JPH05172458A - Impurity removing device for air separating device - Google Patents

Impurity removing device for air separating device

Info

Publication number
JPH05172458A
JPH05172458A JP3343340A JP34334091A JPH05172458A JP H05172458 A JPH05172458 A JP H05172458A JP 3343340 A JP3343340 A JP 3343340A JP 34334091 A JP34334091 A JP 34334091A JP H05172458 A JPH05172458 A JP H05172458A
Authority
JP
Japan
Prior art keywords
raw material
material air
adsorption
catalyst
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3343340A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ayuhara
俊行 鮎原
Takashi Oyama
隆司 大山
Hideto Fujita
秀人 藤田
Masayuki Tanaka
正幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3343340A priority Critical patent/JPH05172458A/en
Priority to TW081106451A priority patent/TW197955B/zh
Priority to KR1019920025218A priority patent/KR960001718B1/en
Publication of JPH05172458A publication Critical patent/JPH05172458A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To manufacture the ultra-high purity nitrogen by a method wherein carbon monoxide and hydrogen in raw material air are removed at a high level, in an air separating device. CONSTITUTION:An impurity removing device comprises a catalyst tower 20 to promote oxidation of carbon monoxide and hydrogen in raw material air and raw material air passages 12, 18, 24, and 34 through which raw material air flows to the catalyst tower 10. An adsorbing unit 14 to adsorb and remove hydrocarbon, carbon dioxide, and water which produce catalyst poison, from the raw material air is arranged at a position upstream of the catalyst tower 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造用窒素等を
製造するための空気分離装置において、その低温分離部
に原料空気を導入する前に、予めこの原料空気から一酸
化炭素や水素等の不純物を除去しておくための装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation apparatus for producing nitrogen or the like for semiconductor production, in which carbon monoxide, hydrogen, etc. are previously extracted from raw material air before introducing the raw material air into the low temperature separation section. The present invention relates to a device for removing the impurities of.

【0002】[0002]

【従来の技術】一般に、原料空気から窒素を分離する窒
素製造装置や空気分離装置は、保冷箱内に主熱交換器や
精留塔が設置された低温分離部を備えており、この低温
分離部に外部から原料空気が導入されることにより、窒
素等の精製が行われるようになっている。
2. Description of the Related Art Generally, a nitrogen production apparatus or an air separation apparatus for separating nitrogen from raw material air is equipped with a low temperature separation section in which a main heat exchanger and a rectification tower are installed in a cool box. By introducing raw material air from the outside into the section, nitrogen and the like are refined.

【0003】ところで、近年、半導体製造の活発化に伴
い、超高純度窒素の需要が急速に高まっている。このよ
うな超高純度窒素を上記空気分離装置によって得ようと
するには、その低温分離部に原料空気を導入する前に、
この原料空気から予め一酸化炭素や水素といった不純物
を除去しておく必要がある。
By the way, in recent years, the demand for ultra-high-purity nitrogen is rapidly increasing with the activation of semiconductor manufacturing. In order to obtain such ultra-high-purity nitrogen by the air separation device, before introducing the raw material air into the low temperature separation unit,
It is necessary to remove impurities such as carbon monoxide and hydrogen from the raw material air in advance.

【0004】従来、このような不純物を除去する手段と
しては、上記原料空気を白金系触媒やパラジウム系触媒
等に通し、ここで一酸化炭素及び水素の酸化を促進して
これらを二酸化炭素及び水に変換するといったことが行
われている(例えば1988年10月発行の日経マイクロデバ
イス別冊No.2「超クリーン技術」参照。)。
Conventionally, as a means for removing such impurities, the raw material air is passed through a platinum-based catalyst, a palladium-based catalyst, or the like, where the oxidation of carbon monoxide and hydrogen is promoted to remove them by carbon dioxide and water. (See, for example, Nikkei Microdevices Separate Volume No. 2 “Ultra Clean Technology” issued in October 1988).

【0005】このような操作を行うための装置の一例を
図3に示す。図において、圧縮機100により圧縮され
た原料空気は、熱交換器102で予熱され、さらに電気
ヒータ104で加熱された後、触媒塔106へ導入され
る。この触媒塔106では、一酸化炭素及び水の酸化反
応(燃焼反応)、すなわち、2CO+O2→2CO2、及
び2H2+O2→2H2Oといった反応が促進され、これ
により、原料空気中の一酸化炭素及び水素は、それぞれ
二酸化炭素及び水に変換される。
An example of a device for performing such an operation is shown in FIG. In the figure, the raw material air compressed by the compressor 100 is preheated by the heat exchanger 102, further heated by the electric heater 104, and then introduced into the catalyst tower 106. In this catalyst tower 106, an oxidation reaction (combustion reaction) of carbon monoxide and water, that is, a reaction such as 2CO + O 2 → 2CO 2 and 2H 2 + O 2 → 2H 2 O is promoted, and as a result, one Carbon oxide and hydrogen are converted to carbon dioxide and water, respectively.

【0006】その後、原料空気は、上記熱交換器10
2、水冷却器108、さらにはフロン冷凍機110で冷
却され、モレキュラシーブ等の吸着剤を収容した吸着ユ
ニット112へ導入される。この吸着ユニット112に
おいて、上記原料空気中に含まれる二酸化炭素及び水が
吸着除去され、残りの原料空気は、主熱交換器や精留塔
等を備えた図外の低温分離部へ導入される。
Thereafter, the raw material air is converted into the heat exchanger 10 described above.
2. The water is cooled by the water cooler 108 and the freon refrigerator 110, and is introduced into the adsorption unit 112 containing an adsorbent such as molecular sieve. In this adsorption unit 112, carbon dioxide and water contained in the raw material air are adsorbed and removed, and the remaining raw material air is introduced into a low temperature separation section (not shown) equipped with a main heat exchanger, a rectification tower and the like. ..

【0007】すなわち、この装置では、まず触媒塔10
6によって原料空気中の一酸化炭素及び水素が除去さ
れ、その後に吸着ユニット112によって二酸化炭素及
び水が除去されるようになっている。
That is, in this apparatus, first, the catalyst tower 10
Carbon monoxide and hydrogen in the raw material air are removed by 6, and then carbon dioxide and water are removed by the adsorption unit 112.

【0008】[0008]

【発明が解決しようとする課題】近年、半導体の集積度
の向上が大きな課題とされているが、これに伴って窒素
の純度も極めて高いレベルのものが要求されている。例
えば、64MBのメモリが得られる程度まで半導体の集
積度を向上させようとするには、その製造に使用される
窒素中の一酸化炭素及び水素の濃度を1ppb レベルまで
下げる必要がある。
In recent years, the improvement of the degree of integration of semiconductors has become a major issue, and along with this, the purity of nitrogen is required to be extremely high. For example, in order to improve the degree of integration of a semiconductor to the extent that a 64 MB memory can be obtained, it is necessary to reduce the concentration of carbon monoxide and hydrogen in nitrogen used for its manufacture to the level of 1 ppb.

