JP3347762B2 - Method and apparatus for removing nitrous oxide from exhaust gas - Google Patents

Method and apparatus for removing nitrous oxide from exhaust gas

Info

Publication number
JP3347762B2
JP3347762B2 JP10943592A JP10943592A JP3347762B2 JP 3347762 B2 JP3347762 B2 JP 3347762B2 JP 10943592 A JP10943592 A JP 10943592A JP 10943592 A JP10943592 A JP 10943592A JP 3347762 B2 JP3347762 B2 JP 3347762B2
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
nitrous oxide
gas
removal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10943592A
Other languages
Japanese (ja)
Other versions
JPH05305219A (en
Inventor
裕美 堀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10943592A priority Critical patent/JP3347762B2/en
Publication of JPH05305219A publication Critical patent/JPH05305219A/en
Application granted granted Critical
Publication of JP3347762B2 publication Critical patent/JP3347762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、負荷変化時の排ガス中
に含まれる亜酸化窒素(N2O)除去方法に関し、特に
排ガス中の亜酸化窒素除去中に亜酸化窒素除去触媒を再
生する方法に関する。
BACKGROUND OF THE INVENTION This invention related to nitrous oxide (N 2 O) removal method contained in the exhaust gas during the time of load change, particularly
Re-use the nitrous oxide removal catalyst during the removal of nitrous oxide in exhaust gas.
Related to how to live.

【0002】[0002]

【従来の技術】近年、人工的に排出される二酸化炭素
(CO2)などの温室効果物質による温暖化や、フロン
などによるオゾン層の破壊などの環境問題がクローズア
ップされており、特に温室効果、オゾン層破壊の双方に
寄与する亜酸化窒素(N2O)は、流動層ボイラの場
合、排ガス中に含まれる一酸化窒素(NO)および二酸
化窒素(NO2)の量の1/3〜1/5量に達するとい
う報告がある。
2. Description of the Related Art In recent years, environmental problems such as global warming caused by artificially emitted carbon dioxide (CO 2 ) and other greenhouse substances and destruction of the ozone layer due to chlorofluorocarbons have been highlighted. In the case of a fluidized-bed boiler, nitrous oxide (N 2 O), which contributes to both destruction of the ozone layer, is 1/3 to 1/3 of the amount of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) contained in exhaust gas. There is a report that it reaches 1/5 volume.

【0003】現在、固定発生源用脱硝触媒の主流となっ
ている酸化チタン系触媒には、N2Oのアンモニア還元
活性がほとんどなく、排ガス中のN2Oは大気中にその
まま放出されているのが現状であり、そのため高活性な
2O除去触媒の開発が進められている。
[0003] Currently, the titanium oxide-based catalysts has become the mainstream of the stationary source denitration catalyst, almost no ammonia reduction activity of N 2 O, N 2 O in the exhaust gas is directly released into the atmosphere At present, the development of a highly active N 2 O removal catalyst is being promoted.

【0004】[0004]

【発明が解決しようとする課題】前記開発中のN2O除
去触媒はN2Oを熱分解する触媒であるため、ガス温度
の変化により除去活性が大きく変動する。例えば、流動
床ボイラの起動時あるいは停止時また低負荷変化時に、
流動層ボイラ排ガス中のN2O濃度は増加する傾向にあ
るが、この時、ガス温度が低い場合にはN2O排ガスは
除去されずに、そのまま大気中に放出されるという問題
があった。
Since the N 2 O removal catalyst under development is a catalyst that thermally decomposes N 2 O, the removal activity greatly varies depending on a change in gas temperature. For example, when starting or stopping a fluidized bed boiler or when changing a low load,
The N 2 O concentration in the fluidized-bed boiler exhaust gas tends to increase, but at this time, when the gas temperature is low, the N 2 O exhaust gas is not removed and is directly released into the atmosphere. .

【0005】また、このN2O除去触媒の前記熱分解反
応を利用するため、高温域に触媒層を設置すると高いN
2O除去率が得られるが、二酸化硫黄(SO2)の酸化率
も反応温度とともにN2O除去率以上に高くなるため
に、常時、このN2O除去触媒層を高温域に設置するこ
とができない。
Further, in order to utilize the thermal decomposition reaction of the N 2 O removal catalyst, a high N
Although a 2 O removal rate can be obtained, the oxidation rate of sulfur dioxide (SO 2 ) also becomes higher than the N 2 O removal rate with the reaction temperature. Therefore, the N 2 O removal catalyst layer must always be installed in a high temperature range. Can not.

