JP6775488B2 - 前立腺がんの診断に関連する組成物および方法 - Google Patents

前立腺がんの診断に関連する組成物および方法 Download PDF

Info

Publication number
JP6775488B2
JP6775488B2 JP2017502945A JP2017502945A JP6775488B2 JP 6775488 B2 JP6775488 B2 JP 6775488B2 JP 2017502945 A JP2017502945 A JP 2017502945A JP 2017502945 A JP2017502945 A JP 2017502945A JP 6775488 B2 JP6775488 B2 JP 6775488B2
Authority
JP
Japan
Prior art keywords
subject
prostate cancer
probability
tpsa
prostate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017502945A
Other languages
English (en)
Other versions
JP2017515127A (ja
Inventor
デイビッド・スタインミラー
ビンセント・リンダー
キム・ペッテルソン
ティモ・ロヴグリン
ハンス・リルヤ
ピーター・ティ・スカーディノ
アンドリュー・ジェイ・ビッカーズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPKO Diagnostics LLC
Original Assignee
OPKO Diagnostics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPKO Diagnostics LLC filed Critical OPKO Diagnostics LLC
Publication of JP2017515127A publication Critical patent/JP2017515127A/ja
Application granted granted Critical
Publication of JP6775488B2 publication Critical patent/JP6775488B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57434Specifically defined cancers of prostate
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96433Serine endopeptidases (3.4.21)
    • G01N2333/96441Serine endopeptidases (3.4.21) with definite EC number
    • G01N2333/96455Kallikrein (3.4.21.34; 3.4.21.35)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • Primary Health Care (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioethics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)