【0009】しかしながら、前記図3に示した従来装置
では、原料空気中の一酸化炭素及び水素の濃度を約10
ppb レベルまでしか下げることができず、よって半導体
の高集積化への対応が困難な状況となっている。その主
な理由としては、 原料空気中に含まれる炭化水素分
が触媒塔106における触媒毒となり、触媒の性能を比
較的短時間で劣化させてしまうこと、 原料空気中の
二酸化炭素濃度及び水分濃度が高いため、その分、一酸
化炭素及び水素の酸化反応(2CO+O2→2CO2、及
び2H2+O2→2H2O)が抑制されてしまうこと、が
挙げられる。
However, in the conventional apparatus shown in FIG. 3, the concentration of carbon monoxide and hydrogen in the raw material air is about 10%.
Only the ppb level can be lowered, which makes it difficult to deal with high integration of semiconductors. The main reasons for this are that the hydrocarbon component contained in the raw material air becomes a catalyst poison in the catalyst tower 106 and deteriorates the performance of the catalyst in a relatively short time. Is high, the oxidation reactions of carbon monoxide and hydrogen (2CO + O 2 → 2CO 2 and 2H 2 + O 2 → 2H 2 O) are suppressed accordingly.

【0010】本発明は、このような事情に鑑み、空気分
離装置において、原料空気中の一酸化炭素及び水素を高
レベルで除去することにより、超高純度窒素の製造を可
能にすることができる装置を提供することを目的とす
る。
In view of such circumstances, the present invention makes it possible to produce ultra-high purity nitrogen by removing carbon monoxide and hydrogen in the feed air at a high level in the air separation device. The purpose is to provide a device.

【0011】[0011]

【課題を解決するための手段】本発明は、空気分離装置
に設けられ、その低温分離部に導入される前の原料空気
から不純物を除去するための装置であって、上記原料空
気中の一酸化炭素及び水素の酸化を促進させる触媒装置
と、この触媒装置に原料空気を通して上記低温分離部へ
導く原料空気通路とを備えるとともに、この原料空気通
路において上記触媒装置よりも上流側の位置に、上記原
料空気中から上記触媒装置の触媒毒となる炭化水素と二
酸化炭素と水とを吸着除去する吸着装置を設けたもので
ある(請求項1)。
SUMMARY OF THE INVENTION The present invention is an apparatus for removing impurities from raw material air, which is provided in an air separation apparatus and is not yet introduced into a low temperature separation section, and is an apparatus for removing impurities from the raw material air. A catalyst device that promotes the oxidation of carbon oxide and hydrogen, and a raw material air passage that leads the raw material air to the catalyst device to the low temperature separation section are provided, and in this raw material air passage, a position upstream of the catalytic device, An adsorption device for adsorbing and removing hydrocarbons, carbon dioxide, and water, which are catalyst poisons of the catalyst device, from the raw material air is provided (Claim 1).

【0012】さらに、上記触媒装置と低温分離部との間
に、原料空気中から二酸化炭素と水とを吸着除去し、か
つその吸着容量が上記吸着装置の吸着容量よりも小さい
副吸着装置を設けたり(請求項2)、上記吸着装置に3
つ以上の吸着塔を設け、各吸着塔の入口側に原料空気を
導入するための第1の原料空気通路と、各吸着塔の出口
側を上記触媒装置の入口側に接続する第2の原料空気通
路と、上記触媒装置の出口側を各吸着塔の入口側に接続
する第3の原料空気通路と、各吸着塔の出口側を上記低
温分離部に接続する第4の原料空気通路とを備えるとと
もに、各吸着塔を、この吸着塔に上記第1の原料空気通
路から原料空気が流入して上記第2の原料空気通路に流
出する第1の使用状態と、上記吸着塔に第3の原料空気
通路から原料空気が流入して上記第4の原料空気通路に
流出する第2の使用状態と、再生状態とに切換える流路
切換手段を備えたりする(請求項3)ことにより、後述
のようなより優れた効果が得られる。
Further, a sub-adsorption device is provided between the catalyst device and the low-temperature separation section for adsorbing and removing carbon dioxide and water from the raw material air and having an adsorption capacity smaller than that of the adsorption device. Or (Claim 2), 3 in the adsorption device
First raw material air passage for introducing raw material air into the inlet side of each adsorption tower, and second raw material connecting the outlet side of each adsorption tower to the inlet side of the catalyst device An air passage, a third raw material air passage that connects the outlet side of the catalyst device to the inlet side of each adsorption tower, and a fourth raw material air passage that connects the outlet side of each adsorption tower to the low temperature separation section. In addition to the above, each adsorption tower is provided with a first usage state in which raw material air flows into the adsorption tower from the first raw material air passage and flows out to the second raw material air passage, and a third usage state in the adsorption tower. By providing a flow path switching means for switching between the second use state in which the raw material air flows in from the raw material air passage and flows out to the fourth raw material air passage, and the regeneration state (claim 3), it will be described later. Such a superior effect can be obtained.

【0013】[0013]

【作用】まず、請求項1記載の装置によれば、原料空気
が触媒装置に導入される前に、この触媒装置の触媒毒と
なる炭化水素が予め吸着装置において原料空気中から除
去されるため、その後、原料空気が触媒装置に導入され
た際の触媒装置の劣化が抑えられる。また、上記吸着装
置において二酸化炭素及び水も吸着除去され、原料空気
中の二酸化炭素濃度及び水分濃度が著しく低減した状態
で原料空気が触媒装置に導入されるため、この触媒装置
において一酸化炭素及び水素の酸化反応(2CO+O2
→2CO2、及び2H2+O2→2H2O)がさらに促進さ
れ、これにより一酸化炭素濃度及び水素濃度は大幅に軽
減される。従って、この原料空気が低温分離部に導入さ
れることにより、極めて純度の高い製品窒素が製造され
ることとなる。
First, according to the apparatus of claim 1, before the raw material air is introduced into the catalyst apparatus, hydrocarbons which are catalyst poisons of the catalyst apparatus are removed in advance from the raw material air in the adsorption apparatus. After that, the deterioration of the catalyst device when the raw material air is introduced into the catalyst device is suppressed. Further, carbon dioxide and water are also adsorbed and removed in the adsorption device, and the raw material air is introduced into the catalyst device in a state where the carbon dioxide concentration and the water concentration in the raw material air are significantly reduced. Hydrogen oxidation reaction (2CO + O 2
→ 2CO 2 and 2H 2 + O 2 → 2H 2 O) are further promoted, whereby the carbon monoxide concentration and the hydrogen concentration are significantly reduced. Therefore, by introducing this raw material air into the low temperature separation section, product nitrogen of extremely high purity is produced.