【0006】また、上記N2O除去触媒は現在使用され
ているNO、NO2用触媒、例えば酸化チタン系触媒に
比べて、劣化しやすい触媒である。そこで、本発明の目
的は、排ガスのN 2 O除去処理操作時におけるN 2 O除去
触媒の再生方法を含めたボイラ等の燃焼装置からの排ガ
ス中のN 2 O除去方法を提供することにある。
Further, the above-mentioned N 2 O removal catalyst is a catalyst which is liable to be deteriorated as compared with currently used catalysts for NO and NO 2, for example, a titanium oxide catalyst. An object of the present invention, N 2 O removal during N 2 O removal process operation of the exhaust gas
Emissions from combustion equipment such as boilers, including catalyst regeneration methods
It is an object of the present invention to provide a method for removing N 2 O in a gas .

【0007】[0007]

【課題を解決するための手段】本発明の上記目的は次の
構成により達成される。すなわち、燃焼装置から排出さ
れる排ガス中の亜酸化窒素を除去するための亜酸化窒素
除去触媒層に、燃焼装置の運転条件に合わせて比較低温
の前記排ガスと燃焼装置から供給される比較的高温の高
温ガスとを、その混合比率を調整して導入し、亜酸化窒
素除去触媒の活性が低下すると前記比較的高温の高温ガ
スだけを導入して亜酸化窒素除去触媒の活性を再生させ
排ガス中の亜酸化窒素除去方法である。
The above object of the present invention is achieved by the following constitution. That is, the nitrous oxide-removing catalyst layer for removing nitrous oxide in exhaust gas discharged from the combustion device, relatively fed together from a combustion device and the exhaust gas ratio較低temperature to the operating conditions of the combustion apparatus A high-temperature, high-temperature gas is introduced with its mixing ratio adjusted , and nitrous oxide is added.
When the activity of the element removal catalyst decreases, the relatively high temperature
To regenerate the activity of the nitrous oxide removal catalyst
That is a nitrous oxide removal method in the exhaust gas.

【0008】ここで、燃焼装置の運転条件は排ガス中の
亜酸化窒素濃度と排ガス温度の少なくともいずれかの測
定値に基づき検出され、前記測定値が設定範囲内にある
場合には比較的低温の前記排ガスを導入し、前記排ガス
中の亜酸化窒素濃度が増加する傾向にある時または排ガ
ス温度が低下する傾向にある場合には、排ガス中の亜酸
化窒素濃度の増加率または排ガス温度の低下率に応じて
亜酸化窒素除去のための最適温度条件となるように燃焼
装置から排出される比較的高温の高温ガスを前記排ガス
に混合させて亜酸化窒素除去触媒層に導入することがそ
の一方法である。
[0008] Here, the operating conditions of the combustion device is detected on the basis of nitrous least one measurement of nitric oxide concentration and the exhaust gas temperature in the exhaust gas, when the measured value is within the setting range relatively low temperature Introducing the exhaust gas, when the nitrous oxide concentration in the exhaust gas tends to increase or when the exhaust gas temperature tends to decrease, the rate of increase in the nitrous oxide concentration in the exhaust gas or the decrease in the exhaust gas temperature One of the methods is to mix a relatively high-temperature gas discharged from a combustion device with the exhaust gas and introduce the mixed gas into the nitrous oxide removal catalyst layer so as to obtain an optimum temperature condition for nitrous oxide removal according to the rate. Is the way.

【0009】また、燃焼装置の運転条件に応じて予め設
定されるプログラムに従って予め設定された排ガスと高
温ガスとの混合比率で排ガスと高温ガスとの混合ガスを
亜酸化窒素除去触媒層に導入する方法を採ることもでき
る。
A mixed gas of the exhaust gas and the high-temperature gas is introduced into the nitrous oxide removal catalyst layer at a predetermined mixing ratio of the exhaust gas and the high-temperature gas according to a program preset according to the operating conditions of the combustion apparatus. A method can also be adopted.