Description

関連出願の相互参照
この出願は、米国特許法第119条第(e)の下、2014年3月28日に出願された米国仮特許出願第61/972,099号明細書への優先権を主張し、同特許は、その全内容が参照により本明細書に組み込まれる。
総前立腺特異抗原(PSA)の血中濃度の上昇は、前立腺がんを含む前立腺関連の障害と関連付けられる。PSAのアイソフォームのレベルの測定は、総PSAの単一の措置においてそれらを一緒に組み合わせるというよりむしろ、別々に、対象者における前立腺がんの存在に関連する予測の改善につながるという重大な証拠がある。また、hK2(PSAをその前駆形態から活性形態に変換する分子)の測定はそのような予測に有益であるという証拠もある。その上、そのような測定に基づくマルチマーカー群は、対象者の前立腺がんの状態を評価するために提案されている。しかし、依然として、前立腺がんを評価するための方法、具体的には、侵襲的な前立腺組織生検の必要性を評価するため方法を改善する必要がある。
米国特許出願公開第20130273643号
Thompson IM,Ankerst DP,Chi C,Goodman PJ,Tangen CM,Lucia MS,Feng Z,Parnes HL,Coltman CA Jr.Assessing prostate cancer risk:Results from the Prostate Cancer Prevention Trial,Journal of the National Cancer Institute 98:529−534,2006 Vickers A.J.et al.,Net benefit and threshold probability were established using methods disclosed in Med Decis Making.2006;26(6):565−574
本開示の態様は、対象者から得られた前立腺組織生検が検出可能な前立腺がんを含むかどうかを予測するための方法の改善に関連する。いくつかの実施形態では、方法は、対象者から得られた血液試料を使用して、前立腺特異抗原のレベルを測定する1つまたは複数の免疫測定法を実施するステップを伴う。いくつかの実施形態では、血漿製剤における前立腺特異抗原のレベルを測定することは、血清製剤などの他の血液製剤におけるレベルを測定することによって得られるものより良い予測結果につながることが分かっている。いくつかの実施形態では、低pH緩衝液である免疫測定法を実行することは、より感度の高い抗原検出につながり、従って、より良い予測結果につながることが分かっている。その上、いくつかの実施形態では、予測結果の改善は、測定された前立腺特異抗原レベルに関する情報を、対象者の年齢、過去の直腸指診結果および以前の生検の状態のうちの1つまたは複数に関する情報と組み合わせることによって得られることが分かっている。本明細書で開示される方法の改善は、侵襲的な前立腺組織生検が、対象者が前立腺がん(特に、高悪性度の前立腺がん(例えば、グリーソンスコア7.0以上)を患っているかどうかを判断するという目的にふさわしいか否かを予測するのに役立つ。その上、本明細書で開示される方法は、前立腺組織生検などの侵襲的なおよび比較的リスクの高い診断手順が有益であり、実行する価値のあるものであるという可能性に関する情報を与えるという結果を生み出すため、有利である。それに従って、方法は、医療機関がそれにより十分な情報を得た上で対象者のケアについて決定できるようになるため、有効である。
本開示の態様は、対象者から得られた前立腺組織生検が検出可能な前立腺がんを含む確率を決定する方法に関連する。いくつかの実施形態では、方法は、i)対象者の血漿試料を、血漿試料中の総前立腺特異抗原(tPSA)のレベルを測定する免疫測定法にかけるステップと、ii)tPSAレベルが閾値レベルを上回る場合は、tPSAの測定レベルおよび対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前立腺組織生検が検出可能な前立腺がんを含む確率を決定するステップと、iii)tPSAレベルが閾値レベル以下である場合は、血漿試料を、血漿試料中の遊離前立腺特異抗原(fPSA)、無傷前立腺特異抗原(iPSA)およびヒトカリクレイン2(hK2)のレベルを測定する免疫測定法にかけ、tPSA、fPSA、iPSAおよびhK2の測定レベルならびに対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前立腺組織生検が検出可能な前立腺がんを含む確率を決定するステップとを含む。いくつかの実施形態では、方法は、i)対象者の血漿試料を、遊離前立腺特異抗原(fPSA)、無傷前立腺特異抗原(iPSA)、総前立腺特異抗原(tPSA)およびヒトカリクレイン2(hK2)のレベルを測定する免疫測定法にかけるステップと、ii)fPSA、iPSA、tPSAおよびhK2の測定レベルならびに対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前立腺組織生検が検出可能な前立腺がんを含む確率を決定するステップとを含む。
本開示のさらなる態様は、対象者に前立腺組織生検が適応されるかどうかを判断する方法に関連する。いくつかの実施形態では、方法は、i)対象者から血液試料を得るステップと、ii)ステップi)で得られた血液試料を使用して、前立腺組織生検が検出可能な前立腺がんを含む確率を決定するステップであって、a)血液試料を使用して測定されたtPSAレベルが閾値レベルを上回る場合は、確率は、tPSAレベルおよび対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づき、そうでなければ、b)tPSAレベルが閾値レベル以下である場合は、確率は、血液試料を使用して測定されたtPSA、fPSA、iPSAおよびhK2のレベルならびに対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づく、ステップと、iv)ステップii)で決定されるような前立腺組織生検が検出可能な前立腺がんを含む確率に基づいて、対象者に前立腺組織生検が適応されるかどうかを判断するステップとを含む。
本開示のさらなる態様は、対象者が前立腺がんを患っているかどうかを評価する方法に関連する。いくつかの実施形態では、方法は、i)対象者から血液試料を得るステップと、ii)対象者から得られた前立腺組織生検が検出可能な前立腺がんを含むかどうかを判断するステップであって、a)血液試料を使用して測定されたtPSAレベルが閾値レベルを上回る場合は、確率は、tPSAレベルおよび対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づき、そうでなければ、b)tPSAレベルが閾値レベル以下である場合は、確率は、血液試料を使用して測定されたtPSA、fPSA、iPSAおよびhK2のレベルならびに対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づく、ステップと、iii)ステップii)の結果に基づいて、対象者に前立腺組織生検が適応されるかどうかを判断するステップと、iv)ステップii)の結果に基づいて、対象者に前立腺組織生検が適応される場合は、対象者から前立腺組織生検を得て、前立腺組織生検の分析に基づいて、対象者が前立腺がんを患っているかどうかを判断するステップとを含む。
本開示のさらなる態様は、対象者が前立腺がんを患っているかどうかを判断する方法に関連する。いくつかの実施形態では、方法は、i)対象者から前立腺組織生検を得るステップであって、対象者には、前立腺組織生検が検出可能な前立腺がんを含む確率に基づいて、前立腺組織生検の適応が示され、a)対象者から得られた血液試料を使用して測定されたtPSAレベルが閾値レベルを上回る場合は、確率は、tPSAレベルおよび対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づき、そうでなければ、b)tPSAレベルが閾値レベル以下である場合は、確率は、血液試料を使用して測定されたtPSA、fPSA、iPSAおよびhK2のレベルならびに対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づく、ステップと、ii)前立腺組織生検の分析に基づいて、対象者が前立腺がんを患っているかどうかを判断するステップとを含む。
本開示のさらなる態様は、試料中のiPSAレベルを測定する免疫測定法に関連する。いくつかの実施形態では、方法は、捕捉抗体が少なくともiPSAと結合し、それにより、捕捉抗体iPSA複合体が生成されるという条件の下で、試料中に存在するiPSAを、iPSAおよび切断(nicked)PSAに特異的な捕捉抗体と接触させるステップと、トレーサーが捕捉抗体iPSA複合体と結合するように、6.5から7.75未満の範囲のpHを有する緩衝液中で捕捉抗体iPSA複合体を適切なトレーサーと混合するステップと、捕捉抗体iPSA複合体と結合したトレーサーを検出するステップとを含む。いくつかの実施形態では、方法は、捕捉抗体が少なくともiPSAと結合し、それにより、捕捉抗体iPSA複合体が生成されるという条件の下で、試料中に存在するiPSAを、iPSAおよび切断PSAに特異的な捕捉抗体と接触させるステップであって、捕捉抗体がFabである、ステップと、トレーサーが捕捉抗体iPSA複合体と結合するという条件の下で、捕捉抗体iPSA複合体を適切なトレーサーと混合するステップと、捕捉抗体iPSA複合体と結合したトレーサーを検出するステップとを含む。いくつかの実施形態では、Fabは、5A10Fabである。
本開示のさらなる態様は、試料中のhK2レベルを測定する免疫測定法に関連する。いくつかの実施形態では、方法は、捕捉抗体が少なくともhK2と結合し、それにより、捕捉抗体hK2複合体が生成されるという条件の下で、試料中に存在するhK2を、hK2および切断PSAに特異的な捕捉抗体と接触させるステップであって、捕捉抗体がFabである、ステップと、捕捉抗体hK2複合体を適切なトレーサーと混合するステップと、捕捉抗体hK2複合体と結合したトレーサーを検出するステップとを含む。いくつかの実施形態では、Fabは、F(ab)2である。いくつかの実施形態では、F(ab)2は、6H10F(ab)2である。
本開示のさらなる態様は、試料(例えば、血漿試料)を評価するための方法に関連する。いくつかの実施形態では、方法は、(a)試料を、fPSA、iPSA、tPSAおよびhK2のレベルを測定する免疫測定法にかけるステップであって、fPSAのレベルを測定する免疫測定法が、捕捉抗体fPSA複合体を生成するために試料中に存在するfPSAをH117捕捉抗体と接触させることおよび5A10トレーサー抗体を使用して捕捉抗体fPSA複合体を検出することを含み、iPSAのレベルを測定する免疫測定法が、捕捉抗体iPSA複合体を生成するために試料中に存在するiPSAを5A10Fab捕捉抗体と接触させることおよび4D4トレーサー抗体を使用して捕捉抗体iPSA複合体を検出することを含み、tPSAのレベルを測定する免疫測定法が、捕捉抗体tPSA複合体を生成するために試料中に存在するtPSAをH117捕捉抗体と接触させることおよびH50トレーサー抗体で捕捉抗体tPSA複合体を検出することを含み、hK2のレベルを測定する免疫測定法が、血漿試料中のPSAを遮断抗体と接触させること、捕捉抗体hK2複合体を生成するために試料中に存在するhK2を6H10F(ab)2捕捉抗体と接触させることおよび7G1トレーサー抗体で捕捉抗体hK2複合体を検出することを含む、ステップと、(b)fPSA、iPSA、tPSAおよびhK2の測定レベルに基づいて、試料を評価するステップとを含む。
本開示のさらなる態様は、前立腺がんと関連付けられた事象の確率を決定するための方法に関連する。いくつかの実施形態では、方法は、入力インタフェースを介して、対象者の血漿試料中に存在するtPSAのレベルを示す情報を受信するステップと、入力インタフェースを介して、対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するステップと、対象者の前立腺がんと関連付けられた事象の確率を決定するために、少なくとも1つのプロセッサを使用して、受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、tPSA値および対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、ステップと、前立腺がんと関連付けられた事象の確率の表示を出力するステップとを含む。
いくつかの実施形態では、方法は、入力インタフェースを介して、対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを示す情報を受信するステップと、入力インタフェースを介して、対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するステップと、対象者の前立腺がんと関連付けられた事象の確率を決定するために、少なくとも1つのプロセッサを使用して、受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、tPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、ステップと、前立腺がんと関連付けられた事象の確率の表示を出力するステップとを含む。
本開示のいくつかの態様では、前立腺がんと関連付けられた事象の確率を決定するためのコンピュータが提供される。いくつかの実施形態では、コンピュータは、対象者の血漿試料中に存在するtPSAのレベルを示す情報および対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、対象者の前立腺がんと関連付けられた事象の確率を決定するために、受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、ロジスティック回帰モデルを評価することが、tPSA値および対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、少なくとも1つのプロセッサと、前立腺がんと関連付けられた事象の確率の表示を出力するように構成された出力インタフェースとを備える。
いくつかの実施形態では、コンピュータは、対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、対象者の前立腺がんと関連付けられた事象の確率を決定するために、受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、ロジスティック回帰モデルを評価することが、tPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、少なくとも1つのプロセッサと、前立腺がんと関連付けられた事象の確率の表示を出力するように構成された出力インタフェースとを備える。
本開示の他の態様では、前立腺がんと関連付けられた事象の確率を決定するためのシステムが提供される。いくつかの実施形態では、システムは、a)対象者の血漿試料中に存在するtPSAのレベルを測定するように構成された検出器と、b)検出器と電子通信するコンピュータとを備え、コンピュータは、i)tPSAの測定レベルを示す情報を検出器から受信し、対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、ii)対象者の前立腺がんと関連付けられた事象の確率を決定するために、受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、ロジスティック回帰モデルを評価することが、tPSAのレベルを示す情報および対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、少なくとも1つのプロセッサと、iii)前立腺がんと関連付けられた事象の確率の表示を出力するように構成された出力インタフェースとを備える。いくつかの実施形態では、システムは、a)対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを測定するように構成された検出器と、b)検出器と電子通信するコンピュータとを備え、コンピュータは、i)tPSA、fPSA、iPSAおよびhK2の測定レベルを示す情報を検出器から受信し、対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、ii)対象者の前立腺がんと関連付けられた事象の確率を決定するために、受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、ロジスティック回帰モデルを評価することが、tPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、少なくとも1つのプロセッサと、iii)前立腺がんと関連付けられた事象の確率の表示を出力するように構成された出力インタフェースとを備える。
本開示のさらなる態様では、コンピュータによって実行されると、前立腺がんと関連付けられた事象の確率を決定する方法を実行する多数の命令で符号化されたコンピュータ可読記憶媒体が提供される。いくつかの実施形態では、方法は、対象者の前立腺がんと関連付けられた事象の確率を決定するために、対象者の血漿試料中に存在するtPSAのレベルを示す情報および対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、tPSA値および対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、ステップと、前立腺がんと関連付けられた事象の確率の表示を出力するステップとを含む。いくつかの実施形態では、方法は、対象者の前立腺がんと関連付けられた事象の確率を決定するために、対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、tPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を決定することを含む、ステップと、前立腺がんと関連付けられた事象の確率の表示を出力するステップとを含む。
生検が検出可能な前立腺がんを含む確率を決定するためのプロセスを示す非限定的な概略図である。 生検が検出可能な前立腺がんを含む確率を決定するためのプロセスを実装するように構成されたコンピュータの非限定的な概略図である。 生検が検出可能な前立腺がんを含む確率を決定するためのプロセスを実装するように構成されたコンピュータネットワークの非限定的な概略図である。 高悪性度のがんの実際のリスクと予測リスクとを比較するグラフの非限定的な例である。 あらゆる悪性度のがんの実際のリスクと予測リスクとを比較するグラフの非限定的な例である。 高悪性度のがんに対する決定曲線解析を示すグラフの非限定的な例である。 あらゆる悪性度のがんに対する決定曲線解析を示すグラフの非限定的な例である。 高悪性度のがんに対する受信者動作特性曲線(ROC)のグラフの非限定的な例である。 あらゆる悪性度のがんに対する受信者動作特性曲線(ROC)のグラフの非限定的な例である。 高悪性度のがんに対する生検閾値による陽性適中率のグラフの非限定的な例である。 高悪性度のがんに対する生検閾値による陰性適中率のグラフの非限定的な例である。 あらゆる悪性度のがんに対する生検閾値による陽性適中率のグラフの非限定的な例である。 あらゆる悪性度のがんに対する生検閾値による陰性適中率のグラフの非限定的な例である。 生検における高悪性度の疾患を抱える男性の割合を年齢別に示すプロットの非限定的な例を示す。 検証試験のすべての患者における高悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験のすべての患者における高悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験のすべての患者におけるあらゆる悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験の50〜75歳の患者における高悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験の50〜75歳の患者における高悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験の50〜75歳の患者におけるあらゆる悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験の71歳未満の患者における高悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験の71歳未満の患者における高悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験の71歳未満の患者におけるあらゆる悪性度のがんの検出の予測対実際の確率を示すプロットの非限定的な例を示す。 検証試験のすべての患者に対する純利益対閾値確率レベルを示すプロットの非限定的な例を示す。 検証試験のすべての患者に対する純利益対閾値確率レベルを示すプロットの非限定的な例を示す。 検証試験の50〜75歳の患者に対する純利益対閾値確率レベルを示すプロットの非限定的な例を示す。 検証試験の50〜75歳の患者に対する純利益対閾値確率レベルを示すプロットの非限定的な例を示す。 検証試験の71歳未満のすべての患者に対する純利益対閾値確率レベルを示すプロットの非限定的な例を示す。 検証試験の71歳未満のすべての患者に対する純利益対閾値確率レベルを示すプロットの非限定的な例を示す。
