtung und Verfahren zum Steuern einer automatischen Lenkung eines Fahrzeugs und Vorrichtung und Verfahren zum Überprüfen einer Ausführbarkeit einer vorgegebenen Soll-Fahrtrichtungsgröße für ein Fahrzeug
US8126642B2 (en) * 2008-10-24 2012-02-28 Gray & Company, Inc. Control and systems for autonomously driven vehicles
FR2938809B1 (fr) * 2008-11-25 2013-04-12 Bosch Gmbh Robert Procede de correction automatique de trajectoire.
AU2011305154B2 (en) * 2010-09-24 2015-02-05 Irobot Corporation Systems and methods for VSLAM optimization
US20140309836A1 (en) * 2013-04-16 2014-10-16 Neya Systems, Llc Position Estimation and Vehicle Control in Autonomous Multi-Vehicle Convoys
DE102014200687A1 (de) * 2014-01-16 2015-07-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrzeugs
KR102083932B1 (ko) * 2014-09-30 2020-04-14 한화디펜스 주식회사 주행 제어 시스템 및 주행 제어 방법
EP3018026B1 (en) * 2014-11-06 2019-05-15 Veoneer Sweden AB Method for vehicle path prediction
JP6321532B2 (ja) * 2014-11-28 2018-05-09 株式会社デンソー 車両の走行制御装置
KR102622571B1 (ko) * 2015-02-10 2024-01-09 모빌아이 비젼 테크놀로지스 엘티디. 자율 주행을 위한 약도
US9567004B1 (en) * 2015-12-29 2017-02-14 Automotive Research & Testing Center Method and apparatus for vehicle path tracking with error correction
CN105620470B (zh) * 2016-01-25 2018-09-07 雷沃重工股份有限公司 一种作业车辆行偏移检测调整方法及系统
CN106020191B (zh) * 2016-05-26 2017-10-13 百度在线网络技术(北京)有限公司 无人车的控制方法、装置及系统
CN106043169A (zh) * 2016-07-01 2016-10-26 百度在线网络技术(北京)有限公司 环境感知设备和应用于环境感知设备的信息获取方法
JPWO2018061612A1 (ja) * 2016-09-29 2019-04-25 本田技研工業株式会社 車両制御装置
CN106155066B (zh) * 2016-09-29 2022-11-11 翁锦祥 一种可进行路面障碍检测的搬运车及搬运方法
CA3039620A1 (en) * 2016-10-07 2018-04-12 Nissan Motor Co., Ltd. Vehicle assessment method, travel route correction method, vehicle assessment device, and travel route correction device
WO2018175441A1 (en) * 2017-03-20 2018-09-27 Mobileye Vision Technologies Ltd. Navigation by augmented path prediction
US20200174490A1 (en) * 2017-07-27 2020-06-04 Waymo Llc Neural networks for vehicle trajectory planning
US10976745B2 (en) * 2018-02-09 2021-04-13 GM Global Technology Operations LLC Systems and methods for autonomous vehicle path follower correction
JP6900930B2 (ja) * 2018-04-13 2021-07-14 トヨタ自動車株式会社 車両走行制御装置
US11260849B2 (en) * 2018-05-23 2022-03-01 Baidu Usa Llc Method for determining lane changing trajectories for autonomous driving vehicles

Also Published As

Publication number Publication date
US10990101B2 (en) 2021-04-27
CN110389580B (zh) 2022-05-31
CN110389580A (zh) 2019-10-29
US20190324463A1 (en) 2019-10-24
JP2019189214A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6784794B2 (ja) 自動運転車の経路計画用のドリフト補正の方法
JP6861238B2 (ja) 自動運転車の車線変更軌跡を確定するための方法
JP7001642B2 (ja) 自動運転車両のためのオブジェクト移動を予測するための方法およびシステム
JP6845874B2 (ja) 自動運転車のための経路及び速度の最適化フォールバックメカニズム
JP6878493B2 (ja) 自動運転車両(adv)に用いるピッチ角の補正方法
JP7102370B2 (ja) 冗長超音波レーダを備える自律走行車{ autonomous driving vehicles with redundant ultrasonic radar }
JP7001628B2 (ja) 自動運転車両の駐車軌跡の計画
JP6861239B2 (ja) 自動運転車両のためのpid埋め込みlqr
JP6811282B2 (ja) 自動運転車に用いられる自動データラベリング
JP6975512B2 (ja) 自動運転車両の周辺車両の挙動に基づくリアルタイム感知調整と運転調整
JP6967051B2 (ja) 自動運転車両のための人間の運転行動を模倣する2段階基準線平滑化方法
JP7072581B2 (ja) 自動運転車両の経路計画のための運転シナリオに基づく車線ガイドライン
JP6667686B2 (ja) 自動運転車両のための走行軌跡生成方法、システム及び機械可読媒体
JP7108583B2 (ja) 自動運転車両のための曲率補正経路サンプリングシステム
JP6779326B2 (ja) 複数のスレッドを使用して自動運転車両に用いられる基準線を生成するための方法及びシステム
JP7043466B2 (ja) 自動運転車両のための以前の運転軌跡に基づくリアルタイムマップ生成方法
JP6972150B2 (ja) 自動運転車両のための歩行者確率予測システム
JP7149288B2 (ja) 自動運転車両のための螺旋曲線に基づく垂直駐車計画システム
JP7001708B2 (ja) 自動運転車の高速計画のための多項式フィッティングベースの基準線平滑化方法
JP6808775B2 (ja) 複数のキューを利用したオブジェクト追跡
JP6932196B2 (ja) 自動運転車両のための螺旋経路に基づく3ポイントターン計画
CN111033422A (zh) 操作自动驾驶车辆的规划阶段和控制阶段之间的漂移校正
JP7009490B2 (ja) 自動運転車両のための制御主導型の3ポイントターン計画
JP2021502914A (ja) 自律走行車に用いられるトンネルに基づく計画システム
JP6908675B2 (ja) L2自動運転用の所定のキャリブレーションテーブルに基づく車両アクセル/ブレーキアシストシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201023

R150 Certificate of patent or registration of utility model

Ref document number: 6784794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250