【0014】なお、上記酸化反応により新たに二酸化炭
素及び水が発生し、原料空気中に混在することになる
が、これら二酸化炭素及び水の生成量は微量であり、し
かもこれらは沸点が高くて低温分離部で確実に空気から
分離されるため、その除去は必ずしも必要ではない。た
だし、低温分離部で長時間の運転が行われると、上記二
酸化炭素や水が主熱交換器の通路内等で凍結し、ガスの
良好な流通を妨げるおそれがあるので、請求項2記載の
装置のように、触媒装置と低温分離部との間に副吸着装
置を設け、原料空気を触媒装置に通してから低温分離部
に導入するまでの間に、上記二酸化炭素及び水を再吸着
除去することが好ましい。この場合、上述のように二酸
化炭素及び水の量は微量であるため、副吸着装置には前
記吸着装置よりも吸着容量の低い小規模の装置を用いる
ことが可能である。
Although carbon dioxide and water are newly generated by the above-mentioned oxidation reaction and are mixed in the raw material air, these carbon dioxide and water are produced in a very small amount and their boiling points are high. Its removal is not absolutely necessary as it is reliably separated from the air in the cold separation part. However, when the low-temperature separation section is operated for a long time, the carbon dioxide and water may freeze in the passages of the main heat exchanger and the like, which may hinder the good flow of gas. Like the device, a secondary adsorption device is provided between the catalyst device and the low temperature separation unit, and the carbon dioxide and water are re-adsorbed and removed between the time when the raw material air is passed through the catalyst device and the time when it is introduced into the low temperature separation unit. Preferably. In this case, since the amounts of carbon dioxide and water are very small as described above, it is possible to use a small-scale device having a lower adsorption capacity than the adsorption device as the secondary adsorption device.

【0015】また、請求項3記載の装置によれば、吸着
装置における各吸着塔の状態切換によって、触媒装置導
入前における原料空気からの不純物除去、及び触媒装置
通過後の不純物除去の双方を単一の吸着装置で連続的に
行うことができる。
According to the third aspect of the present invention, by switching the state of each adsorption tower in the adsorption device, both removal of impurities from the feed air before introduction of the catalyst device and removal of impurities after passing through the catalyst device are performed. It can be performed continuously with one adsorption device.

【0016】例えば、最初の段階では第1の吸着塔を第
1の使用状態、すなわち、この吸着塔に上記第1の原料
空気通路から原料空気が流入して上記第2の原料空気通
路に流出する状態に切換え、第2の吸着塔を第2の使用
状態、すなわち、この吸着塔に第3の原料空気通路から
原料空気が流入して上記第4の原料空気通路に流出する
状態に切換え、第3の吸着塔を再生状態に切換えること
により、触媒装置前後における不純物除去を同時に行う
ことができる。
For example, in the first stage, the first adsorption tower is in the first usage state, that is, the raw material air flows into the adsorption tower from the first raw material air passage and flows out to the second raw material air passage. The second adsorption tower to the second usage state, that is, the raw material air flows into the adsorption tower from the third raw material air passage and flows out to the fourth raw material air passage. By switching the third adsorption tower to the regeneration state, impurities can be removed before and after the catalyst device at the same time.

【0017】その後、第1の吸着塔については再生状
態、第2の使用状態、第1の使用状態…の順に切換え、
第2の吸着塔については第1の使用状態、再生状態、第
2の使用状態…の順に切換え、第3の吸着塔については
第2の使用状態、第1の使用状態、再生状態…の順に切
換えていくことにより、これら3つの吸着塔を用いて、
間に再生操作を適当に挾みながら、吸着除去操作を続行
させることができる。
Thereafter, the first adsorption tower is switched to a regenerating state, a second use state, a first use state, ...
For the second adsorption tower, the first use state, the regeneration state, the second use state ... Are switched in this order, and for the third adsorption tower, the second use state, the first use state, the regeneration state ... By switching, using these three adsorption towers,
The adsorption / removal operation can be continued while the regeneration operation is appropriately sandwiched therebetween.

【0018】ここで、各状態の切換については、第2の
使用状態、第1の使用状態、再生状態、第2の使用状
態、…の順に行うことが望ましい。なぜならば、第2の
使用状態で吸着塔が吸着する二酸化炭素量及び水分量は
僅かであるため、この第2の使用状態からそのまま第1
の使用状態に移行することは可能であるが、この第1の
使用状態では比較的多量の不純物を吸着するため、次の
吸着を行うには再生工程に移る必要があるからである。
Here, it is desirable to switch the respective states in the order of the second use state, the first use state, the reproduction state, the second use state, .... This is because the amount of carbon dioxide and the amount of water adsorbed by the adsorption tower in the second use state are small, and therefore the first use state is the same as that in the second use state.
This is because it is possible to shift to the use state, but since a relatively large amount of impurities are adsorbed in the first use state, it is necessary to shift to the regeneration step to perform the next adsorption.

【0019】[0019]

【実施例】本発明の第1実施例を図1に基づいて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG.

【0020】ここに示す装置は、原料空気から窒素や酸
素、アルゴン等を分離する空気分離装置において、その
低温分離部(すなわち主熱交換器や精留塔が収容された
保冷箱)に原料空気を導入する前に、この原料空気から
予め一酸化炭素や水素といった不純物を除去するための
装置を示したものである。なお、上記低温分離部につい
ては、通常知られている空気分離装置のそれと同等であ
るため、その図示を省略する。
The apparatus shown here is an air separation apparatus for separating nitrogen, oxygen, argon, etc. from the raw material air, and the low temperature separation section (that is, the cold box in which the main heat exchanger and the rectification column are housed) has the raw material air. Before introducing the above, an apparatus for removing impurities such as carbon monoxide and hydrogen from the raw material air in advance is shown. The low temperature separation section is the same as that of a generally known air separation apparatus, and therefore its illustration is omitted.

【0021】図において、10は原料空気を圧縮する圧
縮機であり、この圧縮機10は第1の原料空気通路12
を介して吸着ユニット(吸着装置)14の入口側に接続
され、第1の原料空気通路12の途中には熱交換器16
及びフロン冷凍機17が設けられている。
In the figure, 10 is a compressor for compressing the raw material air, and the compressor 10 has a first raw material air passage 12
Is connected to the inlet side of the adsorption unit (adsorption device) 14 via a heat exchanger 16 in the middle of the first raw material air passage 12.
Also, a Freon refrigerator 17 is provided.

【0022】吸着ユニット14は、互いに並列に配され
た2つの吸着塔14a,14bを備え、これらの吸着塔
14a,14b内には、後述の触媒塔20において触媒
毒となる炭化水素(CmHn)と、二酸化炭素と、水とを
除去するための吸着剤が充填されている。この吸着剤と
しては、モレキュラシーブやアルミナゲル(温度スイン
グ吸着を行う場合)、あるいは合成ゼオライト(圧力ス
イング吸着を行う場合)等が好適であるが、その種類は
特に問わない。各吸着塔14a,14bの入口側及び出
口側にはそれぞれ図外の弁が設けられており、一方の吸
着塔14aにおいて吸着工程が行われる間に、他方の吸
着塔14bにおいて図外の手段により再生工程が行われ
るようになっている。
The adsorption unit 14 is provided with two adsorption towers 14a and 14b arranged in parallel with each other, and in these adsorption towers 14a and 14b, a hydrocarbon (CmHn) which becomes a catalyst poison in a catalyst tower 20 described later is provided. And an adsorbent for removing carbon dioxide and water. As the adsorbent, molecular sieve, alumina gel (when performing temperature swing adsorption), synthetic zeolite (when performing pressure swing adsorption), or the like is preferable, but the type thereof is not particularly limited. A valve (not shown) is provided on each of the inlet side and the outlet side of each of the adsorption towers 14a and 14b. While the adsorption process is performed in one adsorption tower 14a, the other adsorption tower 14b is operated by means not shown in the drawing. A regeneration process is to be performed.