本開示の態様は、対象者から得られた前立腺組織生検が検出可能な前立腺がん(高悪性度の前立腺がん(グリーソン7以上)を含む)を含むかどうかを予測するための方法の改善に関連する。従って、本明細書で開示される方法は、前立腺組織生検がふさわしいかどうかを判断する目的で、医療機関が採用することができる。いくつかの実施形態では、方法は、対象者から得られた血液試料を使用して、総前立腺特異抗原(tPSA)、遊離前立腺特異抗原(fPSA)、無傷前立腺特異抗原(iPSA)、ヒトカリクレイン2(hK2)などの前立腺特異抗原のレベルを測定する1つまたは複数の免疫測定法を実施するステップを伴う。いくつかの実施形態では、血漿製剤におけるこれらの抗原の1つまたは複数のレベルを測定することは、血清などの他の血液製剤におけるレベルを測定することによって得られるものより良い予測結果につながることが分かっている。いくつかの実施形態では、前立腺組織生検が検出可能ながんを含む確率を決定するために、tPSA、fPSA、iPSAおよび/またはhK2の血漿レベルを組み込む予測モデル(例えば、ロジスティック回帰モデル)が提供される。その上、いくつかの実施形態では、予測結果の改善は、測定された前立腺特異抗原レベルに関する情報を患者情報(特に、前立腺がんの存在を検出するために、対象者が以前に生検を行ったか否かに関する情報)と組み合わせることによって得られることが分かっている。それに従って、対象者が侵襲的な前立腺組織生検を受けるべきかどうかを判断するのに役立つ方法の改善が提供される。
本開示の態様は、対象者から得られた前立腺組織生検が検出可能な前立腺がんを含む確率を決定する方法を提供する。そのような方法は、対象者の血漿試料を、血漿試料中の総前立腺特異抗原(tPSA)のレベルを少なくとも測定する免疫測定法にかけるステップを伴い得る。tPSAレベルが閾値レベルを上回る場合は、tPSAの測定レベルおよび対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前立腺組織生検が検出可能な前立腺がんを含む確率を決定することができる。他方では、tPSAレベルが閾値レベル以下である場合は、tPSA、fPSA、iPSAおよびhK2の測定レベルならびに対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前立腺組織生検が検出可能な前立腺がんを含む確率を決定することができる。それに従って、いくつかの実施形態では、本明細書で提供される方法は、血漿試料を、血漿試料中の遊離前立腺特異抗原(fPSA)、無傷前立腺特異抗原(iPSA)およびヒトカリクレイン2(hK2)のレベルを測定する免疫測定法にかけるステップを伴い得る。いくつかの実施形態では、確率は、対象者の年齢を示すパラメータを重み付けすることによってさらに決定される。いくつかの実施形態では、確率は、対象者において実行された直腸指診の結果を示す1つまたは複数のパラメータを重み付けすることによってさらに決定される。
いくつかの実施形態では、モデル選択に使用されるtPSAの閾値レベルは、tPSA単独での使用またはある患者特有の情報(例えば、以前の生検状態)との併用が前立腺組織生検が検出可能な前立腺がんを含む確率を確立する目的に対して十分かどうかを示すレベルである。いくつかの実施形態では、閾値レベルは、5ng/mL、10ng/mL、15ng/mL、20ng/mL、25ng/mL、30ng/mL、35ng/mLまたは40ng/mLである。ある患者仕様情報(特に、以前の生検状態)と組み合わされたtPSAレベルは、有益な予測を行うのに十分であり得るため、いくつかの実施形態では、tPSAのレベルを最初に決定する前に他の抗原を検出するための免疫測定法を実行するまでもなく、コスト効率の良いものであり得る。しかし、いくつかの実施形態では、tPSAのレベルは、他のマーカーレベル(例えば、fPSA、iPSAまたはhK2)と並行してまたは共に決定することができる。
いくつかの実施形態では、抗原レベル(例えば、tPSA、fPSA、iPSAおよびhK2のうちの2つ以上のレベル)は、同じアッセイで並行して決定される。他の実施形態では、そのような抗原レベルは、別々のアッセイで決定される。いくつかの実施形態では、抗原レベルは、対象者からの同じオリジナルの採血(例えば、静脈採血)から決定される。いくつかの実施形態では、抗原レベルは、異なる採血から決定される。いくつかの実施形態では、抗原レベルは、同じまたは異なる採血からの血漿製剤を使用して決定される。いくつかの実施形態では、1つまたは複数の抗原レベルは、血漿製剤を使用して決定され、1つまたは複数の他の抗原は、異なるタイプの血液製剤(例えば、血清)を使用して決定される。血漿は、血液の淡黄色の液体成分である。いくつかの実施形態では、血漿は、血球や血液残屑が試験管の底に移動するまで、抗凝固剤(例えば、ヘパリン、EDTAなど)を含む血液の試験管を遠心分離機で回転させ、その後、血漿を注ぐかまたは取り出すことによって製剤化することができる。
対象者に前立腺組織生検が適応されるかどうかを判断するための方法が本明細書で提供される。そのような方法は、医師または医療機関が対象者から血液試料を得るステップと、血液試料を使用して決定された抗原の測定レベルに少なくとも部分的に基づいて、前立腺組織生検が検出可能な前立腺がんを含む確率を決定するステップとを伴い得る。血液試料は、現地で(例えば、対象者が評価されている同じ医療施設または事業内で)処理することも、処理および分析のために外部または第三者の研究所または施設に送り出すこともできる。血液試料を使用して測定されたtPSAレベルが閾値レベルを上回る場合は、確率は、tPSAレベルの重み付けに基づいて決定される。そうでなければ、tPSAレベルが閾値レベル以下である場合は、確率は、血液試料を使用して測定されたtPSA、fPSA、iPSAおよびhK2のレベルの重み付けに基づく。いずれの場合も、確率は、通常、対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けにも基づく。医師または医療機関は、前立腺組織生検が検出可能な前立腺がんを含む確率に基づいて、対象者に前立腺組織生検が適応されるかどうかを判断することができる。
いくつかの実施形態では、医師または医療機関は、確率がカットオフ以上かどうかを生検で示す確率カットオフを設定することができる。例えば、確率が、5%、7.5%、10%、12.5%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%またはそれを超える値より大きい場合は、医師または医療機関は、対象者に前立腺組織生検が適応されると判断することができる。いくつかの実施形態では、前立腺組織生検が高悪性度の(例えば、グリーソンスコア7以上)検出可能な前立腺がんを含む確率に基づくカットオフは、5%、7.5%、10%、12.5%または15%である。いくつかの実施形態では、前立腺組織生検があらゆる悪性度の検出可能な前立腺がんを含む確率に基づくカットオフは、10%、12.5%、15%、20%、25%または30%である。いくつかの実施形態では、確率がカットオフを下回る場合は、医師または医療機関は、生検を命令することはないが、対象者(例えば、確率レベルの増加または前立腺がんを示す他のリスク因子の変化)のモニタリングを継続する。
いくつかの実施形態では、対象者に前立腺組織生検が適応されると判断される場合は、医師または医療機関は、対象者から前立腺組織生検を得るかまたは得るように命令し、前立腺組織生検の分析に基づいて、対象者が前立腺がんを患っているかどうかを判断することができる。前立腺組織生検は、例えば、細胞学的または組織学的分析を含む任意の適切な方法を使用して分析することができる。組織試料は、がんの臨床病期に基づいて特徴付けることができる。試料は、グリーソングレードに基づいて特徴付けることができる。グリーソン3+3(6.0)は、低悪性度の予後が良好な腫瘍に相当する。グリーソン3+4(7.0)および3+5(8.0)は、通常、主に低悪性度形質転換を有するが、いくつかの高悪性度形質転換が見られる組織を有する腫瘍に相当する。グリーソン4+3(7.0)および5+3(8.0)は、通常、主に高悪性度形質転換を有するが、いくつかの低悪性度形質転換が見られる組織を有する腫瘍に相当する。グリーソン4+4(8.0)、4+5(9.0)、(9.0)および5+5(10.0)は、高悪性度の腫瘍に相当する。それに従って、いくつかの実施形態では、前立腺がんは、高悪性度のがん(例えば、グリーソン≧7.0)を含む。
免疫測定法
前立腺特異抗原(例えば、tPSA、iPSA、fPSAおよびhK2)のレベルは、任意の適切な方法によって評価することができる。いくつかの実施形態では、免疫測定法での使用に適した抗体または抗原結合フラグメントが提供される。そのような抗体または抗原結合フラグメントを利用する免疫測定法は、直接または間接形式での競合および非競合免疫測定法であり得る。そのような免疫測定法の非限定的な例は、酵素結合免疫測定法(ELISA)、放射免疫測定法(RIA)、サンドイッチ法(イムノメトリック法)、フローサイトメトリー、ウエスタンブロット法、免疫沈降法、免疫組織化学、免疫顕微鏡法、側方流動免疫クロマトグラフィー法およびプロテオミクス配列である。抗原もしくは抗体またはそれらと結合する抗原結合フラグメントは、例えば、固相担体(例えば、キャリア、膜、柱、プロテオミクス配列など)と結合させることによって、固定化することができる。固相担体物質の例は、ガラス、ポリスチレン、ポリ塩化ビニール、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリカーボネート、デキストラン、ナイロン、アミロース、ニトロセルローズなどの天然および変性セルロース、ポリアクリルアミド、アガロースならびにマグネタイトなどを含む。担体の性質は、溶液中で固定しているかまたは浮遊しているもの(例えば、ビーズ)であり得る。
いくつかの実施形態では、標識抗体または抗原結合フラグメントは、抗原結合抗体複合体を検出するためのトレーサーとして使用することができる。トレーサーを生成するために使用できる標識のタイプの例は、酵素、放射性同位元素、コロイド金属、蛍光化合物、磁性および化学発光化合物ならびに生物発光化合物を含む。放射性標識抗体は、153Eu、H、32P、35S、59Feまたは125Iなどの放射性同位元素を結合することによって、公知の方法で製剤化され、次いで、ガンマカウンター、シンチレーションカウンターまたはオートラジオグラフィーによって検出することができる。本明細書で論じられるように、抗体および抗原結合フラグメントは、代わりに、酵母アルコール脱水素酵素、西洋ワサビペルオキシダーゼ、アルカリホスファターゼおよび同様のものなどの酵素で標識し、次いで、成長させ、分光光度法でまたは視覚的に検出することができる。適切な蛍光標識は、フルオレセインイソチオシアネート、フルオレスカミン、ローダミンおよび同様のものを含む。適切な化学発光標識は、ルミノール、イミダゾール、シュウ酸エステル、ルシフェリンおよびその他を含む。
免疫測定法は、抗体または抗原結合フラグメントと抗原との結合複合体の形成を可能にするという条件の下で、抗原を含む試料(例えば、血漿試料)を抗体または抗原結合フラグメント(例えば、F(ab)、F(ab))と接触させることを含み得る。いくつかの実施形態では、血漿試料は、抗原が試料中に存在する場合は、標的抗原との抗体または抗原結合フラグメントの結合に適した条件の下で、抗体または抗原結合フラグメントと接触させる。このことは、試験管、プレートウェル、膜槽、細胞培養皿、顕微鏡スライドおよび他のチャンバなどの反応チャンバで実行することができる。いくつかの実施形態では、抗体または抗原結合フラグメントは、固相担体上に固定化される。試料中の抗原と結合する抗体または抗原結合フラグメントは、捕捉抗体と呼ぶことができる。いくつかの実施形態では、捕捉抗体は、タグに関与する相互作用(例えば、ストレプトアビジンが固相担体に固定化されるビオチンストレプトアビジン相互作用)によって固相担体へのその固定化を促進するタグ(例えば、ビオチン標識)を含む。いくつかの実施形態では、固相担体は、反応チャンバの表面である。いくつかの実施形態では、固相担体は、高分子膜(例えば、ニトロセルローズストリップ、ポリフッ化ビニリデン(PVDF)膜など)のものである。他の実施形態では、固相担体は、生物学的構造(例えば、細菌細胞表面)である。他の例示的な固相担体は、本明細書で開示され、当業者に明らかである。
いくつかの実施形態では、抗体および抗原結合フラグメントは、抗原と接触させる前に固相担体上に固定化される。他の実施形態では、抗体および抗原結合フラグメントの固定化は、結合複合体の形成後に実行される。さらなる他の実施形態では、抗原は、結合複合体の形成前に固相担体上に固定化される。いくつかの実施形態では、固定化された結合複合体を検出するために、トレーサーを反応チャンバに添加することができる。いくつかの実施形態では、トレーサーは、抗原に対する検出可能に標識された二次抗体を含む。いくつかの実施形態では、トレーサーは、捕捉抗体に対する検出可能に標識された二次抗体を含む。いくつかの実施形態では、一次抗体または抗原結合フラグメントは、それ自体が検出可能に標識される。
一実施形態では、本明細書で開示される免疫測定法は、抗体または抗原結合フラグメントを固相担体に固定化するステップと、試料中に存在する場合は、抗体または抗原結合フラグメントとの抗原の結合を可能にするという条件の下で、試料(例えば、血漿試料)を固相担体に加えるステップと、固相担体から余分な試料を取り除くステップと、抗原結合固定化抗体または抗原結合フラグメントとのトレーサーの結合を可能にするという条件の下で、トレーサー(例えば、検出可能に標識された抗体または抗原結合フラグメント)を加えるステップと、固相担体を洗浄するステップと、存在トレーサーをアッセイするステップとを含む。
いくつかの実施形態では、抗体および抗原結合フラグメントは、反応チャンバで抗原と接触させた後に固相担体上に固定化される。いくつかの実施形態では、抗体および抗原結合フラグメントは、反応チャンバで抗原と接触させる前に固相担体上に固定化される。いずれの場合も、固定化された結合複合体を検出するために、トレーサーを反応チャンバに添加することができる。いくつかの実施形態では、トレーサーは、抗原に対する検出可能に標識された二次抗体を含む。いくつかの実施形態では、トレーサーは、一次抗体または抗原結合フラグメントに対する検出可能に標識された二次抗体を含む。本明細書で開示されるように、検出可能な標識は、例えば、放射性同位元素、フルオロフォア、発光性分子、酵素、ビオチン部分、エピトープタグまたは色素分子であり得る。適切な検出可能な標識は、本明細書で説明される。
いくつかの実施形態では、低pH緩衝液中で免疫測定法を実行することは、より感度の高い抗原検出につながることが分かっている。それに従って、いくつかの実施形態では、トレーサーが捕捉抗体抗原複合体と結合するように、トレーサー抗体は、6.5から7.75未満の範囲のpHを有する緩衝液中で捕捉抗体と接触させる。いくつかの実施形態では、緩衝液のpHは、約6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4、7.5または7.6である。
本明細書で開示されるいかなるアッセイでも、捕捉抗体はトレーサー抗体と交換できることを理解すべきである。
いくつかの実施形態では、fPSAのレベルを測定する免疫測定法は、第1の捕捉抗体がfPSAと結合し、それにより、捕捉抗体fPSA複合体が生成されるという条件の下で、血漿試料中に存在するfPSAをfPSAに特異的な捕捉抗体と接触させるステップと、トレーサーを使用して捕捉抗体fPSA複合体を検出するステップとを伴う。捕捉抗体は、H117抗体であり得る。いくつかの実施形態では、トレーサーは、5A10抗体またはそのフラグメント(例えば、F(ab)フラグメント)を含む。
フラグメントに組み込むことができる5A10抗体の重鎖および軽鎖配列を以下に示す。
5A10重鎖
EVQLVESGPGILQPSQTLSLTCSFSGFSLSTTGMGVSWIRQPSGKGLEWLAHLYWDED KRYNPSLKSRLTISEDSSRNQVFLKITSVGPADSATYYCARKGYYGYFDYWGQGTALTVSS(配列番号1)
5A10軽鎖
DIVMTQSQKFMSTSVGDRVSVTCKASQNVNTDVAWYQQKPGQSPKALIFSTSYRSSGVPDRFTGSGSGTDFTLTITNVQSEDLAEYFCQQYSNYPLTFGAGTKVDLN(配列番号2)
いくつかの実施形態では、iPSAのレベルを測定する免疫測定法は、第2の捕捉抗体が少なくともiPSAと結合し、それにより、捕捉抗体iPSA複合体が生成されるという条件の下で、血漿試料中に存在するiPSAを遊離PSA(iPSAおよび切断PSAを含む)に特異的な捕捉抗体と接触させるステップと、第2のトレーサーを使用して捕捉抗体iPSA複合体を検出するステップとを伴う。いくつかの実施形態では、トレーサーは、4D4抗体を含む。いくつかの実施形態では、捕捉抗体は、5A10抗体またはそのフラグメント(例えば、F(ab)フラグメント)である。
いくつかの実施形態では、tPSAのレベルを測定する免疫測定法は、第3の捕捉抗体がtPSAと結合し、それにより、捕捉抗体tPSA複合体が生成されるという条件の下で、血漿試料中に存在するtPSAをtPSAに特異的な捕捉抗体と接触させるステップと、第3のトレーサーを使用して捕捉抗体tPSA複合体を検出するステップとを伴う。いくつかの実施形態では、トレーサーは、H50抗体を含む。いくつかの実施形態では、捕捉抗体は、H117抗体である。
いくつかの実施形態では、hK2のレベルを測定する免疫測定法は、血漿試料中に存在するPSAをPSAに特異的な遮断抗体と接触させるステップと、第4の捕捉抗体がhK2と結合し、それにより、捕捉抗体hK2複合体が生成されるという条件の下で、血漿試料中に存在するhK2をhK2に特異的な第4の捕捉抗体と接触させるステップと、第4のトレーサーを使用して捕捉抗体hK2複合体を検出するステップとを伴う。いくつかの実施形態では、トレーサーは、7G1抗体を含む。いくつかの実施形態では、捕捉抗体は、6H10F(ab)である。いくつかの実施形態では、遮断抗体は、5H7抗体、5H6抗体および2E9抗体を含む。
以下の表0(抗体および抗体のエピトープ/情報源)は、本明細書で開示される方法で使用できる抗体および抗原結合フラグメントならびにそれらに対応するエピトープをリストする。
Figure 0006775488
Figure 0006775488
Figure 0006775488
マイクロ流体試料分析器
本明細書で開示される免疫測定法のいずれも、マイクロ流体デバイス(例えば、マイクロ流体試料分析器)を使用して実行または実装できることを理解すべきである。例えば、マイクロ流体デバイスは、マーカーの1つまたは複数の特徴(例えば、tPSA、fPSA、iPSAまたはhK2のレベル)を決定するために使用することができる。いくつかの実施形態では、デバイスは、マイクロ流体試料分析器であり、マイクロ流体試料分析器は、例えば、免疫測定成分(例えば、抗原抗体複合体、トレーサーなど)を含む試料の流れを含めるおよび/または方向付けるための1つまたは複数のマイクロ流体チャネルを有するカセットで提供された試料を分析するように構成することができる。いくつかの実施形態では、デバイスは、1つまたは複数の光源ならびに/あるいは1つまたは複数のマイクロ流体チャネルに存在する抗原抗体複合体および/またはトレーサーのレベルを測定するように構成された1つまたは複数の検出器を含む光学システムをさらに備える。その上、いくつかの実施形態では、マイクロ流体デバイス(例えば、マイクロ流体試料分析器)またはマーカーのレベル(例えば、tPSA、fPSA、iPSAまたはhK2のレベル)に基づいて前立腺がんと関連付けられた事象の確率を決定するための他のデバイスと電子通信する、予測モデル(例えば、ロジスティック回帰モデル)を評価するようにプログラムされたプロセッサまたはコンピュータを含み得るシステムが提供される。
適切なマイクロ流体デバイスの非限定的な例は、すべての目的のためにその内容のその全体が参照により本明細書に組み込まれる、特許文献1で開示されている。しかし、本開示はこの点において制限されないため、他のタイプのデバイス(例えば、プレートリーダ、マイクロウェルELISAタイプのアッセイ用の分析器など)も使用できることを理解すべきである。
予測モデルおよびコンピュータ実装方法
本開示の態様は、前立腺がんと関連付けられた事象の確率(前立腺組織生検が検出可能ながんを含む確率など)を決定するためのコンピュータ実装方法を提供する。そのような方法は、入力インタフェースを介して、対象者の血漿試料中に存在するtPSAのレベルを示す情報を受信するステップと、入力インタフェースを介して、対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するステップとを伴い得る。いくつかの実施形態では、方法は、対象者の前立腺がんと関連付けられた事象の確率を決定するために、少なくとも1つのプロセッサを使用して、受信された情報に少なくとも部分的に基づいて、適切な予測モデル(例えば、ロジスティック回帰モデル)を評価するステップをさらに伴う。予測モデルは、tPSAの測定レベルおよび対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を生成することができる。予測モデルは、tPSA、fPSA、iPSAおよびhK2の測定レベルならびに対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた事象の確率を生成することができる。
