JPH07136464A - Apparatus and method for treating nitrogen oxide in exhaust gas - Google Patents
Apparatus and method for treating nitrogen oxide in exhaust gasInfo
- Publication number
- JPH07136464A JPH07136464A JP5288210A JP28821093A JPH07136464A JP H07136464 A JPH07136464 A JP H07136464A JP 5288210 A JP5288210 A JP 5288210A JP 28821093 A JP28821093 A JP 28821093A JP H07136464 A JPH07136464 A JP H07136464A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- nitrogen oxides
- nox
- temperature
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は窒素酸化物を含む排ガス
を処理し、除去、無害化する装置と方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for treating, removing and detoxifying exhaust gas containing nitrogen oxides.
【0002】[0002]
【従来の技術】現在、火力発電所から排出される排ガス
を初めとする各種排ガス中に含有される窒素酸化物(N
Ox)を除去する方法として、アンモニアなどの還元剤
の存在下、触媒と接触させて窒素に変換する方法、吸着
剤で吸着除去する方法、アンモニアの存在下で電子ビー
ムを照射して硝酸アンモニウムに転換する方法などが知
られている。この中でもアンモニア接触還元法は大型火
力発電所の排ガス処理をを中心として幅広く利用されて
おり、例えば特開昭52−22839号のような酸化チ
タン系触媒を用いた方法が代表的なものである。2. Description of the Related Art At present, nitrogen oxides (N) contained in various exhaust gases including exhaust gas emitted from thermal power plants
Ox) can be removed by contacting it with a catalyst in the presence of a reducing agent such as ammonia to convert it into nitrogen, by adsorbing it with an adsorbent, and irradiating it with an electron beam in the presence of ammonia to convert it to ammonium nitrate. It is known how to do it. Among them, the ammonia catalytic reduction method is widely used mainly for the treatment of exhaust gas from large-scale thermal power plants, and a method using a titanium oxide-based catalyst as disclosed in JP-A-52-22839 is typical. .
【0003】[0003]
【発明が解決しようとする課題】しかし、従来のアンモ
ニア接触還元法は触媒の効率的な作動温度が通常300
℃以上であり、低温活性触媒の場合でも250℃以上の
温度が必要なため、排ガス温度が低い場合には除去効率
が充分ではないという欠点があった。また通常は排ガス
温度が300℃以上であってもガスタービンなどのよう
に、起動時に排ガス温度あるいは触媒層の温度が未だ充
分に上がっていない場合には、NOxの除去率は低くな
ってしまうという欠点があった。この欠点の解決方法の
一つとして特開昭58−124107号のように、触媒
が作動温度に到達する前に、排ガス中のNOx濃度が規
制値を超えるおそれがある場合には、燃焼室中に水蒸気
や水を注入して燃焼状態を変え、NOx排出量を低減す
る方法がある。しかし多量に水を注入することは燃焼器
の熱効率を低下させることになるため、この方法でNO
x排出量を大幅に低下させることは現実的ではない。However, in the conventional ammonia catalytic reduction method, the efficient operating temperature of the catalyst is usually 300.
Since the temperature is not lower than 0 ° C and the temperature of not lower than 250 ° C is required even in the case of a low temperature active catalyst, there is a drawback that the removal efficiency is not sufficient when the exhaust gas temperature is low. Further, normally, even if the exhaust gas temperature is 300 ° C. or higher, the NOx removal rate will be low if the exhaust gas temperature or the temperature of the catalyst layer has not risen sufficiently at startup, such as in a gas turbine. There was a flaw. As one of the solutions to this drawback, as disclosed in JP-A-58-124107, when the NOx concentration in the exhaust gas may exceed the regulation value before the catalyst reaches the operating temperature, the inside of the combustion chamber There is a method of reducing the NOx emission by changing the combustion state by injecting steam or water into. However, injecting a large amount of water will reduce the thermal efficiency of the combustor, so this method will reduce NO.
It is not realistic to significantly reduce x emissions.
【0004】一方、低温でNOxを除去する方法として
は、吸着剤を用いた方法が有効であることが知られてい
る。しかし、この方法では低温時のNOxの除去は比較
的容易であるものの、排ガス温度が高くなると吸着能力
が低下し、NOxの除去効率が下がるという問題があっ
た。さらに、飽和吸着に達した後では吸着剤の交換、ま
たは再生が必要であり、多量のNOxを含む排ガス処理
には経済的に問題があった。また吸着剤を再生しようと
すると、再生時に放出されるNOxの無害化処理も必要
であった。本発明の目的は上記の従来技術の欠点を無く
し、室温の領域から500℃以上の高温領域までの排ガ
ス中のNOxを効率よく無害化処理する装置と方法を提
供することにある。特に、本発明の目的は、ガスタービ
ン、ボイラなどの起動時、排ガス温度が低い状況下で従
来のアンモニア還元法が充分な効率を示さない温度領域
もカバーできる装置と方法を提供することにある。On the other hand, it is known that a method using an adsorbent is effective as a method for removing NOx at a low temperature. However, with this method, although removal of NOx at a low temperature is relatively easy, there is a problem that the adsorption capacity is lowered and the NOx removal efficiency is lowered when the exhaust gas temperature is high. Furthermore, after reaching the saturated adsorption, it is necessary to replace or regenerate the adsorbent, which is economically problematic in treating exhaust gas containing a large amount of NOx. Further, when trying to regenerate the adsorbent, it is necessary to detoxify the NOx released during regeneration. An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide an apparatus and method for efficiently detoxifying NOx in exhaust gas from a room temperature region to a high temperature region of 500 ° C. or higher. In particular, an object of the present invention is to provide an apparatus and method capable of covering a temperature range in which the conventional ammonia reduction method does not show sufficient efficiency when the exhaust gas temperature is low at the time of starting a gas turbine, a boiler or the like. .
