JP6773558B2 - 相変化冷却装置および相変化冷却方法 - Google Patents

相変化冷却装置および相変化冷却方法 Download PDF

Info

Publication number
JP6773558B2
JP6773558B2 JP2016544946A JP2016544946A JP6773558B2 JP 6773558 B2 JP6773558 B2 JP 6773558B2 JP 2016544946 A JP2016544946 A JP 2016544946A JP 2016544946 A JP2016544946 A JP 2016544946A JP 6773558 B2 JP6773558 B2 JP 6773558B2
Authority
JP
Japan
Prior art keywords
refrigerant
phase change
refrigerant liquid
change cooling
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016544946A
Other languages
English (en)
Other versions
JPWO2016031195A1 (ja
Inventor
暁 小路口
暁 小路口
吉川 実
実 吉川
正樹 千葉
正樹 千葉
有仁 松永
有仁 松永
佐藤 正典
正典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2016031195A1 publication Critical patent/JPWO2016031195A1/ja
Application granted granted Critical
Publication of JP6773558B2 publication Critical patent/JP6773558B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20127Natural convection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、電子機器などの冷却に用いられる相変化冷却装置および相変化冷却方法に関し、特に、受熱により相変化した冷媒蒸気を、駆動源を用いることなく輸送し凝縮させる自然循環型の相変化冷却装置および相変化冷却方法に関する。
近年、情報処理技術の向上やインターネット環境の発達にともなって、必要とされる情報処理量が増大している。膨大なデータを処理するため、各地にデータセンタ(Data
Center:DC)が設置され運用されている。ここで、データセンタ(DC)とは、サーバやデータ通信装置を設置し運用することに特化した施設をいう。このようなデータセンタ(DC)においては、サーバやデータ通信装置などの電子機器からの発熱密度が非常に高いため、これらの電子機器を効率的に冷却する必要がある。
電子機器等の効率的な冷却方式の一例として、自然循環型の相変化冷却方式が知られている(例えば、特許文献1参照)。自然循環型の相変化冷却方式においては、電子機器などの発熱源より発生した熱を、冷媒の潜熱を用いて受熱・放熱する。この方式では、冷媒蒸気の浮力及び冷媒液の重力によって、動力を必要とせずに冷媒を循環駆動させることができる。そのため、自然循環型の相変化冷却方式によれば、電子機器などの高効率かつ省エネルギーな冷却が可能である。
このような自然循環型の相変化冷却装置の一例が特許文献1に記載されている。特許文献1に記載された関連する冷却システムは、複数のサーバにそれぞれ設けられた蒸発器、建屋の屋上に設けられた冷却塔、戻し配管(冷媒ガス配管)、および供給配管(冷媒液体配管)を有する。戻し配管および供給配管は、蒸発器に設けられた冷却コイルと冷却塔に設けられた螺旋状配管との間を連結する。そして、戻し配管は蒸発器でガス化した冷媒ガスを冷却塔に戻す。供給配管は、冷媒ガスを冷却塔で冷却して凝縮することにより液化した冷媒液体を蒸発器に供給する。これにより、蒸発器と冷却塔との間に、冷媒が自然循環するための循環ラインが形成される。
ここで、それぞれの蒸発器には、サーバから排出された高温空気が蒸発器で冷却された後の風の温度を測定する温度センサが設けられる。また、それぞれの蒸発器の冷却コイルの出口には、冷却コイルに供給する冷媒の供給流量(冷媒流量)を調整するためのバルブ(流量調整手段)が設けられている。そして、コントローラが温度センサによる測定温度に基づいて、各バルブの開度をそれぞれ自動調整する。これにより、蒸発器で冷却された後の風の温度が設定温度よりも低くなり過ぎた場合には、バルブの開度が絞られて冷媒の供給流量が減少される。
このような構成としたことにより、関連する冷却システムによれば、各蒸発器における冷媒の供給流量が必要以上に多くならないので、冷媒を冷却するための冷却負荷を小さくすることができ、冷却塔での冷却だけでも十分な冷却能力を発揮できる、としている。
特開2009−194093号公報(段落[0047]〜[0055]、図1)