図1は、本開示のいくつかの実施形態によるプロセス100のフローチャートを示す。ステップ101では、本明細書で説明される技法のうちの1つまたは複数を使用して処理するために、年齢、デジタル検査状態および/または以前の生検状態に相当する患者データを表す1つまたは複数の値が少なくとも1つのプロセッサによって受信される。ステップ102では、tPSA、fPSA、iPSAおよび/またはhK2に対するマーカーデータを表す1つまたは複数の値が少なくとも1つのプロセッサによって受信される。値は、これらに限定されないが、キーボード、タッチスクリーン、マイクロフォンもしくは他の入力デバイスなどのローカル入力インタフェースを通じて、プロセッサから離れた場所に位置するデバイスから値を受信するネットワーク接続インタフェースから、または、血液マーカー値を測定する1つもしくは複数の検出器から直接(例えば、プロセッサが、1つまたは複数の検出器を含む測定デバイスと統合される実装形態において)を含む、任意の適切な方法で受信することができる。
ステップ103では、tPSAに対する値を受信した後、プロセスは、tPSAのレベルが閾値(例えば、25ng/mL)を上回る場合は第1の予測モデルが選択され、tPSAのレベルが閾値以下である場合は第2の予測モデルが選択されるように進む。それに従って、ステップ104では、tPSAのレベルが閾値レベルを上回る場合は、DRE状態、以前の生検状態およびtPSAレベルに基づいて予測モデルが選択される。あるいは、ステップ105では、tPSAのレベルが閾値レベル以下である場合は、DRE状態、以前の生検状態ならびにtPSA、fPSA、iPSAおよびhK2レベルに基づいて予測モデルが選択される。ステップ104、105の予測モデルは、対象者が前立腺がんを患っている確率を決定するために使用される。予測は、使用されるモデルに応じて、あらゆる悪性度のがんまたは高悪性度のがんに対するものであり得る。
がんの確率を決定した後、プロセスはステップ106に進み、ステップ106では、さらなる診断手順および/または治療決定を指導するために、確率がユーザ(例えば、医師、患者)に出力される。確率は、任意の適切な方法で出力することができる。例えば、いくつかの実施形態では、確率は、確率を表す数値をデバイスの表示画面上に出力することができる。他の実施形態では、確率は、1つまたは複数の光または他の視覚インジケータを使用してデバイス上に出力することができる。さらなる他の実施形態では、確率は、音声出力、触覚出力、または、音声、触覚および視覚出力のうちの1つもしくは複数の何らかの組合せを使用して提供することができる。いくつかの実施形態では、確率を出力することは、決定された確率についてユーザに通知するために、ネットワーク接続デバイスに情報を送信することを含む。例えば、確率は、離れた場所に位置する1つまたは複数のプロセッサによって決定することができ、確率の表示は、離れた場所での確率の決定に応答して、1つまたは複数のネットワークを使用して、ユーザ(例えば、医師)の電子デバイスに送信することができる。本明細書で説明される技法に従ってユーザに出力を提供する電子デバイスは、これらに限定されないが、ラップトップ、デスクトップまたはタブレットコンピュータ、スマートフォン、ポケベル、携帯情報端末および電子ディスプレイを含む、任意の適切なデバイスであり得る。
いくつかの実施形態では、前立腺がんの確率は、以下で再現される方程式(1)に従って決定される。
Figure 0006775488
式中、ロジット(L)は、多数のロジスティック回帰モデルのいずれかを使用して決定される。本明細書で説明される技法に従って使用できる異なるタイプのロジスティック回帰モデルの非限定的な例は、以下を含む。
1.単純モデル(tPSAのみ)
L=β+β(年齢)+β(tPSA)+β(以前のbx) (2)またはL=β+βtpsa+βdreneg+β以前のbx (3)
2.遊離/総の割合を使用する4つのアッセイモデルこのモデルでは、総PSAに対する遊離PSAの割合が遊離PSA項に代入される。
Figure 0006775488
3.log(tPSA)および遊離/総の割合を使用する4つのアッセイモデル
このモデルでは、この予測因子の寄与の増大を説明するために、tPSAの対数がtPSA項に代入される。
Figure 0006775488
4.多項式モデル
このモデルでは、tPSAおよびfPSAに対する追加の非線形項が含まれる。以下で提供される例示的な方程式では、この項と前立腺がんのリスクとの間の直接的な関係を強調するためにtPSAの2乗が使用され、この項とリスクとの逆相関を反映するために遊離/総PSAの平方根項が使用される。しかし、いくつかの実施形態では、高次(例えば、3次)の多項式の項を含めることもできることを理解すべきである。
Figure 0006775488
5.すべての4つのアッセイに対する線形スプライン
このモデルでは、単一のノットが中央値にある線形スプラインが追加される。スプラインは、以下の方程式を使用して決定することができる。
Figure 0006775488
モデルは、L=β+β(年齢)+β(tPSA)+β(fPSA)+β(iPSA)+β(hK2)+β(sp1[tPSA])+β(sp2[tPSA])+β(sp1[fPSA])+β(sp2[fPSA])+β10(sp1[iPSA])+β11(sp2[iPSA])+β12(sp1[hK2])+β13(sp2[hK2])+β14(以前のbx) (8)として表される。
6.tPSAおよびfPSAに対する線形スプライン
このモデルでは、変数の数を低減し、モデルを簡素化するために、tPSAおよびfPSAに対してのみ、線形スプラインが含まれる。L=β+β(年齢)+β(tPSA)+β(fPSA)+β(iPSA)+β(hK2)+β(sp1[tPSA])+β(sp2[tPSA])+β(sp1[fPSA])+β(sp2[fPSA])+β10(以前のbx) (9)
上記の方程式の「以前のbx」は、前立腺がんを検出するために対象者が以前に生検を行ったかどうかを示す2進値である。1の値は以前に生検が行われたことを示し、0の値は以前に生検が行われなかったことを示す。
7.すべての4つのアッセイに対する3次スプライン
このモデルでは、各項に対して3次スプラインが含まれる。以下で提供される例では、4つのノットを有する3次スプラインについて説明する。しかし、任意の適切な数のノット(これらに限定されないが、5つのノット、6つのノット、7つのノットおよび8つのノットを含む)を使用する3次スプラインも代わりに使用できることを理解すべきである。スプラインは、以下の方程式を使用して決定することができる。
Figure 0006775488
式中、ノット1およびノット4は、3次スプラインに対する外部ノットであり、ノット2およびノット3は、3次スプラインに対する内部ノットである。外部ノットは、個体群におけるtPSA、fPSA、iPSAまたはhK2の最小および最大レベルとして設定することができる。内部ノット(例えば、ノット2)は、個体群におけるtPSA、fPSA、iPSAまたはhK2レベルの33.3パーセンタイル値として設定することができる。別の内部ノット(例えば、ノット3)は、個体群におけるtPSA、fPSA、iPSAまたはhK2レベルの66.6パーセンタイル値として設定することができる。
いくつかの実施形態では、内部ノットは、tPSAに対して約2から約8までおよび約3から約6まで、fPSAに対して約0.25から約2までおよび約0.5から約1.5まで、iPSAに対して約0.2から約0.5までおよび約0.4から約0.8まで、hK2に対して約0.02から約0.04までおよび約0.04から約0.08までの範囲内で指定される。例えば、一実装形態では、3.92および5.61の値がtPSAに対する内部ノットに使用され、0.82および1.21の値がfPSAに対する内部ノットに使用され、0.3および0.51の値がiPSAに対する内部ノットに使用され、0.036および0.056の値がhK2に対する内部ノットに使用される。
ある実施形態では、tPSAに対する1つまたは複数の内部ノットは、独立して、約3から約5まで、約3から約6まで、約2.5から約6まで、約2.5から約6.5まで、約5から約8まで、約5.5から約8まで、約5から約9まで、約5から約10まで、約1から約5まで、約1から約4までおよび約1から約3までの範囲にあり得る。また、他の範囲も可能である。
ある実施形態では、fPSAに対する1つまたは複数の内部ノットは、独立して、約0.1から約1.0まで、約0.1から約1.2まで、約0.3から約0.8まで、約0.4から約0.9まで、約0.5から約1.2まで、約0.7から約1.4まで、約0.7から約0.9まで、約1.1から約1.6まで、約1.1から約1.2までおよび約1.1から約2までの範囲にあり得る。また、他の範囲も可能である。
ある実施形態では、iPSAに対する1つまたは複数の内部ノットは、独立して、約0.05から約0.5まで、約0.1から約0.5まで、約0.2から約0.5まで、約0.1から約0.8まで、約0.2から約0.8まで、約0.4から約0.8まで、約0.4から約1.0まで、約0.3から約0.6まで、約0.5から約1.0までおよび約0.6から約0.8までの範囲にあり得る。また、他の範囲も可能である。
ある実施形態では、hK2に対する1つまたは複数の内部ノットは、独立して、約0.01から約0.03まで、約0.01から約0.04まで、約0.01から約0.05まで、約0.02から約0.05まで、約0.02から約0.06まで、約0.03から約0.05まで、約0.4から約0.07まで、約0.04から約1.0まで、約0.5から約1.0までおよび約0.6から約1.0までの範囲にあり得る。また、他の範囲も可能である。
上記で論じられるように、任意の適切な数の内部ノット(例えば、3つ、4つ、5つ、6つの内部ノット)を組み込む3次スプラインを使用することができ、2つの内部ノットを含む3次スプラインの例は、制限ではなく、単なる例示のために提供される。2つより多い内部ノットを含む実施形態では、ノットは、上記で論じられる範囲のうちの1つもしくは複数の範囲内または他の何らかの適切な範囲に置くことができる。例えば、いくつかの実施形態では、ノットは、近隣ノットの対の各々の間のスプラインのセグメントの長さが本質的に等しくなるように指定することができる。
モデルは、以下のように表すことができる。L=β+β(年齢)+β(tPSA)+β(fPSA)+β(iPSA)+β(hK2)+β(sp1[tPSA])+β(sp2[tPSA])+β(sp1[fPSA])+β(sp2[fPSA])+β10(sp1[iPSA])+β11(sp2[iPSA])+β12(sp1[hK2])+β13(sp2[hK2])+β14(以前のbx) (12)
8.tPSA閾値モデル
いくつかの実施形態では、選択されるモデルは、tPSAの閾値レベルが試料中で検出されるか否かに依存し得る。いくつかの実施形態では、tPSAのレベルが試料中で閾値を上回る場合は、予測モデルは以下の通りである。L=β+β(tPSA)+β(DRE)neg+β(DRE)pos+β(以前のbx) (13)
いくつかの実施形態では、このモデルの重み付け係数の値の範囲は、以下の表1(tPSAのレベルが閾値より大きい際に使用される重み付け係数)に記載される通りである。前立腺組織生検があらゆる悪性度のがんを有する確率の決定に適した係数は、第2および第3の列に示され、前立腺組織生検が高悪性度のがんを有する確率の決定に適した係数は、第4および第5の列に示されている。
Figure 0006775488
いくつかの実施形態では、試料中で検出されたtPSAのレベルが閾値レベル以下である場合は、予測モデルは以下の通りである。L=β+β(年齢)+β(tPSA)+βsp1(tPSA)+βsp2(tPSA)+β(fPSA)+βsp1(fPSA)+βsp2(fPSA)+β(iPSA)+β(hK2)+β10(DREneg)+β11(DREpos)+β12(以前のbx) (14)
いくつかの実施形態では、このモデルの重み付け係数の値の範囲は、以下の表2(tPSAのレベルが閾値以下である際に使用される重み付け係数)に記載される通りである。前立腺組織生検があらゆる悪性度のがんを有する確率の決定に適した係数は、第2および第3の列に示され、前立腺組織生検が高悪性度のがんを有する確率の決定に適した係数は、第4および第5の列に示されている。
Figure 0006775488
上記のモデルにおけるsp1(tPSA)、sp2(tPSA)、sp1(fPSA)およびsp2(fPSA)のスプライン項は、上記のモデル#7(方程式(10および11))の下で上記で提示される3次スプライン式に従って決定することができる。いくつかの実施形態では、内部ノット2および3ならびに外部ノット1および4の値は、tPSAおよびfPSAに対して以下の表3(ノット値範囲)に記載される範囲内にある。
Figure 0006775488
コンピュータ実装形態
図1Bでは、本明細書で説明される技法および/またはユーザ相互作用のいくつかまたはすべてをその上で実装できるコンピュータシステム106の例示的な実装形態が示されている。コンピュータシステム106は、1つまたは複数のプロセッサ107と、1つまたは複数の非一時的なコンピュータ可読記憶媒体(例えば、メモリ108、1つまたは複数の不揮発性記憶媒体110)とを含み得る。本明細書で説明される本発明の態様はこの点において制限されないため、プロセッサ107は、任意の適切な方法でのメモリ108および不揮発性記憶媒体110へのデータの書き込みならびにメモリ108および不揮発性記憶媒体110からのデータの読み取りを制御することができる。
本明細書で説明される機能のいずれかを実行するため、プロセッサ107は、1つまたは複数のコンピュータ可読記憶媒体(例えば、メモリ108)に格納されたプログラムモジュールなどの1つまたは複数の命令を実行することができ、1つまたは複数のコンピュータ可読記憶媒体は、プロセッサ107による実行のための命令を格納する非一時的なコンピュータ可読記憶媒体として機能し得る。一般に、プログラムモジュールは、特定のタスクを実行するかまたは特定の抽象データタイプを実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含む。また、実施形態は、通信ネットワークを通じてリンクされるリモート処理デバイスによってタスクが実行される分散コンピューティング環境で実装することもできる。分散コンピューティング環境では、プログラムモジュールは、記憶装置を含むローカルおよびリモートコンピュータ記憶媒体の両方に位置し得る。データ入力およびプログラムコマンドは、コンピュータ106によって、入力インタフェース109を通じて受信することができる。入力インタフェース109は、キーボード、タッチスクリーン、USBポート、CDドライブ、DVDドライブまたは他の入力インタフェースを含み得る。
コンピュータ106は、ネットワーク接続環境において、1つまたは複数のリモートコンピュータへの論理的な接続を使用して動作することができる。1つまたは複数のリモートコンピュータは、パーソナルコンピュータ、サーバ、ルータ、ネットワークPC、ピアデバイスまたは他の共通のネットワークノードを含み得、通常、コンピュータ106に関連して上記で説明される要素の多くまたはすべてを含む。コンピュータ106と1つまたは複数のリモートコンピュータとの間の論理的な接続は、これらに限定されないが、ローカルエリアネットワーク(LAN)および広域ネットワーク(WAN)を含み得るが、他のネットワークも含み得る。そのようなネットワークは、任意の適切な技術に基づくものであり、任意の適切なプロトコルに従って動作するものであり、無線ネットワーク、有線ネットワークまたは光ファイバネットワークを含み得る。そのようなネットワーク接続環境は、オフィス、企業規模のコンピュータネットワーク、イントラネットおよびInternetではありふれたものである。
LANネットワーク接続環境で使用される際は、コンピュータ106は、ネットワークインタフェースまたはアダプタを通じてLANに接続することができる。WANネットワーク接続環境で使用される際は、コンピュータ106は、通常、モデムまたはWAN上で通信を確立するための他の手段(Internetなど)を含む。ネットワーク接続環境では、プログラムモジュールまたはその一部分は、リモート記憶装置に格納することができる。
前立腺がんのリスクを評価するためおよび/または前立腺容積を決定するための本明細書で説明される様々な入力は、入力と関連付けられたデータを格納する1つまたは複数のリモートコンピュータまたはデバイスから、ネットワーク(例えば、LAN、WANまたは他の何らかのネットワーク)を介して、コンピュータ106によって受信することができる。リモートコンピュータ/デバイスのうちの1つまたは複数は、入力データとして分析結果をコンピュータ106に送信する前に、リモートで格納されたデータに関する分析を実行することができる。あるいは、リモートで格納されたデータは、リモート分析なしで、リモートで格納された通りにコンピュータ106に送信することができる。それに加えて、入力は、コンピュータ106のコンポーネントとして組み込むことができる多くの入力インタフェース(例えば、入力インタフェース109)のいずれかを使用して、コンピュータ106のユーザによって直接受信することができる。
本発明の実施形態はこの点において制限されないため、前立腺がんリスクの確率および/または前立腺容積の出力を含む本明細書で説明される様々な出力は、コンピュータ106に直接接続された出力デバイス(例えば、ディスプレイ)上に視覚的に提供することができるか、または、出力は、1つまたは複数の有線または無線ネットワークを介してコンピュータ106に接続された離れた場所に位置する出力デバイスに提供することができる。それに加えてまたはその代替として、本明細書で説明される出力は、視覚的提示を使用する以外でも提供することができる。例えば、出力が提供されるコンピュータ106またはリモートコンピュータは、出力の表示を提供するための、これらに限定されないが、スピーカおよび振動型出力インタフェースを含む、1つまたは複数の出力インタフェースを含み得る。
図1ではコンピュータ106は単一のデバイスとして示されているが、いくつかの実施形態では、コンピュータ106は、本明細書で説明される機能のいくつかまたはすべてを実行するために通信可能に結合された多数のデバイスを含み得、コンピュータ106は、本発明の実施形態に従って使用できるコンピュータの単なる例示的な一実装形態であることを理解すべきである。例えば、いくつかの実施形態では、コンピュータ106は、システムに統合することおよび/またはシステムと電子通信することができる。上記で説明されるように、いくつかの実施形態では、コンピュータ106は、本明細書で説明される技法のうちの1つまたは複数を使用して分析するために、前立腺がんの確率および/または前立腺容積を決定するために使用される1つまたは複数の血液マーカーについての情報が外部の情報源からコンピュータ106に送信されるネットワーク接続環境に含めることができる。図1Cでは、本発明のいくつかの実施形態による例示的なネットワーク接続環境111が示されている。ネットワーク接続環境111では、コンピュータ106は、ネットワーク114を介してアッセイシステム112に接続される。上記で論じられるように、ネットワーク114は、任意の適切なタイプの有線または無線ネットワークであり、1つまたは複数のローカルエリアネットワーク(LAN)または広域ネットワーク(WAN)(Internetなど)を含み得る。
本明細書で説明される計算方法、ステップ、シミュレーション、アルゴリズム、システムおよびシステム要素は、以下で説明されるコンピュータシステムの様々な実施形態などのコンピュータシステムを使用して実装することができる。本明細書で説明される方法、ステップ、システムおよびシステム要素は、他の多くの異なるマシンを使用できるため、それらの実装形態において、本明細書で説明される特定のコンピュータシステムに制限されない。
コンピュータシステムは、プロセッサを含み得、例えば、Intelから入手可能なx86系、CeleronおよびPentiumプロセッサ、AMDおよびCyrixからの同様のデバイス、Motorolaから入手可能な680X0系マイクロプロセッサ、IBMからのPowerPCマイクロプロセッサ、ならびに、ARMプロセッサのうちの1つなどの市販のプロセッサを含み得る。他の多くのプロセッサも利用可能であり、コンピュータシステムは、特定のプロセッサに制限されない。
プロセッサは、通常、オペレーティングシステムと呼ばれるプログラムを実行し、Windows(登録商標)7、Windows(登録商標)8、UNIX(登録商標)、Linux(登録商標)、DOS、VMS、MacOS、OSXおよびiOSなどがその例であり、他のコンピュータプログラムの実行を制御し、スケジューリング、デバッギング、入力/出力制御、アカウンティング、コンパイル、ストレージ割り当て、データ管理およびメモリ管理、通信制御、ならびに、関連サービスを提供する。プロセッサおよびオペレーティングシステムは、共に、高水準プログラミング言語のアプリケーションプログラムが記載されるコンピュータプラットフォームを定義する。コンピュータシステムは、特定のコンピュータプラットフォームに制限されない。
コンピュータシステムは、通常、コンピュータが読み取り可能なおよび書き込み可能な不揮発性記録媒体を含むメモリシステムを含み得、磁気ディスク、光ディスク、フラッシュメモリおよびテープなどがその例である。そのような記録媒体は、例えば、フロッピーディスク、読み取り/書き込みCDまたはメモリスティックなどの取り外し可能なものでも、例えば、ハードドライブなどの永久的なものでもあり得る。
そのような記録媒体は、通常、2進数形式(すなわち、1と0の配列として解釈される形式)で信号を格納する。ディスク(例えば、磁気または光学)は、通常、2進数形式(すなわち、1と0の配列として解釈される形式)でそのような信号を格納できる多くのトラックを有する。そのよう信号は、マイクロプロセッサによって実行されるソフトウェアプログラム(例えば、アプリケーションプログラム)またはアプリケーションプログラムによって処理される情報を定義することができる。
また、コンピュータシステムのメモリシステムは、通常、ダイナミックランダムアクセスメモリ(DRAM)またはスタティックメモリ(SRAM)などの揮発性のランダムアクセスメモリである集積回路メモリ素子も含み得る。通常、オペレーションの際、プロセッサは、プログラムおよびデータを不揮発性の記録媒体から集積回路メモリ素子に読み取らせ、それにより、通常、プロセッサによるプログラム命令およびデータへのアクセスを不揮発性の記録媒体でのアクセスより速く行うことができる。