【0010】[0010]

【0011】亜酸化窒素除去触媒層に通常導入される排
ガスとは、例えば、流動床ボイラでは温度300〜55
0℃程度の排ガスであり、高温ガスとは、例えば、流動
床ボイラでは、その600〜900℃の温度域のガスで
あるが、N2O除去触媒の成分に応じて最適温度を選
び、その最適温度になるように排ガス温度を調整する
か、もしくは排ガスと高温ガスの比率を調整してN2
除去触媒層に導入することが望ましい。
The exhaust gas usually introduced into the nitrous oxide removal catalyst layer is, for example, a temperature of 300 to 55 in a fluidized bed boiler.
The exhaust gas is about 0 ° C., and the high-temperature gas is, for example, a gas in a temperature range of 600 to 900 ° C. in a fluidized-bed boiler. The optimum temperature is selected according to the component of the N 2 O removal catalyst. Adjust the exhaust gas temperature to the optimum temperature or adjust the ratio of exhaust gas to high temperature gas to obtain N 2 O
It is desirable to introduce it into the removal catalyst layer.

【0012】本発明の燃焼装置とは流動床ボイラ、自動
車のエンジン、病院の廃棄物焼却炉等である。また、本
発明で使用するN2O除去触媒は表1に示す通りであ
り、適正な使用温度は触媒成分によって異なる。
The combustion apparatus of the present invention is a fluidized-bed boiler, an engine of a car, a waste incinerator of a hospital, and the like. The N 2 O removal catalyst used in the present invention is as shown in Table 1, and an appropriate use temperature differs depending on the catalyst component.

【0013】 (表1) 担持体 使用温度(300〜550℃) 使用温度(500〜750℃) Al23、ZrO2、 Rh、Pt、Ir、 Co、Fe、 SiO2 Pd、Ru Ni、Cu シリカライト、 Rh、Pd、Ru、 モルデナイト Ir、Fe、Cu ペロブスカイト系 La1.5Sr0.5CuO4 La0.8Sr0.2CoO3 (Table 1) Carrier Operating temperature (300 to 550 ° C.) Operating temperature (500 to 750 ° C.) Al 2 O 3 , ZrO 2 , Rh, Pt, Ir, Co, Fe, SiO 2 Pd, Ru Ni, Cu silicalite, Rh, Pd, Ru, mordenite Ir, Fe, Cu perovskite La 1.5 Sr 0.5 CuO 4 La 0.8 Sr 0.2 CoO 3

【0014】[0014]

【作用】N2O除去触媒の成分によって、前記表1に示
すように使用最適温度が異なる。ところが、排ガス発生
源であるボイラ等の燃焼装置の運転条件により排ガス温
度が変わるため、N2O除去触媒の使用雰囲気温度を調
節する必要がある。すなわち、ボイラ起動時、停止時、
あるいは低負荷時に、N2O触媒層に高温ガスを導入す
ることにより、触媒層出口のN2O濃度が急激に変化す
ることなく、大量にN2Oガスを大気中に放出すること
がない。また、N 2 O除去触媒の活性が低下すると前記
比較的高温の高温ガスだけを導入してN 2 O除去触媒の
活性を再生させることができる。
The optimum temperature for use differs depending on the components of the N 2 O removal catalyst as shown in Table 1. However, since the temperature of the exhaust gas changes depending on the operating conditions of a combustion device such as a boiler, which is an exhaust gas generating source, it is necessary to adjust the ambient temperature of the N 2 O removal catalyst. That is, when the boiler is started, stopped,
Alternatively, by introducing a high-temperature gas into the N 2 O catalyst layer at a low load, the N 2 O concentration at the outlet of the catalyst layer does not suddenly change and a large amount of N 2 O gas is not released into the atmosphere. . When the activity of the N 2 O removal catalyst decreases,
By introducing only a relatively high-temperature hot gas, the N 2 O removal catalyst
Activity can be regenerated.