上述したように、特許文献1に記載された関連する冷却システムは、蒸発器に設けられた冷却コイルに供給する冷媒の供給流量を調整するためのバルブをそれぞれ設け、蒸発器で冷却された後の風の温度に基づいてバルブの開度を自動調整する構成としている。すなわち、複数の蒸発器の出口にそれぞれ電子制御のバルブを配置し温度センサと連動させることにより、サーバラックの負荷に応じて適量な冷媒液をそれぞれの蒸発器に供給する構成としている。これは、各蒸発器における冷媒液の液量が多すぎると冷媒液の圧力によって相変化が阻害され、逆に冷媒液の液量が少ないと相変化が起こらず吸熱できない状況が生じるため、効率よく相変化冷却を行うことが困難になるからである。
しかしながら、関連する冷却システムは複数の蒸発器ごとにバルブを備えた構成としているので、バルブの制御系を含めた装置コストが必要となるだけでなく、安定稼働のためのメンテナンスのコストも必要となるという問題があった。
このように、自然循環型の相変化冷却装置を用いて複数の発熱源を効率よく冷却するためには、装置コストおよび維持管理コストの増大が避けられない、という問題があった。
本発明の目的は、上述した課題である、自然循環型の相変化冷却装置を用いて複数の発熱源を効率よく冷却するためには、装置コストおよび維持管理コストの増大が避けられない、という課題を解決する相変化冷却装置および相変化冷却方法を提供することにある。
本発明の相変化冷却装置は、受熱する複数の受熱部と、放熱する凝縮部と、複数の受熱部と凝縮部とを接続する第1の冷媒経路及び第2の冷媒経路と、を有する相変化冷却装置であって、第1の冷媒経路は、凝縮部と接続する主冷媒管と、主冷媒管と接続し、循環する冷媒をためる冷媒貯留部と、各々の一端が複数の受熱部のうち対応するものに接続され、 他端が冷媒貯留部に接続された複数の副冷媒管と、を備える。
また、本発明の相変化冷却装置は、複数の発熱源から受熱する冷媒をそれぞれ収容する複数の受熱部と、受熱部で気化した冷媒の冷媒蒸気を凝縮液化して冷媒液を生成する凝縮部と、受熱部と凝縮部を接続し、冷媒蒸気を輸送する冷媒蒸気輸送構造と、受熱部と凝縮部を接続し、冷媒液を輸送する冷媒液輸送構造、とを有し、冷媒液輸送構造は、凝縮部と接続する主液管と、主液管と接続し、冷媒液をためる冷媒液貯留部と、冷媒液貯留部と複数の受熱部とをそれぞれ接続する複数の副液管、とを備える。
本発明の相変化冷却方法は、複数の発熱源から受熱することにより冷媒を気化し、気化した冷媒の冷媒蒸気を凝縮液化して冷媒液を生成し、冷媒液を貯留した後に複数の流束に分流し、分流した冷媒液がそれぞれ複数の発熱源から受熱するように還流させる。
本発明の相変化冷却装置および相変化冷却方法によれば、装置コストおよび維持管理コストの増大を招くことなく、自然循環型の相変化冷却方式により複数の発熱源を効率よく冷却することができる。
本発明の第1の実施形態に係る相変化冷却装置の構成を示す概略図である。 本発明の第2の実施形態に係る冷媒液輸送構造の構成を示す断面図である。 本発明の第2の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部の構成を示す断面図である。 本発明の第2の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部の構成を示す底面図である。 本発明の第2の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部の別の構成を示す底面図である。 本発明の第2の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部のさらに別の構成を示す底面図である。 本発明の第2の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部のさらに別の構成を示す底面図である。 本発明の第2の実施形態に係る冷媒液輸送構造の別の構成を示す断面図である。 本発明の第3の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部の構成を示す断面図である。 本発明の第4の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部の構成を示す断面図である。 本発明の第4の実施形態に係る冷媒液貯留部が備える副液管接続部の構成を模式的に示す図である。 本発明の第4の実施形態に係る冷媒液貯留部が備える副液管接続部の構成を模式的に示す図である。 本発明の第4の実施形態に係る冷媒液貯留部が備える副液管接続部の別の構成を模式的に示す図である。 本発明の第4の実施形態に係る冷媒液貯留部が備える副液管接続部の別の構成を模式的に示す図である。 本発明の第4の実施形態に係る冷媒液輸送構造が備える冷媒液貯留部の別の構成を示す断面図である。 本発明の第5の実施形態に係る相変化冷却装置の構成を示す概略図である。 本発明の第6の実施形態に係る相変化冷却装置の構成を示す概略図である。
以下に、図面を参照しながら、本発明の実施形態について説明する。
〔第1の実施形態〕
本発明の第1の実施形態に係る相変化冷却装置は、受熱する複数の受熱部と、放熱する凝縮部と、複数の受熱部と凝縮部とを接続する第1の冷媒経路及び第2の冷媒経路と、を有する。ここで第1の冷媒経路は、凝縮部と接続する主冷媒管と、主冷媒管と接続し、循環する冷媒をためる冷媒貯留部と、各々の一端が複数の受熱部のうち対応するものに接続され、他端が冷媒貯留部に接続された複数の副冷媒管、とを備える。