【0023】上記吸着ユニット14は、第2の原料空気
通路18を介して触媒塔20の入口側に接続されてい
る。上記第2の原料空気通路18の途中には、上記熱交
換器16及び電気ヒータ22が設けられており、熱交換
器16において、第1の原料空気通路12を通る原料空
気と第2の原料空気通路18を通る原料空気との間で熱
交換が行われるようになっている。
The adsorption unit 14 is connected to the inlet side of the catalyst tower 20 via the second raw material air passage 18. The heat exchanger 16 and the electric heater 22 are provided in the middle of the second raw material air passage 18. In the heat exchanger 16, the raw material air passing through the first raw material air passage 12 and the second raw material are provided. Heat is exchanged with the raw material air passing through the air passage 18.

【0024】上記触媒塔20内には、原料空気中の一酸
化炭素の酸化反応(燃焼反応)、すなわち、2CO+O
2→2CO2という反応を促進させる触媒(例えば白金系
触媒)と、原料空気中の水素の酸化反応(燃焼反応)、
すなわち2H2+O2→2H2Oという反応を促進させる
触媒(例えばパラジウム系触媒)が充填されている。
In the catalyst tower 20, an oxidation reaction (combustion reaction) of carbon monoxide in the raw material air, that is, 2CO + O
2 → 2CO 2 is a catalyst that promotes the reaction (for example, a platinum-based catalyst), and an oxidation reaction (combustion reaction) of hydrogen in the feed air
That is, a catalyst (for example, a palladium-based catalyst) that promotes the reaction of 2H 2 + O 2 → 2H 2 O is filled.

【0025】この触媒塔20の出口側は、第3の原料空
気通路24を介して副吸着ユニット(副吸着装置)26
の入口側に接続され、第3の原料空気通路24の途中に
は、水冷却器28が設けられている。
The outlet side of the catalyst tower 20 is provided with a sub-adsorption unit (sub-adsorption device) 26 via a third raw material air passage 24.
A water cooler 28 is provided in the middle of the third raw material air passage 24.

【0026】副吸着ユニット26は、上記吸着ユニット
14と同様に、互いに並列に配された2つの吸着塔26
a,26bを備えている。両吸着塔26a,26bに
は、原料空気中の二酸化炭素及び水を吸着除去するため
の吸着剤が充填されており、その吸着容量は上記吸着ユ
ニット14における各吸着塔14a,14bの吸着容量
よりも小さく設定されている。具体的には、後述のよう
に触媒塔20における酸化反応で生じる二酸化炭素や水
を吸着除去するのに十分な程度の吸着容量に設定されて
いる。
The sub-adsorption unit 26, like the adsorption unit 14, has two adsorption towers 26 arranged in parallel with each other.
a and 26b. Both of the adsorption towers 26a, 26b are filled with an adsorbent for adsorbing and removing carbon dioxide and water in the raw material air, and the adsorption capacity thereof is determined by the adsorption capacity of each of the adsorption towers 14a, 14b in the adsorption unit 14. Is also set small. Specifically, as described below, the adsorption capacity is set to a level sufficient to adsorb and remove carbon dioxide and water generated by the oxidation reaction in the catalyst tower 20.

【0027】この副吸着ユニット26も、上記吸着ユニ
ット14と同様、一方の吸着塔で吸着工程が行われる間
に、他方の吸着塔で再生工程が行われるようになってい
る。そして、各吸着塔26a,26bの出口側が第4の
原料空気通路30を介して図外の低温分離部に接続され
るようになっている。
Like the adsorption unit 14, the sub-adsorption unit 26 is also configured such that while one adsorption tower performs the adsorption step, the other adsorption tower performs the regeneration step. The outlet sides of the adsorption towers 26a and 26b are connected to a low temperature separation section (not shown) through the fourth raw material air passage 30.

【0028】次に、この装置の作用を説明する。Next, the operation of this device will be described.

【0029】まず、圧縮機10で圧縮された原料空気
は、熱交換器16で予冷され、さらにフロン冷凍機17
で冷却された後、吸着ユニット14の吸着塔14a(ま
たは14b)内に導入される。ここで、原料空気中に含
まれる所定の炭化水素、すなわち、触媒塔20において
触媒毒となり得る炭化水素が吸着除去されるとともに、
二酸化炭素及び水も吸着除去される。
First, the raw material air compressed by the compressor 10 is pre-cooled by the heat exchanger 16, and then the Freon refrigerator 17 is used.
After being cooled by, it is introduced into the adsorption tower 14a (or 14b) of the adsorption unit 14. Here, a predetermined hydrocarbon contained in the raw material air, that is, a hydrocarbon that can be a catalyst poison in the catalyst tower 20 is adsorbed and removed, and
Carbon dioxide and water are also adsorbed and removed.

【0030】このようにして、上記炭化水素等の濃度が
低減した原料空気は、熱交換器16及び電気ヒータ22
で加熱された後、触媒塔20内に導入される。この触媒
塔20内において、原料空気中に含まれる一酸化炭素及
び水素の酸化反応が促進されることにより、これらはそ
れぞれ二酸化炭素及び水となって原料空気から分離さ
れ、除去される。
In this way, the raw material air in which the concentration of hydrocarbons and the like is reduced is the heat exchanger 16 and the electric heater 22.
After being heated at 1, it is introduced into the catalyst tower 20. In the catalyst tower 20, the oxidation reaction of carbon monoxide and hydrogen contained in the raw material air is promoted, so that these become carbon dioxide and water, respectively, which are separated from the raw material air and removed.

【0031】ここで、触媒塔20に導入される原料空気
中からは、既に、触媒毒となり得る炭化水素が除去され
ているので、従来装置に比べて触媒塔20における触媒
の劣化が著しく抑えられ、これにより触媒塔20の寿命
が延長されるとともに、一酸化炭素及び水の酸化反応が
より促進される。しかも、上記原料空気中からは、一酸
化炭素及び水素の酸化反応の反応生成物である二酸化炭
素及び水も予め除去されているので、上記酸化反応はよ
り促進されることとなる。よって、この触媒塔20を通
過する原料空気の一酸化炭素濃度及び水素濃度は極めて
低い値、具体的には1ppbレベルまで削減することが可
能となる。
Here, since the hydrocarbons that can become catalyst poisons have already been removed from the raw material air introduced into the catalyst tower 20, the deterioration of the catalyst in the catalyst tower 20 is significantly suppressed as compared with the conventional apparatus. As a result, the life of the catalyst tower 20 is extended and the oxidation reaction of carbon monoxide and water is further promoted. Moreover, since carbon dioxide and water, which are reaction products of the oxidation reaction of carbon monoxide and hydrogen, are also removed from the raw material air in advance, the oxidation reaction is further promoted. Therefore, it is possible to reduce the carbon monoxide concentration and the hydrogen concentration of the raw material air passing through the catalyst tower 20 to extremely low values, specifically, 1 ppb level.

【0032】この触媒塔20から排出された原料空気
は、水冷却器28で冷却された後、副吸着ユニット26
の吸着塔26a(または26b)に導入される。この吸
着ユニット26により、上記触媒塔20における酸化反
応で生成された微量の二酸化炭素及び水が再び吸着除去
される。このようにして各不純物の濃度が下げられた原
料空気は、第4の原料空気通路30を通じて低温分離部
へ導入され、この低温分離部において上記原料空気から
窒素等が精製される。
The raw material air discharged from the catalyst tower 20 is cooled by a water cooler 28, and then the sub-adsorption unit 26.
Is introduced into the adsorption tower 26a (or 26b). The adsorption unit 26 adsorbs and removes a small amount of carbon dioxide and water generated by the oxidation reaction in the catalyst tower 20 again. The raw material air in which the concentration of each impurity has been lowered in this way is introduced into the low temperature separation portion through the fourth raw material air passage 30, and nitrogen and the like are purified from the raw material air in the low temperature separation portion.

【0033】以上のように、この装置では、従来のよう
に触媒塔に原料空気を通してから二酸化炭素及び水を吸
着除去するのではなく、触媒塔20よりも上流側の位置
に吸着ユニット14を配置し、この吸着ユニット14で
二酸化炭素や水、さらには触媒毒である炭化水素を予め
除去した後に上記触媒塔20へ原料空気を導入するよう
にしているので、従来装置に比べ、触媒塔20における
一酸化炭素及び水素の酸化反応をより促進することがで
きる。このため、低温分離部へ導入される原料空気中の
一酸化炭素濃度及び水素濃度を大幅に低減させることが
でき、これによって超高純度窒素の製造を実現すること
ができる。
As described above, in this apparatus, instead of adsorbing and removing carbon dioxide and water after passing the raw material air through the catalyst tower as in the conventional case, the adsorption unit 14 is arranged at a position upstream of the catalyst tower 20. However, since carbon dioxide, water, and further hydrocarbons which are catalyst poisons are removed in advance by the adsorption unit 14, the raw material air is introduced into the catalyst tower 20. The oxidation reaction of carbon monoxide and hydrogen can be further promoted. Therefore, the carbon monoxide concentration and the hydrogen concentration in the raw material air introduced into the low-temperature separation section can be significantly reduced, whereby the production of ultra-high purity nitrogen can be realized.

【0034】さらに、この実施例では、触媒塔20を通
過した原料空気を副吸着ユニット26に通し、触媒塔2
0における反応で生成された二酸化炭素及び水を再吸着
除去するようにしているので、低温分離部における二酸
化炭素や水の凍結をより確実に防ぐことができる。しか
も、触媒塔20で発生する二酸化炭素及び水の量は、当
初、原料空気に含まれている二酸化炭素や水の量に比べ
て極めて少ないので、副吸着ユニット26の吸着塔26
a,26bには吸着ユニット14における吸着塔14
a,14bよりも小規模のものを用いることができ、よ
って、多大なコストの増大を伴うことなく上記効果を得
ることができる。
Further, in this embodiment, the raw material air that has passed through the catalyst tower 20 is passed through the auxiliary adsorption unit 26, and the catalyst tower 2
Since the carbon dioxide and water generated in the reaction at 0 are adsorbed and removed again, it is possible to more reliably prevent the freezing of carbon dioxide and water in the low temperature separation section. Moreover, since the amounts of carbon dioxide and water generated in the catalyst tower 20 are extremely smaller than the amounts of carbon dioxide and water contained in the raw material air at the beginning, the adsorption tower 26 of the secondary adsorption unit 26 is
a and 26b, the adsorption tower 14 in the adsorption unit 14
It is possible to use a smaller scale than a and 14b, so that the above effect can be obtained without a great increase in cost.

【0035】次に、第2実施例を図2に基づいて説明す
る。
Next, a second embodiment will be described with reference to FIG.

【0036】ここでは、上記第1実施例における吸着ユ
ニット14及び副吸着ユニット26に代え、3つの吸着
塔32a,32b,32cをもつ吸着ユニット32を設
置し、この単一の吸着ユニット32によって、触媒塔導
入前の原料空気からの不純物除去、及び触媒塔通過後の
原料空気からの不純物除去の双方を行うようにしてい
る。
Here, instead of the adsorption unit 14 and the sub-adsorption unit 26 in the first embodiment, an adsorption unit 32 having three adsorption towers 32a, 32b, 32c is installed, and by this single adsorption unit 32, Both impurities are removed from the raw material air before introduction into the catalyst tower and impurities are removed from the raw material air after passing through the catalyst tower.

【0037】具体的に、各吸着塔32a,32b,32
cの入口側は、それぞれ弁(流路切換手段を構成)34
a,34b,34c及び共通の第1の原料空気通路12
を介して圧縮機10の出口側に接続されるとともに、弁
36a,36b,36c(流路切換手段を構成)及び共
通の第3の原料空気通路24を介して触媒塔20の出口
側に接続されている。また、各吸着塔32a,32b,
32cの出口側は、それぞれ弁(流路切換手段を構成)
38a,38b,38c及び共通の第2の原料空気通路
18を介して触媒塔20の入口側に接続されるととも
に、弁40a,40b,40c(流路切換手段を構成)
及び共通の第4の原料空気通路30を介して図外の低温
分離部に接続されている。
Specifically, each of the adsorption towers 32a, 32b, 32
The inlet side of c is a valve (constitutes flow path switching means) 34.
a, 34b, 34c and common first raw material air passage 12
Connected to the outlet side of the compressor 10 and also connected to the outlet side of the catalyst tower 20 via the valves 36a, 36b, 36c (constitutes flow path switching means) and the common third raw material air passage 24. Has been done. In addition, each adsorption tower 32a, 32b,
The outlet side of 32c is a valve (constitutes flow path switching means).
38a, 38b, 38c and a common second raw material air passage 18 are connected to the inlet side of the catalyst tower 20 and valves 40a, 40b, 40c (constitute flow path switching means).
And a common fourth raw material air passage 30 to be connected to a low temperature separation unit (not shown).

【0038】次に、この装置による一酸化炭素及び水素
の除去要領の一例を説明する。
Next, an example of how to remove carbon monoxide and hydrogen by this apparatus will be described.

【0039】まず、各弁のうち弁34a,36b,38
a,40bのみを開くとともに、吸着塔32c内には図
外の手段を用いて再生用ガスを通す。これにより、圧縮
機10で圧縮された原料空気は第1の原料空気通路12
を通じて吸着塔32a内に導入され、ここで原料空気中
の炭化水素、二酸化炭素、及び水が除去された後、残り
の原料空気が第2の原料空気通路18を通じて触媒塔2
0に導入される。そして、この触媒塔20における酸化
反応で原料空気中の一酸化炭素及び水素が除去された
後、その生成物である微量の二酸化炭素及び水を含んだ
原料空気が第3の原料空気通路24を通じて吸着塔32
b内に導入され、この吸着塔32bで上記微量の二酸化
炭素及び水が吸着除去された後に、残りの原料空気が第
4の原料空気通路30を通じて図外の低温分離部へ導入
される。この間、吸着塔32cにおいては、再生ガスに
よる再生工程が行われる。
First, of the valves, the valves 34a, 36b, 38
Only a and 40b are opened, and regeneration gas is passed through the adsorption tower 32c by a means not shown. As a result, the raw material air compressed by the compressor 10 is supplied to the first raw material air passage 12
Is introduced into the adsorption tower 32a through the catalyst tower 2a, where the hydrocarbons, carbon dioxide, and water in the feed air are removed, and the remaining feed air is passed through the second feed air passage 18 to the catalyst tower 2
Introduced to zero. Then, after carbon monoxide and hydrogen in the raw material air are removed by the oxidation reaction in the catalyst tower 20, the raw material air containing a small amount of carbon dioxide and water, which are the products thereof, is passed through the third raw material air passage 24. Adsorption tower 32
b, and after adsorbing and removing the trace amount of carbon dioxide and water in the adsorption tower 32b, the remaining raw material air is introduced into the low temperature separation section (not shown) through the fourth raw material air passage 30. In the meantime, in the adsorption tower 32c, a regeneration process using a regeneration gas is performed.

【0040】次に、上記吸着塔32aがほぼ破過した時
点で、上記弁34a,36b,38a,40bを閉じる
とともに、弁34b,36c,38b,40cを開き、
かつ、吸着塔32a内に再生用ガスを通す。これによ
り、圧縮機10で圧縮された原料空気は第1の原料空気
通路12を通じて今度は吸着塔32b内に導入され、そ
の後、第2の原料空気通路18、触媒塔20、及び第3
の原料空気通路24を経て吸着塔32c内に導入され
る。この間、吸着塔32aにおいて再生工程が行われ
る。すなわち、上記各弁の開閉切換により、吸着塔32
aは圧縮機10からの原料空気が導入される状態(第1
の使用状態)から再生状態に切換えられ、同様に、吸着
塔32bは触媒塔20からの原料空気が導入される状態
(第2の使用状態)から上記第1の使用状態に切換えら
れ、吸着塔32cは再生状態から上記第2の使用状態に
切換えられることとなる。
Next, when the adsorption tower 32a has almost passed through, the valves 34a, 36b, 38a, 40b are closed and the valves 34b, 36c, 38b, 40c are opened.
At the same time, the regeneration gas is passed through the adsorption tower 32a. As a result, the raw material air compressed by the compressor 10 is introduced into the adsorption tower 32b through the first raw material air passage 12 this time, and then the second raw material air passage 18, the catalyst tower 20, and the third raw material air passage 18.
Is introduced into the adsorption tower 32c through the raw material air passage 24. During this time, a regeneration process is performed in the adsorption tower 32a. That is, the adsorption tower 32 is switched by opening / closing each of the above valves.
a is a state in which the raw material air from the compressor 10 is introduced (first
Of the adsorption tower 32b is similarly switched from the state in which the raw material air from the catalyst tower 20 is introduced (second usage state) to the above-mentioned first usage state. 32c is switched from the reproduction state to the second use state.

【0041】上記吸着塔32bがほぼ破過した後は、上
記弁34b,36c,38b,40cを閉じるととも
に、弁34c,36a,38c,40aを開き、かつ、
吸着塔32b内に再生用ガスを通すようにすればよい。
これにより、吸着塔32aは上記再生状態から第2の使
用状態に切換えられ、吸着塔32bは上記第1の使用状
態から再生状態に切換えられ、吸着塔32cは上記第2
の使用状態から第1の使用状態に切換えられることとな
る。以下、このような切換を繰り返すことにより、3つ
の吸着塔32a,32b,32cを用いて、触媒塔20
に導入する前の一酸化炭素及び水素の除去、触媒塔20
通過後の一酸化炭素及び水素の除去、及び各吸着塔の再
生工程を連続的に効率良く行うことができる。
After the adsorption tower 32b has almost passed through, the valves 34b, 36c, 38b and 40c are closed and the valves 34c, 36a, 38c and 40a are opened, and
The regeneration gas may be passed through the adsorption tower 32b.
As a result, the adsorption tower 32a is switched from the regeneration state to the second use state, the adsorption tower 32b is switched from the first use state to the regeneration state, and the adsorption tower 32c is changed to the second use state.
The usage state of 1 is switched to the first usage state. Hereinafter, by repeating such switching, the catalyst tower 20 is used by using the three adsorption towers 32a, 32b, 32c.
Of carbon monoxide and hydrogen before introduction into the catalyst tower 20
The removal of carbon monoxide and hydrogen after passage and the regeneration process of each adsorption tower can be continuously and efficiently performed.

【0042】ここで、各吸着塔の状態切換は、第2の使
用状態、第1の使用状態、再生状態、第2の使用状態、
…の順に行うことが肝要である。なぜならば、第2の使
用状態では、触媒塔20で生成された微量の二酸化炭素
及び水を吸着するだけであるので、そのまま続けて第1
の使用状態に移行することができるのに対し、第1の使
用状態では、元来原料空気に含まれている比較的多量の
二酸化炭素、水、及び炭化水素を吸着除去するので、そ
の後、再生操作が必要だからである。
Here, the state switching of each adsorption tower is performed by the second use state, the first use state, the regeneration state, the second use state,
It is important to do in this order. This is because, in the second usage state, only a small amount of carbon dioxide and water produced in the catalyst tower 20 are adsorbed, so that the first continuous operation is continued.
In the first use state, the relatively large amount of carbon dioxide, water, and hydrocarbons originally contained in the raw material air are adsorbed and removed in the first use state. This is because the operation is necessary.

【0043】すなわち、この装置は、触媒塔通過後の原
料空気から二酸化炭素及び水を吸着除去する量が微量で
あることに着目し、各吸着塔を第2の使用状態、第1の
使用状態、再生状態、第2の使用状態、…の順に切換え
ることにより、触媒塔20の前後における一酸化炭素及
び水素の除去を単一の吸着ユニット32で効率良く行う
ことを可能にしたものであるといえる。
That is, this device pays attention to the fact that the amount of carbon dioxide and water adsorbed and removed from the raw material air after passing through the catalyst tower is very small, and each adsorption tower is used in the second usage state and the first usage state. It is said that it is possible to efficiently perform the removal of carbon monoxide and hydrogen before and after the catalyst tower 20 by a single adsorption unit 32 by switching in the order of, the regeneration state, the second use state, ... I can say.

【0044】なお、前記第1実施例では、吸着ユニット
14及び副吸着ユニット26において、2つの吸着塔を
備えたものを示したが、吸着塔の具体的な数は問わず、
用途に応じて適宜設定すればよい。また、第2実施例に
おける吸着ユニット32においては、吸着塔の数は3つ
以上の範囲で適宜設定することが可能である。
In the first embodiment, the adsorption unit 14 and the sub-adsorption unit 26 are provided with two adsorption towers, but the specific number of adsorption towers does not matter.
It may be set appropriately according to the application. Further, in the adsorption unit 32 of the second embodiment, the number of adsorption towers can be set appropriately within the range of 3 or more.

【0045】[0045]

【発明の効果】以上のように本発明は、従来のように触
媒装置に原料空気を通してから二酸化炭素及び水を吸着
除去するのではなく、触媒装置よりも上流側の位置に吸
着装置を配置し、この吸着装置で二酸化炭素や水、さら
には上記触媒装置で触媒毒となり得る成分を予め除去し
た後に上記触媒装置へ原料空気を導入するようにしてい
るので、触媒装置における一酸化炭素及び水素の酸化反
応を従来に比して著しく促進することができ、これによ
り、低温分離部へ導入される原料空気中の一酸化炭素濃
度及び水素濃度を大幅に低減させ、もって超高純度窒素
の製造を実現することができる効果がある。
As described above, according to the present invention, instead of adsorbing and removing carbon dioxide and water after passing the raw material air through the catalyst device as in the conventional case, the adsorption device is arranged at a position upstream of the catalyst device. Since carbon dioxide and water are further removed by this adsorption device, and the raw material air is introduced into the above-mentioned catalyst device after previously removing components that may become catalyst poisons in the above-mentioned catalyst device, carbon monoxide and hydrogen The oxidation reaction can be remarkably accelerated as compared with the conventional one, and thereby, the carbon monoxide concentration and hydrogen concentration in the feed air introduced into the low temperature separation section can be significantly reduced, and thus the production of ultra-high purity nitrogen can be achieved. There is an effect that can be realized.

【0046】さらに、請求項2記載の装置では、触媒装
置を通過した原料空気を副吸着装置に通し、触媒装置に
おける反応で生成された二酸化炭素及び水を再吸着除去
するようにしているので、低温分離部における二酸化炭
素や水の凍結をより確実に防ぐことができる。しかも、
触媒装置で発生する二酸化炭素及び水の量は、当初、原
料空気に含まれている二酸化炭素や水の量に比べて極め
て少なく、副吸着装置は上記吸着塔よりも吸着容量の小
さい小規模のものを使用することができるので、多大な
コストの増大を伴うことなく、上記効果を得ることがで
きる。
Further, in the apparatus according to the second aspect, the raw material air that has passed through the catalyst device is passed through the auxiliary adsorption device to re-adsorb and remove carbon dioxide and water produced by the reaction in the catalyst device. It is possible to more reliably prevent freezing of carbon dioxide and water in the low temperature separation section. Moreover,
Initially, the amounts of carbon dioxide and water generated in the catalyst device are extremely small compared to the amounts of carbon dioxide and water contained in the raw material air, and the secondary adsorption device has a smaller adsorption capacity than the adsorption tower. Since the thing can be used, the said effect can be acquired, without enormous increase in cost.

【0047】また、請求項3記載の装置は、3つ以上の
吸着塔をもつ吸着装置を備えるとともに、各吸着塔を、
この吸着塔に触媒装置導入前の原料空気が導入される第
1の使用状態と、触媒装置通過後の原料空気が導入され
る第2の使用状態と、再生状態とに切換える流路切換手
段を備えたものであるので、各吸着塔を第2の使用状
態、第1の使用状態、再生状態の順に互いに位相をずら
しながら切換えることにより、複数の吸着装置を用いる
ことなく、単一の吸着装置によって触媒装置前後におけ
る一酸化炭素及び水素の除去を効率良く行うことがで
き、これによりコストの削減を図ることができる効果が
ある。
The apparatus according to claim 3 is provided with an adsorption device having three or more adsorption towers, and each adsorption tower is
A flow path switching means for switching between a first use state in which the raw material air before introduction of the catalyst device is introduced into the adsorption tower, a second use state in which the raw material air after passage of the catalyst device is introduced, and a regeneration state are provided. Since each of the adsorption towers is equipped with a single adsorbing device without using a plurality of adsorbing devices, the adsorbing towers are switched in the order of the second use state, the first use state, and the regeneration state while shifting their phases. This makes it possible to efficiently remove carbon monoxide and hydrogen before and after the catalyst device, which leads to an effect of cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における空気分離装置の不
純物除去装置を示すフローシートである。
FIG. 1 is a flow sheet showing an impurity removing device of an air separation device according to a first embodiment of the present invention.

【図2】第2実施例における空気分離装置の不純物除去
装置を示すフローシートである。
FIG. 2 is a flow sheet showing an impurity removing device of an air separation device according to a second embodiment.

【図3】従来の空気分離装置の不純物除去装置の一例を
示すフローシートである。
FIG. 3 is a flow sheet showing an example of a conventional impurity removal device of an air separation device.

【符号の説明】[Explanation of symbols]

12 第1の原料空気通路 14 吸着ユニット(吸着装置) 18 第2の原料空気通路 20 触媒塔(触媒装置) 24 第3の原料空気通路 26 副吸着ユニット(副吸着装置) 30 第4の原料空気通路 32 吸着ユニット(吸着装置) 32a,32b,32c 吸着塔 34a,34b,34c,36a,36b,36c,3
8a,38b,38c,40a,40b,40c 弁
(流路切換手段)
12 First raw material air passage 14 Adsorption unit (adsorption device) 18 Second raw material air passage 20 Catalyst tower (catalyst device) 24 Third raw material air passage 26 Sub-adsorption unit (sub-adsorption device) 30 Fourth raw material air Passage 32 Adsorption unit (adsorption device) 32a, 32b, 32c Adsorption tower 34a, 34b, 34c, 36a, 36b, 36c, 3
8a, 38b, 38c, 40a, 40b, 40c valve (flow path switching means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気分離装置に設けられ、その低温分離
部に導入される前の原料空気から不純物を除去するため
の装置であって、上記原料空気中の一酸化炭素及び水素
の酸化を促進させる触媒装置と、この触媒装置に原料空
気を通して上記低温分離部へ導く原料空気通路とを備え
るとともに、この原料空気通路において上記触媒装置よ
りも上流側の位置に、上記原料空気中から上記触媒装置
の触媒毒となる炭化水素と二酸化炭素と水とを吸着除去
する吸着装置を設けたことを特徴とする空気分離装置に
おける不純物除去装置。
1. An apparatus for removing impurities from a raw material air, which is provided in an air separation apparatus and before being introduced into a low temperature separation section, which promotes oxidation of carbon monoxide and hydrogen in the raw material air. And a raw material air passage for guiding the raw material air to the low temperature separation section through the catalytic device, and at a position upstream of the catalytic device in the raw material air passage, from the raw material air to the catalytic device. An impurity removing device in an air separation device, which is provided with an adsorbing device for adsorbing and removing hydrocarbons, carbon dioxide, and water that are catalyst poisons of the above.
【請求項2】 請求項1記載の空気分離装置における不
純物除去装置において、上記触媒装置と低温分離部との
間に、原料空気中から二酸化炭素と水とを吸着除去し、
かつその吸着容量が上記吸着装置の吸着容量よりも小さ
い副吸着装置を設けたことを特徴とする空気分離装置に
おける不純物除去装置。
2. The impurity removing device in the air separation device according to claim 1, wherein carbon dioxide and water are adsorbed and removed from the raw material air between the catalyst device and the low temperature separation part,
An adsorbent removal device for an air separation device, characterized in that a sub-adsorption device having an adsorption capacity smaller than that of the adsorption device is provided.
【請求項3】 請求項1記載の空気分離装置における不
純物除去装置において、上記吸着装置に3つ以上の吸着
塔を設け、各吸着塔の入口側に原料空気を導入するため
の第1の原料空気通路と、各吸着塔の出口側を上記触媒
装置の入口側に接続する第2の原料空気通路と、上記触
媒装置の出口側を各吸着塔の入口側に接続する第3の原
料空気通路と、各吸着塔の出口側を上記低温分離部に接
続する第4の原料空気通路とを備えるとともに、各吸着
塔を、この吸着塔に上記第1の原料空気通路から原料空
気が流入して上記第2の原料空気通路に流出する第1の
使用状態と、上記吸着塔に第3の原料空気通路から原料
空気が流入して上記第4の原料空気通路に流出する第2
の使用状態と、再生状態とに切換える流路切換手段を備
えたことを特徴とする空気分離装置における不純物除去
装置。
3. The impurity removing device in an air separation device according to claim 1, wherein the adsorbing device is provided with three or more adsorption towers, and a first raw material for introducing raw material air into the inlet side of each adsorption tower. An air passage, a second raw material air passage connecting the outlet side of each adsorption tower to the inlet side of the catalyst device, and a third raw material air passage connecting the outlet side of the catalyst device to the inlet side of each adsorption tower. And a fourth raw material air passage connecting the outlet side of each adsorption tower to the low-temperature separation section, and each raw material air flows into the adsorption tower from the first raw material air passage. The first usage state flowing out to the second raw material air passage, and the second usage state where raw material air flows into the adsorption tower from the third raw material air passage and flows out to the fourth raw material air passage.
An impurity removing device in an air separation device, comprising a flow path switching means for switching between a used state and a regenerated state.
JP3343340A 1991-12-25 1991-12-25 Impurity removing device for air separating device Pending JPH05172458A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3343340A JPH05172458A (en) 1991-12-25 1991-12-25 Impurity removing device for air separating device
TW081106451A TW197955B (en) 1991-12-25 1992-08-14
KR1019920025218A KR960001718B1 (en) 1991-12-25 1992-12-23 Impurities exclusion device for air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3343340A JPH05172458A (en) 1991-12-25 1991-12-25 Impurity removing device for air separating device

Publications (1)

Publication Number Publication Date
JPH05172458A true JPH05172458A (en) 1993-07-09

Family

ID=18360772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3343340A Pending JPH05172458A (en) 1991-12-25 1991-12-25 Impurity removing device for air separating device

Country Status (3)

Country Link
JP (1) JPH05172458A (en)
KR (1) KR960001718B1 (en)
TW (1) TW197955B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133356A (en) * 1997-07-25 1999-02-09 Osaka Oxygen Ind Ltd Air cleaner
JPWO2005094986A1 (en) * 2004-03-30 2008-02-14 大陽日酸株式会社 Pretreatment purification apparatus for air liquefaction separation apparatus, hydrocarbon adsorbent, and raw air pretreatment method
CN106621692A (en) * 2017-03-06 2017-05-10 成都赛普瑞兴科技有限公司 Joint regeneration purifying system and purifying method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695497B1 (en) * 2010-09-30 2017-01-11 한국전력공사 Method for improving efficiency of oxy fuel combustion power generation system
DE102011076117B4 (en) * 2011-05-19 2021-10-14 Robert Bosch Gmbh Ultrasonic measuring system and method for detecting an obstacle using ultrasound
KR102598299B1 (en) * 2021-11-09 2023-11-06 주식회사 디에스피 Glass fixing frame assembly and manufacturing mehtod thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194381A (en) * 1985-03-29 1991-08-26 Hitachi Ltd Method and apparatus for manufacturing nitrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194381A (en) * 1985-03-29 1991-08-26 Hitachi Ltd Method and apparatus for manufacturing nitrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133356A (en) * 1997-07-25 1999-02-09 Osaka Oxygen Ind Ltd Air cleaner
JPWO2005094986A1 (en) * 2004-03-30 2008-02-14 大陽日酸株式会社 Pretreatment purification apparatus for air liquefaction separation apparatus, hydrocarbon adsorbent, and raw air pretreatment method
JP4512093B2 (en) * 2004-03-30 2010-07-28 大陽日酸株式会社 Pretreatment purification apparatus for air liquefaction separation apparatus, hydrocarbon adsorbent, and raw air pretreatment method
US7931736B2 (en) 2004-03-30 2011-04-26 Taiyo Nippon Sanso Corporation Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air
US8366806B2 (en) 2004-03-30 2013-02-05 Taiyo Nippon Sanso Corporation Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air
CN106621692A (en) * 2017-03-06 2017-05-10 成都赛普瑞兴科技有限公司 Joint regeneration purifying system and purifying method

Also Published As

Publication number Publication date
KR930012077A (en) 1993-07-20
TW197955B (en) 1993-01-11
KR960001718B1 (en) 1996-02-03

Similar Documents

Publication Publication Date Title
US5914455A (en) Air purification process
US6048509A (en) Gas purifying process and gas purifying apparatus
US5906675A (en) Air purification process
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US4861351A (en) Production of hydrogen and carbon monoxide
TWI391178B (en) Compressed air producing method and producing plant
KR20070028264A (en) Process for gas purification
JPH0639230A (en) Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
KR100328419B1 (en) Method and apparatus for producing clean dry air having application to air separation
JPH0459926B2 (en)
EP2364766B1 (en) Method for the removal of moist in a gas stream
JPS6241055B2 (en)
KR20140020723A (en) Purifying method and purifying apparatus for argon gas
JPH05172458A (en) Impurity removing device for air separating device
JPH02120212A (en) Purifier for inert gas
WO2023154208A1 (en) Method for producing high purity hydrogen
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
WO2020100463A1 (en) Hydrogen production apparatus
US4522637A (en) Integrated adsorption system for the purification of separate crude gases
US20230304733A1 (en) Method for producing high purity hydrogen
US11945721B2 (en) Method for producing high purity hydrogen
KR100556097B1 (en) Apparatus for refining a nitrogen gas and method thereof
US20230249970A1 (en) Method for producing high purity hydrogen
JP2627792B2 (en) Hydrogen gas purification equipment
JP2551461B2 (en) Pretreatment method of raw material air in air separation device