【0015】[0015]

【実施例】本発明の実施例を以下、説明する。本発明を
燃焼装置の排ガスのN2O除去するに当たり、予備実験
としてN2O除去触媒のガス温度に対する活性の変化の
様態の確認実験を行った。用いたN2O除去触媒は次の
通りである。 実験例1 前記N2O除去触媒のガス温度に対する活性の変化を図
2に示す。ガスとしてNO200ppm、N2O150
ppm、O23%、H2O10%、SO2100ppmの
合成模擬ガスを用いて測定した結果である。図2に示す
ように、温度の変化に対し影響されやすくガス温度が低
下すると、活性も急に悪くなる。
Embodiments of the present invention will be described below. In removing N 2 O from the exhaust gas from the combustion apparatus according to the present invention, an experiment was conducted as a preliminary experiment to confirm the change in activity of the N 2 O removal catalyst with respect to the gas temperature. The N 2 O removal catalyst used is as follows. Experimental Example 1 FIG. 2 shows the change in the activity of the N 2 O removal catalyst with respect to the gas temperature. 200 ppm of NO as gas, 150 N 2 O
It is a result measured using a synthetic simulation gas of ppm, O 2 3%, H 2 O 10%, and SO 2 100 ppm. As shown in FIG. 2, when the gas temperature is easily affected by a change in the temperature and the gas temperature decreases, the activity suddenly deteriorates.

【0016】図1は流動床ボイラ1からのN2Oガスを
多く含む排ガスの浄化に本発明の実施例を適用した全体
系統図である。流動床ボイラ1には分割した節炭器2、
3、過熱器4を配置し、過熱蒸気がタービン5に供給さ
れる。また、流動床ボイラ1からの排ガスはダクト6を
経由して、前記N2O除去触媒を充填した触媒層7に導
かれる。ここでN2Oが除去された排ガスの熱は一方の
節炭器3で熱交換した後、NO、NO2除去装置9に導
入され、NH3注入ライン10からのNH3とNO、NO
2除去装置9内の脱NO、NO2触媒との反応で、排ガス
が浄化される。なお、NO、NO除去装置9内の前記
脱NO、NO触媒は従来から慣用されているチタン、
タングステン、モリブデン、バナジウム等の酸化物ある
いはマンガン、コバルト、クロム等の酸化物を用いる。
FIG. 1 is an overall system diagram in which an embodiment of the present invention is applied to purification of exhaust gas containing a large amount of N 2 O gas from a fluidized bed boiler 1. The fluidized-bed boiler 1 has a split economizer 2,
3. The superheater 4 is arranged, and the superheated steam is supplied to the turbine 5. Exhaust gas from the fluidized-bed boiler 1 is guided via a duct 6 to a catalyst layer 7 filled with the N 2 O removal catalyst. Here after heat exchange N 2 O is the heat of exhaust gas that is removed at one economizer 3, NO, is introduced into the NO 2 removing device 9, NH 3 from NH 3 injection line 10 and the NO, NO
The exhaust gas is purified by the reaction with the NO removal catalyst and the NO 2 catalyst in the 2 removal device 9. Incidentally, NO, titanium the de-NO of NO 2 removal device 9, NO 2 catalyst which is commonly conventionally,
An oxide such as tungsten, molybdenum, or vanadium or an oxide such as manganese, cobalt, or chromium is used.

【0017】このとき通常の流動床ボイラ1の約300
〜550℃の排ガスはダクト6から排出されるが、約6
00〜900℃の高温ガスは過熱器4近傍に設けられた
高温ダクト11から排出され、N2O除去触媒層7に供
給できるようになっている。排ガスダクト6と高温ダク
ト11にはそれぞれダンパ12、13を設けてあり、ま
た、節炭器3を迂回する排ガスのバイパスライン15と
このバイパスライン15にダンパ16を設けて排ガスに
よりN2O除去触媒層7と節炭器3へ導入される排ガス
温度のコントロールを行う。
At this time, about 300
Exhaust gas of 5550 ° C. is discharged from the duct 6,
The high-temperature gas of 00 to 900 ° C. is discharged from a high-temperature duct 11 provided near the superheater 4 and can be supplied to the N 2 O removal catalyst layer 7. The exhaust gas duct 6 and the high-temperature duct 11 are provided with dampers 12 and 13, respectively. In addition, a bypass line 15 for the exhaust gas bypassing the economizer 3 and a damper 16 in the bypass line 15 are provided to remove N 2 O by the exhaust gas. The temperature of the exhaust gas introduced into the catalyst layer 7 and the economizer 3 is controlled.