本発明の第1の実施形態に係る相変化冷却装置について、さらに詳細に説明する。図1は、本発明の第1の実施形態に係る相変化冷却装置1000の構成を示す概略図である。本実施形態による相変化冷却装置1000は、複数の受熱部(蒸発器)1010、凝縮部(凝縮器)1020、冷媒液輸送構造(第1の冷媒経路)1100、および冷媒蒸気輸送構造(第2の冷媒経路)1200を有する。
複数の受熱部1010は、複数の発熱源から受熱する冷媒をそれぞれ収容する。凝縮部1020は、受熱部1010で気化した冷媒の冷媒蒸気を凝縮液化して冷媒液を生成する。冷媒液輸送構造1100は、受熱部1010と凝縮部1020を接続し、冷媒液を輸送する。冷媒蒸気輸送構造1200は、受熱部1010と凝縮部1020を接続し、冷媒蒸気を輸送する。
ここで、冷媒液輸送構造1100は、凝縮部1020と接続する主液管(主冷媒管)1110、主液管1110と接続し、冷媒液をためる冷媒液貯留部(冷媒貯留部)1120、および複数の副液管(副冷媒管)1130とを備える。複数の副液管(副冷媒管)1130は、冷媒液貯留部1120と複数の受熱部1010とをそれぞれ接続する。
上述したように、本実施形態による相変化冷却装置1000は、冷媒液輸送構造1100に冷媒液貯留部1120を備え、複数の受熱部1010と複数の副液管1130によってそれぞれ接続する構成としている。ここで、稼働状態において冷媒液貯留部1120に冷媒液がたまり、冷媒液貯留部1120の液面を保持するのに必要な量の冷媒を充填する。これにより、それぞれの受熱部1010で受熱して気化することにより減少した冷媒液の量に応じて、冷媒液が冷媒液貯留部1120から各受熱部1010に過不足なく供給される。すなわち、駆動部品やセンサ部品等を用いることなく、各受熱部1010の負荷に応じた量の冷媒液をそれぞれの受熱部1010へ供給することが可能になる。
このように、本実施形態の相変化冷却装置1000によれば、装置コストおよび維持管理コストの増大を招くことなく、自然循環型の相変化冷却方式により複数の発熱源を効率よく冷却することができる。
なお、冷媒蒸気輸送構造1200の構成は特に限定されないが、例えば図1に示したように、主蒸気管1210、蒸気合流部1220、および複数の副蒸気管1230を備えた構成とすることができる。ここで主蒸気管1210は凝縮部1020と接続している。蒸気合流部1220は主蒸気管1210と接続し、蒸気合流部1220において冷媒蒸気が合流する。そして、複数の副蒸気管1230が蒸気合流部1220と複数の受熱部1010とをそれぞれ接続する。
冷媒液貯留部1120は、図1に示すように、凝縮部1020よりも鉛直下方に位置し、複数の受熱部1010よりも鉛直上方に位置した構成とすることができる。これにより、冷媒液貯留部1120からの冷媒液の分配を重力の作用だけで行うことができる。
受熱部1010は、発熱源と熱的に接続し冷媒を貯蔵する複数の蒸発部を備え、複数の蒸発部が鉛直方向に配置した構成とすることができる。具体的には例えば、発熱源としてのサーバがサーバラック内に複数個積層して配置され、サーバラックのリアドア等に蒸発部を備えた受熱モジュールを、受熱部1010とすることができる。ここで、冷媒液貯留部1120はサーバラックの上方であって、受熱部1010が配置されるリアドアの外部に位置した構成とすることができる。また、蒸気合流部1220もサーバラックの上方であって、受熱部1010が配置されるリアドアの外部に位置した構成とすることができる。
次に、本実施形態による相変化冷却装置1000の動作について説明する。
相変化冷却装置1000は、例えば複数台配置されたサーバラックで発生した熱を、それぞれのサーバラックに備えられた受熱部1010で吸熱し、凝縮部1020で放熱を行う。これにより、サーバラックに搭載されたサーバ等の冷却を行う。
各サーバラックに備えられサーバラックから吸熱する受熱部1010にはそれぞれ、副液管1130と副蒸気管1230が接続されている。副液管1130と副蒸気管1230はそれぞれ、冷媒液貯留部1120および蒸気合流部1220において主液管1110と主蒸気管1210に接続している。そして、主液管1110と主蒸気管1210は一個の凝縮部1020と接続している。
受熱部1010には冷媒液が充填されている。冷媒液はサーバラックからの排熱を受けてその熱を吸熱し、気化することにより冷媒蒸気となって浮力により上昇する。冷媒蒸気は、副液管1130よりも圧力損失が小さい副蒸気管1230を通って凝縮部1020に向けて流動する。このとき、各受熱部1010からの冷媒蒸気は蒸気合流部1220において合流し、その後に主蒸気管1210を通って凝縮部1020に達する。
凝縮部1020において、冷媒蒸気は水または空気と熱交換することにより放熱する。凝縮部1020で凝縮液化した冷媒は冷媒液となり、主液管1110を通って冷媒液貯留部1120に向けて流動する。冷媒液貯留部1120から、それぞれの受熱部1010に冷媒液が分配され、副液管1130を通して各受熱部1010に必要な冷媒液が供給される。このような冷却サイクルが連続的に行われることにより、サーバラックからの連続的な吸熱が可能となる。
なお、冷媒液輸送構造1100を構成する主液管1110、冷媒液貯留部1120、および副液管1130においても、冷媒液とともに冷媒蒸気が存在する場合がある。また、冷媒蒸気輸送構造1200を構成する主蒸気管1210、蒸気合流部1220、および副蒸気管1230においても、冷媒蒸気とともに冷媒液が存在する場合がある。
次に、本実施形態による相変化冷却方法について説明する。