プロセッサは、一般に、プログラム命令に従って集積回路メモリ素子内のデータを操作し、次いで、処理が完了した後に、不揮発性の記録媒体に操作データをコピーする。各種のメカニズムは、不揮発性の記録媒体と集積回路メモリ素子との間のデータ移動を管理することで知られており、上記で説明される方法、ステップ、システムおよびシステム要素を実装するコンピュータシステムは、それに制限されない。コンピュータシステムは、特定のメモリシステムに制限されない。
上記で説明されるそのようなメモリシステムの少なくとも一部は、1つまたは複数のデータ構造(例えば、ルックアップテーブル)または上記で説明される方程式を格納するために使用することができる。例えば、不揮発性の記録媒体の少なくとも一部は、そのようなデータ構造のうちの1つまたは複数を含むデータベースの少なくとも一部を格納することができる。そのようなデータベースは、例えば、デリミタによって分離されるデータユニットにデータが組織される1つもしくは複数のフラットファイルデータ構造、テーブルに格納されるデータユニットにデータが組織されるリレーショナルデータベース、オブジェクトとして格納されるデータユニットにデータが組織されるオブジェクト指向データベース、別のタイプのデータベースまたはそれらの任意の組合せを含むファイルシステムなど、各種のタイプのデータベースのいずれかであり得る。
コンピュータシステムは、ビデオおよび音声データI/Oサブシステムを含み得る。サブシステムの音声部分は、アナログ・デジタル(A/D)変換器を含み得、A/D変換器は、アナログ音声情報を受信し、それをデジタル情報に変換する。デジタル情報は、別の時間に使用するために、ハードディスク上に格納するための公知の圧縮システムを使用して圧縮することができる。I/Oサブシステムの典型的なビデオ部分は、その多くが当技術分野で知られているビデオ画像コンプレッサ/デコンプレッサを含み得る。そのようなコンプレッサ/デコンプレッサは、アナログビデオ情報を圧縮デジタル情報に変換することができ、その逆も可能である。圧縮デジタル情報は、後の時間に使用するために、ハードディスク上に格納することができる。
コンピュータシステムは、1つまたは複数の出力デバイスを含み得る。例示的な出力デバイスは、ブラウン管(CRT)ディスプレイ、液晶ディスプレイ(LCD)および他のビデオ出力デバイス、プリンタ、モデムまたはネットワークインタフェースなどの通信デバイス、ディスクまたはテープなどの記憶装置、ならびに、スピーカなどの音声出力デバイスを含む。
また、コンピュータシステムは、1つまたは複数の入力デバイスも含み得る。例示的な入力デバイスは、キーボード、キーパッド、トラックボール、マウス、ペン、タブレット、上記で説明されるような通信デバイス、ならびに、音声およびビデオキャプチャデバイスおよびセンサなどのデータ入力デバイスを含む。コンピュータシステムは、本明細書で説明される特定の入力または出力デバイスに制限されない。
本明細書で説明される様々な実施形態を実装するために、任意のタイプのコンピュータシステムのうちの1つまたは複数を使用できることを理解すべきである。本開示の態様は、ソフトウェア、ハードウェアもしくはファームウェア、または、それらの任意の組合せで実装することができる。コンピュータシステムは、例えば、特定用途向け集積回路(ASIC)などの特別にプログラムされた専用ハードウェアを含み得る。そのような専用ハードウェアは、上記で説明されるコンピュータシステムの一部としてまたは独立コンポーネントとして上記で説明される方法、ステップ、シミュレーション、アルゴリズム、システムおよびシステム要素のうちの1つまたは複数を実装するように構成することができる。
コンピュータシステムおよびそのコンポーネントは、各種の1つまたは複数の適切なコンピュータプログラミング言語のいずれかを使用してプログラム可能であり得る。そのような言語は、例えば、C、Pascal、FortranおよびBASICなどの手続き型プログラミング言語、例えば、C++、Java(登録商標)およびEiffelなどのオブジェクト指向言語、ならびに、スクリプト言語またはアセンブリ言語などの他の言語を含み得る。
方法、ステップ、シミュレーション、アルゴリズム、システムおよびシステム要素は、そのようなコンピュータシステムによって実行できる、手続き型プログラミング言語、オブジェクト指向プログラミング言語、他の言語およびそれらの組合せを含む、各種の適切なプログラミング言語のいずれかを使用して実装することができる。そのような方法、ステップ、シミュレーション、アルゴリズム、システムおよびシステム要素は、コンピュータプログラムの別々のモジュールとして実装することができるか、あるいは、別々のコンピュータプログラムとして個別に実装することができる。そのようなモジュールおよびプログラムは、別々のコンピュータ上で実行することができる。
そのような方法、ステップ、シミュレーション、アルゴリズム、システムおよびシステム要素は、個別にまたは組み合わせて、例えば、不揮発性の記録媒体、集積回路メモリ素子またはそれらの組合せなどのコンピュータ可読媒体上でコンピュータ可読信号として明白に具体化されたコンピュータプログラム製品として実装することができる。そのような各方法、ステップ、シミュレーション、アルゴリズム、システムまたはシステム要素に対し、そのようなコンピュータプログラム製品は、例えば、コンピュータによる実行の結果、方法、ステップ、シミュレーション、アルゴリズム、システムまたはシステム要素を実行するようにコンピュータに指示する1つまたは複数のプログラムの一部として命令を定義する、コンピュータ可読媒体上で明白に具体化されるコンピュータ可読信号を含み得る。
上記で説明される機能のうちの1つまたは複数を用いて様々な実施形態を形成できることを理解すべきである。上記の態様および機能は、本発明はこの点において制限されないため、任意の適切な組合せで採用することができる。また、図面は、様々な実施形態に組み込むことができる様々なコンポーネントおよび機能を示すことも理解すべきである。分かり易いように、図面のいくつかは、2つ以上のオプション機能またはコンポーネントを示し得る。しかし、本発明は、図面で開示される特定の実施形態に制限されない。本開示は、図面のいずれか1つに示されるコンポーネントの一部分のみを含み得る実施形態を包含すること、および/または、複数の異なる図面に示されるコンポーネントを組み合わせる実施形態を包含することを認識すべきである。
実施例1−アッセイおよび予測モデル
本明細書では、多変量アルゴリズムを通じて患者特有の情報とリンクされた総前立腺特異抗原(tPSA)、遊離PSA(fPSA)、無傷PSA(iPSA)およびヒトカリクレイン2(hK2)を含む一連の4つのカリクレインマーカーに基づくアッセイについて説明する。このアルゴリズムは、2つの検定された確率(1つは、生検前のあらゆる悪性度のがんのリスクに対するものであり、もう1つは、高悪性度のがん(グリーソン7以上)のリスクに対するものである)を返す。
4つのカリクレインマーカーは、前立腺がん検出の応用に対して、個別におよび様々な組合せで研究されてきた。これらの4つのマーカーの血漿レベル、ならびに、年齢、直腸指診(DRE)結果および以前の陰性の前立腺生検の存在などの患者特有の情報を組み込むロジスティック回帰アルゴリズムは、前立腺がんに対してPSA試験単独のものより高い陽性適中率を実証した。
初期の検定試験には300人の患者が含まれた。これには、各研究現場で登録した最初の5人の患者や、それに続いて順番に登録した患者が含まれた。最適に保管および/または出荷されなかった試料に対して、あるいは、カリクレインマーカーの測定の間に試料が異常な結果を生み出した場合に例外が設けられた。
生検におけるがんのリスクを計算するためのロジスティック回帰アルゴリズム
生検におけるがんのリスクを計算するための予測モデルの式は、検定試験を通じて確立されており、以下に提示する。述べられるように、総PSAレベルに応じて、異なる式が使用される。その上、あらゆる悪性度の検出可能ながんを含む生検の確率を決定するためにモデルが使用されるかおよび高悪性度の(例えば、グリーソンスコア7.0以上)検出可能ながんを含む生検の確率を決定するためにモデルが使用されるかに応じて、異なる重み付け係数が使用される。重み付け係数は、本明細書の表1(tPSAのレベルが閾値より大きい際に使用される重み付け係数)および2(tPSAのレベルが閾値以下である際に使用される重み付け係数)で指定される範囲内である。式の変数については表4(生検におけるがんのリスクを計算するための式の変数)で説明する。
総PSA≦25ng/mLの場合
Xβ=β+β年齢+βtpsa+βsptpsa1+βsptpsa2+βfpsa+βspfpsa1+βspfpsa2+βipsa+βhK2+β10dreneg+β11drepos+β12以前のbx (14)
総PSA>25ng/mLの場合
Xβ=β+βtpsa+βdreneg+βdrepos+β以前のbx (13)
Figure 0006775488
制限された3次スプライン項:
モデル(総PSAおよび遊離PSA)のいくつかの変数に対し、制限された3次スプライン項が含まれており、これは、各スプライン項に対してモデルの各々に2つの追加項が追加されることを意味する。2つのスプライン項を計算するための式は以下の通りである。
Figure 0006775488
Sp[var]1およびsp[var]2は、総および遊離PSAに対して、上記の式を使用して演算される。総PSAに対するスプライン項は、表3(ノット値範囲)で指定される範囲内のノット値を使用して計算された。
Figure 0006775488
検定からの結果
研究の検定段階に登録した患者の特徴を表5(検定段階の患者の特徴)に示す。
Figure 0006775488
モデル検定
モデルは、欧州コホートに基づいて開発された。ロジスティック回帰再検定は、米国コホートにおける検定ミスを試験するために傾きおよび切片係数の両方を用いて使用された。
Figure 0006775488
β≠0またはβ≠1が証明されている場合は、これは、モデルを再検定することが有益であることを示す。
高悪性度のがんを予測するモデルは、0.2(または20%)を下回る予測に対しては完璧に近い検定を呈する一方で、0.2(または20%)より大きい予測に対しては実際のリスクの過小評価があるように見えた(図2)。患者を生検へ照会するという決定は、モデルが高悪性度のがんの真のリスクを正確に予測すると思われる、0.2(または20%)を下回る閾値で起こるということが知られている。この理由のため、高悪性度のモデルに対して、再検定は実行されなかった。あらゆる悪性度のがんを予測するモデルは、重大な検定ミスを呈することはなく、従って、再検定は実行されなかった(図3)。図2および3のデータポイントは、予測確率と実際の確率との関係を示し、点線は、データに適合する線である。実際の確率における変動の度合いを示すバーが示されている。実線は、実際の確率が予測確率に等しい完璧な検定を反映する。
モデル性能
以下は、予測モデルの性能のレポートである。すべての統計は、繰り返し行われる10分割交差検定を使用して過剰適合が補正された。
Figure 0006775488
Figure 0006775488
様々な生検スキームの下で回避された生検
1000人の患者ごとに異なる生検スキームを通じて発見されたおよび見逃された高悪性度のがん(表5)およびあらゆる悪性度のがん(表6)の数が決定された。
Figure 0006775488
Figure 0006775488
決定曲線解析
高悪性度のがんに対する決定曲線解析を図4に示す。あらゆる悪性度のがんに対する決定曲線解析を図5に示す。
受信者動作特性曲線(ROC)
高悪性度のがんに対するROCを図6に示す。あらゆる悪性度のがんに対するROCを図7に示す。
生検閾値による陰性適中率および陽性適中率
高悪性度のがんに対する生検閾値による陽性適中率および陰性適中率を図8Aおよび8Bにそれぞれ示す。あらゆる悪性度のがんに対する生検閾値による陽性適中率および陰性適中率を図9Aおよび9Bにそれぞれ示す。
実施例2−検証試験
実施例1に提示されるおよび方程式(10、11、13、14)に記載されるモデルの性能の評価は、この実施例では「試験モデル」と呼ばれ、研究の検証段階に登録した663人の患者に基づいて実行された。結果は、全コホート、以前に生検を行った男性、以前に生検を行わなかった男性および50〜75歳の男性に対して別々に提示されている。図10は、生検における高悪性度の疾患を抱える男性の割合を年齢別に示す。男性の年齢が増すごとに、はるかに高い割合で高悪性度の疾患を患っている。
より高い年齢で観察されたリスクの増加の可能性の1つが、より選択的な生検である。言い換えれば、泌尿器科医は、そうせざるを得ない理由がある場合は、70歳を超える男性(多くのガイドラインにおけるPSAスクリーニングに対する上限)にのみ生検を行う。高齢の男性の間の高悪性度のがんの割合の増加が生検選択によるものだったかどうかを評価するため、PCPTリスク計算機を利用した(非特許文献1を参照)。PCPTリスク計算機は、年齢を問わずすべての男性に生検が提供された男性コホートに対して構築された。結果として高悪性度の疾患を有し、共変量としてPCPTリスクおよび高齢を有するロジスティック回帰モデルでは、年齢係数が大きい場合は、観察している年齢の影響が、リスクの生物学的増加というよりむしろ、選択に起因することが示唆される。これらの結果は、高齢の男性におけるリスクが予想されるもの(p=0.072)より高いことを示し、選択の影響が示唆される。50〜75歳の男性のサブグループ分析が実行された。50歳未満の患者は20人いたため、70歳を超える患者を除いて、追加のサブグループ分析が実施された。
総PSA、年齢、以前の生検およびDREに基づく「試験モデル」とベースモデルの2つの別々のモデルが比較された。表10(患者の特徴)は、検定段階コホートと検証段階コホートとの間の患者の特徴の違いの概要である。
Figure 0006775488
以下の表11(がんの状態別の検証試験コホート)は、がんの状態によって区別された検証段階コホートの患者の特徴を提供する。
試験モデルは、高悪性度の疾患そのベースモデルに対して、約0.06のAUCの増加で、より高い確率で判別できることが分かった。この違いは、諸条件にわたって比較的安定している。それは、以前に生検を行っている(0.09)、診断「グレーゾーン」(0.07−0.09)の患者の場合にわずかに大きい。陽性生検のエンドポイントにおけるベースモデルと試験モデルとの違いは小さく、高悪性度の疾患に対する試験モデルの選択性を明確に実証している。
以下の表14(高悪性度のがん)および15(高悪性度のがん)は、1000人の患者ごとに異なる生検スキームを通じて、すべての患者および70歳未満の患者に対して発見されたおよび見逃された高悪性度の数の概要を示す。臨床結果の分析では、7.5%のカットポイントを使用することにより、生検の数が約50%低減することが分かった。このことは、まさに、いくつかの高悪性度のがんを見逃すことにつながる(分析が71歳未満の男性に制限される際に低減される影響)。リスク<7.5%を有するより若い患者のうち、5.5%がグリーソンスコア7または8を有し、これは、このグループで1つの高悪性度のがんを発見するために18の生検を実施する必要があることを意味する。見逃された高悪性度のがんのうち、53%が3+4、40%が4+3、7%が4+4であった。
Figure 0006775488
Figure 0006775488
Figure 0006775488
すべての患者
Figure 0006775488
71歳未満
Figure 0006775488
図11Aおよび11Bは、すべての患者(n=663)における高悪性度のがんの検出の予測対実際の確率を示す。図11Cは、すべての患者(n=663)におけるあらゆる悪性度のがんの検出の予測対実際の確率を示す。図12Aおよび12Bは、50〜75歳の患者(n=587)における高悪性度のがんの検出の予測対実際の確率を示す。図12Cは、50〜75歳の患者(n=587)におけるあらゆる悪性度のがんの検出の予測対実際の確率を示す。図13Aおよび13Bは、71歳未満の患者(n=535)における高悪性度のがんの検出の予測対実際の確率を示す。図13Cは、71歳未満の患者(n=535)におけるあらゆる悪性度のがんの検出の予測対実際の確率を示す。前述の結果は、リスクの過小予測度合いがあることを示す(試料を71歳未満の患者に制限することによって低減される影響)。図11〜13の場合、データポイントは、予測確率と実際の確率との関係を示し、点線は、データに適合する線である。実際の確率における変動の度合いを示すバーが示されている。実線は、実際の確率が予測確率に等しい完璧な検定を反映する。
図14Aおよび14Bは、すべての患者(n=663)に対する純利益対閾値確率レベルを示す。図15Aおよび15Bは、50〜75歳の患者(n=587)に対する純利益対閾値確率レベルを示す。図16Aおよび16Bは、71歳未満のすべての患者(n=535)に対する純利益対閾値確率レベルを示す。データは、予測モデルの使用が高悪性度のがんの検出に対する明確な純利益と関連付けられることを示す。この影響は、71歳未満の患者に対して強化される。純利益は、その全内容が参照により本明細書に組み込まれる、非特許文献2で説明されているように評価される。
実施例3−免疫測定法
以下のアッセイ方法は、AutoDELFIA自動免疫測定法システムを使用してヒト血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベル(例えば、単位ng/mLのレベル)を決定するのに役立ち、実施例1および2と関係して使用された。各マーカーの平均量は、各マーカーに対する二重反復試験から計算され、実施例2で提示されるような所定のヒト血漿試料に対するリスクスコアを決定するために予測モデルで使用される。また、Elecsys免疫測定法分析器(Roche Diagnostics)を使用してtPSAおよびfPSAを決定することもできる。
各試験実行において3つのプレートのセット(1つのプレートをf/tPSAに対して、1つのプレートをiPSAに対しておよび1つのプレートをhK2に対して)を少なくとも1つ使用する。フル稼働での完全な試験実行は、これらの3つのプレートのセットを2つ必要とする。全手順は、試験実行しているプレートの数に応じて、開始から試験結果を得るまで約3〜5時間必要とする。
試薬:
・hK2アッセイ緩衝液
・iPSA標準(A−G)
・hK2標準(A−G)
・増強液(Perkin Elmer製品番号1380 0753)
・洗浄濃縮液(Perkin Elmer製品番号B117−100)
・iPSAアッセイ制御(低、中間および高)
・hK2アッセイ制御(低、中間および高)
・96ウェル、黄色ストレプトアビジンプレート(Perkin Elmer製品番号AAAND−0005)
・試薬グレード水
・t/fPSAに対するPROSTATUSキット(Perkin Elmer製品番号B073−301)
・iPSAビオチン化捕捉液(100x)
・iPSAトレーサー液(100x)
・hK2ビオチン化捕捉液(100x)
・hK2遮断薬液(50x)
・hK2トレーサー液(100x)
ある抗体および試薬の詳細を以下の表に示す。
Figure 0006775488
Figure 0006775488
Figure 0006775488
必需品:
・Wallacピペットチップ、1.25mL(Perkin Elmer製品番号1235−402)
・希釈容器(Perkin Elmer製品番号1235−411)
・15mL試験管
・永久マーカー
機器:
・ピペット101−1000μL容量
・ピペットチップ
・AutoDELFIAプレートプロセッサ(Perkin Elmer:1235−001)
・AutoDELFIA試料プロセッサ(Perkin Elmer:1297−014)
・AutoDELFIA PC(Perkin Elmer:1235−8060)
(ソフトウェア、ワークステーションおよびMulticalcを含む)
試料:
・血漿
手順:
tPSAおよびfPSAを決定するために、患者検体のアリコートを免疫測定法システム(例えば、Roche機器)に乗せる。AutoDELFIA機器でのiPSA、hK2および(および任意選択によりfPSAおよびtPSA)の決定の場合は、以下の手順に従う。すべての試薬は、アッセイに特異的な標準(7つのレベル)、アッセイに特異的な制御(3つのレベル)を含めて、室温に平衡化される。pH6.8 iPSAアッセイ緩衝液でiPSAビオチン化捕捉液(100x)100倍を希釈し、捕捉液をiPSA用のプレートの各ウェルに分配する。hK2 pH7.8アッセイ緩衝液でhK2ビオチン化捕捉液(100x)100倍を希釈し、捕捉液をhK2用のプレートの各ウェルに分配する。30〜60分間、室温で培養する。tPSAおよびfPSAを決定するためにProstatusキットを使用する場合は、tPSAおよびfPSAを決定するためにキット取扱説明書に従う。AutoDELFIA機器にアッセイ試薬と患者検体を乗せる。完了するまで、iPSAアッセイおよびhK2アッセイの機器プロトコルを実行する。
検体取得および処理
血液をKEDTA試験管に流し込み、一晩かけて研究所に出荷されるまで、冷凍アイスパックを添えて2〜8℃で保管する。研究所に到着すると同時に、検体は検査され、研究所追跡システムに追加され(受け入れ可能な場合)、2〜8℃の冷蔵庫でKEDTA試験管に保管される。血液は、できる限り速く回転させ、血漿は、ピペットで移送管に移される。受け取り時間から24時間以内は、血漿検体は2〜8℃で保管されるが、24時間を超えると、血漿は−70℃〜−80℃で保管される。
実施例4:PSAおよびヒトカリクレイン2の配列
PSAタンパク質(配列番号3)
Figure 0006775488
hK2タンパク質(配列番号4)
Figure 0006775488