【0018】本実施例の流動床ボイラ1ではN2O除去
触媒層7は通常はダンパ12のみを開放したときの温度
域が約300〜550℃の領域に配置されている。前記
実験例1に示すように、N2O除去触媒は温度の変化に
対し影響されやすく、ガス温度が低下するとその活性も
急に悪くなり、N2O除去触媒層出口のN2O濃度が高く
なる。
In the fluidized-bed boiler 1 of this embodiment, the N 2 O removal catalyst layer 7 is usually arranged in a temperature range of about 300 to 550 ° C. when only the damper 12 is opened. As shown in Experimental Example 1, N 2 O removal catalyst is susceptible to changes in temperature, the gas temperature decreases its activity becomes suddenly deteriorated, the concentration of N 2 O N 2 O removal catalyst layer outlet Get higher.

【0019】しかし、流動床ボイラ1の運転の変動で排
ガス中のN2O濃度が高くなったり、排ガス温度が低下
しても、予め流動床ボイラ1の運転条件に合わせて設定
された図3に示すタイムチャートに従って、ダンパ開度
調節装置17の出力によりダンパ12、13の開度を調
節して、高温排ガスをN2O除去触媒層7に導入するこ
とで、N2Oガスを除去することができ、大量にN2Oガ
スを大気中に放出することがない。このとき排ガスダク
ト6と高温ダクト11にそれぞれ設けられた温度計1
9、20とダンパ12、13をダンパ開度調節装置17
により連動させることで、より正確にN2O除去触媒層
7内のN2O除去反応を最適条件とすることもできる。
However, even if the N 2 O concentration in the exhaust gas increases or the exhaust gas temperature decreases due to fluctuations in the operation of the fluidized bed boiler 1, FIG. 3 is set in advance according to the operating conditions of the fluidized bed boiler 1. According to the time chart shown in FIG. 5, the opening of the dampers 12, 13 is adjusted by the output of the damper opening adjusting device 17, and the high-temperature exhaust gas is introduced into the N 2 O removal catalyst layer 7 to remove the N 2 O gas. And a large amount of N 2 O gas is not released to the atmosphere. At this time, the thermometers 1 respectively provided in the exhaust gas duct 6 and the high-temperature duct 11
9, 20 and the dampers 12, 13 are connected to the damper opening adjusting device 17
By cooperating with each other, the N 2 O removal reaction in the N 2 O removal catalyst layer 7 can be more accurately set to the optimum condition.

【0020】さらに、流動床ボイラ1出口の排ガス中の
2O濃度測定装置21によりN2O濃度を測定しながら
ダンパ開度調節装置17の指令でダンパ12、13の開
閉調整もできる。
Furthermore, it is also closing adjustment of the damper 12, 13 by the command of the damper opening adjustment device 17 while measuring the N 2 O concentration by the fluidized bed boiler 1 N 2 O concentration measuring device 21 at the outlet of the exhaust gas.

【0021】高温ダクト11より高温ガスを流した時、
ダンパ12、13の開閉によって通常より節炭器バイパ
スライン15のガス量を少なくし、節炭器3へのガス量
を多くすることで、節炭器3で低温まで下げることがで
きる。
When a high-temperature gas flows from the high-temperature duct 11,
By opening and closing the dampers 12, 13, the amount of gas in the economizer bypass line 15 is made smaller than usual and the amount of gas to the economizer 3 is increased, so that the economizer 3 can lower the temperature to a low temperature.

【0022】本発明の上記実施例で使用したN2O除去
触媒は劣化するが、この劣化したN2O除去触媒の再活
性化方法については未だ確立されていないのが現状であ
る。しかし、本発明者らはつぎのような簡単な方法で上
記経時的に劣化したN2O除去触媒の再活性化を図るこ
とに成功した。
Although the N 2 O removal catalyst used in the above embodiment of the present invention deteriorates, a method for reactivating the deteriorated N 2 O removal catalyst has not been established yet at present. However, the present inventors have succeeded in reactivating the time-degraded N 2 O removal catalyst by the following simple method.