本実施形態による相変化冷却方法ではまず、複数の発熱源から受熱することにより冷媒を気化し、気化した冷媒の冷媒蒸気を凝縮液化して冷媒液を生成する。この冷媒液を貯留した後に複数の流束に分流し、分流した冷媒液がそれぞれ複数の発熱源から受熱するように還流させる。これにより、装置コストおよび維持管理コストの増大を招くことなく、自然循環型の相変化冷却方式により複数の発熱源を効率よく冷却することができる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。本実施形態においては、相変化冷却装置1000が備える冷媒液輸送構造1100についてさらに詳細に説明する。
図2に、本実施形態による冷媒液輸送構造1100の構成を示す。本実施形態の冷媒液輸送構造1100は、凝縮部と接続する主液管1110、主液管1110と接続し、冷媒液をためる冷媒液貯留部2100、および冷媒液貯留部2100と複数の受熱部1010とをそれぞれ接続する複数の副液管1130とを備える。
図3に、本実施形態による冷媒液貯留部2100の構成を示す。冷媒液貯留部2100は、容器部2001を有するタンク形状とした。そして、容器部2001は、上面および側面のいずれか一方に主液管1110と接続する主液管接続部2110を備え、鉛直下方の底面に副液管1130と接続する複数の副液管接続部2120を備える。
相変化冷却装置1000全体に充填される冷媒の量は、稼働状態において主液管接続部2110から容器部2001に流入する冷媒液2002が、図3に示すように一定の液面を保つように設定される。このとき、各受熱部1010で受熱して気化した冷媒液に相当する量だけの冷媒液が、副液管接続部2120から各受熱部1010に過不足なく供給される。そして、容器部2001から各受熱部1010へ流出した冷媒液は、各受熱部1010で再び受熱して気化した後に、凝縮部1020において凝縮液化して冷媒液貯留部2100に還流する。そのため、相変化冷却装置1000内の平均的な冷媒液量は一定に保持される。
図4Aから図4Dに、複数の副液管接続部2120の配置例を示す。図4Aから図4Dは冷媒液貯留部2100の底面図である。図4Aは副液管接続部2120を4個、図4Bは6個、図4Cと図4Dは副液管接続部2120を8個ずつ備えた場合をそれぞれ示す。冷媒液貯留部2100は、副液管接続部2120の個数に対応する個数の受熱部と、副液管を介してそれぞれ接続される。なお、受熱部はサーバラック等に収容されるので、ラックの配置を考慮すると偶数個の場合が多い。そのため、偶数個の副液管接続部2120を備えた場合について例示した。
ここで、副液管接続部2120は継手を備えた構成とすることができ、この継手と副液管を構成する配管とが接続される。このとき、複数の配管の配置および収容等を考慮し、副液管接続部2120は図4Aから図4Dに示したように多角形状に等間隔で配置することが望ましい。
図2においては、冷媒液輸送構造1100が1個の冷媒液貯留部2100を備えた構成を示した。しかし、これに限らず、図5に示した冷媒液輸送構造1101のように、複数の冷媒液貯留部2101、2102を備え、複数の冷媒液貯留部2101、2102に、異なる複数の受熱部1011、1012がそれぞれ接続した構成としてもよい。このとき、凝縮部1020から冷媒液貯留部2101、冷媒液貯留部2102に向けて、鉛直下方に向かう勾配を設けて冷媒液貯留部2101、2102を配置する。これにより、冷媒液を重力の作用だけで還流させることが可能である。
上述したように、本実施形態による冷媒液輸送構造1100、1101を備えた相変化冷却装置によれば、装置コストおよび維持管理コストの増大を招くことなく、自然循環型の相変化冷却方式により複数の発熱源を効率よく冷却することができる。
〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。本実施形態においては、相変化冷却装置1000が備える冷媒液輸送構造1100を構成する冷媒液貯留部についてさらに詳細に説明する。
図6は、本実施形態による冷媒液貯留部2200の構成を示す断面図である。本実施形態の冷媒液貯留部2200は容器部2001を有し、容器部2001は上面および側面のいずれか一方に主液管と接続する主液管接続部2110を備え、鉛直下方の底面に副液管と接続する複数の副液管接続部2220を備える。
ここで、複数の副液管接続部2220は、底面の鉛直方向の高さが最小である位置近傍に配置している。典型的には例えば、複数の副液管接続部2220が、底面の中心近傍に配置している構成とすることができる。
容器部2001は、冷媒液貯留部2200の設置状況によって、底面が水平から傾いている場合や、底面の形状にゆがみなどが生じている場合があり得る。しかし、このような場合であっても、上述した副液管接続部2220の構成とすることにより、冷媒液2002が特定の副液管接続部2220に偏って分配されることを防ぐことができる。
図6では、容器部2001が箱状である場合を例として示した。しかしこれに限らず、容器部2001の形状を、底面の一部に鉛直下方に突出した凸部を有する形状とし、鉛直方向の高さが最小となる凸部の頂点近傍に複数の副液管接続部2220を配置した構成としてもよい。
〔第4の実施形態〕
次に、本発明の第4の実施形態について説明する。本実施形態においては、相変化冷却装置1000が備える冷媒液輸送構造1100を構成する冷媒液貯留部についてさらに詳細に説明する。