Claims (31)

  1. 対象者から得られた前立腺組織生検が検出可能な高悪性度の前立腺がんを含む確率を決定する方法であって、
    i)前記対象者の血漿試料を、血漿試料中の総前立腺特異抗原(tPSA)のレベルを測定する免疫測定法にかけるステップと、
    ii)前記tPSAレベルが閾値レベルを上回る場合は、前記tPSAの測定レベルおよび前記対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率を決定するステップと、
    iii)前記tPSAレベルが前記閾値レベル以下である場合は、前記血漿試料を、前記血漿試料中の遊離前立腺特異抗原(fPSA)、無傷前立腺特異抗原(iPSA)およびヒトカリクレイン2(hK2)のレベルを測定する免疫測定法にかけ、前記tPSA、fPSA、iPSAおよびhK2の測定レベルならびに前記対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率を決定するステップと
    を含む、方法。
  2. 対象者から得られた前立腺組織生検が検出可能な高悪性度の前立腺がんを含む確率を決定する方法であって、
    i)前記対象者の血漿試料を、遊離前立腺特異抗原(fPSA)、無傷前立腺特異抗原(iPSA)、総前立腺特異抗原(tPSA)およびヒトカリクレイン2(hK2)のレベルを測定する免疫測定法にかけるステップと、
    ii)前記fPSA、iPSA、tPSAおよびhK2の測定レベルならびに前記対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータを重み付けすることによって、前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率を決定するステップと
    を含む、方法。
  3. 前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率が、ステップii)およびiii)で、前記対象者の年齢を示すパラメータにも重み付けすることによっ決定される、請求項1または2に記載の方法。
  4. 前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率が、ステップii)およびiii)で、前記対象者において実行された直腸指診の結果を示すパラメータにも重み付けすることによっ決定される、請求項1〜3のいずれか一項に記載の方法。
  5. 前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率が、ステップii)およびiii)で、前記測定されたtPSAレベルに基づく3次スプライン項にも重み付けすることによっ決定される、請求項1〜4のいずれか一項に記載の方法。
  6. 前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率が、ステップii)およびiii)で、前記測定されたfPSAレベルに基づく3次スプライン項にも重み付けすることによっ決定される、請求項1〜5のいずれか一項に記載の方法。
  7. 前記fPSAレベルを測定する前記免疫測定法が、
    第1の捕捉抗体がfPSAと結合し、それにより、捕捉抗体fPSA複合体が生成されるという条件の下で、前記血漿試料中に存在するfPSAをfPSAに特異的な前記第1の捕捉抗体と接触させるステップと、
    第1のトレーサーを使用して前記捕捉抗体fPSA複合体を検出するステップと
    を含む、請求項1〜6のいずれか一項に記載の方法。
  8. 前記第1のトレーサーが5A10抗体である、請求項7に記載の方法。
  9. 前記第1の捕捉抗体がH117抗体である、請求項7または8に記載の方法。
  10. 前記iPSAレベルを測定する免疫測定法が、
    第2の捕捉抗体が少なくともiPSAと結合し、それにより、捕捉抗体iPSA複合体が生成されるという条件の下で、前記血漿試料中に存在するiPSAを、iPSAおよび切断PSAに特異的な前記第2の捕捉抗体と接触させるステップと、
    第2のトレーサーを使用して前記捕捉抗体iPSA複合体を検出するステップと
    を含む、請求項1〜9のいずれか一項に記載の方法。
  11. 前記第2のトレーサーが4D4抗体を含む、請求項10に記載の方法。
  12. 前記第2の捕捉抗体が5A10Fabである、請求項1〜11のいずれか一項に記載の方法。
  13. 前記tPSAレベルを測定する前記免疫測定法が、
    第3の捕捉抗体がtPSAと結合し、それにより、捕捉抗体tPSA複合体が生成されるという条件の下で、前記血漿試料中に存在するtPSAをtPSAに特異的な前記第3の捕捉抗体と接触させるステップと、
    第3のトレーサーを使用して前記捕捉抗体tPSA複合体を検出するステップと
    を含む、請求項1〜12のいずれか一項に記載の方法。
  14. 前記第3のトレーサーがH50抗体を含む、請求項13に記載の方法。
  15. 前記第3の捕捉抗体がH117抗体である、請求項13または14に記載の方法。
  16. 前記hK2レベルを測定する前記免疫測定法が、
    前記血漿試料中に存在するPSAをPSAに特異的な遮断抗体と接触させるステップと、
    第4の捕捉抗体がhK2と結合し、それにより、捕捉抗体hK2複合体が生成されるという条件の下で、前記血漿試料中に存在するhK2をhK2に特異的な前記第4の捕捉抗体と接触させるステップと、
    第4のトレーサーを使用して前記捕捉抗体hK2複合体を検出するステップと
    を含む、請求項1〜15のいずれか一項に記載の方法。
  17. 前記第4のトレーサーが7G1抗体を含む、請求項16に記載の方法。
  18. 前記第4の捕捉抗体が6H10F(ab)である、請求項16または17に記載の方法。
  19. 前記遮断抗体が、57抗体、5H6抗体および2E9抗体を含む、請求項16〜18のいずれか一項に記載の方法。
  20. 捕捉抗体の各々またはいずれかが固相担体と結合される、請求項7〜19のいずれか一項に記載の方法。
  21. トレーサーの各々またはいずれかがユーロピウム標識を含む、請求項7〜20のいずれか一項に記載の方法。
  22. 前立腺がんと関連付けられた事象の確率を決定するための方法であって、
    入力インタフェースを介して、対象者の血漿試料中に存在するtPSAのレベルを示す情報を受信するステップと、
    入力インタフェースを介して、前記対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するステップと、
    前記対象者の前立腺がんと関連付けられた事象の確率を決定するために、少なくとも1つのプロセッサを使用して、前記受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、
    前記tPSA値および前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、ステップと、
    前立腺がんと関連付けられた前記事象の前記確率の表示を出力するステップと
    を含み、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、方法。
  23. 前立腺がんと関連付けられた事象の確率を決定するための方法であって、
    入力インタフェースを介して、対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを示す情報を受信するステップと、
    入力インタフェースを介して、前記対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するステップと、
    前記対象者の前立腺がんと関連付けられた事象の確率を決定するために、少なくとも1つのプロセッサを使用して、前記受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、
    tPSA、fPSA、iPSAおよびhK2のレベルを示す前記情報ならびに前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、ステップと、
    前立腺がんと関連付けられた前記事象の前記確率の表示を出力するステップと
    を含み、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、方法。
  24. 前立腺がんと関連付けられた事象の確率を決定するためのコンピュータであって、
    対象者の血漿試料中に存在するtPSAのレベルを示す情報および前記対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、
    前記対象者の前立腺がんと関連付けられた事象の確率を決定するために、前記受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、前記ロジスティック回帰モデルを評価することが、
    前記tPSA値および前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、少なくとも1つのプロセッサと、
    前立腺がんと関連付けられた前記事象の前記確率の表示を出力するように構成された出力インタフェースと
    を備え、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、コンピュータ。
  25. 前立腺がんと関連付けられた事象の確率を決定するためのコンピュータであって、
    対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに前記対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、
    前記対象者の前立腺がんと関連付けられた事象の確率を決定するために、前記受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、前記ロジスティック回帰モデルを評価することが、
    tPSA、fPSA、iPSAおよびhK2のレベルを示す前記情報ならびに前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、少なくとも1つのプロセッサと、
    前立腺がんと関連付けられた前記事象の前記確率の表示を出力するように構成された出力インタフェースと
    を備え、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、コンピュータ。
  26. 前立腺がんと関連付けられた事象の確率を決定するためのシステムであって、
    a)対象者の血漿試料中に存在するtPSAのレベルを測定するように構成された検出器と、
    b)前記検出器と電子通信するコンピュータと
    を備え、前記コンピュータが、
    i)前記tPSAの測定レベルを示す情報を前記検出器から受信し、前記対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、
    ii)前記対象者の前立腺がんと関連付けられた事象の確率を決定するために、前記受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、前記ロジスティック回帰モデルを評価することが、
    前記tPSAのレベルを示す前記情報および前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、少なくとも1つのプロセッサと、
    iii)前立腺がんと関連付けられた前記事象の前記確率の表示を出力するように構成された出力インタフェースと
    を備え、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、システム。
  27. 前立腺がんと関連付けられた事象の確率を決定するためのシステムであって、
    a)対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを測定するように構成された検出器と、
    b)前記検出器と電子通信するコンピュータと
    を備え、前記コンピュータが、
    i)前記tPSA、fPSA、iPSAおよびhK2の測定レベルを示す情報を前記検出器から受信し、前記対象者が以前に前立腺組織生検を行ったかどうかについての情報を受信するように構成された入力インタフェースと、
    ii)前記対象者の前立腺がんと関連付けられた事象の確率を決定するために、前記受信された情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するようにプログラムされた少なくとも1つのプロセッサであって、前記ロジスティック回帰モデルを評価することが、
    tPSA、fPSA、iPSAおよびhK2のレベルを示す前記情報ならびに前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、少なくとも1つのプロセッサと、
    iii)前立腺がんと関連付けられた前記事象の前記確率の表示を出力するように構成された出力インタフェースと
    を備え、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、システム。
  28. コンピュータによって実行されると、前立腺がんと関連付けられた事象の確率を決定する方法を実行する多数の命令で符号化されたコンピュータ可読記憶媒体であって、前記方法が、
    対象者の前立腺がんと関連付けられた事象の確率を決定するために、前記対象者の血漿試料中に存在するtPSAのレベルを示す情報および前記対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、
    前記tPSA値および前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、ステップと、
    前立腺がんと関連付けられた前記事象の前記確率の表示を出力するステップと
    を含み、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、コンピュータ可読記憶媒体。
  29. コンピュータによって実行されると、前立腺がんと関連付けられた事象の確率を決定する方法を実行する多数の命令で符号化されたコンピュータ可読記憶媒体であって、前記方法が、
    対象者の前立腺がんと関連付けられた事象の確率を決定するために、前記対象者の血漿試料中に存在するtPSA、fPSA、iPSAおよびhK2のレベルを示す情報ならびに前記対象者が以前に前立腺組織生検を行ったかどうかについての情報に少なくとも部分的に基づいて、ロジスティック回帰モデルを評価するステップであって、
    tPSA、fPSA、iPSAおよびhK2のレベルを示す前記情報ならびに前記対象者が以前に前立腺組織生検を行ったかどうかについての前記情報に少なくとも部分的に基づいて、前立腺がんと関連付けられた前記事象の前記確率を決定すること
    を含む、ステップと、
    前立腺がんと関連付けられた前記事象の前記確率の表示を出力するステップと
    を含み、
    前立腺がんと関連付けられた前記事象が、検出可能な高悪性度の前立腺がんを含む前立腺組織生検である、コンピュータ可読記憶媒体。
  30. 免疫測定法の各々またはいずれかが、マイクロ流体デバイスを使用して実行される、請求項1〜21のいずれか一項に記載の方法。
  31. 対象者に前立腺組織生検が適応されるかどうかを判断する方法であって、
    i)前記対象者から血液試料を得るステップと、
    ii)ステップi)で得られた前記血液試料を使用して、前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む確率を決定するステップであって、
    a)前記血液試料を使用して測定されたtPSAレベルが閾値レベルを上回る場合は、前記確率が、前記tPSAレベルおよび前記対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づき、そうでなければ、
    b)前記tPSAレベルが前記閾値レベル以下である場合は、前記確率が、前記血液試料を使用して測定されたtPSA、fPSA、iPSAおよびhK2のレベルならびに前記対象者が以前に前立腺組織生検を行ったかどうかを示すパラメータの重み付けに基づく、ステップと、
    iii)ステップii)で決定されるような前記前立腺組織生検が検出可能な高悪性度の前立腺がんを含む前記確率に基づいて、前記対象者に前記前立腺組織生検が適応されるかどうかを判断するステップと
    を含む、方法。
JP2017502945A 2014-03-28 2015-03-27 前立腺がんの診断に関連する組成物および方法 Active JP6775488B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461972099P 2014-03-28 2014-03-28
US61/972,099 2014-03-28
PCT/US2015/023096 WO2015148979A1 (en) 2014-03-28 2015-03-27 Compositons and methods related to diagnosis of prostate cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020169099A Division JP7256781B2 (ja) 2014-03-28 2020-10-06 前立腺がんの診断に関連する組成物および方法