【0005】[0005]
【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、排ガス中の窒素酸
化物を触媒の存在下、還元剤により変換、無害化する方
法において、窒素酸化物の還元用触媒を充填した反応塔
と、該反応塔へ添加する還元剤の還元剤添加手段と、反
応塔の前段の排ガス流路に窒素酸化物の吸着剤を充填し
た吸着塔を設置する排ガス中の窒素酸化物の処理装置、
または、排ガス温度が低い領域では主に吸着剤により窒
素酸化物を吸着除去し、排ガス温度が高い領域では窒素
酸化物の還元触媒により窒素酸化物を還元除去する排ガ
ス中の窒素酸化物の処理方法である。The above objects of the present invention can be achieved by the following constitutions. That is, in a method of converting nitrogen oxides in exhaust gas in the presence of a catalyst with a reducing agent to render them harmless, a reaction tower filled with a catalyst for reducing nitrogen oxides and a reducing agent for the reducing agent added to the reaction tower Addition means, a treatment device for nitrogen oxides in the exhaust gas, which installs an adsorption tower filled with a nitrogen oxide adsorbent in the exhaust gas passage in the preceding stage of the reaction tower,
Alternatively, a method for treating nitrogen oxides in exhaust gas, in which the nitrogen oxides are mainly adsorbed and removed by an adsorbent in a region where the exhaust gas temperature is low, and the nitrogen oxides are reduced and removed by a reduction catalyst for the nitrogen oxides in a region where the exhaust gas temperature is high. Is.
【0006】本発明の特徴はNOxの還元触媒(脱硝触
媒)を充填した反応塔の前段にNOxの吸着剤を充填し
た吸着塔を設置することにある。さらに、本発明は排ガ
スの一部あるいは全部を吸着塔をバイパスさせ、直接、
NOxの還元触媒を充填した反応塔に流すバイパスライ
ンを設置した構成としてもよい。さらに、本発明は吸着
塔通過後の排ガスの一部あるいは全部を反応塔をバイパ
スさせるバイパスラインを設置した構成としてもよい。
また、本発明は吸着塔と反応塔の間の排ガス流路にNO
x濃度測定手段を設け、該NOx濃度測定手段の測定値
を基準として反応塔への還元剤の添加量を制御する還元
剤添加手段を設けることができる。また、これと異なる
制御方法として、本発明は反応塔の後流の排ガス流路に
排ガス中のNOx濃度およびNOx濃度の時間変化率の
測定手段をそれぞれ設け、前記両測定手段の測定値を基
準として反応塔への還元剤の添加量を制御する還元剤添
加手段を設ける構成としてもよい。The feature of the present invention resides in that an adsorption tower filled with a NOx adsorbent is installed in front of a reaction tower filled with a NOx reduction catalyst (denitration catalyst). Furthermore, the present invention allows a part or all of the exhaust gas to bypass the adsorption tower and directly
A configuration may be used in which a bypass line is installed to flow into a reaction tower filled with a NOx reduction catalyst. Furthermore, the present invention may have a configuration in which a bypass line is installed for bypassing a part or all of the exhaust gas after passing through the adsorption tower to the reaction tower.
In addition, the present invention uses NO in the exhaust gas passage between the adsorption tower and the reaction tower.
An x concentration measuring means may be provided, and a reducing agent adding means may be provided for controlling the amount of the reducing agent added to the reaction tower based on the measured value of the NOx concentration measuring means. Further, as a control method different from this, the present invention is provided with measuring means for the NOx concentration in the exhaust gas and the time change rate of the NOx concentration respectively in the exhaust gas passage downstream of the reaction tower, and the measurement values of both the measuring means are used as a reference. As a configuration, a reducing agent addition means for controlling the addition amount of the reducing agent to the reaction tower may be provided.
【0007】本発明では、排ガス中のNOxはその温度
領域によって吸着剤、および/または脱硝触媒の作用で
除去される。したがって、排ガス中のNOxの一部また
は全部が吸着塔で除去される場合には、反応塔の前に必
ずしも還元剤を添加する必要がないが、一方、吸着剤の
再生時のように逆に排ガス中にNOxが放出される場合
には、元々の排ガスよりもNOx濃度が高くなる場合も
ある。この場合には反応塔の前で添加する還元剤の量も
それに比例して多くする必要がある。従って還元剤の添
加量の制御は、吸着塔(吸着剤)と反応塔(還元触媒)
の間、すなわち脱硝触媒の直前のNOx濃度を測定し、
その量に対応した還元剤を添加することが望ましい。In the present invention, NOx in the exhaust gas is removed by the action of the adsorbent and / or the denitration catalyst depending on its temperature range. Therefore, when a part or all of NOx in the exhaust gas is removed by the adsorption tower, it is not always necessary to add a reducing agent before the reaction tower. When NOx is released into the exhaust gas, the NOx concentration may be higher than the original exhaust gas. In this case, it is necessary to increase the amount of the reducing agent added in front of the reaction tower in proportion thereto. Therefore, the amount of reducing agent added is controlled by the adsorption tower (adsorbent) and the reaction tower (reduction catalyst).
During this period, that is, immediately before the NOx removal catalyst, the NOx concentration is measured,
It is desirable to add a reducing agent corresponding to the amount.
【0008】また、これとは異なる制御方法として、反
応塔(還元触媒)の後流に排ガス中のNOx濃度および
NOx濃度の時間変化率の測定手段を設け、それらの値
を基準として脱硝触媒入口のNOx濃度の時間推移を予
測して、その結果に基づいてNOxの還元浄化に必要な
還元剤の添加量を制御することも可能である。この場
合、脱硝触媒の入口あるいは内部の温度、排ガスの流
速、還元剤の添加量などの情報を併用し、予め各種の反
応条件下で評価した脱硝触媒の反応特性データを参照す
ることが望ましい。Further, as a control method different from this, a means for measuring the NOx concentration in the exhaust gas and the time change rate of the NOx concentration is provided in the downstream of the reaction tower (reduction catalyst), and the denitration catalyst inlet is based on these values. It is also possible to predict the change in the NOx concentration over time and control the addition amount of the reducing agent necessary for reducing and purifying NOx based on the result. In this case, it is desirable to refer to the reaction characteristic data of the denitration catalyst evaluated under various reaction conditions in combination with information such as the temperature of the inlet or the inside of the denitration catalyst, the flow rate of the exhaust gas, and the amount of the reducing agent added.