図7は、本実施形態による冷媒液貯留部2300の構成を示す断面図である。本実施形態の冷媒液貯留部2300は容器部2001を有し、容器部2001は上面および側面のいずれか一方に主液管と接続する主液管接続部2110を備え、鉛直下方の底面に副液管と接続する複数の副液管接続部2320を備える。
ここで、本実施形態の複数の副液管接続部2320は継手を備えている。そして容器部2001が、この継手の内径が互いに異なる二個の副液管接続部2320を少なくとも含む構成とした。すなわち、本実施形態の冷媒液貯留部2300は、内径が異なる複数の継手を備えた構成である。
このような構成とすることにより、各受熱部における発熱量に応じて、各受熱部に供給する冷媒液の流量を制御することが可能になる。すなわち、発熱量が大きく、冷媒液の消費量が多い受熱部とは、継手の内径が大きい副液管接続部2320と接続することにより、より大きな冷媒液の流量を確保することができる。一方、発熱量が小さい受熱部とは、継手の内径が小さい副液管接続部2320と接続することにより、必要以上の流量の冷媒液が供給されるのを防ぐことが可能になる。
ここで、複数の副液管接続部2320の冷媒液が流動する断面積の和が、主液管接続部2110の冷媒液が流動する断面積に等しい構成とすることができる。すなわち、各副液管接続部2320の冷媒液が流動する断面積Siは下記の式により定めることができる。Si=SA×Qi/ΣQi (i=1〜N)
上式において、SAは主液管接続部2110の冷媒液が流動する断面積、Qiは各副液管接続部2320が接続される各受熱部1010における発熱量、Nは受熱部1010の個数、そしてΣQiはN個の受熱部1010における発熱量の和である。
これは、冷媒液貯留部2300から流出する冷媒液の流量は、各副液管接続部2320の断面積、例えば継手の断面積に比例し、各受熱部1010で必要となる冷媒液の流量は各受熱部1010における発熱量によって決まるからである。すなわち、各受熱部1010における発熱量に応じて単位時間当たりに必要な冷媒液の供給流量が決まり、その流量を供給するために満たさなくてはならない流路抵抗の上限が定まる。この上限の流路抵抗を下回る流路抵抗となる継手の径を選択することにより、各受熱部1010における効率的な冷却を実現することができる。
上述したように、受熱部1010における発熱量に応じて、その受熱部と接続する副液管接続部2320を構成する継手の径を変えることにより、大発熱量の受熱部1010にも安定して冷媒液を供給することが可能になる。なお、各受熱部1010における発熱量は一般に、発熱源であるサーバ等の電子機器の稼働状況によって変化する。しかし、各電子機器の平均発熱量は定まっている場合が多く、このような場合には、平均発熱量を用いて副液管接続部2320を構成する継手の径を決定することができる。
次に、副液管接続部2320の具体的な構成例について説明する。
図8A、8Bに、副液管接続部2321が備える継手をフランジ接続する構成とした例を模式的に示す。ここで、継手の径の変更は、図8Bに示すように、フランジ部分は共通とし、継手の種類を変更することにより行うことができる。
図9A、9Bに、副液管接続部2322が備える継手をねじ込み接続する構成とした例を模式的に示す。ここで、継手の径の変更は、図9Bに示すように、ネジ部分は共通とし、継手の種類を変更することにより行うことができる。
また、上述した継手の内径が互いに異なる副液管接続部の構成は、図10に示すように、筒状の装着部2430を用いることによっても実現することができる。すなわち、冷媒液貯留部2400が備える副液管接続部2420は、継手と、継手の内部に装着される筒状の装着部2430を備えた構成とすることができる。そして、容器部2001は、継手の内径は等しく、装着部2430の内径が互いに異なる二個の副液管接続部2420を少なくとも含む構成とすることができる。
この場合、内径が等しい複数の継手をあらかじめ形成しておき、受熱部の発熱量に応じて、装着部2430によって内径を調整することができる。そのため、製造コストを低減することができる。装着部2430は具体的には例えば、キャップ状のアダプタとすることができる。なお、図10では、装着部2430は容器部2001の内側から装着された構成を示したが、容器部2001の外側から装着する構成としてもよい。
上述した構成とすることにより、本実施形態による冷媒液貯留部を備えた相変化冷却装置によれば、装置コストおよび維持管理コストの増大を招くことなく、自然循環型の相変化冷却方式により複数の発熱源を効率よく冷却することができる。
〔第5の実施形態〕
次に、本発明の第5の実施形態について説明する。図11は、本発明の第5の実施形態に係る相変化冷却装置3000の構成を示す概略図である。本実施形態による相変化冷却装置3000は、複数の受熱部1010、凝縮部1020、冷媒液輸送構造1100、および冷媒蒸気輸送構造1200を有する。
複数の受熱部1010は、複数の発熱源から受熱する冷媒をそれぞれ収容する。凝縮部1020は、受熱部1010で気化した冷媒の冷媒蒸気を凝縮液化して冷媒液を生成する。冷媒液輸送構造1100は、受熱部1010と凝縮部1020を接続し、冷媒液を輸送する。冷媒蒸気輸送構造1200は、受熱部1010と凝縮部1020を接続し、冷媒蒸気を輸送する。