Publications (2)

Publication Number Publication Date
JP2017515127A JP2017515127A (ja) 2017-06-08
JP6775488B2 true JP6775488B2 (ja) 2020-10-28

Family

ID=54196462

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017502945A Active JP6775488B2 (ja) 2014-03-28 2015-03-27 前立腺がんの診断に関連する組成物および方法
JP2020169099A Active JP7256781B2 (ja) 2014-03-28 2020-10-06 前立腺がんの診断に関連する組成物および方法
JP2022172333A Active JP7506131B2 (ja) 2014-03-28 2022-10-27 前立腺がんの診断に関連する組成物および方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020169099A Active JP7256781B2 (ja) 2014-03-28 2020-10-06 前立腺がんの診断に関連する組成物および方法
JP2022172333A Active JP7506131B2 (ja) 2014-03-28 2022-10-27 前立腺がんの診断に関連する組成物および方法

Country Status (25)

Country Link
US (2) US11761962B2 (ja)
EP (2) EP3123381B1 (ja)
JP (3) JP6775488B2 (ja)
KR (1) KR102505543B1 (ja)
CN (2) CN114740202A (ja)
AR (1) AR099883A1 (ja)
AU (1) AU2015237270B2 (ja)
BR (1) BR112016022407A2 (ja)
CA (1) CA2944001C (ja)
CL (1) CL2016002419A1 (ja)
DE (1) DE202015009668U1 (ja)
DK (1) DK3123381T3 (ja)
EA (1) EA201691952A1 (ja)
ES (1) ES2964706T3 (ja)
FI (1) FI3123381T3 (ja)
HU (1) HUE065029T2 (ja)
IL (2) IL247981B (ja)
MX (2) MX2016012667A (ja)
MY (1) MY192513A (ja)
PE (1) PE20170298A1 (ja)
PL (1) PL3123381T3 (ja)
PT (1) PT3123381T (ja)
SG (2) SG10201808585TA (ja)
TW (1) TWI687688B (ja)
WO (1) WO2015148979A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495439B (zh) 2007-05-04 2015-09-16 欧普科诊断有限责任公司 流体连接器和微流体系统
ES2812260T3 (es) 2009-02-02 2021-03-16 Opko Diagnostics Llc Estructuras para controlar la interacción de luz con dispositivos microfluídicos
BR112014021776B1 (pt) 2012-03-05 2022-08-09 Opko Diagnostics, Llc Sistema de ensaio e método para a determinação de uma probabilidade de um evento associado com o câncer da próstata
US20170089904A1 (en) * 2014-03-28 2017-03-30 Opko Diagnostics, Llc Compositions and methods for active surveillance of prostate cancer
ES2867798T3 (es) 2015-03-27 2021-10-20 Opko Diagnostics Llc Estándares del antígeno prostático y usos de estos
EP3922265A1 (en) * 2015-10-05 2021-12-15 Fredax AB Humanized anti psa (5a10) antibodies
EP3387447A4 (en) 2015-12-11 2019-08-28 Opko Diagnostics, LLC FLUID SYSTEMS WITH INCUBATION SAMPLES AND / OR REAGENTS
WO2017116979A1 (en) 2015-12-29 2017-07-06 Opko Diagnostics, Llc Fluid collection device and related methods
JP2020507838A (ja) * 2017-01-08 2020-03-12 ザ ヘンリー エム.ジャクソン ファンデーション フォー ザ アドバンスメント オブ ミリタリー メディシン,インコーポレーテッド 対象特有の肺炎転記を予測するための教師付き学習を使用するためのシステムおよび方法
KR102052398B1 (ko) 2018-04-18 2019-12-05 (주)유로테크 전립선암 진단용 바이오마커 및 이의 용도
WO2020205204A1 (en) 2019-04-03 2020-10-08 Opko Diagnostics, Llc Methods for the detection of prostate cancer
KR20240022906A (ko) * 2022-08-12 2024-02-20 (주)맥시온 암 진단용 다중 바이오마커 및 이의 용도
CN118629514A (zh) * 2024-08-08 2024-09-10 上海橙帆医药有限公司 序列免疫原性预测方法、装置、电子设备及存储介质

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176962B1 (en) 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
SE9002480D0 (sv) 1990-07-23 1990-07-23 Hans Lilja Assay of free and complexed prostate-specific antigen
US5516639A (en) 1993-07-22 1996-05-14 Mayo Foundation For Medical Education And Research Antibodies specific for human prostate glandular kallkrein
EP0635575A1 (en) 1993-07-22 1995-01-25 Wallac Oy Monoclonal antibodies against epitopes found in free but not in alpha-1-antichmotrypsin complexed prostate specific antigen
EP0725593B1 (en) 1993-10-28 2004-04-07 I-Stat Corporation Fluid sample collection and introduction device
US5599677A (en) 1993-12-29 1997-02-04 Abbott Laboratories Immunoassays for prostate specific antigen
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5614372A (en) 1995-02-24 1997-03-25 Lilja; Hans Early detection of prostate cancer (CAP) by employing prostate specific antigen (PSA) and human glandular kallikrein (hGK-1)
KR19990036069A (ko) 1995-08-03 1999-05-25 이.에이치. 리링크 진단 장치
US6143509A (en) 1996-02-06 2000-11-07 Abbott Laboratories Prostate specific antigen peptides and uses thereof
WO1997039351A1 (en) 1996-04-12 1997-10-23 Carter Herbert B Novel methods for the prediction and early detection of prostatic adenocarcinoma
US5840501A (en) 1996-10-25 1998-11-24 Bayer Corporation Determination of cPSA
US5945289A (en) 1996-12-20 1999-08-31 Lehrer; Steven Method for detecting prostate cancer by apolipoprotein E (Apo-E) genotyping
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
SE9704934D0 (sv) 1997-12-30 1997-12-30 Pharmacia & Upjohn Diag Ab Analysförfarande med tillsättning i två eller flera positioner
FI980488A (fi) 1998-03-04 1999-09-05 Arctic Partners Oy Ab Uusi diagnostinen menetelmä
FR2780791B1 (fr) 1998-07-03 2000-09-01 Bio Merieux Methode de depistage ou de diagnostic d'un adenocarcinome ou d'une pathologie benigne de la prostate et procede de mise en oeuvre
WO2000044940A2 (en) 1999-01-28 2000-08-03 Gen-Probe Incorporated Nucleic acid sequences for detecting genetic markers for cancer in a biological sample
US6444425B1 (en) 1999-04-02 2002-09-03 Corixa Corporation Compounds for therapy and diagnosis of lung cancer and methods for their use
US7211397B2 (en) 1999-04-30 2007-05-01 Beckman Coulter, Inc. Method of analyzing non-complexed forms of prostate specific antigen in a sample to improve prostate cancer detection
US6136549A (en) 1999-10-15 2000-10-24 Feistel; Christopher C. systems and methods for performing magnetic chromatography assays
FI20002127A0 (fi) 2000-09-27 2000-09-27 Artic Partners Oy Ab Uusi vasta-aine, immunomääritys ja menetelmä eturauhassyövän havaitsemiseksi
EP1328342A4 (en) 2000-10-10 2006-03-15 Aviva Biosciences Corp INTEGRATED BIOCHIP SYSTEM FOR SAMPLE PREPARATION AND ANALYSIS
AU4322102A (en) 2000-11-20 2002-06-18 Eastern Virginia Med School Methods and devices for the quantitative detection of prostate specific membraneantigen and other prostatic markers
WO2003029427A2 (en) 2001-10-03 2003-04-10 University Of Rochester Human glandular kallikrein (hk2)-specific monoclonal antibodies that enhance or inhibit the enzymatic activity of hk2
CA2468674A1 (en) 2001-12-05 2003-06-12 University Of Washington Microfluidic device and surface decoration process for solid phase affinity binding assays
US20030235816A1 (en) 2002-03-14 2003-12-25 Baylor College Of Medicine (By Slawin And Shariat) Method to determine outcome for patients with prostatic disease
US20050272052A1 (en) 2002-04-09 2005-12-08 Affymetrix, Inc. Molecular genetic profiling of gleason grades 3 and 4/5 prostate cancer
JPWO2003100425A1 (ja) 2002-05-28 2005-11-04 株式会社常光 免疫学的クロマトグラフ法の試験紙片の読み取り定量装置
US7605003B2 (en) 2002-08-06 2009-10-20 The Johns Hopkins University Use of biomarkers for detecting ovarian cancer
US20040115794A1 (en) 2002-12-12 2004-06-17 Affymetrix, Inc. Methods for detecting transcriptional factor binding sites
CA2513780C (en) 2003-02-07 2014-12-30 Diagnocure Inc. Method to detect prostate cancer from a urine sample
US7461048B2 (en) 2003-07-21 2008-12-02 Aureon Laboratories, Inc. Systems and methods for treating, diagnosing and predicting the occurrence of a medical condition
US20060269971A1 (en) 2003-09-26 2006-11-30 Mount Sinai Hospital Methods for detecting prostate cancer
EP1535667A1 (en) 2003-11-28 2005-06-01 Sysmex Corporation Analyzer, assay cartridge and analyzing method
AU2003292497A1 (en) 2003-12-10 2005-06-29 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A modular biochip assembly
US7736890B2 (en) 2003-12-31 2010-06-15 President And Fellows Of Harvard College Assay device and method
PT1776181E (pt) 2004-01-26 2014-01-02 Harvard College Sistema e método para o fornecimento de fluidos
US8030057B2 (en) 2004-01-26 2011-10-04 President And Fellows Of Harvard College Fluid delivery system and method
TW200538734A (en) 2004-03-12 2005-12-01 Aureon Biosciences Corp Systems and methods for treating, diagnosing and predicting the occurrence of a medical condition
CA2564208A1 (en) * 2004-05-11 2005-11-24 Baylor College Of Medicine Method to predict prostate cancer
US20060154276A1 (en) 2004-05-13 2006-07-13 Prometheus Laboratories Inc. Methods of diagnosing inflammatory bowel disease
JP2008508538A (ja) 2004-08-02 2008-03-21 チルドレンズ・メディカル・センター・コーポレイション 癌についての血小板生物マーカー
CA2580494A1 (en) 2004-09-17 2006-03-30 The Johns Hopkins University Biomarkers for breast cancer
US8663600B2 (en) 2005-02-17 2014-03-04 Diaprost Ab Diagnosis of prostate cancer
WO2006122310A2 (en) 2005-05-11 2006-11-16 The Trustess Of The University Of Pennsylvania System for testing
US20070065954A1 (en) 2005-09-15 2007-03-22 Minoru Taya Surface plasmon resonance biosensor system for detection of antigens and method for determining the presence of antigens
WO2007109881A1 (en) 2006-03-24 2007-10-04 Phenomenome Discoveries Inc. Biomarkers useful for diagnosing prostate cancer, and methods thereof
CN101506376A (zh) 2006-07-03 2009-08-12 埃克森希特医疗股份有限公司 前列腺特异性转录物及其在前列腺癌治疗和诊断中的应用
CN1973778A (zh) 2006-12-08 2007-06-06 南京大学 胃癌术后严重并发症风险度的预测方法
JP5523108B2 (ja) 2006-12-22 2014-06-18 ファディア・アクチボラグ 新規アレルゲンとしての前立腺カリクレイン
CN103495439B (zh) 2007-05-04 2015-09-16 欧普科诊断有限责任公司 流体连接器和微流体系统
JP2010528261A (ja) 2007-05-08 2010-08-19 ピコベラ・リミテッド・ライアビリティ・カンパニー 前立腺癌および肺癌の診断および治療方法
CN101329343A (zh) 2007-06-19 2008-12-24 天津迪爱盟生物技术有限公司 新一代早期诊断前列腺癌试剂盒及其制备方法和检测方法
WO2009029550A2 (en) 2007-08-24 2009-03-05 Singulex, Inc. Highly sensitive system and methods for analysis of prostate specific antigen (psa)
CN101377500A (zh) 2007-08-31 2009-03-04 北京科美东雅生物技术有限公司 游离前列腺特异性抗原化学发光免疫分析测定试剂盒及其制备方法
WO2009052557A1 (en) 2007-10-22 2009-04-30 St Vincent's Hospital Sydney Limited Methods of prognosis
US20090226912A1 (en) 2007-12-21 2009-09-10 Wake Forest University Health Sciences Methods and compositions for correlating genetic markers with prostate cancer risk
JP5028697B2 (ja) 2008-02-18 2012-09-19 富士フイルム株式会社 吸引シリンジ及び内視鏡用吸引シリンジ
JP2011521215A (ja) 2008-05-14 2011-07-21 エーテーハー チューリヒ 前立腺癌の診断及び治療のためのバイオマーカー及び薬剤標的発見法、並びにそれを用いて決定されるバイオマーカーアッセイ
FR2934698B1 (fr) 2008-08-01 2011-11-18 Commissariat Energie Atomique Procede de prediction pour le pronostic ou le diagnostic ou la reponse therapeutique d'une maladie et notamment du cancer de la prostate et dispositif permettant la mise en oeuvre du procede.
US8386187B2 (en) 2008-10-20 2013-02-26 Liposcience, Inc. Lipoprotein insulin resistance indexes and related methods, systems and computer programs for generating same
CN102308212A (zh) 2008-12-04 2012-01-04 加利福尼亚大学董事会 用于确定前列腺癌诊断和预后的材料和方法
US8591829B2 (en) 2008-12-18 2013-11-26 Opko Diagnostics, Llc Reagent storage in microfluidic systems and related articles and methods
WO2010075446A1 (en) 2008-12-23 2010-07-01 Soar Biodynamics, Ltd. Methods and systems for prostate health monitoring
US20120022793A1 (en) 2009-01-19 2012-01-26 Miraculins, Inc. Biomarkers for the diagnosis of prostate cancer in a non-hypertensive population
ES2812260T3 (es) 2009-02-02 2021-03-16 Opko Diagnostics Llc Estructuras para controlar la interacción de luz con dispositivos microfluídicos
JP2010243406A (ja) 2009-04-08 2010-10-28 F Hoffmann La Roche Ag Afpおよびpivka−iiの測定値を特徴値とした識別関数を利用する、肝臓癌および慢性肝疾患の病態進行度の検出方法
CA2760333A1 (en) 2009-05-01 2010-11-04 Genomic Health Inc. Gene expression profile algorithm and test for likelihood of recurrence of colorectal cancer and response to chemotherapy
WO2010139711A1 (en) 2009-06-04 2010-12-09 Metanomics Health Gmbh Means and methods for diagnosing prostate carcinomas
WO2011027308A1 (en) 2009-09-03 2011-03-10 Koninklijke Philips Electronics N.V. Novel tumor markers
WO2011027310A1 (en) 2009-09-03 2011-03-10 Koninklijke Philips Electronics N.V. Novel tumor markers
KR101141190B1 (ko) * 2009-10-19 2012-06-13 중앙대학교 산학협력단 전립선암에 대한 바이오마커 및 이를 이용한 전립선암 진단
AU2011225716A1 (en) * 2010-03-11 2012-09-27 Pfizer Inc. Antibodies with pH dependent antigen binding
MX2012012066A (es) 2010-04-16 2012-12-17 Opko Diagnostics Llc Control de retroalimentacion en sistemas microfluidicos.
WO2012029080A1 (en) 2010-08-30 2012-03-08 Decode Genetics Ehf Sequence variants associated with prostate specific antigen levels
BRPI1100857A2 (pt) 2011-03-18 2013-05-21 Alexandre Eduardo Nowill agente imunomodulador e suas combinaÇÕes, seu uso e mÉtodo imunoterÁpico para a recontextualizaÇço, reprogramaÇço e reconduÇço do sistema imune em tempo real
WO2012129408A2 (en) 2011-03-22 2012-09-27 The Johns Hopkins University Biomarkers for aggressive prostate cancer
US20140227720A1 (en) 2011-06-09 2014-08-14 Quanterix Corporation Methods of determining a patient's prognosis for recurrence of prostate cancer and/or determining a course of treatment for prostate cancer following a radical prostatectomy
WO2013012028A1 (ja) 2011-07-21 2013-01-24 和光純薬工業株式会社 血漿中アミノ酸分析用標準液
EP2771037B1 (en) 2011-10-28 2016-08-03 Fredax AB Therapeutic agents and uses thereof
WO2013106778A2 (en) 2012-01-13 2013-07-18 Iris International, Inc. Non-equilibrium two-site assays for linear, ultrasensitive analyte detection
BR112014021776B1 (pt) * 2012-03-05 2022-08-09 Opko Diagnostics, Llc Sistema de ensaio e método para a determinação de uma probabilidade de um evento associado com o câncer da próstata
EP2850432A2 (en) * 2012-05-16 2015-03-25 Phadia AB Method for indicating the presence or non-presence of prostate cancer
EP2867375B1 (en) 2012-06-27 2019-02-27 Berg LLC Use of markers in the diagnosis and treatment of prostate cancer
CN102818892B (zh) 2012-08-16 2015-02-18 北京恩济和生物科技有限公司 一种前列腺特异性抗原检测试剂盒及其制备方法
AR092982A1 (es) 2012-10-11 2015-05-13 Isis Pharmaceuticals Inc Modulacion de la expresion de receptores androgenicos
CA2891394C (en) 2012-11-20 2023-03-14 Phadia Ab Prognostic method for individuals with prostate cancer
JP2016503301A (ja) 2012-11-20 2016-02-04 ファディア・アクチボラゲットPhadia AB 侵攻性前立腺癌の存在または不存在を判定する方法
KR102442738B1 (ko) 2013-11-19 2022-09-15 프레닥스 에이비 인간화된 안티 칼리크레인-2 항체
DK3117216T3 (da) 2014-03-11 2023-04-03 Phadia Ab Fremgangsmåde til detektering af en solid tumor-cancer
US20170089904A1 (en) 2014-03-28 2017-03-30 Opko Diagnostics, Llc Compositions and methods for active surveillance of prostate cancer
WO2016145331A1 (en) 2015-03-12 2016-09-15 Thermo Finnigan Llc Methods for data-dependent mass spectrometry of mixed biomolecular analytes
ES2867798T3 (es) 2015-03-27 2021-10-20 Opko Diagnostics Llc Estándares del antígeno prostático y usos de estos
EA039028B1 (ru) 2015-04-29 2021-11-24 Опкоу Дайагностикс, Ллк Способ, компьютер и система для определения вероятности события, ассоциированного с раком предстательной железы
US20190072555A1 (en) 2017-08-14 2019-03-07 Opko Diagnostics, Llc Multiplex assays for evaluating prostate cancer status
EP3794354A4 (en) 2018-05-16 2022-01-12 Opko Diagnostics, LLC METHODS OF DETECTING PROSTATE CANCER ASSOCIATED WITH NEGATIVE RESULTS

Also Published As

Publication number Publication date
DE202015009668U1 (de) 2019-01-21
CA2944001A1 (en) 2015-10-01
IL280039A (en) 2021-03-01
US20230393137A1 (en) 2023-12-07
JP7506131B2 (ja) 2024-06-25
AU2015237270B2 (en) 2021-09-09
CN106663149A (zh) 2017-05-10
US11761962B2 (en) 2023-09-19
MY192513A (en) 2022-08-24
HUE065029T2 (hu) 2024-04-28
ES2964706T3 (es) 2024-04-09
EP3123381A4 (en) 2018-02-21
TWI687688B (zh) 2020-03-11
JP2021009157A (ja) 2021-01-28
DK3123381T3 (da) 2023-11-27
KR20170008729A (ko) 2017-01-24
MX2016012667A (es) 2017-01-09
IL280039B (en) 2021-12-01
JP2017515127A (ja) 2017-06-08
PE20170298A1 (es) 2017-04-18
BR112016022407A2 (pt) 2017-12-12
CN114740202A (zh) 2022-07-12
WO2015148979A8 (en) 2016-01-07
IL247981A0 (en) 2016-11-30
US20160025732A1 (en) 2016-01-28
PT3123381T (pt) 2023-12-22
SG11201608035UA (en) 2016-10-28
AU2015237270A1 (en) 2016-10-20
EP3299977A1 (en) 2018-03-28
TW201621320A (zh) 2016-06-16
SG10201808585TA (en) 2018-11-29
CL2016002419A1 (es) 2017-03-31
CA2944001C (en) 2023-08-15
FI3123381T3 (fi) 2023-11-27
IL247981B (en) 2021-02-28
EP3123381A1 (en) 2017-02-01
PL3123381T3 (pl) 2024-02-26
EA201691952A1 (ru) 2017-05-31
JP7256781B2 (ja) 2023-04-12
KR102505543B1 (ko) 2023-03-02
MX2022002365A (es) 2022-04-06
WO2015148979A1 (en) 2015-10-01
EP3123381B1 (en) 2023-10-11
JP2023017841A (ja) 2023-02-07
AR099883A1 (es) 2016-08-24

Similar Documents

Publication Publication Date Title
JP7506131B2 (ja) 前立腺がんの診断に関連する組成物および方法
JP6873916B2 (ja) 前立腺がんの積極的監視のための組成物および方法
US20170089904A1 (en) Compositions and methods for active surveillance of prostate cancer
US20210208146A1 (en) Methods for detecting prostate cancer pathology associated with adverse outcomes
WO2020205204A1 (en) Methods for the detection of prostate cancer
WO2008039931A2 (en) Pride algorithm application
Moul et al. NADiA® ProsVue™ PSA Slope Is an Independent Prognostic Marker for Identifying Men at Reduced Risk for Clinical Recurrence of Prostate Cancer after Radical Prostatectomy
EA041331B1 (ru) Композиции и методы, имеющие отношение к диагностике рака предстательной железы
BR122024013391A2 (pt) Métodos, computador, meio de armazenamento e sistemas relacionados ao diagnóstico do câncer de próstata

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6775488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250