【0009】本発明において用いる吸着塔には、粒状や
ハニカム状の吸着剤を充填した固定床吸着塔、粒状ある
いは粉末状の吸着剤を用いた流動床吸着塔などを用いる
ことができ、特に吸着塔の形式には限定されない。吸着
塔を複数個設けて排ガス条件によって切り替えて使用し
たり、プラント運転中に吸着塔内の、NOxが吸着した
吸着剤を新しいものと交換する装置を付加することも可
能である。本発明で用いる反応塔の形式も特に限定され
ない。通常の粒状、ハニカム状、板状の脱硝触媒を内部
に設置した反応器を用いることができる。The adsorption tower used in the present invention may be a fixed bed adsorption tower filled with a granular or honeycomb adsorbent, a fluidized bed adsorption tower using a granular or powdery adsorbent, and the like. The form of the tower is not limited. It is also possible to provide a plurality of adsorption towers and use them by switching them depending on the exhaust gas conditions, or to add a device for exchanging the NOx adsorbent in the adsorption tower with a new one during the operation of the plant. The form of the reaction tower used in the present invention is not particularly limited. It is possible to use a reactor in which an ordinary granular, honeycomb-shaped, or plate-shaped denitration catalyst is installed.
【0010】また、本発明では、NOxの吸着剤および
脱硝触媒とも、その種類は特に限定されない。一例を挙
げると、吸着剤としては各種ゼオライト、粘土鉱物、ア
ルミナ、シリカ、チタニアなどの酸化物、鉄の化合物、
ペロブスカイト化合物、その他の金属や貴金属類などが
使用できる。また単に吸着するだけではなく、NOxと
反応して、例えば金属硝酸塩のような化合物を形成して
固定化する物質も反応塔が作動している条件下でNOx
を放出して、吸着能を回復するものであれば使用でき
る。吸着剤の形状は、粒状、板状、ハニカム状などが使
用でき、特に限定されない。また流動床吸着塔で粉末状
の吸着剤を用いることもできる。一方、脱硝触媒として
は、チタニアなどにV、Mo、W、Feなどの各種金属
酸化物あるいは貴金属を担持したもの、各種ゼオライト
およびゼオライトに各種の金属あるいは貴金属を担持し
たもの、その他、ペロブスカイトなどの複合酸化物も使
用できる。本発明における方法では、NOxの還元剤と
しては、アンモニア、尿素、一酸化炭素、各種の炭化水
素などが使用でき特に限定されない。In the present invention, the types of the NOx adsorbent and the denitration catalyst are not particularly limited. As an example, as the adsorbent, various zeolites, clay minerals, oxides such as alumina, silica and titania, iron compounds,
Perovskite compounds, other metals and noble metals can be used. Further, a substance that not only adsorbs but also reacts with NOx to form and immobilize a compound such as metal nitrate under the condition that the reaction tower is operating.
Can be used as long as it can release the adsorbent and recover the adsorption ability. The shape of the adsorbent may be granular, plate-shaped, honeycomb-shaped or the like, and is not particularly limited. It is also possible to use a powdery adsorbent in a fluidized bed adsorption tower. On the other hand, as the denitration catalyst, various metal oxides such as V, Mo, W, and Fe or noble metals are supported on titania, various zeolites and various metals or noble metals are supported on zeolite, and perovskite is also used. Complex oxides can also be used. In the method of the present invention, as the NOx reducing agent, ammonia, urea, carbon monoxide, various hydrocarbons and the like can be used and are not particularly limited.
【0011】[0011]
【作用】本発明の方法では排ガス温度が250℃以下の
低温時には脱硝触媒を充填した反応塔の前段に設置した
NOx吸着剤の作用により、NOxが吸着除去される。
また、排ガス温度が250℃以上になると、後段の脱硝
触媒によるNOxの除去活性が充分に高い温度領域にな
るので、吸着剤の能力が低下しても全体として高い脱硝
効率が得られる。さらに、ガスタービンのように起動停
止を繰り返す発電システムにおいては、排ガス温度が低
い起動時には前段の吸着剤によりNOxの吸着除去が行
われ、排ガス温度の上昇と共に吸着剤再生、すなわち吸
着したNOxの放出が自動的に行われる。従って特別の
吸着剤の再生手段を設ける必要がない。また、吸着剤か
らNOxが放出されるときには、後段の脱硝触媒が充分
な活性を示す温度領域になっているので、NOxと添加
した還元剤のアンモニア、尿素、一酸化炭素、各種炭化
水素などとの反応が充分に進行し、結果的には排ガス中
のNOxは窒素に変換され、無害化される。According to the method of the present invention, when the exhaust gas temperature is lower than 250 ° C., NOx is adsorbed and removed by the action of the NOx adsorbent installed in the preceding stage of the reaction tower filled with the denitration catalyst.
Further, when the exhaust gas temperature is 250 ° C. or higher, the NOx removal activity by the denitration catalyst in the latter stage is in a sufficiently high temperature range, so that high denitration efficiency can be obtained as a whole even if the capacity of the adsorbent decreases. Furthermore, in a power generation system that repeatedly starts and stops like a gas turbine, when the exhaust gas temperature is low, NOx is adsorbed and removed by the adsorbent in the previous stage, and the adsorbent is regenerated with the rise in exhaust gas temperature, that is, the adsorbed NOx is released. Is done automatically. Therefore, it is not necessary to provide a special adsorbent regeneration means. Further, when NOx is released from the adsorbent, since the NOx removal catalyst in the latter stage is in a temperature range where it has sufficient activity, NOx and added reducing agents such as ammonia, urea, carbon monoxide, various hydrocarbons, etc. The reaction of 1) sufficiently progresses, and as a result, NOx in the exhaust gas is converted into nitrogen and rendered harmless.
【0012】ここで、排ガス温度が高い場合には、吸着
剤の再生後は、排ガスを吸着塔(吸着剤)を通過させず
に吸着塔バイパスさせ還元剤を添加後、直接反応塔に流
すことも可能である。そのためには、排ガスの一部ある
いは全部を吸着塔(吸着剤)をバイパスさせ、直接、窒
素酸化物の還元触媒を充填した反応塔に流すラインを設
置しておく必要がある。このことにより吸着塔(吸着
剤)における圧力損失を防止できる。一方、排ガス温度
が低い場合には、同様にして、吸着塔(吸着剤)後流の
ガス反応塔をバイパスさせることも可能である。このこ
とにより反応塔における圧力損失を防止できる。Here, when the temperature of the exhaust gas is high, after regeneration of the adsorbent, the exhaust gas is bypassed through the adsorption tower (adsorbent) to bypass the adsorption tower, and after adding the reducing agent, flow directly into the reaction tower. Is also possible. For that purpose, it is necessary to install a line in which part or all of the exhaust gas bypasses the adsorption tower (adsorbent) and directly flows into the reaction tower filled with the nitrogen oxide reduction catalyst. This can prevent pressure loss in the adsorption tower (adsorbent). On the other hand, when the exhaust gas temperature is low, it is possible to bypass the gas reaction tower downstream of the adsorption tower (adsorbent) in the same manner. This can prevent pressure loss in the reaction tower.
【0013】本発明を適用するシステムとしては、排ガ
ス温度が少なくとも100℃以上変動する場合が好適で
ある。ただし、ここで言う温度変動とは、必ずしも周期
的に温度が変動する場合のみならず、ガスタービンの起
動時のように一時的に低温の排ガスが排出される場合も
含まれる。排ガス温度が常時300℃以上であれば、N
Oxの除去は従来のアンモニア還元法などで可能である
し、一方、排ガス温度が常時200℃以下の低温の場合
は吸着法などで対処できる。本発明は、アンモニア還元
法と吸着法の両者の長所を採り入れ、欠点を補い合うシ
ステムであり、特にアンモニア還元法ではNOx除去率
が低い、低温領域にも対処できるところに、本発明の特
徴がある。As a system to which the present invention is applied, it is preferable that the exhaust gas temperature fluctuates by at least 100 ° C. or more. However, the temperature fluctuation referred to here includes not only the case where the temperature fluctuates periodically but also the case where the low-temperature exhaust gas is temporarily discharged such as when the gas turbine is started. If the exhaust gas temperature is always 300 ° C or higher, N
Ox can be removed by a conventional ammonia reduction method or the like. On the other hand, when the exhaust gas temperature is constantly low at 200 ° C. or lower, it can be dealt with by an adsorption method or the like. The present invention is a system that adopts the advantages of both the ammonia reduction method and the adsorption method and compensates for the drawbacks. In particular, the ammonia reduction method has a feature of the present invention in that it can cope with a low temperature range where the NOx removal rate is low. .
【0014】[0014]
【実施例】以下、本発明の実施例を詳細に説明する。 実施例1 本発明における方法をボイラの燃焼排ガス中のNOx浄
化に適用したシステムの一実施例を図1に示す。ボイラ
3は空気1、燃料2を供給することにより燃焼する。排
ガスは吸着塔5および/またはバイパスライン8を経由
してアンモニア存在下での還元による脱硝触媒14を充
填した反応塔を通り、浄化ガス15として放出される。
脱硝触媒14の温度センサ10で検出した温度が脱硝触
媒14の作動下限温度以上である場合には、排ガスダク
トに設けたNOx濃度センサ9の値を基準として制御装
置11からの指令によりバルブ12を開き、アンモニア
タンク13より排ガス中のNOxの還元に最適な量のア
ンモニアを脱硝触媒14の上流側に注入する。EXAMPLES Examples of the present invention will be described in detail below. Example 1 FIG. 1 shows an example of a system in which the method of the present invention is applied to purify NOx in combustion exhaust gas from a boiler. The boiler 3 burns by supplying air 1 and fuel 2. The exhaust gas passes through the adsorption tower 5 and / or the bypass line 8 and passes through the reaction tower filled with the denitration catalyst 14 by reduction in the presence of ammonia, and is discharged as the purified gas 15.
When the temperature detected by the temperature sensor 10 of the denitration catalyst 14 is equal to or higher than the operation lower limit temperature of the denitration catalyst 14, the valve 12 is operated by a command from the control device 11 based on the value of the NOx concentration sensor 9 provided in the exhaust gas duct. After opening, the optimum amount of ammonia for reducing NOx in the exhaust gas is injected from the ammonia tank 13 to the upstream side of the denitration catalyst 14.
【0015】温度センサ10で検出した温度が脱硝触媒
14の作動下限温度以下である場合には、バルブ12を
閉じてアンモニアタンク13から脱硝触媒14へのアン
モニアの供給を停止する。NOx濃度センサ9で測定
し、NOx値が排出規制値を超えるおそれのある場合に
は、制御装置11からの指令により吸着塔5の前後の排
ガスダクトのバルブ4、6およびバイパスライン8のバ
ルブ7を操作し、排ガスの一部または全部が吸着塔5を
通過するようにして排ガス中のNOxを吸着塔5内の吸
着剤に吸着させ、排出NOx濃度を規制値以下にする。
吸着等5内の吸着剤が吸着したNOxは脱硝触媒14が
作動している状態で、排ガスの一部または全部を吸着塔
5を通過させることにより脱離される。脱離したNOx
は、脱硝触媒14で燃焼排ガス中のNOxと共に還元浄
化される。When the temperature detected by the temperature sensor 10 is lower than the operating lower limit temperature of the denitration catalyst 14, the valve 12 is closed and the supply of ammonia from the ammonia tank 13 to the denitration catalyst 14 is stopped. When the NOx value is measured by the NOx concentration sensor 9 and there is a possibility that the NOx value exceeds the emission control value, the valves 4 and 6 of the exhaust gas ducts before and after the adsorption tower 5 and the valve 7 of the bypass line 8 are instructed by the control device 11. The NOx in the exhaust gas is adsorbed by the adsorbent in the adsorption tower 5 so that a part or the whole of the exhaust gas passes through the adsorption tower 5, and the exhausted NOx concentration becomes equal to or lower than the regulation value.
NOx adsorbed by the adsorbent in the adsorption 5 is desorbed by passing a part or all of the exhaust gas through the adsorption tower 5 while the denitration catalyst 14 is operating. NOx released
Is reduced and purified together with NOx in the combustion exhaust gas by the denitration catalyst 14.
【0016】上記図1の窒素酸化物処理システムを適用
したプラントの起動時の運転方法を図2に示す。排ガス
を吸着塔5に流通せず、また排ガス中にアンモニアタン
ク13からのアンモニアを添加しない状態でボイラ3の
燃焼を開始すると、プラントから排出されるNOx濃度
は図2におけるC1のように時間とともに増加し、排出
規制値C0を超える。しかし、NOx濃度が排出規制値
C0近くまで上昇した時点でバルブ4、6を徐々に開放
し、またバルブ7を徐々に絞り吸着塔5に排ガスを流通
させることで、排ガス中のNOx濃度はC2のように規
制値以下に低減する。その後、排ガス温度の上昇ととも
に吸着塔5がNOx脱離温度T1に到達すると、排ガス
中のNOx濃度はC3のように上昇する。しかし、NO
x脱離温度T1に到達する以前の、脱硝触媒14の温度
が作動下限温度T0に到達した時点でアンモニアの注入
を開始して、NOx濃度センサ9を基準として最適量の
アンモニアを添加することでC4のように排ガス中のN
Ox濃度は規制値C0以下に低減する。吸着塔5からの
NOx脱離が終了した時点でバルブ4、6を閉じ、バル
ブ7を開放して定常運転に入る。FIG. 2 shows an operating method at the time of startup of the plant to which the nitrogen oxide treatment system of FIG. 1 is applied. When the combustion of the boiler 3 is started in a state where the exhaust gas does not flow to the adsorption tower 5 and the ammonia from the ammonia tank 13 is not added to the exhaust gas, the NOx concentration discharged from the plant is as shown by C 1 in FIG. And the emission control value C 0 is exceeded. However, when the NOx concentration rises to near the emission control value C 0 , the valves 4 and 6 are gradually opened, and the valve 7 is gradually throttled to allow the exhaust gas to flow through the adsorption tower 5, whereby the NOx concentration in the exhaust gas is reduced. It is reduced to below the regulation value like C 2 . After that, when the adsorption tower 5 reaches the NOx desorption temperature T 1 as the exhaust gas temperature rises, the NOx concentration in the exhaust gas rises like C 3 . But no
Before reaching the x desorption temperature T 1 , the injection of ammonia is started when the temperature of the denitration catalyst 14 reaches the operation lower limit temperature T 0 , and the optimum amount of ammonia is added with the NOx concentration sensor 9 as a reference. Therefore, N in the exhaust gas like C 4
The Ox concentration is reduced to the regulation value C 0 or less. When NOx desorption from the adsorption tower 5 is completed, the valves 4 and 6 are closed and the valve 7 is opened to start the steady operation.
【0017】実施例2 本実施例は図1に示すシステムの吸着塔を複数個設けた
ものに相当する。システムの概念図を図3に示す。排ガ
スダクトに吸着塔5と並列に吸着塔17を設置する。吸
着塔5の吸着剤の一部にNOxが吸着した状態のままボ
イラ3の運転を停止し、運転再開時に吸着塔5で充分に
NOxを吸着できない場合には、吸着塔17の前後の排
ガスダクトにあるバルブ16、18を開き、排ガスの一
部または全部を吸着塔17を通過させて吸着塔17内の
吸着剤にNOxを吸着させることで排出NOx濃度を規
制値以下にすることができる。Example 2 This example corresponds to the system shown in FIG. 1 provided with a plurality of adsorption towers. A conceptual diagram of the system is shown in FIG. An adsorption tower 17 is installed in the exhaust gas duct in parallel with the adsorption tower 5. When the operation of the boiler 3 is stopped while NOx is adsorbed on a part of the adsorbent of the adsorption tower 5, and when the adsorption tower 5 cannot adsorb NOx sufficiently when the operation is restarted, exhaust gas ducts before and after the adsorption tower 17 are provided. The exhaust NOx concentration can be made equal to or less than the regulated value by opening the valves 16 and 18 in the above and passing a part or all of the exhaust gas through the adsorption tower 17 to adsorb NOx on the adsorbent in the adsorption tower 17.
【0018】実施例3 本実施例の概念図を図4に示す。本実施例は図1に示す
システムの脱硝触媒14の上流の排ガスダクトに流路切
り替えバルブ19を設け、排ガスの一部または全部が脱
硝触媒14をバイパスして流れるバイパスライン20を
設けたものに相当するシステムである。温度センサ10
で検出した排ガス温度が脱硝触媒14の作動下限温度以
下であり、かつNOx濃度センサ9の値がNOx排出規
制値以下である場合には制御装置11からの指令により
バルブ19を操作し、排ガスの一部または全部をバイパ
スライン20を通過させ、排ガス流通の圧力損失を小さ
くすることができる。また、NOx濃度センサ9の値が
NOx排出規制値以上であれば脱硝触媒14に排ガスを
通す。その他の操作は実施例1と同様に行う。Embodiment 3 A conceptual diagram of this embodiment is shown in FIG. In this embodiment, a flow path switching valve 19 is provided in the exhaust gas duct upstream of the denitration catalyst 14 of the system shown in FIG. 1, and a bypass line 20 in which a part or all of the exhaust gas bypasses the denitration catalyst 14 is provided. It is a corresponding system. Temperature sensor 10
When the temperature of the exhaust gas detected in 1 is lower than the lower limit operating temperature of the denitration catalyst 14 and the value of the NOx concentration sensor 9 is lower than the NOx emission regulation value, the valve 19 is operated by a command from the control device 11 A part or all of the gas can be passed through the bypass line 20 to reduce the pressure loss of the exhaust gas flow. If the value of the NOx concentration sensor 9 is equal to or higher than the NOx emission regulation value, the exhaust gas is passed through the denitration catalyst 14. Other operations are the same as in Example 1.
【0019】実施例4 本発明の窒素酸化物の処理法をガスタービンの燃焼排ガ
ス中のNOx浄化に適用したシステムの一実施例を図5
に示す。ガスタービン21からの燃焼排ガスは、熱交換
器22を通過後、吸着剤23および脱硝触媒24でNO
xを浄化され、熱交換器25を経て煙突26より浄化ガ
ス15として排出される。排ガス中のNOx濃度をNO
x濃度センサ9で、また脱硝触媒24の入口温度を温度
センサ10で計測する。センサ10の温度が脱硝触媒2
4の作動下限温度を超えている場合は、センサ9の計測
値を基準とし、制御装置11からの指令によりバルブ1
2を操作し、アンモニアタンク13より排ガス中のNO
xの還元に最適な量のアンモニアを注入する。Example 4 An example of a system in which the method for treating nitrogen oxides according to the present invention is applied to purify NOx in combustion exhaust gas of a gas turbine is shown in FIG.
Shown in. The combustion exhaust gas from the gas turbine 21 passes through the heat exchanger 22 and is then NO in the adsorbent 23 and the denitration catalyst 24.
x is purified and is discharged as purified gas 15 from the chimney 26 through the heat exchanger 25. NOx concentration in exhaust gas is NO
The x concentration sensor 9 and the temperature sensor 10 measure the inlet temperature of the denitration catalyst 24. The temperature of the sensor 10 is the denitration catalyst 2
4 exceeds the lower limit operating temperature, the measured value of the sensor 9 is used as a reference, and the valve 1 is instructed by the controller 11
2 is operated and NO in the exhaust gas from the ammonia tank 13
Inject the optimum amount of ammonia for the reduction of x.
【0020】実施例5 本発明の窒素酸化物の処理法をガスタービンの燃焼排ガ
ス中のNOx浄化に適用したシステムの一実施例を図6
に示す。図6に示すシステムは図5の吸着剤23と脱硝
触媒24とを一体化した反応器27を用いており、アン
モニアはこの反応器27の上流の排ガスダクトに注入す
ることに特徴がある。ガスタービン21からの燃焼排ガ
スは、熱交換器22を通過後、吸着剤23および脱硝触
媒24を一体化した反応器27でNOxを浄化され、熱
交換器25を経て煙突26より浄化ガス15として排出
される。排ガス中のNOx濃度をNOx濃度センサ9
で、また脱硝触媒入口温度を温度センサ10で計測す
る。Embodiment 5 An embodiment of a system in which the nitrogen oxide treatment method of the present invention is applied to purify NOx in combustion exhaust gas of a gas turbine is shown in FIG.
Shown in. The system shown in FIG. 6 uses a reactor 27 in which the adsorbent 23 and the denitration catalyst 24 of FIG. 5 are integrated, and ammonia is injected into the exhaust gas duct upstream of the reactor 27. After passing through the heat exchanger 22, the combustion exhaust gas from the gas turbine 21 is purified of NOx by a reactor 27 in which an adsorbent 23 and a denitration catalyst 24 are integrated, and passes through a heat exchanger 25 to produce a purified gas 15 from a chimney 26. Is discharged. NOx concentration sensor 9 for measuring NOx concentration in exhaust gas
In addition, the temperature sensor 10 measures the inlet temperature of the denitration catalyst.
【0021】センサ10の温度が脱硝触媒24の作動下
限温度を超えている場合は、制御装置11で、センサ9
から得られるNOx濃度をもとにNOx濃度の時間変化
率を算出する。これらの値とセンサ10から得られる温
度、バルブ12の開度から得られるアンモニア注入量を
基準とし、予め制御装置11に記憶させた脱硝触媒24
の反応特性データを用いて脱硝触媒24入口のNOx濃
度の推移を予測し、その結果に基づいてバルブ12を操
作し、アンモニアタンク13より排ガス中のNOxの還
元に最適な量のアンモニアを注入する。センサ10の温
度が脱硝触媒24の作動下限温度以下の場合には、バル
ブ12を閉じてアンモニアの供給を停止する。When the temperature of the sensor 10 exceeds the operating lower limit temperature of the denitration catalyst 24, the control device 11 causes the sensor 9 to operate.
Based on the NOx concentration obtained from the above, the time change rate of the NOx concentration is calculated. Based on these values, the temperature obtained from the sensor 10, and the ammonia injection amount obtained from the opening degree of the valve 12, the denitration catalyst 24 stored in the controller 11 in advance is stored.
The transition of the NOx concentration at the inlet of the denitration catalyst 24 is predicted using the reaction characteristic data of 1., the valve 12 is operated based on the result, and the optimum amount of ammonia for reducing NOx in the exhaust gas is injected from the ammonia tank 13. . When the temperature of the sensor 10 is equal to or lower than the operation lower limit temperature of the denitration catalyst 24, the valve 12 is closed and the supply of ammonia is stopped.
【0022】[0022]
【発明の効果】本発明によれば、排ガス中の窒素酸化物
を広い温度領域にわたって効率よく除去することが可能
である。特に排ガス温度が低温領域から高温領域まで変
動するようなシステムにおける排ガス中の窒素酸化物の
除去には非常に有効である。According to the present invention, it is possible to efficiently remove nitrogen oxides in exhaust gas over a wide temperature range. In particular, it is very effective for removing nitrogen oxides in exhaust gas in a system in which the exhaust gas temperature changes from a low temperature region to a high temperature region.
【図1】 本発明の一実施例の排煙脱硝システムのフロ
ーを示す図。FIG. 1 is a diagram showing a flow of a flue gas denitration system according to an embodiment of the present invention.
【図2】 本発明の窒素酸化物処理システムを適用した
プラントの運転方法の一つを示す図。FIG. 2 is a diagram showing one of plant operating methods to which the nitrogen oxide treatment system of the present invention is applied.
【図3】 本発明の一実施例の排煙脱硝システムのフロ
ーを示す図。FIG. 3 is a diagram showing a flow of a flue gas denitration system according to an embodiment of the present invention.
【図4】 本発明の一実施例の排煙脱硝システムのフロ
ーを示す図。FIG. 4 is a diagram showing a flow of a flue gas denitration system according to an embodiment of the present invention.
【図5】 本発明の一実施例の排煙脱硝システムのフロ
ーを示す図。FIG. 5 is a diagram showing a flow of a flue gas denitration system according to an embodiment of the present invention.
【図6】 本発明の一実施例の排煙脱硝システムのフロ
ーを示す図。FIG. 6 is a diagram showing a flow of a flue gas denitration system according to an embodiment of the present invention.
1…空気、2…燃料、3…ボイラ、4…バルブ、5…吸
着塔、6…バルブ、7…バルブ、8…バイパスライン、
9…NOx濃度センサ、10…温度センサ、11…制御
装置、12…バルブ、13…アンモニアタンク、14…
脱硝触媒、15…浄化ガス、16…バルブ、17…吸着
塔、18…バルブ、19…流路切り替えバルブ、20…
バイパスライン、21…ガスタービン、22…熱交換
器、23…吸着剤、24…脱硝触媒、25…熱交換器、
26…煙突、27…反応器1 ... Air, 2 ... Fuel, 3 ... Boiler, 4 ... Valve, 5 ... Adsorption tower, 6 ... Valve, 7 ... Valve, 8 ... Bypass line,
9 ... NOx concentration sensor, 10 ... Temperature sensor, 11 ... Control device, 12 ... Valve, 13 ... Ammonia tank, 14 ...
DeNOx catalyst, 15 ... Purified gas, 16 ... Valve, 17 ... Adsorption tower, 18 ... Valve, 19 ... Flow path switching valve, 20 ...
Bypass line, 21 ... Gas turbine, 22 ... Heat exchanger, 23 ... Adsorbent, 24 ... Denitration catalyst, 25 ... Heat exchanger,
26 ... Chimney, 27 ... Reactor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/56 53/74 53/81 53/86 ZAB B01D 53/34 129 E 129 A 53/36 ZAB (72)発明者 宮寺 博 茨城県日立市大みか町7丁目1番1号 株 式会社日立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/56 53/74 53/81 53/86 ZAB B01D 53/34 129 E 129 A 53/36 ZAB (72) Inventor Hiroshi Miyadera 1-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory
Claims (10)
還元剤により変換、無害化する方法において、窒素酸化
物の還元用触媒を充填した反応塔と、該反応塔へ添加す
る還元剤の還元剤添加手段と、反応塔の前段の排ガス流
路に窒素酸化物の吸着剤を充填した吸着塔を設置するこ
とを特徴とする排ガス中の窒素酸化物の処理装置。1. Nitrogen oxide in exhaust gas in the presence of a catalyst,
In the method of converting and detoxifying with a reducing agent, a reaction tower filled with a catalyst for reducing nitrogen oxides, a reducing agent adding means of the reducing agent added to the reaction tower, and nitrogen in the exhaust gas passage in the preceding stage of the reaction tower. An apparatus for treating nitrogen oxides in exhaust gas, comprising an adsorption tower filled with an adsorbent for oxides.
イパスさせ、直接、反応塔に流すバイパスラインを設置
することを特徴とする請求項1記載の排ガス中の窒素酸
化物の処理装置。2. The apparatus for treating nitrogen oxides in exhaust gas according to claim 1, wherein a part or all of the exhaust gas bypasses the adsorption tower and a bypass line for directly flowing into the reaction tower is installed.
を反応塔をバイパスさせるバイパスラインを設けること
を特徴とする請求項1または2記載の排ガス中の窒素酸
化物の処理装置。3. The apparatus for treating nitrogen oxides in exhaust gas according to claim 1, wherein a bypass line is provided for bypassing a part or all of the gas that has passed through the adsorption tower to the reaction tower.
x濃度測定手段を設け、該NOx濃度測定手段の測定値
を基準として反応塔への還元剤の添加量を制御する還元
剤添加手段を設けることを特徴とする請求項1ないし3
のいずれかに記載の排ガス中の窒素酸化物の処理装置。4. NO in the exhaust gas passage between the adsorption tower and the reaction tower
4. An x-concentration measuring means is provided, and a reducing agent adding means for controlling the addition amount of the reducing agent to the reaction tower is provided based on the measured value of the NOx concentration measuring means.
5. A treatment device for nitrogen oxides in exhaust gas according to any one of 1.
NOx濃度およびNOx濃度の時間変化率の測定手段を
それぞれ設け、前記両測定手段の測定値を基準として反
応塔への還元剤の添加量を制御する還元剤添加手段を設
けることを特徴とする請求項1ないし4のいずれかに記
載の排ガス中の窒素酸化物の処理装置。5. A reducing agent for the reaction tower based on the measured values of the NOx concentration in the exhaust gas and the time change rate of the NOx concentration provided in the exhaust gas passage downstream of the reaction tower, respectively. The apparatus for treating nitrogen oxides in exhaust gas according to any one of claims 1 to 4, further comprising a reducing agent addition means for controlling the addition amount of
より窒素酸化物を吸着除去し、排ガス温度が高い領域で
は窒素酸化物の還元触媒により窒素酸化物を還元除去す
ることを特徴とする排ガス中の窒素酸化物の処理方法。6. Exhaust gas characterized by mainly adsorbing and removing nitrogen oxides by an adsorbent in a region where exhaust gas temperature is low, and reducing and removing nitrogen oxides by a reduction catalyst for nitrogen oxides in a region where exhaust gas temperature is high. Method for treatment of nitrogen oxides in water.
吸着剤により処理し、排ガス温度が高い領域では排ガス
の一部あるいは全部を吸着剤で処理せずに、直接、窒素
酸化物の還元触媒により窒素酸化物を還元除去すること
を特徴とする請求項6記載の排ガス中の窒素酸化物の処
理方法。7. A catalyst for reducing nitrogen oxides directly in a region where the exhaust gas temperature is low, where the exhaust gas is mainly treated with an adsorbent, and in a region where the exhaust gas temperature is high, a part or all of the exhaust gas is not treated with the adsorbent. The method for treating nitrogen oxides in exhaust gas according to claim 6, wherein the nitrogen oxides are reduced and removed by means of.
は全部は窒素酸化物の還元触媒により窒素酸化物の還元
処理させないで系外に排出することを特徴とする請求項
6または7記載の排ガス中の窒素酸化物の処理方法。8. The exhaust gas according to claim 6, wherein a part or all of the gas treated with the adsorbent is discharged to the outside of the system without being subjected to the reduction treatment of the nitrogen oxides by the nitrogen oxide reduction catalyst. Method for treatment of nitrogen oxides in water.
酸化物の還元処理前における排ガス中のNOx濃度を基
準として窒素酸化物の還元剤の添加量を制御することを
特徴とする請求項6ないし8のいずれかに記載の排ガス
中の窒素酸化物の処理方法。9. The additive amount of the nitrogen oxide reducing agent is controlled based on the NOx concentration in the exhaust gas after the adsorption treatment and before the nitrogen oxide reduction treatment by the reduction catalyst. 9. The method for treating nitrogen oxides in exhaust gas according to any one of 8 to 8.
後の排ガス中のNOx濃度およびNOx濃度の時間変化
率を基準として窒素酸化物処理用の還元剤の添加量を制
御することを特徴とする請求項6ないし9のいずれかに
記載の排ガス中の窒素酸化物の処理方法。10. The addition amount of the reducing agent for nitrogen oxide treatment is controlled on the basis of the NOx concentration in the exhaust gas after the reduction treatment of nitrogen oxides by the reduction treatment and the time change rate of the NOx concentration. The method for treating nitrogen oxides in exhaust gas according to any one of claims 6 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5288210A JPH07136464A (en) | 1993-11-17 | 1993-11-17 | Apparatus and method for treating nitrogen oxide in exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5288210A JPH07136464A (en) | 1993-11-17 | 1993-11-17 | Apparatus and method for treating nitrogen oxide in exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07136464A true JPH07136464A (en) | 1995-05-30 |
Family
ID=17727252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5288210A Pending JPH07136464A (en) | 1993-11-17 | 1993-11-17 | Apparatus and method for treating nitrogen oxide in exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07136464A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6696389B1 (en) | 1996-02-23 | 2004-02-24 | Daimlerchrysler Ag | Process and apparatus for cleaning a gas flow |
CN111589298A (en) * | 2019-02-21 | 2020-08-28 | 大阳日酸株式会社 | Gas purification device and method for operating same |
WO2024084893A1 (en) * | 2022-10-21 | 2024-04-25 | 日立造船株式会社 | Exhaust gas treatment system |
-
1993
- 1993-11-17 JP JP5288210A patent/JPH07136464A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6696389B1 (en) | 1996-02-23 | 2004-02-24 | Daimlerchrysler Ag | Process and apparatus for cleaning a gas flow |
CN111589298A (en) * | 2019-02-21 | 2020-08-28 | 大阳日酸株式会社 | Gas purification device and method for operating same |
WO2024084893A1 (en) * | 2022-10-21 | 2024-04-25 | 日立造船株式会社 | Exhaust gas treatment system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU693966B2 (en) | Regeneration of catalyst/absorber | |
KR100204257B1 (en) | Heat treated activated carbon for denitration process for preparing the same method of denitration using the same and system of denitration using the same | |
WO2006059470A1 (en) | Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system | |
CA2397226C (en) | Process, catalyst system, and apparatus for treating sulfur compound containing effluent | |
KR101525302B1 (en) | Selective catalytic reuction system and method of regenerating catalyst for selective catalytic reuction | |
JPH05192535A (en) | Method and apparatus for purifying exhaust gas | |
CN100434144C (en) | Low-temperature smoke air SCR of boiler combined adsorption / desorption catalyzing bed for preventing the escaping of ammonia | |
JP2021533989A (en) | Selective catalytic reduction process and method for regenerating inactivated SCR catalysts in parallel flue gas treatment systems | |
JPH067639A (en) | Method for denitrifying waste combustion gas | |
JPH08103636A (en) | Low-temperature denitrator | |
JPH07136464A (en) | Apparatus and method for treating nitrogen oxide in exhaust gas | |
KR20090095655A (en) | A method and apparatus for catalyst regeneration | |
JP2013245606A (en) | Exhaust gas purification system | |
JPH07136456A (en) | High desulfurization-denitration method and apparatus for exhaust gas | |
US5679314A (en) | Method for recovering ammonia adsorbent | |
JP3249181B2 (en) | Regeneration method of nitrogen oxide adsorbent | |
JP3347762B2 (en) | Method and apparatus for removing nitrous oxide from exhaust gas | |
JP3202419B2 (en) | Method for reducing nitrogen oxides in flue gas | |
JP2001113131A (en) | Method for regenerating denitration catalyst | |
JP3229102B2 (en) | Exhaust gas denitration method | |
JPH08257363A (en) | Exhaust gas treatment method | |
JPH07213859A (en) | Waste gas treating device | |
JP5632195B2 (en) | Exhaust purification device | |
JPS6211891B2 (en) | ||
JP2575874B2 (en) | Self-regeneration type denitration method |