【0023】その方法は、燃焼装置から排出される排ガ
ス中の亜酸化窒素を除去するための亜酸化窒素除去触媒
層に通常は二酸化硫黄の酸化を抑制する比較的低温の排
ガスを導入し、亜酸化窒素除去触媒層中の亜酸化窒素除
去触媒の活性が低下したときには、燃焼装置から供給さ
れる高温ガスを導入する亜酸化窒素除去触媒の再生方法
である。
The method comprises introducing a relatively low temperature exhaust gas which normally suppresses the oxidation of sulfur dioxide into a nitrous oxide removal catalyst layer for removing nitrous oxide in the exhaust gas discharged from the combustion device, This is a method for regenerating a nitrous oxide removing catalyst in which a high-temperature gas supplied from a combustion device is introduced when the activity of the nitrous oxide removing catalyst in the nitric oxide removing catalyst layer decreases.

【0024】N2O除去触媒は、酸素、水、SO2などの
吸着から劣化すると考えられ、通常使用している温度
(流動床ボイラでは300〜550℃)よりも高温の排
ガス(流動床ボイラでは600〜900℃)を燃焼装置
からN2O除去触媒層に導入できるようバイパスライン
を設け、一時的に高温ガスにさらすことによって再活性
化させることが可能であることが判明した。
The N 2 O removal catalyst is considered to be deteriorated due to adsorption of oxygen, water, SO 2, etc., and the exhaust gas (fluidized bed boiler) has a higher temperature than the temperature normally used (300 to 550 ° C. in a fluidized bed boiler). It has been found that it is possible to provide a bypass line to introduce N 2 O from the combustion device to the N 2 O removal catalyst layer from the combustion device and to reactivate the N 2 O removal catalyst layer by temporarily exposing it to a high-temperature gas.

【0025】活性の落ちたN2O除去触媒の再生条件を
確認する実験を次のようにして行った。すなわち、性能
の低下したN2O除去触媒に600℃の模擬ガスを1時
間流した後、NO200ppm、N2O150ppm、
23%、H2O10%、SO2100ppmのガス条件
で、N2O除去率を求めた。なお、性能の低下したN2
除去触媒も同様のガス条件で除去率を求めた。その結果
を図4に示す。
An experiment for confirming the conditions for regenerating the N 2 O removing catalyst with reduced activity was carried out as follows. That is, after flowing a simulated gas at 600 ° C. for 1 hour through the N 2 O removal catalyst having deteriorated performance, NO 200 ppm, N 2 O 150 ppm,
The N 2 O removal rate was determined under the gas conditions of O 2 3%, H 2 O 10%, and SO 2 100 ppm. It should be noted that the performance of N 2 O
The removal rate of the removal catalyst was determined under the same gas conditions. FIG. 4 shows the results.

【0026】したがって、図1の装置において、N2
除去触媒の性能が低下した時には、一時的にダンパ13
を開き、通常使用しているガス温度よりも高温の排ガス
(600〜900℃)にN2O除去触媒層7をさらすこ
とによって触媒を再活性させることができる。こうし
て、低下したN2O除去触媒を高温ガスにさらすことに
よって、性能をアップさせることが可能であり、触媒を
長く使用することができる。
[0026] Thus, in the apparatus of FIG. 1, N 2 O
When the performance of the removal catalyst decreases, the damper 13
The opening can be reactivated catalyst by than the gas temperature which normally use exposing the N 2 O removal catalyst layer 7 in the hot exhaust gas (600 to 900 ° C.). Thus, by exposing the lowered N 2 O removal catalyst to a high-temperature gas, the performance can be improved, and the catalyst can be used for a long time.

【0027】[0027]

【発明の効果】本発明によれば、燃焼装置の負荷変化等
の運転条件の変動によってN2O除去触媒出口のN2O濃
度が急激に高くなる恐れがある場合でも、あらかじめ高
温ガスをN2O除去触媒層に導入することによって、N2
Oガスが分解除去できる。さらに劣化したN 2 O除去触
媒は比較的高温の高温ガスだけを導入してN 2 O除去触
媒の活性を容易に再生させることができ、同一のN 2
除去触媒を長期間使用できる。
According to the present invention, even if the N 2 O concentration at the outlet of the N 2 O removal catalyst may suddenly increase due to a change in operating conditions such as a change in the load of the combustion device, the high-temperature gas may be supplied in advance to the N 2 O removal catalyst. By introducing into the 2 O removal catalyst layer, N 2
O gas can be decomposed and removed. Further deteriorated N 2 O removal contact
As a medium, only a relatively high-temperature gas is introduced to remove N 2 O.
The activity of the medium can be easily regenerated and the same N 2 O
The removal catalyst can be used for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の全体系統図である。FIG. 1 is an overall system diagram of one embodiment of the present invention.