ここで、冷媒液輸送構造1100は、凝縮部1020と接続する主液管1110、主液管1110と接続し、冷媒液をためる冷媒液貯留部1120、および冷媒液貯留部1120と複数の受熱部1010とをそれぞれ接続する複数の副液管1130とを備える。
ここまでの構成は、第1の実施形態による相変化冷却装置1000の構成と同様である。本実施形態による相変化冷却装置3000は、冷媒液貯留部1120と冷媒蒸気輸送構造1200を接続する分岐配管3100をさらに有する。
自然循環型の相変化冷却方式による相変化冷却装置においては、受熱部1010で受熱することにより発生する冷媒の気泡が周囲の液相の冷媒を巻き込んで上昇するので、冷媒蒸気輸送構造1200にも液相状態の冷媒液が存在し得る。このような冷媒蒸気輸送構造1200内の冷媒液は、冷媒蒸気に対する流体抵抗を増大させる要因となる。
しかし、本実施形態の相変化冷却装置3000においては、分岐配管3100により、冷媒蒸気輸送構造1200内の冷媒液を液相側である冷媒液輸送構造1100に戻すことができる。そのため、冷媒蒸気輸送構造1200内に冷媒液が存在することによる冷媒蒸気に対する流体抵抗を減少させ、これにより熱輸送効率を向上させることが可能となる。
このように、本実施形態の相変化冷却装置3000によれば、装置コストおよび維持管理コストの増大を招くことなく、自然循環型の相変化冷却方式により複数の発熱源をさらに効率よく冷却することができる。
なお、冷媒蒸気輸送構造1200の構成は特に限定されないが、例えば図11に示したように、主蒸気管1210、蒸気合流部1220、および複数の副蒸気管1230を備えた構成とすることができる。ここで主蒸気管1210は凝縮部1020と接続している。蒸気合流部1220は主蒸気管1210と接続し、蒸気合流部1220において冷媒蒸気が合流する。そして、複数の副蒸気管1230が蒸気合流部1220と複数の受熱部1010とをそれぞれ接続する。この場合、分岐配管3100は例えば図11に示すように、主蒸気管1210と冷媒液貯留部1120を接続する構成とすることができる。
〔第6の実施形態〕
次に、本発明の第6の実施形態について説明する。図12は、本発明の第6の実施形態に係る相変化冷却装置4000の構成を示す概略図である。本実施形態による相変化冷却装置4000は、複数の受熱部1010、凝縮部1020、冷媒液輸送構造1100、および冷媒蒸気輸送構造1200を有する。
複数の受熱部1010は、複数の発熱源から受熱する冷媒をそれぞれ収容する。凝縮部1020は、受熱部1010で気化した冷媒の冷媒蒸気を凝縮液化して冷媒液を生成する。冷媒液輸送構造1100は、受熱部1010と凝縮部1020を接続し、冷媒液を輸送する。冷媒蒸気輸送構造1200は、受熱部1010と凝縮部1020を接続し、冷媒蒸気を輸送する。
ここで、冷媒液輸送構造1100は、凝縮部1020と接続する主液管1110、主液管1110と接続し、冷媒液をためる冷媒液貯留部1120、および冷媒液貯留部1120と複数の受熱部1010とをそれぞれ接続する複数の副液管1130とを備える。
ここまでの構成は、第1の実施形態による相変化冷却装置1000の構成と同様である。本実施形態による相変化冷却装置4000は、主液管1110による冷媒液の流路内に、駆動ポンプ4100と補助タンク4200をさらに有する。すなわち、主液管1110に補助タンク4200と駆動ポンプ4100が接続され、駆動ポンプ4100の出力側に冷媒液貯留部1120が接続された構成である。このような構成とすることにより、各受熱部1010に冷媒液をさらに効率よく分配することができる。
この場合、駆動ポンプ4100を用いることにより、その分の消費電力が増加する。しかし、駆動ポンプ4100による冷媒搬送力の増大によって相変化冷却装置4000の冷却性能が向上するので、相変化冷却装置4000を用いるシステム全体としての省エネルギー化を図ることができる。
なお、駆動ポンプ4100を用いて冷媒液を搬送する場合には、冷媒液が蒸発する前に冷媒液が受熱部1010から押し出される。そのため、押し出された冷媒液が冷媒蒸気輸送構造1200の中に存在することになる。しかし、第5の実施形態による相変化冷却装置3000と同様に、冷媒蒸気輸送構造1200と冷媒液貯留部1120を接続する分岐配管3100を備えた構成とすることにより、冷媒蒸気輸送構造1200内の冷媒液を冷媒液貯留部1120に戻すことができる。これにより、冷媒蒸気輸送構造1200内に冷媒液が押し出されることによる、冷媒蒸気に対する流体抵抗の増加を防止することができる。
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
この出願は、2014年8月27日に出願された日本出願特願2014−172115を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1000、3000、4000 相変化冷却装置
1010、1011、1012 受熱部
1020 凝縮部
1100、1101 冷媒液輸送構造
1110 主液管
1120、2100、2101、2102、2200、2300、2400 冷媒液貯留部
1130 副液管
1200 冷媒蒸気輸送構造
1210 主蒸気管
1220 蒸気合流部
1230 副蒸気管
2001 容器部
2002 冷媒液
2110 主液管接続部
2120、2220、2320、2321、2322、2420 副液管接続部
2430 装着部
3100 分岐配管
4100 駆動ポンプ
4200 補助タンク

