JP6768098B2 - Gas refinery and its operation method - Google Patents

Gas refinery and its operation method Download PDF

Info

Publication number
JP6768098B2
JP6768098B2 JP2019029135A JP2019029135A JP6768098B2 JP 6768098 B2 JP6768098 B2 JP 6768098B2 JP 2019029135 A JP2019029135 A JP 2019029135A JP 2019029135 A JP2019029135 A JP 2019029135A JP 6768098 B2 JP6768098 B2 JP 6768098B2
Authority
JP
Japan
Prior art keywords
gas
path
refiner
valve
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019029135A
Other languages
Japanese (ja)
Other versions
JP2020131135A (en
Inventor
啓史 川北
啓史 川北
宏文 川端
宏文 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019029135A priority Critical patent/JP6768098B2/en
Priority to KR1020190148938A priority patent/KR20200102331A/en
Priority to CN202010037226.4A priority patent/CN111589298A/en
Priority to TW109101433A priority patent/TW202031342A/en
Publication of JP2020131135A publication Critical patent/JP2020131135A/en
Application granted granted Critical
Publication of JP6768098B2 publication Critical patent/JP6768098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0087Bypass or safety valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4272Special valve constructions adapted to filters or filter elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、ガス精製装置及びその運転方法に関し、詳しくは、精製対象ガス中の不純物成分を触媒反応させる触媒反応器に導入する精製対象ガスを所定の触媒反応温度に加熱する加熱器を備えたガス精製装置及びその運転方法に関する。 The present invention relates to a gas purification apparatus and an operation method thereof, and more specifically, includes a heater for heating the purification target gas to a predetermined catalytic reaction temperature to be introduced into a catalytic reactor that catalyzes an impurity component in the purification target gas. Regarding gas purification equipment and its operation method.

精製対象ガス中に含まれている不純物成分を除去して精製する手段として、触媒を充填した触媒筒と吸着剤を充填した吸着筒とを組み合わせたガス精製装置が知られている(例えば、特許文献1参照。)。例えば、精製対象ガスである窒素ガス中に含まれている不純物である炭化水素を除去する際には、加熱器で加熱した窒素ガスを触媒筒に導入し、触媒反応でメタンを水分と二酸化炭素とに分解した後、生成した水分及び二酸化炭素を除去対象成分として吸着筒で吸着除去することで精製した窒素ガスを得るようにしている。 As a means for purifying by removing impurity components contained in the gas to be purified, a gas purification device in which a catalyst cylinder filled with a catalyst and an adsorption cylinder filled with an adsorbent are combined is known (for example, a patent). See Reference 1.). For example, when removing hydrocarbons, which are impurities contained in nitrogen gas, which is the gas to be purified, nitrogen gas heated by a heater is introduced into the catalyst cylinder, and methane is converted to water and carbon dioxide by catalytic reaction. After decomposing into the above, purified nitrogen gas is obtained by adsorbing and removing the generated water and carbon dioxide as components to be removed with an adsorption cylinder.

特開2012−51753号公報Japanese Unexamined Patent Publication No. 2012-51753

しかし、触媒筒を利用した従来のガス精製装置では、精製対象ガスと触媒とを高温で接触させるため、触媒筒の上流側(前段)に加熱器を配置し、触媒筒に導入する精製対象ガスを触媒反応に必要な温度まで加熱器で加熱しなければならなかった。このため、精製対象ガスを加熱するためのエネルギーが多大なものとなっており、特に大量の精製ガスを使用する半導体製造設備では、ランニングコストに大きな影響を与えていた。 However, in the conventional gas purification device using the catalyst cylinder, in order to bring the gas to be refined into contact with the catalyst at a high temperature, a heater is arranged on the upstream side (previous stage) of the catalyst cylinder and the gas to be refined to be introduced into the catalyst cylinder. Had to be heated in a heater to the temperature required for the catalytic reaction. For this reason, the energy for heating the gas to be refined is enormous, and the running cost is greatly affected particularly in the semiconductor manufacturing equipment using a large amount of the refined gas.

そこで本発明は、ガス加熱器に要するエネルギー量を抑えてランニングコストの低減を図れるガス精製装置及びその運転方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a gas purification apparatus capable of reducing the running cost by suppressing the amount of energy required for the gas heater and an operation method thereof.

上記目的を達成するため、本発明のガス精製装置は、精製対象ガスを加熱するガス加熱器と、該ガス加熱器で加熱された精製対象ガス中の不純物成分を触媒反応させて除去対象成分とする触媒筒と、該触媒筒から導出した精製対象ガス中の前記除去対象成分を除去する精製器とを備えたガス精製装置において、前記ガス加熱器に前記精製対象ガスを導入するガス導入経路及び該ガス導入経路に設けられたガス導入弁と、前記触媒筒から導出したガスを前記精製器に導入する精製器入口経路と、前記精製器で精製された精製ガスを導出する精製器出口経路と、前記ガス導入弁の上流側から分岐して前記精製器入口経路又は前記精製器出口経路に接続したバイパス経路及び該バイパス経路に設けられたバイパス弁と、前記バイパス経路の分岐部より上流側に設けられて前記ガス導入経路内を流れる精製対象ガス中の不純物成分濃度を測定し、測定した前記不純物成分濃度に応じて前記ガス導入弁及び前記バイパス弁の開閉を制御する分析計とを備え、前記分析計は、当該分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より高濃度のときは、前記バイパス弁を閉じて前記ガス導入弁を開くように制御し、前記分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より低濃度のときは、前記ガス導入弁を閉じて前記バイパス弁を開くように制御することを特徴としている。 In order to achieve the above object, the gas purification apparatus of the present invention has a gas heater that heats the gas to be refined and an impurity component in the gas to be refined heated by the gas heater by catalytic reaction to form a component to be removed. In a gas purification apparatus provided with a catalyst cylinder for purifying and a purifier for removing the component to be removed in the gas to be refined derived from the catalyst cylinder, a gas introduction path for introducing the gas to be refined into the gas heater and a gas introduction route. A gas introduction valve provided in the gas introduction path, a refiner inlet path for introducing the gas derived from the catalyst cylinder into the refiner, and a refiner outlet path for introducing the refined gas purified by the refiner. , A bypass path branched from the upstream side of the gas introduction valve and connected to the refiner inlet path or the refiner outlet path, a bypass valve provided in the bypass path, and upstream of the branch portion of the bypass path. It is provided with an analyzer that measures the concentration of an impurity component in the gas to be purified flowing in the gas introduction path and controls the opening and closing of the gas introduction valve and the bypass valve according to the measured concentration of the impurity component . When the impurity component concentration measured by the analyzer is higher than the preset concentration, the analyzer controls the bypass valve to be closed and the gas introduction valve to be opened, and the analyzer is used. When the measured impurity component concentration is lower than the preset set concentration, the gas introduction valve is closed and the bypass valve is controlled to be opened .

さらに、本発明のガス精製装置は、前記ガス導入弁が、該ガス導入弁の上流側と下流側とを接続する迂回経路を備え、該迂回経路は、該迂回経路を流れるガス流量を調節する流量調節弁を備えていることを特徴としている。 Further, the gas purification apparatus of the present invention includes a detour route in which the gas introduction valve connects the upstream side and the downstream side of the gas introduction valve, and the detour route adjusts the gas flow rate flowing through the detour route. It is characterized by having a flow control valve.

また、本発明のガス精製装置の運転方法は、精製対象ガスを加熱するガス加熱器と、該ガス加熱器で加熱された精製対象ガス中の不純物成分を触媒反応させて除去対象成分とする触媒筒と、該触媒筒から導出した精製対象ガス中の前記除去対象成分を除去する精製器とを備えるとともに、前記ガス加熱器に前記精製対象ガスを導入するガス導入経路及び該ガス導入経路に設けられたガス導入弁と、前記触媒筒から導出したガスを前記精製器に導入する精製器入口経路と、前記精製器で精製された精製ガスを導出する精製器出口経路と、前記ガス導入弁の上流側から分岐して前記精製器入口経路又は前記精製器出口経路に接続したバイパス経路及び該バイパス経路に設けられたバイパス弁と、前記バイパス経路の分岐部より上流側に設けられて前記ガス導入経路内を流れる精製対象ガス中の不純物成分濃度を測定し、測定した前記不純物成分濃度に応じて前記ガス導入弁及び前記バイパス弁の開閉を制御する分析計とを備えたガス精製装置の運転方法において、前記分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より高濃度のときは、前記バイパス弁を閉じて前記ガス導入弁を開くことによって前記精製対象ガスを前記ガス導入経路を通して前記ガス加熱器に導入し、前記分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より低濃度のときは、前記ガス導入弁を閉じて前記バイパス弁を開くことによって前記精製対象ガスを前記ガス加熱器に導入することなく、前記バイパス経路を通して前記精製器入口経路又は前記精製器出口経路に導入することを特徴としている。 Further, in the operation method of the gas purification apparatus of the present invention, a gas heater for heating the purification target gas and a catalyst for catalytically reacting an impurity component in the purification target gas heated by the gas heater to be a removal target component. A cylinder and a purifier for removing the component to be removed in the gas to be refined derived from the catalyst cylinder are provided, and the gas introduction path for introducing the gas to be refined into the gas heater and the gas introduction path are provided. The gas introduction valve, the refiner inlet path for introducing the gas drawn from the catalyst cylinder into the refiner, the refiner outlet path for taking out the refined gas refined by the refiner, and the gas introduction valve. A bypass path branched from the upstream side and connected to the refiner inlet path or the refiner outlet path, a bypass valve provided in the bypass path, and the gas introduction provided upstream of the branch portion of the bypass path. A method of operating a gas purification apparatus provided with an analyzer that measures the concentration of impurity components in the gas to be refined flowing in the path and controls the opening and closing of the gas introduction valve and the bypass valve according to the measured concentration of the impurity components. When the concentration of the impurity component measured by the analyzer is higher than the preset concentration, the bypass valve is closed and the gas introduction valve is opened to allow the purification target gas to pass through the gas introduction path. When the concentration of impurity components introduced into the gas heater and measured by the analyzer is lower than the preset concentration, the gas to be refined is gas by closing the gas introduction valve and opening the bypass valve. Is not introduced into the gas heater, but is introduced into the refiner inlet path or the refiner outlet path through the bypass path.

また、本発明のガス精製装置の運転方法は、前記ガス導入弁を閉じたときに、あらかじめ設定した流量の前記精製対象ガスを前記ガス加熱器に導入することを特徴としている。 Further, the method of operating the gas purification apparatus of the present invention is characterized in that when the gas introduction valve is closed, the gas to be refined at a preset flow rate is introduced into the gas heater.

本発明によれば、分析計で測定した不純物成分濃度があらかじめ設定された設定濃度より低いときには、精製対象ガスを加熱器に導入しないようにできるので、加熱器で精製対象ガスを加熱するためのエネルギーが不要となる。これにより、ガス精製装置におけるランニングコストの低減を図れる。 According to the present invention, when the impurity component concentration measured by the analyzer is lower than the preset set concentration, the purification target gas can be prevented from being introduced into the heater, so that the purification target gas can be heated by the heater. No energy is required. As a result, the running cost of the gas purification apparatus can be reduced.

本発明のガス精製装置の一形態例を示す系統図である。It is a system diagram which shows an example of one form of the gas purification apparatus of this invention. 実験例で使用したガス精製装置の系統図である。It is a system diagram of the gas purification apparatus used in the experimental example.

図1は、本発明のガス精製装置の一形態例を示す系統図である。本形態例に示すガス精製装置は、原料ガス供給経路11から供給される原料ガス(精製対象ガス)に含まれる除去対象成分(不純物成分)を触媒筒12での触媒反応によって精製器13で除去可能な成分に変換し、この除去対象成分を精製器13で除去することで原料ガスを精製するものであって、触媒筒12の上流側には、触媒筒12から導出した触媒反応後の高温のガスと原料ガスとを熱交換させて熱回収を行う熱交換器14と、触媒反応に必要な温度に原料ガスを加熱するガス加熱器15とが設けられている。 FIG. 1 is a system diagram showing an example of a mode of the gas purification apparatus of the present invention. In the gas purification apparatus shown in this embodiment, the removal target component (impurity component) contained in the raw material gas (purification target gas) supplied from the raw material gas supply path 11 is removed by the refiner 13 by a catalytic reaction in the catalyst cylinder 12. The raw material gas is purified by converting it into a possible component and removing the component to be removed by the refiner 13, and the high temperature after the catalytic reaction derived from the catalyst cylinder 12 is on the upstream side of the catalyst cylinder 12. A heat exchanger 14 that recovers heat by exchanging heat between the gas and the raw material gas, and a gas heater 15 that heats the raw material gas to a temperature required for a catalytic reaction are provided.

前記触媒筒12は、ヒータや断熱層(いずれも図示せず)を有するもので、触媒筒12のヒータは、筒内の触媒を加熱することを目的とするものではなく、断熱層とともに、触媒の温度が低下することを防止するために設けられており、触媒は、熱交換器14及びガス加熱器15で加熱された高温の原料ガスと接触することで触媒反応が行われる。したがって、ガス加熱器15には、原料ガス供給経路11から供給される原料ガスの全量を、所定の触媒反応温度に加熱できる容量のヒータが設けられており、ガス加熱器15の出口部、あるいは、触媒筒12の入口部に設けられている温度計(図示せず)の測定温度に応じてヒータ出力を自動的に制御するようにしている。 The catalyst cylinder 12 has a heater and a heat insulating layer (neither of them is shown), and the heater of the catalyst cylinder 12 is not intended to heat the catalyst in the cylinder, but is a catalyst together with the heat insulating layer. The catalyst is provided to prevent the temperature from dropping, and the catalyst reacts by coming into contact with the high-temperature raw material gas heated by the heat exchanger 14 and the gas heater 15. Therefore, the gas heater 15 is provided with a heater having a capacity capable of heating the entire amount of the raw material gas supplied from the raw material gas supply path 11 to a predetermined catalytic reaction temperature, and is provided at the outlet portion of the gas heater 15 or the outlet portion of the gas heater 15. The heater output is automatically controlled according to the measured temperature of a thermometer (not shown) provided at the inlet of the catalyst cylinder 12.

前記原料ガス供給経路11は、ガス導入経路16とバイパス経路17とに分岐しており、ガス導入経路16は、ガス導入弁18を介して熱交換器14、ガス加熱器15から触媒筒12に向けて原料ガスを導入する経路であり、触媒筒12などを迂回するバイパス経路17は、バイパス弁19を介して精製器13の入口側に設けられた精製器入口経路20に接続している。 The raw material gas supply path 11 is branched into a gas introduction path 16 and a bypass path 17, and the gas introduction path 16 is transferred from the heat exchanger 14 and the gas heater 15 to the catalyst cylinder 12 via the gas introduction valve 18. The bypass path 17 that bypasses the catalyst cylinder 12 and the like is connected to the refiner inlet path 20 provided on the inlet side of the refiner 13 via the bypass valve 19.

また、前記原料ガス供給経路11における前記バイパス経路17の分岐部より上流側には、原料ガス供給経路11内を流れる原料ガス中に含まれている不純物成分の濃度を測定するとともに、前記ガス導入弁18及び前記バイパス弁19の開閉を制御する分析計21が設けられている。この分析計21は、測定した不純物成分濃度が、あらかじめ設定された設定濃度より高濃度のときは、前記バイパス弁19を閉じて前記ガス導入弁18を開き、測定した不純物成分濃度が、あらかじめ設定された設定濃度より低濃度のときは、前記ガス導入弁18を閉じて前記バイパス弁19を開くための弁開閉制御部を備えている。 Further, on the upstream side of the branch portion of the bypass path 17 in the raw material gas supply path 11, the concentration of the impurity component contained in the raw material gas flowing in the raw material gas supply path 11 is measured, and the gas is introduced. An analyzer 21 for controlling the opening and closing of the valve 18 and the bypass valve 19 is provided. When the measured impurity component concentration is higher than the preset setting concentration, the analyzer 21 closes the bypass valve 19 and opens the gas introduction valve 18, and the measured impurity component concentration is preset. When the concentration is lower than the set concentration, a valve open / close control unit for closing the gas introduction valve 18 and opening the bypass valve 19 is provided.

さらに、前記ガス導入経路16には、該ガス導入弁18の上流側と下流側とを接続する迂回経路22が設けられており、該迂回経路22には、該迂回経路22を流れるガス流量を調節する流量調節弁23と、流量を確認するための流量計24とが設けられている。この迂回経路22は、ガス導入弁18が全閉状態になったときに、原料ガスの一部を熱交換器14、ガス加熱器15を介して触媒筒12に導入するためのものであって、熱交換器14及びガス加熱器15で加熱昇温した原料ガスの一部を触媒筒12に導入することにより、触媒筒12内の触媒を加熱して所定の触媒反応温度に維持するようにしている。 Further, the gas introduction path 16 is provided with a detour route 22 connecting the upstream side and the downstream side of the gas introduction valve 18, and the detour route 22 is provided with a gas flow rate flowing through the detour route 22. A flow rate control valve 23 for adjusting and a flow meter 24 for confirming the flow rate are provided. This detour path 22 is for introducing a part of the raw material gas into the catalyst cylinder 12 via the heat exchanger 14 and the gas heater 15 when the gas introduction valve 18 is fully closed. By introducing a part of the raw material gas heated and heated by the heat exchanger 14 and the gas heater 15 into the catalyst cylinder 12, the catalyst in the catalyst cylinder 12 is heated and maintained at a predetermined catalyst reaction temperature. ing.

このように構成されたガス精製装置は、分析計21で測定した原料ガス中の不純物成分濃度が設定濃度より高いときには、バイパス弁19を閉じてガス導入弁18を開き、原料ガスの全量をガス導入経路16から熱交換器14に導入して一次加熱し、さらに、ガス加熱器15で二次加熱することで所定の触媒反応温度まで加熱してから触媒筒12に高温状態で導入し、触媒反応によって原料ガス中の不純物成分を精製器13で除去可能な成分(除去対象成分)に変換する。除去対象成分を含む高温の原料ガスは、熱交換器14で熱回収されることによって降温した後、精製器入口経路20を通って精製器13に導入され、精製器13内の吸着剤などによって除去対象成分を除去することにより、原料ガス中の除去対象成分が除去された精製ガスとなる。 When the concentration of impurity components in the raw material gas measured by the analyzer 21 is higher than the set concentration, the gas purification apparatus configured in this way closes the bypass valve 19 and opens the gas introduction valve 18 to gas the entire amount of the raw material gas. It is introduced into the heat exchanger 14 from the introduction path 16 for primary heating, and further heated to a predetermined catalytic reaction temperature by secondary heating with the gas heater 15, and then introduced into the catalyst cylinder 12 in a high temperature state to provide a catalyst. By the reaction, the impurity component in the raw material gas is converted into a component that can be removed by the purifier 13 (component to be removed). The high-temperature raw material gas containing the component to be removed is cooled by heat recovery in the heat exchanger 14 and then introduced into the refiner 13 through the refiner inlet path 20 by an adsorbent or the like in the refiner 13. By removing the component to be removed, the purified gas has the component to be removed in the raw material gas removed.

精製器13は、除去すべき成分に応じた手段を採用することができ、通常は、吸着剤を使用した温度変動吸着分離装置(TSA装置)や圧力変動吸着分離装置(PSA装置)を用いることができる。これらのTSA装置やPSA装置の場合、複数の吸着筒を配置して吸着工程と再生工程とに順次切り替えることで原料ガスからの除去対象成分の吸着除去を連続して行うことができる。 The purifier 13 can employ means according to the components to be removed, and usually, a temperature fluctuation adsorption separation device (TSA device) or a pressure fluctuation adsorption separation device (PSA device) using an adsorbent is used. Can be done. In the case of these TSA devices and PSA devices, by arranging a plurality of adsorption cylinders and sequentially switching between the adsorption step and the regeneration step, the adsorption and removal of the component to be removed from the raw material gas can be continuously performed.

一方、分析計21で測定した不純物成分濃度が設定濃度より低いときには、ガス導入弁18を閉じてバイパス弁19を開き、原料ガスをバイパス経路17から精製器入口経路20に導入して精製器13に直接導入する。すなわち、原料ガスをガス加熱器15で加熱することがなくなるので、ガス加熱器15における原料ガス加熱用のエネルギーが不要になり、例えば消費電力量の削減を図ることができる。 On the other hand, when the impurity component concentration measured by the analyzer 21 is lower than the set concentration, the gas introduction valve 18 is closed, the bypass valve 19 is opened, the raw material gas is introduced from the bypass path 17 into the refiner inlet path 20, and the refiner 13 is introduced. Introduce directly to. That is, since the raw material gas is not heated by the gas heater 15, the energy for heating the raw material gas in the gas heater 15 becomes unnecessary, and for example, the power consumption can be reduced.

このとき、迂回経路22の流量調節弁23を通して適量の原料ガスを熱交換器14及びガス加熱器15で加熱してから触媒筒12に導入することにより、触媒筒12内の触媒を加熱した所定量の原料ガスによって所定の触媒反応温度に加熱することができ、触媒の温度低下を防止できる。この場合でも、原料ガスの全量をガス加熱器15で加熱するときに比べて、ガス加熱器15で加熱する原料ガス量が少ないことから、ガス加熱器15での原料ガス加熱量が大幅に少なくなり、原料ガス加熱用のエネルギーの削減を図れる。これにより、原料ガス中の不純物成分濃度が上昇して原料ガスの経路をバイパス経路17からガス導入経路16に切り替えたときに、触媒筒12での触媒反応を直ちに開始することができ、未反応の不純物が高濃度で触媒筒12から流出することがなくなる。 At this time, the catalyst in the catalyst cylinder 12 is heated by heating an appropriate amount of the raw material gas through the flow control valve 23 of the detour path 22 with the heat exchanger 14 and the gas heater 15 and then introducing the gas into the catalyst cylinder 12. It is possible to heat to a predetermined catalytic reaction temperature with a fixed amount of raw material gas, and it is possible to prevent the temperature of the catalyst from dropping. In this case, the total amount of raw material gas than when heated in a gas heater 15, since less material amount of gas heated by the gas heater 15, the raw material gas heat amount in the gas heater 15 is much less Therefore, the energy for heating the raw material gas can be reduced. As a result, when the concentration of impurity components in the raw material gas rises and the path of the raw material gas is switched from the bypass path 17 to the gas introduction path 16, the catalytic reaction in the catalyst cylinder 12 can be immediately started, and no reaction occurs. Impurities will not flow out of the catalyst cylinder 12 at a high concentration.

また、バイパス経路17の下流を精製器入口経路20に接続することに代えて、精製器13の出口側に設けられている経路に接続し、分析計21で測定した原料ガス中の不純物成分濃度が低いときには、原料ガスをバイパス経路から精製器13の出口側に流すこともできる。さらに、ガス導入弁18やバイパス弁19に流量調節可能な弁を使用し、分析計21で測定した原料ガス中の不純物成分濃度が設定濃度と同等乃至僅かに高いときには、ガス導入経路16に流れる原料ガス流量とバイパス経路17を流れるガス流量とを調節し、両経路に同時に適当な割合で原料ガスを流すことも可能である。これにより、精製装置から導出するガスの純度を保ちながら、原料ガス加熱用のエネルギーの削減を図れる。 Further, instead of connecting the downstream of the bypass path 17 to the refiner inlet path 20, it is connected to a path provided on the outlet side of the refiner 13, and the impurity component concentration in the raw material gas measured by the analyzer 21. When the value is low, the raw material gas can be flowed from the bypass path to the outlet side of the refiner 13. Further, when the flow rate adjustable valve is used for the gas introduction valve 18 and the bypass valve 19, and the impurity component concentration in the raw material gas measured by the analyzer 21 is equal to or slightly higher than the set concentration, the gas flows into the gas introduction path 16. It is also possible to adjust the flow rate of the raw material gas and the flow rate of the gas flowing through the bypass path 17 so that the raw material gas flows through both paths at an appropriate ratio at the same time. As a result, the energy for heating the raw material gas can be reduced while maintaining the purity of the gas derived from the refining apparatus.

例えば、窒素ガス中に含まれるメタンを除去して精製し、メタン含有量が10ppb未満の高純度窒素ガスを得る場合、原料窒素ガスを熱交換器14及びガス加熱器15で200〜400℃程度に加熱昇温してから触媒筒12に導入し、触媒筒12内に充填した酸化触媒に接触させ、高温状態での酸化反応によってメタンを水分と二酸化炭素とに分解する。触媒反応で生成した水分及び二酸化炭素、さらに、原料窒素ガスに元から含まれている除去対象成分は、精製器13の吸着筒に充填した吸着剤、例えば、アルミナやモレキュラーシーブスによって除去される。これにより、メタン含有量が10ppb未満の高純度窒素ガスを得ることができる。 For example, when methane contained in nitrogen gas is removed and purified to obtain high-purity nitrogen gas having a methane content of less than 10 ppb, the raw material nitrogen gas is used in a heat exchanger 14 and a gas heater 15 at about 200 to 400 ° C. After heating and raising the temperature, the gas is introduced into the catalyst cylinder 12 and brought into contact with the oxidation catalyst filled in the catalyst cylinder 12, and methane is decomposed into water and carbon dioxide by an oxidation reaction at a high temperature. Moisture and carbon dioxide generated by the catalytic reaction, and the components to be removed originally contained in the raw material nitrogen gas are removed by an adsorbent filled in the adsorption cylinder of the refiner 13, for example, alumina or molecular sieves. As a result, high-purity nitrogen gas having a methane content of less than 10 ppb can be obtained.

このとき、原料窒素ガス中に含まれるメタンの濃度が、最初から10ppb未満の場合は、触媒反応でメタンを水分、二酸化炭素に変換することなく、そのまま高純度窒素ガスとして使用することができるので、原料窒素ガスを加熱して触媒筒12に導入する必要がなくなる。したがって、バイパス経路17を使用してガス加熱器15及び触媒筒12を通さずに、原料窒素ガスを触媒12の下流側に導くことにより、ガス加熱器15における消費エネルギーの削減を図れる。 At this time, if the concentration of methane contained in the raw material nitrogen gas is less than 10 ppb from the beginning, it can be used as it is as high-purity nitrogen gas without converting methane into water and carbon dioxide by catalytic reaction. , It is not necessary to heat the raw material nitrogen gas and introduce it into the catalyst cylinder 12. Therefore, the energy consumption in the gas heater 15 can be reduced by guiding the raw material nitrogen gas to the downstream side of the catalyst cylinder 12 without passing through the gas heater 15 and the catalyst cylinder 12 by using the bypass path 17.

次に、図2に示す構成の実験用精製装置を用いて本発明の効果を確認するための実験を行った結果を説明する。なお、以下の説明において、前記形態例に示したガス精製装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。 Next, the result of conducting an experiment for confirming the effect of the present invention using the experimental purification apparatus having the configuration shown in FIG. 2 will be described. In the following description, the same components as the components of the gas purification apparatus shown in the above-described example will be designated by the same reference numerals, and detailed description thereof will be omitted.

精製対象ガスは半導体製造設備向けの窒素ガスとし、不純物成分は炭化水素の一種であるメタンとした。実験用精製装置には、図2に示すように、分析計21の上流側に、メタンを導入するためのメタン導入部31を設け、精製器13の出口側に設けられている精製器出口経路32には、流量計33及び導出ガス流量調節弁34を設けるとともに、供給側と同じ分析計35を設けてメタンの濃度を測定できるようにした。 The gas to be refined was nitrogen gas for semiconductor manufacturing equipment, and the impurity component was methane, which is a type of hydrocarbon. As shown in FIG. 2, the experimental refiner is provided with a methane introduction unit 31 for introducing methane on the upstream side of the analyzer 21, and a refiner outlet path provided on the outlet side of the refiner 13. The flow meter 33 and the lead-out gas flow control valve 34 were provided in the 32, and the same analyzer 35 as the supply side was provided so that the methane concentration could be measured.

触媒筒12にはPd系の触媒を充填するとともに、触媒筒12に設けたヒータで表面温度が300℃になるように自動制御した。また、ガス加熱器15は、加熱器出口側のガス温度が300℃になるようにヒータを自動制御した。触媒筒12やガス加熱器15、さらに、高温のガスが流れる配管の周囲は、火傷防止及び放熱による消費電力の過剰消費を防止するため、厚さ100mmの保温材で覆った。また、精製器13には、モレキュラーシーブスとアルミナとを積層充填し、触媒筒12での触媒反応で生成した除去対象成分である二酸化炭素と水分とを除去するようにしている。 The catalyst cylinder 12 was filled with a Pd-based catalyst, and a heater provided in the catalyst cylinder 12 automatically controlled the surface temperature to 300 ° C. Further, the gas heater 15 automatically controlled the heater so that the gas temperature on the outlet side of the heater was 300 ° C. The catalyst cylinder 12, the gas heater 15, and the piping through which the high-temperature gas flows were covered with a heat insulating material having a thickness of 100 mm in order to prevent burns and excessive power consumption due to heat dissipation. Further, the refiner 13 is laminated and filled with molecular sieves and alumina to remove carbon dioxide and water, which are components to be removed, which are generated by the catalytic reaction in the catalyst cylinder 12.

まず、従来例として、バイパス弁19を閉じ状態としてガス導入弁18を開き、装置出口部に設けた導出ガス流量調節弁34により、ガス流量を標準状態で20Nm/hとなるよう調整した。このときの原料ガス供給経路11からの窒素ガス供給圧力は0.8MPaGであった。供給された窒素ガスの全量をガス加熱器15で300℃に加熱した状態で触媒筒12に導入する運転を3時間行って消費電力量を測定した。その結果、消費電力量は4kWであった。 First, as a conventional example, the gas introduction valve 18 was opened with the bypass valve 19 closed, and the gas flow rate was adjusted to 20 Nm 3 / h in the standard state by the lead-out gas flow rate control valve 34 provided at the outlet of the device. The nitrogen gas supply pressure from the raw material gas supply path 11 at this time was 0.8 MPaG. The total amount of the supplied nitrogen gas was heated to 300 ° C. by the gas heater 15 and introduced into the catalyst cylinder 12 for 3 hours to measure the power consumption. As a result, the power consumption was 4 kW.

一方、本発明方法の実験例として、メタン含有量が10ppb未満の窒素ガスを使用した以外、窒素ガスの流量や圧力、触媒筒12の温度は、前記比較例と同じとして運転を行った。また、ガス導入弁18を閉じた状態で迂回経路22を流れる窒素ガス量が1L/minとなるように流量調節弁23を調節し、ガス導入弁18が閉じたときでも一定量の窒素ガスがガス加熱器15に向かって流れるようにした。ガス導入弁18とバイパス弁19とは、分析計21の設定濃度を10ppbに設定して切り替え開閉するように設定した。 On the other hand, as an experimental example of the method of the present invention, the operation was performed with the flow rate and pressure of the nitrogen gas and the temperature of the catalyst cylinder 12 being the same as those of the comparative example, except that nitrogen gas having a methane content of less than 10 ppb was used. Further, the flow rate control valve 23 is adjusted so that the amount of nitrogen gas flowing through the detour path 22 is 1 L / min with the gas introduction valve 18 closed, and a constant amount of nitrogen gas is released even when the gas introduction valve 18 is closed. It was made to flow toward the gas heater 15. The gas introduction valve 18 and the bypass valve 19 are set to switch between opening and closing by setting the set concentration of the analyzer 21 to 10 ppb.

最初に、メタン導入部31からのメタンの添加を行わずに運転した。このとき、分析計21のメタン測定濃度は10ppb未満であるから、ガス導入弁18が閉、バイパス弁19が開となり、供給した窒素ガスの略全量がバイパス経路17を通り、ガス加熱器15には1L/minの窒素ガスが流れる状態になった。精製器出口経路32に設けた分析計35で測定したメタン濃度も10ppb未満であった。 First, the operation was performed without adding methane from the methane introduction unit 31. At this time, since the methane measurement concentration of the analyzer 21 is less than 10 ppb, the gas introduction valve 18 is closed and the bypass valve 19 is opened, and substantially all of the supplied nitrogen gas passes through the bypass path 17 to the gas heater 15. Is in a state where 1 L / min of nitrogen gas flows. The methane concentration measured by the analyzer 35 provided in the refiner outlet path 32 was also less than 10 ppb.

1時間経過後に、メタン導入部31からメタンを1sccmで添加し、窒素ガス中のメタン濃度が3ppmになるようにした。このとき、分析計21でのメタン測定濃度が設定濃度の10ppbを超えたため、バイパス弁19が閉、ガス導入弁18が開に自動的に切り替えられ、メタンを添加した窒素ガスの全量がガス導入経路16に流れることになった。これにより、メタンが触媒筒12での触媒反応によって二酸化炭素と水分とに変換され、生成した二酸化炭素と水分とが精製器13で吸着除去される状態になった。この状態で精製器出口経路32の分析計35で測定したメタン濃度は10ppb未満となっており、不純物成分であるメタンが確実に除去されていることが確認できた。 After 1 hour, methane was added at 1 sccm from the methane introduction section 31 so that the methane concentration in the nitrogen gas became 3 ppm. At this time, since the methane measurement concentration of the analyzer 21 exceeded the set concentration of 10 ppb, the bypass valve 19 was automatically switched to open and the gas introduction valve 18 was automatically switched to open, and the entire amount of nitrogen gas to which methane was added was introduced into gas. It will flow to the route 16. As a result, methane is converted into carbon dioxide and water by the catalytic reaction in the catalyst cylinder 12, and the generated carbon dioxide and water are adsorbed and removed by the refiner 13. In this state, the methane concentration measured by the analyzer 35 of the refiner outlet path 32 was less than 10 ppb, and it was confirmed that methane, which is an impurity component, was reliably removed.

メタンの添加を1時間で停止したところ、分析計21でのメタン測定濃度が設定濃度の10ppb未満となったため、ガス導入弁18が閉、バイパス弁19が開に自動的に切り替えられた。したがって、ガス加熱器15には1L/minの窒素ガスが流れる状態になった。この状態で1時間運転を行い、合計3時間(この内、メタン添加は1時間。)における消費電力量を測定した。その結果、消費電力量は1.5kWであった。 When the addition of methane was stopped in 1 hour, the concentration of methane measured by the analyzer 21 was less than the set concentration of 10 ppb, so that the gas introduction valve 18 was closed and the bypass valve 19 was automatically switched to open. Therefore, 1 L / min of nitrogen gas flows through the gas heater 15. The operation was carried out for 1 hour in this state, and the power consumption was measured for a total of 3 hours (of which 1 hour was added with methane). As a result, the power consumption was 1.5 kW.

したがって、従来に比べて消費電力量を1/2.7に削減することができた。なお、ガス導入弁18が閉じたときに流量調節弁23を通ってガス加熱器15に流れる窒素ガスの流量などの条件によって削減できる消費電力量が異なり、例えば、原料となる窒素ガスの流量や純度、ガス導入弁18とバイパス弁19とを切替開閉するための分析計21の設定濃度によっても消費電力量の削減効果は異なってくる。 Therefore, the power consumption can be reduced to 1 / 2.7 as compared with the conventional case. The amount of power consumption that can be reduced differs depending on conditions such as the flow rate of nitrogen gas flowing through the flow rate control valve 23 to the gas heater 15 when the gas introduction valve 18 is closed. For example, the flow rate of nitrogen gas as a raw material or The effect of reducing power consumption also differs depending on the purity and the set concentration of the analyzer 21 for switching between the gas introduction valve 18 and the bypass valve 19.

また、ガス導入弁18として開度調節が可能な弁を用いることにより、迂回経路22や流量調節弁23を使用せずに、ガス導入弁18が閉となる条件下でも、ガス導入弁18を僅かに開いた状態にして原料ガスの一部をガス導入経路16に流すことができる。さらに、不純物成分濃度が急激に変化したときでも、ガス導入弁18とバイパス弁19との切替開閉を確実に行うため、分析計21は、原料ガス供給経路11のできるだけ上流側の供給源に近い位置に設けることが好ましい。 Further, by using a valve whose opening degree can be adjusted as the gas introduction valve 18, the gas introduction valve 18 can be used even under the condition that the gas introduction valve 18 is closed without using the bypass path 22 or the flow rate control valve 23. A part of the raw material gas can be flowed through the gas introduction path 16 in a slightly open state. Further, the analyzer 21 is as close to the supply source on the upstream side of the raw material gas supply path 11 as possible in order to reliably switch between the gas introduction valve 18 and the bypass valve 19 even when the impurity component concentration changes abruptly. It is preferable to provide it at a position.

11…原料ガス供給経路、12…触媒筒、13…精製器、14…熱交換器、15…ガス加熱器、16…ガス導入経路、17…バイパス経路、18…ガス導入弁、19…バイパス弁、20…精製器入口経路、21…分析計、22…迂回経路、23…流量調節弁、24…流量計、31…メタン導入部、32…精製器出口経路、33…流量計、34…導出ガス流量調節弁、35…分析計 11 ... Raw material gas supply path, 12 ... Catalyst cylinder, 13 ... Purifier, 14 ... Heat exchanger, 15 ... Gas heater, 16 ... Gas introduction path, 17 ... Bypass path, 18 ... Gas introduction valve, 19 ... Bypass valve , 20 ... Purifier inlet path, 21 ... Analyzer, 22 ... Detour path, 23 ... Flow control valve, 24 ... Flow meter, 31 ... Methane introduction section, 32 ... Purifier outlet path, 33 ... Flow meter, 34 ... Derivation Gas flow control valve, 35 ... Analyzer

Claims (4)

精製対象ガスを加熱するガス加熱器と、該ガス加熱器で加熱された精製対象ガス中の不純物成分を触媒反応させて除去対象成分とする触媒筒と、該触媒筒から導出した精製対象ガス中の前記除去対象成分を除去する精製器とを備えたガス精製装置において、前記ガス加熱器に前記精製対象ガスを導入するガス導入経路及び該ガス導入経路に設けられたガス導入弁と、前記触媒筒から導出したガスを前記精製器に導入する精製器入口経路と、前記精製器で精製された精製ガスを導出する精製器出口経路と、前記ガス導入弁の上流側から分岐して前記精製器入口経路又は前記精製器出口経路に接続したバイパス経路及び該バイパス経路に設けられたバイパス弁と、前記バイパス経路の分岐部より上流側に設けられて前記ガス導入経路内を流れる精製対象ガス中の不純物成分濃度を測定し、測定した前記不純物成分濃度に応じて前記ガス導入弁及び前記バイパス弁の開閉を制御する分析計とを備え、前記分析計は、当該分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より高濃度のときは、前記バイパス弁を閉じて前記ガス導入弁を開くように制御し、前記分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より低濃度のときは、前記ガス導入弁を閉じて前記バイパス弁を開くように制御することを特徴とするガス精製装置。 In the gas heater that heats the gas to be refined, the catalyst cylinder that catalyzes the impurity component in the gas to be refined heated by the gas heater to be the component to be removed, and the gas to be refined derived from the catalyst cylinder. In a gas purification apparatus provided with a purifier for removing the component to be removed, a gas introduction path for introducing the gas to be refined into the gas heater, a gas introduction valve provided in the gas introduction path, and the catalyst. The refiner inlet path for introducing the gas drawn out from the cylinder into the refiner, the refiner outlet path for taking out the refined gas refined by the refiner, and the refiner branching from the upstream side of the gas introduction valve. In the bypass path connected to the inlet path or the outlet path of the refiner, the bypass valve provided in the bypass path, and the gas to be purified which is provided on the upstream side of the branch portion of the bypass path and flows in the gas introduction path. The analyzer is provided with an analyzer that measures the impurity component concentration and controls the opening and closing of the gas introduction valve and the bypass valve according to the measured impurity component concentration, and the analyzer has the impurity component concentration measured by the analyzer. When the concentration is higher than the preset set concentration, the bypass valve is closed and the gas introduction valve is controlled to open, and the impurity component concentration measured by the analyzer is lower than the preset set concentration. A gas purification apparatus characterized in that the gas introduction valve is closed and the bypass valve is opened when the concentration is high . 前記ガス導入弁は、該ガス導入弁の上流側と下流側とを接続する迂回経路を備え、該迂回経路は、該迂回経路を流れるガス流量を調節する流量調節弁を備えていることを特徴とする請求項1記載のガス精製装置。 The gas introduction valve includes a detour path connecting the upstream side and the downstream side of the gas introduction valve, and the detour path includes a flow rate control valve for adjusting the gas flow rate flowing through the detour path. The gas purification apparatus according to claim 1. 精製対象ガスを加熱するガス加熱器と、該ガス加熱器で加熱された精製対象ガス中の不純物成分を触媒反応させて除去対象成分とする触媒筒と、該触媒筒から導出した精製対象ガス中の前記除去対象成分を除去する精製器とを備えるとともに、前記ガス加熱器に前記精製対象ガスを導入するガス導入経路及び該ガス導入経路に設けられたガス導入弁と、前記触媒筒から導出したガスを前記精製器に導入する精製器入口経路と、前記精製器で精製された精製ガスを導出する精製器出口経路と、前記ガス導入弁の上流側から分岐して前記精製器入口経路又は前記精製器出口経路に接続したバイパス経路及び該バイパス経路に設けられたバイパス弁と、前記バイパス経路の分岐部より上流側に設けられて前記ガス導入経路内を流れる精製対象ガス中の不純物成分濃度を測定し、測定した前記不純物成分濃度に応じて前記ガス導入弁及び前記バイパス弁の開閉を制御する分析計とを備えたガス精製装置の運転方法において、前記分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より高濃度のときは、前記バイパス弁を閉じて前記ガス導入弁を開くことによって前記精製対象ガスを前記ガス導入経路を通して前記ガス加熱器に導入し、前記分析計で測定した不純物成分濃度が、あらかじめ設定された設定濃度より低濃度のときは、前記ガス導入弁を閉じて前記バイパス弁を開くことによって前記精製対象ガスを前記ガス加熱器に導入することなく、前記バイパス経路を通して前記精製器入口経路又は前記精製器出口経路に導入することを特徴とするガス精製装置の運転方法。 In the gas heater that heats the gas to be refined, the catalyst cylinder that catalyzes the impurity component in the gas to be refined heated by the gas heater to be the component to be removed, and the gas to be refined derived from the catalyst cylinder. It is provided with a purifier for removing the component to be removed, a gas introduction path for introducing the gas to be refined into the gas heater, a gas introduction valve provided in the gas introduction path, and a lead-out from the catalyst cylinder. The refiner inlet path for introducing gas into the refiner, the refiner outlet path for deriving the refined gas refined by the refiner, and the refiner inlet path or the refiner inlet path branched from the upstream side of the gas introduction valve. The concentration of impurity components in the bypass path connected to the outlet path of the refiner, the bypass valve provided in the bypass path, and the purification target gas provided upstream from the branch portion of the bypass path and flowing in the gas introduction path. In the operation method of the gas purification apparatus provided with the gas introduction valve and the analyzer that controls the opening and closing of the bypass valve according to the measured and measured impurity component concentration, the impurity component concentration measured by the analyzer is determined. When the concentration is higher than the preset set concentration, the gas to be purified is introduced into the gas heater through the gas introduction path by closing the bypass valve and opening the gas introduction valve, and measured by the analyzer. When the concentration of the purified impurity component is lower than the preset concentration, the bypass valve is closed and the bypass valve is opened without introducing the purification target gas into the gas heater. A method of operating a gas purifier, which comprises introducing the gas purifier into the refiner inlet route or the refiner outlet route through a route. 前記ガス導入弁を閉じたときに、あらかじめ設定した流量の前記精製対象ガスを前記ガス加熱器に導入することを特徴とする請求項3記載のガス精製装置の運転方法。 The method for operating a gas purification apparatus according to claim 3, wherein when the gas introduction valve is closed, the gas to be refined at a preset flow rate is introduced into the gas heater.
JP2019029135A 2019-02-21 2019-02-21 Gas refinery and its operation method Active JP6768098B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019029135A JP6768098B2 (en) 2019-02-21 2019-02-21 Gas refinery and its operation method
KR1020190148938A KR20200102331A (en) 2019-02-21 2019-11-19 Apparatus for gas purification and method for operating thereof
CN202010037226.4A CN111589298A (en) 2019-02-21 2020-01-14 Gas purification device and method for operating same
TW109101433A TW202031342A (en) 2019-02-21 2020-01-16 Gas purification device and method for operating the same capable of suppressing the amount of energy required for a gas heater and reducing its operation costs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029135A JP6768098B2 (en) 2019-02-21 2019-02-21 Gas refinery and its operation method

Publications (2)

Publication Number Publication Date
JP2020131135A JP2020131135A (en) 2020-08-31
JP6768098B2 true JP6768098B2 (en) 2020-10-14

Family

ID=72180036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029135A Active JP6768098B2 (en) 2019-02-21 2019-02-21 Gas refinery and its operation method

Country Status (4)

Country Link
JP (1) JP6768098B2 (en)
KR (1) KR20200102331A (en)
CN (1) CN111589298A (en)
TW (1) TW202031342A (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300203A (en) * 1991-03-29 1992-10-23 Hitachi Ltd Control of inert gas purification device
JPH07136464A (en) * 1993-11-17 1995-05-30 Babcock Hitachi Kk Apparatus and method for treating nitrogen oxide in exhaust gas
US5916133A (en) * 1996-07-24 1999-06-29 Corning Incorporated Automotive hydrocarbon adsorber system
JP3688922B2 (en) * 1999-01-20 2005-08-31 株式会社日立製作所 Gas purification equipment using carbonyl sulfide hydrolysis catalyst
JP4443799B2 (en) * 2000-07-26 2010-03-31 三菱重工業株式会社 Biomass methanol synthesis system
JP2008183533A (en) * 2007-01-31 2008-08-14 Muraki Corp Concentration dilution method for volatile organic gas
KR100943882B1 (en) * 2009-01-30 2010-02-24 대구대학교 산학협력단 Waste-air treatment devices
JP5566815B2 (en) * 2010-08-31 2014-08-06 大陽日酸株式会社 Gas purification method and gas purification apparatus
CN102662028B (en) * 2012-04-18 2014-07-02 广东电网公司电力科学研究院 Device and method for detecting capability of catalyst in denitration system of coal-fired power plant to oxidize elemental mercury
CN207507220U (en) * 2017-08-30 2018-06-19 中冶华天工程技术有限公司 The device of plasma body cooperative catalytic treatment organic exhaust gas
CN107441885B (en) * 2017-08-30 2023-08-18 中冶华天工程技术有限公司 Device and method for treating organic waste gas by plasma synergistic catalysis

Also Published As

Publication number Publication date
CN111589298A (en) 2020-08-28
JP2020131135A (en) 2020-08-31
TW202031342A (en) 2020-09-01
KR20200102331A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US3897226A (en) Controlling the concentration of impurities in a gas stream
EP3199222B1 (en) Heater arrangement for tepsa system
US20080242912A1 (en) Methods and Apparatus for Providing a High Purity Acetylene Product
KR19980087318A (en) Gas Purification Method and Apparatus
JP6566639B2 (en) Method for operating hydrogen production apparatus and hydrogen production apparatus
JP2022020947A (en) Hydrogen refining system and operation method therefor
BRPI0804747A2 (en) process for purifying a noble gas-containing gas, process for purifying a noble gas stream contaminated with unacceptable hydrogen contents and optional fuel contaminants, and process for purifying a noble gas stream having unacceptable contents of at least an absorbing fuel
KR102035870B1 (en) Purifying method and purifying apparatus for argon gas
JP6768098B2 (en) Gas refinery and its operation method
KR20110093640A (en) Purifying method and purifying apparatus for argon gas
TWI549740B (en) Purifying method and purifying apparatus for argon gas
KR20110097648A (en) Purifying method and purifying apparatus for argon gas
KR101909291B1 (en) Purifying method and purifying apparatus for argon gas
CN107531481A (en) For removing the method with hydrogenation and direct oxidation step of sulphur compound from gas
CN110452730B (en) System and method for recovering heavy components in light hydrocarbon dry gas
JP5500650B2 (en) Argon gas purification method and purification apparatus
JP4079695B2 (en) Carburizing atmosphere gas generator and method
JP6695375B2 (en) Purified gas manufacturing apparatus and purified gas manufacturing method
JPH01126203A (en) Production of high-purity gaseous hydrogen
KR101018388B1 (en) Gas purification apparatus and reactivation method of catalyst therein
JP2021155313A (en) Hydrogen supply system
JP2021081249A (en) Detection device and hydrogen producing device
CN108348835B (en) Regenerated screen material for treating natural gas
JPH05172458A (en) Impurity removing device for air separating device
KR100556097B1 (en) Apparatus for refining a nitrogen gas and method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200326

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6768098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250