【図2】 本発明の一実施例のN2O除去触媒の性能を
示す図である。
FIG. 2 is a graph showing the performance of an N 2 O removal catalyst according to one embodiment of the present invention.

【図3】 本発明の一実施例の流動床ボイラの運転条件
に応じた排ガス温度とN2O濃度のタイムチャートと排
ガスダクトと高温ダクトの開度のタイムチャートの図で
ある。
FIG. 3 is a time chart of the exhaust gas temperature and the N 2 O concentration according to the operating conditions of the fluidized-bed boiler of one embodiment of the present invention, and a time chart of the opening degrees of the exhaust gas duct and the high-temperature duct.

【図4】 劣化したN2O除去触媒と、再活性化したN2
O除去触媒の性能を示す図である。
FIG. 4. Degraded N 2 O removal catalyst and reactivated N 2
It is a figure which shows the performance of an O removal catalyst.

【符号の説明】[Explanation of symbols]

1…流動床ボイラ、2、3…節炭器、4…過熱器、5…
タービン、6…排ガスダクト、7…N2O除去触媒層、
9…NO、NO2除去装置、11…高温ダクト、12…
排ガスダクトダンパ、13…高温ガスダクトダンパ、1
7…ダンパ開度調節装置、19、20…温度計、21…
2O濃度測定装置
1: fluidized bed boiler, 2: 3, economizer, 4: superheater, 5:
Turbine, 6 ... exhaust gas duct, 7 ... N 2 O removal catalyst layer,
9: NO and NO 2 removal device, 11: high temperature duct, 12:
Exhaust gas duct damper, 13 High temperature gas duct damper, 1
7 ... damper opening adjustment device, 19, 20 ... thermometer, 21 ...
N 2 O concentration measurement device

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼装置から排出される排ガス中の亜酸
化窒素を除去するための亜酸化窒素除去触媒層に、燃焼
装置の運転条件に合わせて比較的低温の前記排ガスと燃
焼装置から供給される比較的高温の高温ガスとを、その
混合比率を調整して導入し、亜酸化窒素除去触媒の活性
が低下すると前記比較的高温の高温ガスだけを導入して
亜酸化窒素除去触媒の活性を再生させることを特徴とす
る排ガス中の亜酸化窒素除去方法。
To 1. A nitrous oxide-removing catalyst layer for removing nitrous oxide in exhaust gas discharged from the combustion device, supplied together from the exhaust gas combustion device for relatively low temperature operating conditions of the combustion apparatus The relatively high-temperature high-temperature gas is introduced by adjusting the mixing ratio, and the activity of the nitrous oxide removal catalyst is reduced.
When the temperature drops, only the relatively high-temperature hot gas is introduced.
A method for removing nitrous oxide in exhaust gas, comprising regenerating the activity of a nitrous oxide removing catalyst .
【請求項2】 燃焼装置の運転条件は排ガス中の亜酸化
窒素濃度と排ガス温度の少なくともいずれかの測定値に
基づき検出され、前記測定値が設定範囲内にある場合に
は比較的低温の前記排ガスを導入し、前記排ガス中の亜
酸化窒素濃度が増加する傾向にある時または排ガス温度
が低下する傾向にある場合には、排ガス中の亜酸化窒素
濃度の増加率または排ガス温度の低下率に応じて亜酸化
窒素除去のための最適温度条件となるように燃焼装置か
ら排出される比較的高温の高温ガスを前記排ガスに混合
させて亜酸化窒素除去触媒層に導入することを特徴とす
る請求項1記載の排ガス中の亜酸化窒素除去方法。
2. An operating condition of the combustion device is detected based on a measured value of at least one of a concentration of nitrous oxide in an exhaust gas and an exhaust gas temperature, and when the measured value is within a set range.
Introduces the exhaust gas of low temperature relatively, nitrous if when nitric oxide concentration tends to increase or the exhaust gas temperature tends to decrease the rate of increase in nitrous oxide concentration in the exhaust gas in the exhaust gas Alternatively, a relatively high-temperature gas discharged from the combustion device is mixed with the exhaust gas and introduced into the nitrous oxide removal catalyst layer so that the optimal temperature condition for nitrous oxide removal is obtained according to the rate of decrease in the exhaust gas temperature. 2. The method for removing nitrous oxide in exhaust gas according to claim 1, wherein:
【請求項3】 燃焼装置の運転条件に応じて予め設定さ
れるプログラムに従って予め設定された排ガスと高温ガ
スとの混合比率で排ガスと高温ガスとの混合ガスを亜酸
化窒素除去触媒層に導入することを特徴とする請求項1
記載の排ガス中の亜酸化窒素除去方法。
3. A mixed gas of exhaust gas and high-temperature gas is introduced into the nitrous oxide removal catalyst layer at a preset mixing ratio of exhaust gas and high-temperature gas according to a program preset according to operating conditions of the combustion device. 2. The method according to claim 1, wherein
The method for removing nitrous oxide in exhaust gas as described in the above.
JP10943592A 1992-04-28 1992-04-28 Method and apparatus for removing nitrous oxide from exhaust gas Expired - Fee Related JP3347762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10943592A JP3347762B2 (en) 1992-04-28 1992-04-28 Method and apparatus for removing nitrous oxide from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10943592A JP3347762B2 (en) 1992-04-28 1992-04-28 Method and apparatus for removing nitrous oxide from exhaust gas