Claims (7)

  1. 複数の発熱源から受熱する冷媒をそれぞれ収容する複数の受熱部と、
    前記受熱部で気化した前記冷媒の冷媒蒸気を凝縮液化して冷媒液を生成する凝縮部と、
    前記受熱部と前記凝縮部を接続し、前記冷媒蒸気を輸送する冷媒蒸気輸送構造と、
    前記受熱部と前記凝縮部を接続し、前記冷媒液を輸送する冷媒液輸送構造、とを有し、
    前記冷媒液輸送構造は、
    前記凝縮部と接続する主液管と、
    前記主液管と接続し、前記冷媒液をためる冷媒液貯留部と、
    前記冷媒液貯留部と前記複数の受熱部とをそれぞれ接続する複数の副液管、とを備え、
    前記冷媒液貯留部と前記冷媒蒸気輸送構造を接続する分岐配管を有し、
    前記冷媒液貯留部は、前記凝縮部よりも下方に位置し、前記複数の受熱部よりも上方に位置している
    相変化冷却装置。
  2. 請求項に記載した相変化冷却装置において、
    前記冷媒液貯留部は、容器部を有し、
    前記容器部は、上面および側面のいずれか一方に前記主液管と接続する主液管接続部を備え、下方の底面に前記副液管と接続する複数の副液管接続部を備える
    相変化冷却装置。
  3. 請求項に記載した相変化冷却装置において、
    前記複数の副液管接続部は、前記底面の高さが最小である位置近傍に配置している
    相変化冷却装置。
  4. 請求項に記載した相変化冷却装置において、
    前記複数の副液管接続部は、前記底面の中心近傍に配置している
    相変化冷却装置。
  5. 請求項から4のいずれか一項に記載した相変化冷却装置において、
    前記副液管接続部は継手を備え、
    前記容器部は、前記継手の内径が互いに異なる二個の前記副液管接続部を少なくとも含む
    相変化冷却装置。
  6. 請求項から4のいずれか一項に記載した相変化冷却装置において、
    前記副液管接続部は、継手と、前記継手の内部に装着される筒状の装着部を備え、
    前記容器部は、前記継手の内径は等しく、前記装着部の内径は互いに異なる二個の前記副液管接続部を少なくとも含む
    相変化冷却装置。
  7. 請求項から6のいずれか一項に記載した相変化冷却装置において、
    前記複数の副液管接続部の前記冷媒液が流動する断面積の和が、前記主液管接続部の前記冷媒液が流動する断面積に等しい
    相変化冷却装置。
JP2016544946A 2014-08-27 2015-08-20 相変化冷却装置および相変化冷却方法 Active JP6773558B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014172115 2014-08-27
JP2014172115 2014-08-27
PCT/JP2015/004159 WO2016031195A1 (ja) 2014-08-27 2015-08-20 相変化冷却装置および相変化冷却方法

Publications (2)

Publication Number Publication Date
JPWO2016031195A1 JPWO2016031195A1 (ja) 2017-06-15
JP6773558B2 true JP6773558B2 (ja) 2020-10-21

Family

ID=55399111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016544946A Active JP6773558B2 (ja) 2014-08-27 2015-08-20 相変化冷却装置および相変化冷却方法

Country Status (3)

Country Link
US (1) US10813243B2 (ja)
JP (1) JP6773558B2 (ja)
WO (1) WO2016031195A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147615A1 (ja) * 2015-03-13 2016-09-22 日本電気株式会社 冷媒供給装置、それを用いた相変化冷却装置、および冷媒供給方法
US10448543B2 (en) * 2015-05-04 2019-10-15 Google Llc Cooling electronic devices in a data center
JP6720752B2 (ja) * 2016-07-25 2020-07-08 富士通株式会社 液浸冷却装置、液浸冷却システム、及び液浸冷却装置の制御方法
CN108344069A (zh) * 2017-01-22 2018-07-31 大金工业株式会社 电气元件冷却结构
WO2019054076A1 (ja) * 2017-09-13 2019-03-21 株式会社デンソー 機器温調装置
JP6784281B2 (ja) * 2017-09-13 2020-11-11 株式会社デンソー 機器温調装置
JP2020186891A (ja) * 2019-05-17 2020-11-19 株式会社デンソー 機器温調装置
KR200493031Y1 (ko) * 2019-08-21 2021-01-20 주식회사 한국가스기술공사 액화천연가스용 저장탱크 구조체
CN110996617B (zh) * 2019-12-09 2024-01-23 华南理工大学 具有冗余相变传热元件的服务器水冷散热系统及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638447A (en) * 1968-09-27 1972-02-01 Hitachi Ltd Refrigerator with capillary control means
JPS5934267B2 (ja) * 1978-10-09 1984-08-21 株式会社日立製作所 自然循環冷却装置
JPS61169374A (ja) 1985-01-23 1986-07-31 Mazda Motor Corp 車室内騒音防止装置
JPH0328282Y2 (ja) * 1985-04-08 1991-06-18
JP3141857B2 (ja) * 1998-10-16 2001-03-07 ダイキン工業株式会社 ダクトの接続構造および接続方法
US6519955B2 (en) * 2000-04-04 2003-02-18 Thermal Form & Function Pumped liquid cooling system using a phase change refrigerant
JP2001208272A (ja) * 2000-12-18 2001-08-03 Akira Kawaguchi 多岐管
US20090158757A1 (en) 2007-12-19 2009-06-25 Joseph Marsala System and method for controlling the cooling of variable heat loads in heat generating devices
JP4780479B2 (ja) 2008-02-13 2011-09-28 株式会社日立プラントテクノロジー 電子機器の冷却システム
US20120324933A1 (en) * 2010-03-03 2012-12-27 Timothy Louvar Condenser bypass for two-phase electronics cooling system
EP2767783B1 (en) * 2013-02-15 2016-07-27 ABB Research Ltd. A cooling apparatus
WO2014132592A1 (ja) * 2013-02-26 2014-09-04 日本電気株式会社 電子機器冷却システム及び電子機器冷却システムの製造方法

Also Published As

Publication number Publication date
JPWO2016031195A1 (ja) 2017-06-15
US20170280585A1 (en) 2017-09-28
US10813243B2 (en) 2020-10-20
WO2016031195A1 (ja) 2016-03-03

Similar Documents

Publication Publication Date Title
JP6773558B2 (ja) 相変化冷却装置および相変化冷却方法
US20160174417A1 (en) Cooling system and method for controlling refrigerant supply volume in cooling system
US9854715B2 (en) Flexible two-phase cooling system
US8441789B2 (en) Data center module
US9854714B2 (en) Method of absorbing sensible and latent heat with series-connected heat sinks
US9832913B2 (en) Method of operating a cooling apparatus to provide stable two-phase flow
US20150237767A1 (en) Heat sink for use with pumped coolant
JP6137167B2 (ja) 冷却装置および冷却システム
JP6604330B2 (ja) 冷媒中継装置、それを用いた冷却装置、および冷却方法
US20160120064A1 (en) Redundant heat sink module
JP6927229B2 (ja) 相変化冷却装置および相変化冷却方法
US20150233619A1 (en) Method of providing stable pump operation in a two-phase cooling system
JP6904704B2 (ja) 相変化冷却装置および相変化冷却方法
CN105746008A (zh) 电子设备收纳装置以及电子设备冷却系统
US20180054919A1 (en) Refrigerant supply device, phase-change cooling apparatus equipped with the same, and method of supplying refrigerant
WO2016069299A1 (en) Heat sink for use with pumped coolant
EP3228163A1 (en) Flexible two-phase cooling system
JP5869646B1 (ja) 冷媒供給装置および冷却装置および冷却システム
WO2016047099A1 (ja) 冷却装置およびその製造方法
JP6288428B2 (ja) 液体冷媒配管、配管の方法、冷却装置、冷却方法
JP6390702B2 (ja) 発熱体の冷却システム、及びリザーブタンク
WO2018164085A1 (ja) 冷却装置及び気液分離タンク
WO2016069285A1 (en) Method of condensing vapor in a two-phase cooling system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190424

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190507

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190524

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190528

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200407

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200721

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200811

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200908

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150