Publications (2)

Publication Number Publication Date
JPH05305219A JPH05305219A (en) 1993-11-19
JP3347762B2 true JP3347762B2 (en) 2002-11-20

Family

ID=14510178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10943592A Expired - Fee Related JP3347762B2 (en) 1992-04-28 1992-04-28 Method and apparatus for removing nitrous oxide from exhaust gas

Country Status (1)

Country Link
JP (1) JP3347762B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022775A1 (en) * 2010-06-04 2011-12-08 Uhde Gmbh Method and apparatus for removing NOx and N2O
JP5916470B2 (en) * 2011-08-04 2016-05-11 三菱重工業株式会社 Fluidized bed processing system and N2O removal method of fluidized bed combustion exhaust gas
JP2023072888A (en) * 2021-11-15 2023-05-25 住友化学株式会社 Method for regenerating catalyst for nitrous oxide decomposition and method for decomposing nitrous oxide

Also Published As

Publication number Publication date
JPH05305219A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
JP4110427B2 (en) Absorber regeneration
US4963332A (en) Method for the catalytic removal of nitrogen oxides from exhaust gases by means of a reducing agent
CA2138133C (en) Method for removal of nitrogen oxides from exhaust gas
JP4574851B2 (en) Method for regenerating deactivated catalyst
EP1053390B1 (en) Regeneration of catalyst/absorber
EP0540196A1 (en) Selective reduction of nitrogen oxides
JP3347762B2 (en) Method and apparatus for removing nitrous oxide from exhaust gas
JP2003530982A (en) Method for removing nitrogen oxides from an oxygen-containing gas stream
US3872213A (en) Method for removing harmful components from exhaust gases
JP3157556B2 (en) Exhaust gas purification catalyst device
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
KR102292551B1 (en) Scr catalyst with enhanced stability for surfur components
JPH0647282A (en) Catalyst for low temperature denitrification of flue gas, its production and method for low temperature denitrification of flue gas
JPH07136464A (en) Apparatus and method for treating nitrogen oxide in exhaust gas
JPH06319953A (en) Purification of nitrogen oxide
JPH10337476A (en) Methane oxidation catalyst
JPH05168857A (en) Method for decreasing nitrogen oxide in combustion exhaust gas
US7989385B2 (en) Process of activation of a palladium catalyst system
CA2207275C (en) Regeneration of catalyst/absorber
JP3361827B2 (en) Exhaust gas denitration method
JP3263105B2 (en) Nitrogen oxide treatment method and treatment apparatus
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
JPH03258326A (en) Method and apparatus for denitrating exhaust gas
JPH06226051A (en) Treatment and treatment device for nitrogen oxide
JPS5858134B2 (en) Denitrification method for sintering furnace exhaust gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees