JP2008183533A - Concentration dilution method for volatile organic gas - Google Patents

Concentration dilution method for volatile organic gas Download PDF

Info

Publication number
JP2008183533A
JP2008183533A JP2007020993A JP2007020993A JP2008183533A JP 2008183533 A JP2008183533 A JP 2008183533A JP 2007020993 A JP2007020993 A JP 2007020993A JP 2007020993 A JP2007020993 A JP 2007020993A JP 2008183533 A JP2008183533 A JP 2008183533A
Authority
JP
Japan
Prior art keywords
volatile organic
organic gas
concentration
adsorption layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007020993A
Other languages
Japanese (ja)
Inventor
Yukio Ando
幸夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MURAKI CORP
Original Assignee
MURAKI CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MURAKI CORP filed Critical MURAKI CORP
Priority to JP2007020993A priority Critical patent/JP2008183533A/en
Publication of JP2008183533A publication Critical patent/JP2008183533A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concentration dilution method for volatile organic gas with a small-sized adsorption layer without discharging volatile organic gas left in a high concentration state of volatile organic compounds in the gas. <P>SOLUTION: A passing-through direction switching means 5 switches the passing-through direction (hereafter a first direction) of the volatile organic gas passing through the adsorption layer 3 from a supply line 2 and discharged from a discharge line 4, to a reverse direction (hereafter a second direction). The volatile organic gas switched in the passing direction passes through the adsorption layer 3 from the discharge line 4 and flows to the supply line 2, then returns to the discharge line 4 via a return line 6. The passing-through direction switching means 5 switches the passing-through direction of the volatile organic gas switched in the passing direction to the second direction to the first direction, the volatile organic gas is passed from the discharge line 4 to the return line 6, a part of the supply line 2 from a communication point of the return line 6 to the adsorption layer 3, the adsorption layer 3 and the discharge line 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、揮発性有機ガスを吸着層に通過させることで揮発性有機ガス中における揮発性有機化合物の濃度を希釈する揮発性有機ガスの濃度希釈方法に関する。   The present invention relates to a volatile organic gas concentration dilution method for diluting the concentration of a volatile organic compound in a volatile organic gas by passing the volatile organic gas through an adsorption layer.

従来発明として、滅菌作業後に滅菌器から排出される酸化エチレン等を含有する滅菌ガスと、その滅菌器を清浄なエアで置換した後に滅菌器から排出されるエアレーションガスとを燃焼処理して無毒化するため、それらガス(以下、揮発性有機ガス)を吸着層に通過させ、そのガスに含まれる揮発性有機化合物を吸着層の吸着材に吸着させることで、その濃度を燃焼処理可能な濃度に低減するものがある(特許文献1を参照)。   As a conventional invention, the sterilization gas containing ethylene oxide and the like discharged from the sterilizer after sterilization work and the aeration gas discharged from the sterilizer after the sterilizer is replaced with clean air are burnt and detoxified. Therefore, by passing these gases (hereinafter referred to as volatile organic gases) through the adsorption layer and adsorbing the volatile organic compounds contained in the gas onto the adsorbent of the adsorption layer, the concentration becomes a concentration that allows combustion treatment. Some of them are reduced (see Patent Document 1).

特開平08−215541号公報Japanese Patent Laid-Open No. 08-215541

従来発明では吸着層を一旦通過した揮発性有機ガスをそのまま燃焼処理装置に供給するので、そのガスに含まれる揮発性有機化合物の総量(供給量)が吸着層の吸着可能な量を超えると、吸着層から濃度の高い揮発性有機化合物が排出される。この濃度が燃焼可能な濃度より高くなると、揮発性有機ガスを燃焼処理装置に供給しても揮発性有機ガスを燃焼処理で十分に無毒化できない事態が発生する。このような事態が生じないように、従来発明では、滅菌器から供給される揮発性有機ガスに含まれる揮発性有機化合物の総量に対して十分に安全な大型の吸着層を備えておかなければならない。   In the conventional invention, since the volatile organic gas once passed through the adsorption layer is supplied to the combustion processing apparatus as it is, when the total amount (supply amount) of the volatile organic compound contained in the gas exceeds the adsorbable amount of the adsorption layer, A volatile organic compound having a high concentration is discharged from the adsorption layer. When this concentration becomes higher than the combustible concentration, there arises a situation where the volatile organic gas cannot be sufficiently detoxified by the combustion treatment even if the volatile organic gas is supplied to the combustion treatment apparatus. In order to prevent such a situation from occurring, in the conventional invention, a large adsorbing layer that is sufficiently safe for the total amount of volatile organic compounds contained in the volatile organic gas supplied from the sterilizer must be provided. Don't be.

本発明は、揮発性有機ガス中における揮発性有機化合物の濃度を高い状態のままで排出することなく、吸着層を小型化できる揮発性有機ガスの濃度希釈方法を提供することを目的とする。   An object of the present invention is to provide a method for diluting the concentration of a volatile organic gas that can reduce the size of an adsorption layer without discharging the volatile organic compound in the volatile organic gas in a high state.

請求項1に係る発明は、揮発性有機ガスに含まれる揮発性有機化合物を吸着する吸着材を備えた吸着層に前記揮発性有機ガスを通過させ、前記揮発性有機化合物の濃度を希釈する揮発性有機ガスの濃度希釈方法であって、前記揮発性有機ガスを前記吸着層に第1方向で通過させる第1方向通過ステップと、前記第1方向に対して逆方向である第2方向で前記揮発性有機ガスを前記吸着層に通過させる第2方向通過ステップとを備え、前記第1方向通過ステップと前記第2方向通過ステップとで少なくとも一回前記揮発性有機ガスを前記吸着層に通過させる。   The invention according to claim 1 is a volatilization method for diluting the concentration of the volatile organic compound by passing the volatile organic gas through an adsorption layer having an adsorbent that adsorbs the volatile organic compound contained in the volatile organic gas. A concentration diluting method of a volatile organic gas, wherein the volatile organic gas is passed through the adsorption layer in a first direction in a first direction, and the second direction is opposite to the first direction. A second direction passing step for passing the volatile organic gas through the adsorption layer, and the volatile organic gas is passed through the adsorption layer at least once in the first direction passing step and the second direction passing step. .

請求項2に係る発明は、請求項1に係る発明において、前記吸着層を前記第1方向で通過した前記揮発性有機ガス中における前記揮発性有機化合物の濃度を検出する第1方向検出ステップと、前記吸着層を前記第2方向で通過した前記揮発性有機ガス中における前記揮発性有機化合物の濃度を検出する第2方向検出ステップと、前記第1方向検出ステップにより検出された前記揮発性有機ガス中における前記揮発性有機化合物の濃度が所定濃度より高いときに、前記第1方向通過ステップから前記第2方向通過ステップに切換える第1切換えステップと、前記第2方向検出ステップにより検出された前記揮発性有機ガス中における前記揮発性有機化合物の濃度が所定濃度より高いときに、前記第2方向通過ステップから前記第1方向通過ステップに切換える第2切換えステップとを含む。   The invention according to claim 2 is the first direction detection step of detecting the concentration of the volatile organic compound in the volatile organic gas that has passed through the adsorption layer in the first direction in the invention according to claim 1. A second direction detecting step for detecting a concentration of the volatile organic compound in the volatile organic gas that has passed through the adsorption layer in the second direction; and the volatile organic detected by the first direction detecting step. When the concentration of the volatile organic compound in the gas is higher than a predetermined concentration, the first switching step for switching from the first direction passing step to the second direction passing step and the second direction detecting step detects the first direction switching step. When the concentration of the volatile organic compound in the volatile organic gas is higher than a predetermined concentration, the second direction passage step to the first direction passage step. And a second switching step of switching to flop.

請求項3に係る発明は、請求項1又は請求項2に係る発明において、前記吸着層を通過する前の揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度より低い場合に、前記吸着層を通過する前の揮発性有機ガスを前記吸着層から迂回させる迂回ステップと、をさらに含む。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the adsorption is performed when the concentration of the volatile organic compound in the volatile organic gas before passing through the adsorption layer is lower than a predetermined concentration. And a detour step of diverting the volatile organic gas before passing through the bed from the adsorption layer.

請求項4に係る発明は、請求項1〜3のいずれかに係る発明において、前記第1方向通過ステップの前、前記第1方向通過ステップの後、前記第2方向通過ステップの前、前記第2方向通過ステップの後のうち少なくともいずれかの箇所で前記揮発性有機ガスに希釈ガスを供給する。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein before the first direction passing step, after the first direction passing step, before the second direction passing step, the first A dilution gas is supplied to the volatile organic gas at least at any point after the two-way passing step.

請求項5に係る発明は、請求項1〜4のいずれかに係る発明において、前記吸着層は複数の吸着層から構成され、前記第1方向通過ステップにおいては前記揮発性有機ガスを前記各吸着層に前記第1方向で通過させ、前記第2方向通過ステップにおいては前記第2方向で前記揮発性有機ガスを前記各吸着層に通過させる。   The invention according to a fifth aspect is the invention according to any one of the first to fourth aspects, wherein the adsorption layer is composed of a plurality of adsorption layers, and the volatile organic gas is adsorbed in the first direction passing step. A layer is passed in the first direction, and in the second direction passing step, the volatile organic gas is passed through the adsorption layers in the second direction.

本発明では、揮発性有機ガスを吸着層に通過させる回数が従来のように一回に限定されず、揮発性有機ガス中における揮発性有機化合物の濃度を十分に希釈するまで何回でも揮発性有機ガスを吸着層に通過させることができる。このため従来に比べると吸着層当たりの吸着効率が高くなり、揮発性有機ガス中における揮発性有機化合物の濃度を高い状態のままで排出することなく吸着層を小型化することが可能になる。   In the present invention, the number of times the volatile organic gas is passed through the adsorption layer is not limited to one time as in the past, and the volatile organic gas is volatile any number of times until the concentration of the volatile organic compound in the volatile organic gas is sufficiently diluted. Organic gas can be passed through the adsorption layer. For this reason, the adsorption efficiency per adsorption layer is higher than in the prior art, and the adsorption layer can be downsized without being discharged while the concentration of the volatile organic compound in the volatile organic gas remains high.

さらに、本発明では吸着層を従来より小さくできる分だけ、その吸着層内の温度を上げるのに必要な熱量が少なくなる。このため、吸着層内の温度は、揮発性有機ガス中の揮発性有機化合物が吸着材に吸着する際に生じる熱量だけで容易に上昇する。吸着材からの揮発性有機化合物の脱離速度は吸着層内の温度が高くなるにつれて上昇するので、上述のように吸着層内の温度が上昇している場合には吸着材から揮発性有機化合物を迅速に脱離でき、吸着層の再利用効率を向上させることができる。   Furthermore, in the present invention, the amount of heat required to raise the temperature in the adsorption layer is reduced by the amount that the adsorption layer can be made smaller than before. For this reason, the temperature in the adsorption layer is easily increased only by the amount of heat generated when the volatile organic compound in the volatile organic gas is adsorbed on the adsorbent. Since the desorption rate of the volatile organic compound from the adsorbent increases as the temperature in the adsorption layer increases, the volatile organic compound from the adsorbent when the temperature in the adsorption layer increases as described above. Can be removed quickly, and the reuse efficiency of the adsorption layer can be improved.

ここで揮発性有機ガスの処理量は、排出路から排出された揮発性有機ガス中における揮発性有機化合物の濃度と、その揮発性有機ガスの流量との積算値によって決定する。従って、排出された揮発性有機ガス中における揮発性有機化合物の濃度は燃焼処理が可能な範囲でなるべく高い方が揮発性有機ガスの処理量を増加させることができる。本発明の好適な実施形態は、揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度より高くなるまで揮発性有機ガスの吸着層に対する通過方向を切り換えない。このため排出される揮発性有機ガス中における揮発性有機化合物の濃度を所定濃度近傍にまで高めて揮発性有機ガスの処理量を向上させることができる。   Here, the processing amount of the volatile organic gas is determined by an integrated value of the concentration of the volatile organic compound in the volatile organic gas discharged from the discharge path and the flow rate of the volatile organic gas. Therefore, the treatment amount of the volatile organic gas can be increased when the concentration of the volatile organic compound in the discharged volatile organic gas is as high as possible within the range where the combustion treatment is possible. The preferred embodiment of the present invention does not switch the passing direction of the volatile organic gas to the adsorption layer until the concentration of the volatile organic compound in the volatile organic gas becomes higher than a predetermined concentration. For this reason, the processing amount of the volatile organic gas can be improved by increasing the concentration of the volatile organic compound in the discharged volatile organic gas to the vicinity of the predetermined concentration.

本発明の好適な実施形態においては、希釈ガスを供給することにより揮発性有機ガス中における揮発性有機化合物の濃度を所定濃度近傍に維持する。これにより揮発性有機化合物の処理量を増やすことができる。   In a preferred embodiment of the present invention, the concentration of the volatile organic compound in the volatile organic gas is maintained near a predetermined concentration by supplying the dilution gas. Thereby, the processing amount of a volatile organic compound can be increased.

本発明の好適な実施形態においては、新たに吸着層に供給される揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度より低い場合には、その揮発性有機ガスを吸着層から迂回させる。このため吸着層には揮発性有機化合物の濃度が所定濃度より高い揮発性有機ガスのみを集中的に通過して揮発性有機ガスの処理効率を向上させることができる。   In a preferred embodiment of the present invention, when the concentration of the volatile organic compound in the volatile organic gas newly supplied to the adsorption layer is lower than a predetermined concentration, the volatile organic gas is bypassed from the adsorption layer. . For this reason, only the volatile organic gas whose concentration of the volatile organic compound is higher than the predetermined concentration is intensively passed through the adsorption layer, so that the processing efficiency of the volatile organic gas can be improved.

本発明の好適な実施形態においては、複数の吸着層を用いることにより、単数の吸着層を用いる場合に比べると吸着層当たりの吸着材が減らす、すなわち吸着層を小型化できる。吸着材を小型化した分、吸着層を通過した揮発性有機化合物の濃度を所定濃度に増加させる時間が短くなり、本発明による処理量を迅速に向上させることができる。   In a preferred embodiment of the present invention, by using a plurality of adsorption layers, the number of adsorbents per adsorption layer is reduced, that is, the adsorption layer can be reduced in size compared to the case of using a single adsorption layer. Since the adsorbent is reduced in size, the time for increasing the concentration of the volatile organic compound that has passed through the adsorbing layer to a predetermined concentration is shortened, and the processing amount according to the present invention can be rapidly improved.

以下、本発明の実施形態について図面に基いて説明する。
図1は、本発明の揮発性有機ガスの濃度希釈方法が使用する濃度希釈装置1の一例を簡略的に示す模式図である。
濃度希釈装置1は、供給路2と、吸着層3と、排出路4とを基本構成として備え、揮発性有機ガスを供給路2から吸着層3を介して排出路4へと通過させる。供給路2は揮発性有機ガス格納容器(図示せず)及び吸着層3に連通し、揮発性有機ガス格納容器からの揮発性有機ガスを吸着層3に供給する。吸着層3は揮発性有機ガスに含まれる揮発性有機化合物を吸着させる吸着材を有し、供給された揮発性有機ガス中における揮発性有機化合物の濃度を低減させる。吸着材は例えば活性炭、ゼオライト、シリカ、アルミナ、多孔吸着材等である。排出路4は吸着層3及び燃焼処理装置(図示せず)に連通し、吸着層3からの揮発性有機ガスを燃焼処理装置に排出する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view schematically showing an example of a concentration diluting apparatus 1 used by the concentration dilution method for volatile organic gas of the present invention.
The concentration dilution apparatus 1 includes a supply path 2, an adsorption layer 3, and a discharge path 4 as basic configurations, and allows volatile organic gas to pass from the supply path 2 to the discharge path 4 through the adsorption layer 3. The supply path 2 communicates with a volatile organic gas storage container (not shown) and the adsorption layer 3, and supplies the volatile organic gas from the volatile organic gas storage container to the adsorption layer 3. The adsorption layer 3 has an adsorbent that adsorbs a volatile organic compound contained in the volatile organic gas, and reduces the concentration of the volatile organic compound in the supplied volatile organic gas. Examples of the adsorbent include activated carbon, zeolite, silica, alumina, and porous adsorbent. The discharge path 4 communicates with the adsorption layer 3 and a combustion treatment device (not shown), and discharges volatile organic gas from the adsorption layer 3 to the combustion treatment device.

濃度希釈装置1は、通過方向切換え手段5と、戻し路6と、希釈ガス供給手段7と、迂回路8とをさらに備える。通過方向切換え手段5は吸着層3を通過する揮発性有機ガスの通過方向を切り換える。戻し路6は供給路2及び排出路4に連通し、かつ吸着層3を迂回する。希釈ガス供給手段7は戻し路6を介して供給路2及び排出路4に希釈ガス(例えばエア)を供給する。迂回路8は、吸着層3を迂回し、供給路2における戻し路6の連通箇所より上流側に連通し、かつ排出路4における戻し路6の連通箇所より上流側に連通する。これら戻し路6及び迂回路8それぞれの連通箇所の間には供給路開閉弁9が設けられ、排出路4における迂回路8の連通箇所より上流側には排出路開閉弁10が設けられている。なお供給路開閉弁9及び排出路開閉弁10は制御部(図示せず)によって制御される。   The concentration dilution apparatus 1 further includes a passage direction switching means 5, a return path 6, a dilution gas supply means 7, and a bypass 8. The passing direction switching means 5 switches the passing direction of the volatile organic gas passing through the adsorption layer 3. The return path 6 communicates with the supply path 2 and the discharge path 4 and bypasses the adsorption layer 3. The dilution gas supply means 7 supplies dilution gas (for example, air) to the supply path 2 and the discharge path 4 via the return path 6. The bypass circuit 8 bypasses the adsorption layer 3, communicates with the upstream side from the communication part of the return path 6 in the supply path 2, and communicates with the upstream side from the communication part of the return path 6 in the discharge path 4. A supply path opening / closing valve 9 is provided between the communication points of the return path 6 and the detour path 8, and a discharge path opening / closing valve 10 is provided upstream from the communication position of the detour path 8 in the discharge path 4. . The supply passage opening / closing valve 9 and the discharge passage opening / closing valve 10 are controlled by a control unit (not shown).

通過方向切換え手段5は供給路2から吸着層3を通過して排出路4から排出する揮発性有機ガスの通過方向(以下、第1方向(図1の矢印Aが示す方向))を逆方向(以下、第2方向(図1の矢印Bが示す方向))に切換える。通過方向を切り換えた揮発性有機ガスは吸着層3から供給路2に流れ、次いで戻し路6を介して排出路4に至る。さらに通過方向切換え手段5は通過方向を第2方向に切り換えた揮発性有機ガスの通過方向を再度逆方向(すなわち第1方向)に切り換え、その揮発性有機ガスを戻し路6から、その戻し路6の連通箇所から吸着層3までの供給路2の一部、吸着層3及び排出路4へと通過させる。揮発性有機ガスの通過方向の切換えを始めると供給路開閉弁9は閉弁される。通過方向切換え手段5が揮発性有機ガスの通過方向を第1方向から第2方向に切り換える場合、排出路開閉弁10は閉弁される。通過方向切換え手段5が揮発性有機ガスの通過方向を第2方向から第1方向に切り換える場合、排出路開閉弁10は開弁される。   The passage direction switching means 5 reverses the passage direction of the volatile organic gas discharged from the supply passage 2 through the adsorption layer 3 and discharged from the discharge passage 4 (hereinafter, the first direction (direction indicated by arrow A in FIG. 1)). (Hereinafter, the second direction (the direction indicated by the arrow B in FIG. 1)). The volatile organic gas whose passage direction has been switched flows from the adsorption layer 3 to the supply path 2 and then reaches the discharge path 4 via the return path 6. Further, the passage direction switching means 5 switches the passage direction of the volatile organic gas whose passage direction is switched to the second direction to the reverse direction (that is, the first direction) again, and the volatile organic gas is returned from the return path 6 to the return path. 6 is passed through a part of the supply path 2 from the communication point 6 to the adsorption layer 3, the adsorption layer 3 and the discharge path 4. When the switching of the passing direction of the volatile organic gas is started, the supply passage opening / closing valve 9 is closed. When the passage direction switching means 5 switches the passage direction of the volatile organic gas from the first direction to the second direction, the discharge passage opening / closing valve 10 is closed. When the passage direction switching means 5 switches the passage direction of the volatile organic gas from the second direction to the first direction, the discharge path opening / closing valve 10 is opened.

通過方向切換え手段5は、排出路4から排出した揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度より高くなったとき(又は排出路4から排出した揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度に一致したとき)に揮発性有機ガスの通過方向を切り換える。排出路4から排出した揮発性有機ガス中における揮発性有機化合物の濃度は排出路4の下流側に設けられた濃度検出部(図示せず)により検出される。濃度検出部は例えば排出路4に連通する燃焼処理装置の触媒内に設けられた温度センサであり、この温度センサは揮発性有機化合物の燃焼処理によって決定する触媒の温度を検出する。触媒の温度が揮発性有機ガス中における揮発性有機化合物の濃度に応じて変化することを利用して、温度センサによって検出された触媒の温度から揮発性有機ガス中における揮発性有機化合物の濃度を検出する。なお所定濃度は、揮発性有機ガスの通過方向の切り換えに要する時間やその時間に排出路4から排出される揮発性有機ガスの量等に基づいて、排出路4から排出される揮発性有機ガス中における揮発性有機化合物の濃度が予め定めた目標濃度を超えないように設定される。ここで目標濃度は燃焼処理装置が揮発性有機ガスを燃焼処理できる揮発性有機ガス中における揮発性有機化合物の濃度の少なくとも上限以下である。   When the concentration of the volatile organic compound in the volatile organic gas discharged from the discharge passage 4 becomes higher than a predetermined concentration (or the volatile organic in the volatile organic gas discharged from the discharge passage 4) The volatile organic gas passage direction is switched when the concentration of the compound matches the predetermined concentration. The concentration of the volatile organic compound in the volatile organic gas discharged from the discharge path 4 is detected by a concentration detection unit (not shown) provided on the downstream side of the discharge path 4. The concentration detection unit is, for example, a temperature sensor provided in the catalyst of the combustion processing apparatus that communicates with the discharge path 4, and this temperature sensor detects the temperature of the catalyst determined by the combustion processing of the volatile organic compound. Utilizing the fact that the temperature of the catalyst changes according to the concentration of the volatile organic compound in the volatile organic gas, the concentration of the volatile organic compound in the volatile organic gas is determined from the temperature of the catalyst detected by the temperature sensor. To detect. The predetermined concentration is determined based on the time required for switching the passing direction of the volatile organic gas, the amount of volatile organic gas discharged from the discharge passage 4 at that time, and the like. The concentration of the volatile organic compound is set so as not to exceed a predetermined target concentration. Here, the target concentration is at least equal to or lower than the upper limit of the concentration of the volatile organic compound in the volatile organic gas in which the combustion processing apparatus can process the volatile organic gas.

通過方向切換え手段5は、戻し路6に配置された第1ポンプ部11(例えば真空ポンプ)と、濃度調節路12と、濃度調節路12を開閉する調節路開閉弁13と、連通路14と、連通路14に配置された第2ポンプ部15(例えばエアポンプ)と、連通路開閉弁16と、戻し路開閉弁17とを有する。第1ポンプ部11、調節路開閉弁13、第2ポンプ部15及び連通路開閉弁16は、供給路開閉弁9及び排出路開閉弁10と同様に制御部によって制御される。   The passage direction switching means 5 includes a first pump unit 11 (for example, a vacuum pump) disposed in the return path 6, a concentration adjustment path 12, an adjustment path opening / closing valve 13 that opens and closes the concentration adjustment path 12, a communication path 14, and the like. , A second pump portion 15 (for example, an air pump) disposed in the communication path 14, a communication path opening / closing valve 16, and a return path opening / closing valve 17. The first pump unit 11, the control path on / off valve 13, the second pump unit 15, and the communication path on / off valve 16 are controlled by the control unit in the same manner as the supply path on / off valve 9 and the discharge path on / off valve 10.

濃度調節路12は、戻し路6において第1ポンプ部11の配置箇所より上流側で連通すると共に、希釈エアを供給する希釈エア供給源(図示せず)に接続する。この濃度調節路12には調節路開閉弁13が配置され、その開度を調整して戻し路6への希釈エアの供給量を調整する。連通路14は、戻し路6における濃度調節路12との連通箇所より上流側に連通すると共に、その上流側で濃度調節路12に合流して希釈エア供給源に接続する。連通路14においては第2ポンプ部15より下流側に連通路開閉弁16が配置されている。戻し路開閉弁17は、戻し路6における濃度調節路12の連通箇所と連通路14の連通箇所との間に配置されている。   The concentration adjusting path 12 communicates with the upstream side of the arrangement place of the first pump unit 11 in the return path 6 and is connected to a dilution air supply source (not shown) for supplying dilution air. An adjustment path opening / closing valve 13 is disposed in the concentration adjustment path 12, and the amount of dilution air supplied to the return path 6 is adjusted by adjusting the opening thereof. The communication path 14 communicates with the upstream side of the return path 6 where it communicates with the concentration adjustment path 12 and joins the concentration adjustment path 12 on the upstream side to connect to the dilution air supply source. In the communication passage 14, a communication passage opening / closing valve 16 is disposed on the downstream side of the second pump portion 15. The return path opening / closing valve 17 is disposed between the communication location of the concentration adjustment path 12 and the communication location of the communication path 14 in the return path 6.

揮発性有機ガスの通過方向を第1方向から第2方向に切り換える場合、戻し路開閉弁17は開弁し、調節路開閉弁13及び連通路開閉弁16は閉弁し、第1ポンプ部11が吸引動作することにより揮発性有機ガスを吸着層3、吸着層3から戻し路6の連通箇所までの供給路2の一部、戻し路6及び排出路4の順に通過させる。   When switching the passage direction of the volatile organic gas from the first direction to the second direction, the return path opening / closing valve 17 is opened, the regulation path opening / closing valve 13 and the communication path opening / closing valve 16 are closed, and the first pump unit 11 is opened. Causes the volatile organic gas to pass through the adsorption layer 3, a part of the supply path 2 from the adsorption layer 3 to the communication point of the return path 6, the return path 6 and the discharge path 4 in this order.

揮発性有機ガスの通過方向を第2方向から第1方向に切り換える場合には、戻し路開閉弁17及び調節路開閉弁13は閉弁し、連通路開閉弁16は開弁し、第2ポンプ部15が希釈ガス供給源から希釈ガスを戻し路6に送出する。この希釈ガスは、戻し路6内を通過する揮発性有機ガスを吸着層3へと押圧する。この希釈ガスの押圧により揮発性有機ガスを戻し路6、戻し路6の連通箇所から吸着層3までの供給路2の一部、吸着層3、排出路4の順に通過させる。   When switching the passage direction of the volatile organic gas from the second direction to the first direction, the return path on / off valve 17 and the control path on / off valve 13 are closed, the communication path on / off valve 16 is opened, and the second pump The unit 15 sends the dilution gas from the dilution gas supply source to the return path 6. This dilution gas presses the volatile organic gas passing through the return path 6 against the adsorption layer 3. By pressing the dilution gas, the volatile organic gas is passed through the return path 6, a part of the supply path 2 from the communicating part of the return path 6 to the adsorption layer 3, the adsorption layer 3, and the discharge path 4 in this order.

本実施形態では通過方向切換え手段5は希釈ガス供給手段7として機能する。すなわち供給路2に希釈ガスを供給する場合には、揮発性有機ガスの通過方向を第2方向から第1方向に切り換える場合と同様に、戻し路開閉弁17及び調節路開閉弁13は閉弁し、連通路開閉弁16は開弁した状態で、第2ポンプ部15が希釈ガス供給源から希釈ガスを戻し路6に送出することにより、希釈ガス供給源からの希釈ガスが戻し路6を介して供給路2に供給される。また排出路4に希釈ガスを供給する場合には、戻し路開閉弁17は閉弁し、調節路開閉弁13は開弁し、連通路開閉弁16は閉弁した状態で、第1ポンプ部11が吸引動作することにより希釈ガス供給源からの希釈ガスが戻し路6を介して排出路4に供給される。なお希釈ガス供給手段7は通過方向切換え手段5とは独立した構成にしてもよく、供給路2及び排出路4に新たに希釈ガス用に供給路2を連通させ、それら供給路2を介して希釈ガス供給源から希釈ガスを供給するようにしてもよい。   In the present embodiment, the passage direction switching means 5 functions as the dilution gas supply means 7. That is, when the dilution gas is supplied to the supply path 2, the return path on-off valve 17 and the control path on-off valve 13 are closed as in the case of switching the passage direction of the volatile organic gas from the second direction to the first direction. Then, the second pump unit 15 sends the dilution gas from the dilution gas supply source to the return path 6 with the communication passage opening / closing valve 16 opened, so that the dilution gas from the dilution gas supply source passes through the return path 6. To the supply path 2. When supplying the dilution gas to the discharge path 4, the return path on / off valve 17 is closed, the adjustment path on / off valve 13 is opened, and the communication path on / off valve 16 is closed, and the first pump section is closed. As a result, the dilution gas from the dilution gas supply source is supplied to the discharge path 4 via the return path 6. The dilution gas supply means 7 may be configured independently of the passage direction switching means 5, and the supply path 2 for the dilution gas is newly connected to the supply path 2 and the discharge path 4, and the supply path 2 is connected via the supply path 2. A dilution gas may be supplied from a dilution gas supply source.

迂回路8には閉弁状態の迂回路開閉弁18が設けられ、揮発性有機ガス格納容器からの揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度より低くなったときに迂回路開閉弁18を開弁させ、揮発性有機ガスを迂回路8に通過させる。このとき供給路開閉弁9は閉弁されている。揮発性有機ガスを迂回路8に通過させることで供給路2の途中から吸着層3を迂回して排出路4に通過させる。揮発性有機ガス格納容器からの揮発性有機ガス中における揮発性有機化合物の濃度は揮発性有機ガス格納容器からの供給が始まってからその濃度が所定濃度になるまでの時間を予め計測し、その時間に迂回路開閉弁18を開弁させてもよい。また、供給路2における迂回路8の連通箇所より上流側に濃度センサを配置し、所定濃度より低い揮発性有機ガス中における揮発性有機化合物の濃度を濃度検出部が検出すると迂回路開閉弁18を開弁させるようにしてもよい。なお迂回路開閉弁18は供給路開閉弁9及び排出路開閉弁10と同様に制御部によって制御される。   The detour 8 is provided with a detour open / close valve 18 in a closed state. When the concentration of the volatile organic compound in the volatile organic gas from the volatile organic gas storage container becomes lower than a predetermined concentration, the detour open / close is opened. The valve 18 is opened and volatile organic gas is passed through the bypass 8. At this time, the supply passage opening / closing valve 9 is closed. By passing the volatile organic gas through the bypass 8, the adsorption layer 3 is bypassed from the middle of the supply path 2 and passed through the discharge path 4. The concentration of the volatile organic compound in the volatile organic gas from the volatile organic gas storage container is measured in advance by measuring the time from when the supply from the volatile organic gas storage container starts until the concentration reaches a predetermined concentration. The detour opening / closing valve 18 may be opened at time. Further, when a concentration sensor is disposed upstream of the communication path of the detour 8 in the supply path 2 and the concentration detector detects the concentration of the volatile organic compound in the volatile organic gas lower than the predetermined concentration, the detour opening / closing valve 18. May be opened. The bypass circuit opening / closing valve 18 is controlled by the control unit similarly to the supply path opening / closing valve 9 and the discharge path opening / closing valve 10.

以下、上記濃度希釈装置1を使用する本発明の濃度希釈方法の一例を説明する。
まず揮発性有機ガス格納容器からの揮発性有機ガスを第1方向で吸着層3に供給する。すなわち揮発性有機ガスを供給路2を介して吸着層3に供給する。揮発性有機ガス中における揮発性有機化合物は吸着層3が備える吸着材に吸着し、吸着層3を通過した揮発性有機ガス中における揮発性有機化合物の濃度が低減する。この場合、供給路開閉弁9及び排出路開閉弁10は開弁し、戻し路開閉弁17、連通路開閉弁16及び迂回路開閉弁18は少なくとも閉弁している。
Hereinafter, an example of the concentration dilution method of the present invention using the concentration dilution apparatus 1 will be described.
First, the volatile organic gas from the volatile organic gas storage container is supplied to the adsorption layer 3 in the first direction. That is, volatile organic gas is supplied to the adsorption layer 3 through the supply path 2. The volatile organic compound in the volatile organic gas is adsorbed by the adsorbent provided in the adsorption layer 3, and the concentration of the volatile organic compound in the volatile organic gas that has passed through the adsorption layer 3 is reduced. In this case, the supply passage opening / closing valve 9 and the discharge passage opening / closing valve 10 are opened, and the return passage opening / closing valve 17, the communication passage opening / closing valve 16, and the bypass opening / closing valve 18 are at least closed.

図2は揮発性有機ガス中における揮発性有機化合物の濃度が時間的に変化する状況を簡略的に示したグラフ図であり、縦軸に揮発性有機ガス中における揮発性有機化合物の濃度を示し、横軸に時間tを示す。実線は排出路4から排出された揮発性有機ガス中における揮発性有機化合物の濃度Dを示す。   FIG. 2 is a graph schematically showing a state in which the concentration of the volatile organic compound in the volatile organic gas changes with time, and the vertical axis indicates the concentration of the volatile organic compound in the volatile organic gas. The time t is shown on the horizontal axis. The solid line indicates the concentration D of the volatile organic compound in the volatile organic gas discharged from the discharge path 4.

揮発性有機ガスを吸着層3に通過させる初期状態においては、揮発性有機化合物は吸着層3に備えた吸着材の供給路2側に吸着する。その後、さらに揮発性有機ガスを吸着層3に通過させ続けると、新たに吸着層3を通過しようとする揮発性有機ガスにより供給路2側の吸着材に吸着していた揮発性有機化合物の一部がその吸着材から脱離する。次いで、脱離した揮発性有機化合物が吸着層3内において排出路4側に移動して再び吸着材に吸着する。以後、揮発性有機ガスを吸着層3に通過させ続けると、吸着層3内の吸着材において揮発性有機化合物の一部が排出路4側(すなわち第1方向)に移動していき、時間tにおいて吸着層3から排出し始める。このため図2に示されるように時間tにおいて濃度Dが逓増し始め、さらに揮発性有機ガスを吸着層3に通過させ続けると、濃度Dは所定濃度Dtに至る。ここで所定濃度Dtは、揮発性有機ガスの通過方向の切り換えに要する時間やその時間に排出路から排出される揮発性有機ガスの量等に基づいて、排出路から排出される揮発性有機ガス中における揮発性有機化合物の濃度が予め定めた目標濃度を超えないように設定されている。目標濃度は、燃焼処理装置が揮発性有機ガスを燃焼処理できる揮発性有機ガス中における揮発性有機化合物の濃度の少なくとも上限以下である。 In an initial state in which the volatile organic gas is passed through the adsorption layer 3, the volatile organic compound is adsorbed on the supply path 2 side of the adsorbent provided in the adsorption layer 3. Thereafter, when the volatile organic gas continues to pass through the adsorption layer 3, one of the volatile organic compounds adsorbed on the adsorbent on the supply path 2 side by the volatile organic gas newly passing through the adsorption layer 3. Part desorbs from the adsorbent. Next, the desorbed volatile organic compound moves toward the discharge path 4 in the adsorption layer 3 and is adsorbed again on the adsorbent. Thereafter, when the volatile organic gas continues to pass through the adsorption layer 3, a part of the volatile organic compound in the adsorbent in the adsorption layer 3 moves to the discharge path 4 side (that is, the first direction), and the time t 1 starts to be discharged from the adsorption layer 3. Thus began to gradually increasing the concentration D at time t 1 as shown in FIG. 2, the keep more volatile organic gases passed through the adsorption layer 3, the concentration D reaches the predetermined concentration Dt. Here, the predetermined concentration Dt is the volatile organic gas discharged from the discharge path based on the time required for switching the passing direction of the volatile organic gas, the amount of volatile organic gas discharged from the discharge path at that time, and the like. The concentration of the volatile organic compound is set so as not to exceed a predetermined target concentration. The target concentration is at least equal to or less than the upper limit of the concentration of the volatile organic compound in the volatile organic gas in which the combustion processing apparatus can process the volatile organic gas.

濃度Dが所定濃度Dtより高くなったときには、通過方向切換え手段5により吸着層3を通過する揮発性有機ガスの通過方向を第1方向から第2方向に切り換える(図2の時間t)。この切り換え時には供給路開閉弁9及び排出路開閉弁10は閉弁されている。その後、濃度Dは所定濃度Dtより低くなる。 When the concentration D becomes higher than the predetermined concentration Dt, the passage direction switching means 5 switches the passage direction of the volatile organic gas passing through the adsorption layer 3 from the first direction to the second direction (time t 2 in FIG. 2 ). At the time of this switching, the supply passage opening / closing valve 9 and the discharge passage opening / closing valve 10 are closed. Thereafter, the concentration D becomes lower than the predetermined concentration Dt.

通過方向が第2方向に切り換えられた揮発性有機ガスは排出路4から吸着層3を通過し、次いで、吸着層3から戻し路6の連通箇所までの供給路2の一部、戻し路6を順に通過して排出路4に至る。この場合、通過方向切換え手段5においては、戻し路開閉弁17は開弁し、連通路開閉弁16及び調節路開閉弁13は閉弁し、第1ポンプ部11により揮発性有機ガスを第2方向に吸引動作している。なお第1ポンプ部11により揮発性有機ガスを吸引し続けると、排出路4から吸着層3を介して戻し路6までの区間が負圧になって揮発性有機ガスが第2方向で通過し難くなる。この負圧を解消するために、通過方向切換え手段5においては、一時的に、戻し路開閉弁17を閉弁し、連通路開閉弁16を開弁して第2ポンプ部15により希釈エアを戻し路6を介して吸着層3及び排出路4までの区間に供給するようにしている。   The volatile organic gas whose passage direction has been switched to the second direction passes through the adsorption path 3 from the discharge path 4, and then a part of the supply path 2 from the adsorption layer 3 to the communication point of the return path 6, the return path 6. To the discharge path 4 in order. In this case, in the passage direction switching means 5, the return path on / off valve 17 is opened, the communication path on / off valve 16 and the control path on / off valve 13 are closed, and the first pump unit 11 supplies the volatile organic gas to the second. Suction is moving in the direction. If the volatile organic gas is continuously sucked by the first pump unit 11, the section from the discharge path 4 to the return path 6 through the adsorption layer 3 becomes negative pressure, and the volatile organic gas passes in the second direction. It becomes difficult. In order to eliminate this negative pressure, the passage direction switching means 5 temporarily closes the return path on-off valve 17 and opens the communication path on-off valve 16 to supply dilution air by the second pump unit 15. It is made to supply to the area to the adsorption layer 3 and the discharge path 4 via the return path 6.

なお通過方向切換え手段5により吸着層3を通過する揮発性有機ガスの通過方向を最初に切り換えた後は供給路開閉弁9が閉弁するので、揮発性有機ガス格納容器から新たに供給された揮発性有機ガスが吸着層3に通過することはない。このため揮発性有機ガスの通過方向を最初に切り換える時には、揮発性有機ガス格納容器からの新たな揮発性有機ガスを吸着層3に通過させないまま迂回路8を介して燃焼処理装置に排出して燃焼処理できることが処理効率の点から望ましい。そのためには、新たに供給される揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度Dtより低くなる時間まで、濃度Dが所定濃度Dtより高くなる時間を延長する必要がある。本濃度希釈方法では、希釈ガス供給手段7により供給路2及び排出路4の少なくとも一方に希釈ガスを供給し、濃度Dが最初に所定濃度Dtより高くなる時間を延長する(例えば図2においては時間tを時間t’にする)。 The supply path on / off valve 9 is closed after the passage direction switching means 5 first switches the passage direction of the volatile organic gas passing through the adsorption layer 3, so that it is newly supplied from the volatile organic gas storage container. Volatile organic gas does not pass through the adsorption layer 3. For this reason, when switching the passage direction of the volatile organic gas for the first time, a new volatile organic gas from the volatile organic gas storage container is discharged to the combustion processing device via the bypass 8 without passing through the adsorption layer 3. From the viewpoint of processing efficiency, it is desirable that combustion processing is possible. For this purpose, it is necessary to extend the time during which the concentration D is higher than the predetermined concentration Dt until the time when the concentration of the volatile organic compound in the newly supplied volatile organic gas is lower than the predetermined concentration Dt. In this concentration dilution method, dilution gas is supplied to at least one of the supply path 2 and the discharge path 4 by the dilution gas supply means 7, and the time during which the concentration D first becomes higher than the predetermined concentration Dt is extended (for example, in FIG. 2). the time t 2 to time t 2 ').

その後、時間tから濃度Dが再び増え始める時間tまでの間、吸着層3に第2方向で通過しようとする揮発性有機ガスにより吸着層3内の排出路4側の吸着材に吸着していた揮発性有機化合物の一部が脱離して、より供給路2側に移動しては再び吸着する。この脱離・吸着を繰り返すことで揮発性有機化合物の一部が吸着層3内の吸着材において排出路4側から供給路2側へと移動していく。そして時間tにおいて吸着していた揮発性有機化合物の一部が吸着層3内の吸着材の供給路2側から排出し始める。このため図2に示されるように時間tにおいて濃度Dが増加し始め、さらに揮発性有機ガスを吸着層3に第2方向で通過させ続けると、時間tにおいて濃度Dは所定濃度Dtに至る。 Thereafter, from time t 2 to time t 3 when the concentration D starts to increase again, the volatile organic gas that is going to pass through the adsorption layer 3 in the second direction is adsorbed by the adsorbent on the discharge path 4 side in the adsorption layer 3. A part of the volatile organic compound that has been removed is desorbed and moved further toward the supply path 2 to be adsorbed again. By repeating this desorption / adsorption, a part of the volatile organic compound moves from the discharge path 4 side to the supply path 2 side in the adsorbent in the adsorption layer 3. Then, a part of the volatile organic compound adsorbed at time t 3 starts to be discharged from the adsorbent supply path 2 side in the adsorption layer 3. Thus began the concentration D increases at time t 3 as shown in FIG. 2, further when the volatile organic gases continue to pass in the second direction to the adsorption layer 3, the concentration D at time t 4 at a predetermined density Dt It reaches.

濃度Dが所定濃度Dtより高くなったときには、通過方向切換え手段5により吸着層3を通過する揮発性有機ガスの通過方向を第2方向から第1方向に切り換える。この切り換えと共に、排出路開閉弁10は開弁する。通過方向が第1方向に切り換えられた揮発性有機ガスは供給路2から吸着層3を通過して排出路4に至る。この場合、通過方向切換え手段5においては、戻し路開閉弁17は閉弁し、連通路開閉弁16は開弁し、調節路開閉弁13は閉弁し、第2ポンプ部15により希釈ガスを戻し路6に供給して、その希釈ガスによって揮発性有機ガスを第1方向で吸着層3に通過させる。以後、濃度Dが所定濃度Dtより高くなる毎に通過方向切換え手段5により吸着層3を通過する揮発性有機ガスの通過方向を切り換える。   When the concentration D becomes higher than the predetermined concentration Dt, the passage direction switching means 5 switches the passage direction of the volatile organic gas passing through the adsorption layer 3 from the second direction to the first direction. Along with this switching, the discharge passage opening / closing valve 10 opens. The volatile organic gas whose passage direction is switched to the first direction passes through the adsorption layer 3 from the supply path 2 and reaches the discharge path 4. In this case, in the passage direction switching means 5, the return path opening / closing valve 17 is closed, the communication path opening / closing valve 16 is opened, the adjustment path opening / closing valve 13 is closed, and the second pump unit 15 supplies dilution gas. The volatile organic gas is supplied to the return path 6 and passes through the adsorption layer 3 in the first direction by the dilution gas. Thereafter, every time the concentration D becomes higher than the predetermined concentration Dt, the passage direction switching means 5 switches the passage direction of the volatile organic gas passing through the adsorption layer 3.

ここで図2に示されるように揮発性有機ガスの通過方向を(例えば時間t及びtに)切り換えた直後から急に濃度Dが減少している。本濃度希釈方法による処理量は揮発性有機ガス中における揮発性有機化合物の濃度とその揮発性有機ガスの流量との積算値によって決まるので、揮発性有機ガスの通過方向切り換え時の上記濃度Dの減少は上記処理量を低減させることになる。これに対しては、希釈ガス供給手段7により供給路2及び排出路4の少なくとも一方に希釈ガスを供給することで揮発性有機ガスの移動を促進させて濃度Dを減少を抑制することができる(図2においては時間t’以降の一点鎖線を参照)。 Here, as shown in FIG. 2, the concentration D suddenly decreases immediately after switching the passing direction of the volatile organic gas (for example, at times t 2 and t 4 ). Since the treatment amount by this concentration dilution method is determined by the integrated value of the concentration of the volatile organic compound in the volatile organic gas and the flow rate of the volatile organic gas, the concentration D at the time of switching the passage direction of the volatile organic gas Reduction will reduce the amount of processing. For this, the dilution gas supply means 7 supplies the dilution gas to at least one of the supply path 2 and the discharge path 4 to promote the movement of the volatile organic gas and suppress the decrease in the concentration D. (Refer to the one-dot chain line after time t 2 ′ in FIG. 2).

なお本実施形態では濃度希釈装置1が有する単数の吸着層3を用いて濃度希釈方法を説明してきたが、本発明はこれに限定されず、図3に示されるような二つの吸着層3を同時に用いてもよい。各吸着層3を同時に用いる以外は上記濃度希釈方法に変更はないが、吸着層3が複数であることに伴って濃度希釈装置1Aは図1の濃度希釈装置1とは以下の点において構成が異なる。すなわち供給路2は途中から分岐した各分岐供給路2aを有し、それら各分岐供給路2aが各吸着層3に連通する。各分岐供給路2aには各供給路開閉弁9がそれぞれ配置されている。排出路4は各吸着層3に連通する各分岐排出路4aと、各分岐排出路4aが合流して形成した合流排出路4bとから構成される。各分岐排出路4aには各排出路開閉弁10が配置されている。戻し路6は各分岐供給路2aに連通する各分岐戻し路6aと、各分岐戻し路6aが合流し、かつ合流排出路4bに連通する合流戻し路6bとから構成される。各分岐戻し路6aには戻し路開閉弁17がそれぞれ設けられ、第1ポンプ部11が合流戻し路6bに配置される。連通路14は第2ポンプ部15より下流側で分岐した分岐連通路14aを有し、各分岐連通路14aは各分岐戻し路6aに連通している。各分岐連通路14aには連通路開閉弁16がそれぞれ配置されている。   In the present embodiment, the concentration dilution method has been described using a single adsorption layer 3 included in the concentration dilution apparatus 1. However, the present invention is not limited to this, and two adsorption layers 3 as shown in FIG. You may use simultaneously. There is no change in the concentration dilution method except that each adsorption layer 3 is used at the same time. However, the concentration dilution apparatus 1A is different from the concentration dilution apparatus 1 in FIG. Different. That is, the supply path 2 has branch supply paths 2 a branched from the middle, and the branch supply paths 2 a communicate with the adsorption layers 3. Each supply passage opening / closing valve 9 is arranged in each branch supply passage 2a. The discharge path 4 includes each branch discharge path 4a communicating with each adsorption layer 3, and a merged discharge path 4b formed by joining each branch discharge path 4a. Each discharge passage opening / closing valve 10 is arranged in each branch discharge passage 4a. The return path 6 includes each branch return path 6a that communicates with each branch supply path 2a, and a merge return path 6b that joins each branch return path 6a and communicates with the merge discharge path 4b. Each branch return path 6a is provided with a return path opening / closing valve 17, and the first pump unit 11 is disposed in the merge return path 6b. The communication path 14 includes a branch communication path 14a branched downstream from the second pump portion 15, and each branch communication path 14a communicates with each branch return path 6a. A communication passage opening / closing valve 16 is disposed in each branch communication passage 14a.

本発明の揮発性有機ガスの濃度希釈方法が使用する濃度希釈装置の一例を簡略的に示す模式図である。It is a schematic diagram which shows simply an example of the concentration dilution apparatus which the concentration dilution method of volatile organic gas of this invention uses. 揮発性有機ガス中における揮発性有機化合物の濃度が時間的に変化する状況を簡略的に示したグラフ図である。It is the graph which showed simply the condition where the density | concentration of the volatile organic compound in volatile organic gas changes temporally. 二つの吸着層を備えた濃度希釈装置の簡略的な構成図である。It is a simple block diagram of the concentration dilution apparatus provided with two adsorption layers.

符号の説明Explanation of symbols

1…濃度希釈装置
2…供給路
3…吸着層
4…排出路
5…通過方向切換え手段
6…戻し路
7…希釈ガス供給手段
8…迂回路
DESCRIPTION OF SYMBOLS 1 ... Concentration dilution apparatus 2 ... Supply path 3 ... Adsorption layer 4 ... Discharge path 5 ... Passing direction switching means 6 ... Return path 7 ... Dilution gas supply means 8 ... Detour

Claims (5)

揮発性有機ガスに含まれる揮発性有機化合物を吸着する吸着材を備えた吸着層に前記揮発性有機ガスを通過させ、前記揮発性有機化合物の濃度を希釈する揮発性有機ガスの濃度希釈方法であって、
前記揮発性有機ガスを前記吸着層に第1方向で通過させる第1方向通過ステップと、
前記第1方向に対して逆方向である第2方向で前記揮発性有機ガスを前記吸着層に通過させる第2方向通過ステップとを備え、
前記第1方向通過ステップと前記第2方向通過ステップとで少なくとも一回前記揮発性有機ガスを前記吸着層に通過させる、揮発性有機ガスの濃度希釈方法。
In a volatile organic gas concentration dilution method, the volatile organic gas is passed through an adsorption layer having an adsorbent that adsorbs a volatile organic compound contained in the volatile organic gas, and the concentration of the volatile organic compound is diluted. There,
A first direction passing step for passing the volatile organic gas through the adsorption layer in a first direction;
A second direction passing step for allowing the volatile organic gas to pass through the adsorption layer in a second direction opposite to the first direction,
A method for diluting a concentration of a volatile organic gas, wherein the volatile organic gas is passed through the adsorption layer at least once in the first direction passage step and the second direction passage step.
前記吸着層を前記第1方向で通過した前記揮発性有機ガス中における前記揮発性有機化合物の濃度を検出する第1方向検出ステップと、
前記吸着層を前記第2方向で通過した前記揮発性有機ガス中における前記揮発性有機化合物の濃度を検出する第2方向検出ステップと、
前記第1方向検出ステップにより検出された前記揮発性有機ガス中における前記揮発性有機化合物の濃度が所定濃度より高いときに、前記第1方向通過ステップから前記第2方向通過ステップに切換える第1切換えステップと、
前記第2方向検出ステップにより検出された前記揮発性有機ガス中における前記揮発性有機化合物の濃度が所定濃度より高いときに、前記第2方向通過ステップから前記第1方向通過ステップに切換える第2切換えステップとを含む、請求項1に記載の揮発性有機ガスの濃度希釈方法。
A first direction detecting step for detecting a concentration of the volatile organic compound in the volatile organic gas that has passed through the adsorption layer in the first direction;
A second direction detecting step for detecting a concentration of the volatile organic compound in the volatile organic gas that has passed through the adsorption layer in the second direction;
First switching for switching from the first direction passing step to the second direction passing step when the concentration of the volatile organic compound in the volatile organic gas detected by the first direction detecting step is higher than a predetermined concentration. Steps,
Second switching for switching from the second direction passage step to the first direction passage step when the concentration of the volatile organic compound in the volatile organic gas detected by the second direction detection step is higher than a predetermined concentration. And a step of diluting the volatile organic gas according to claim 1.
前記吸着層を通過する前の揮発性有機ガス中における揮発性有機化合物の濃度が所定濃度より低い場合に、前記吸着層を通過する前の揮発性有機ガスを前記吸着層から迂回させる迂回ステップと、をさらに含む、請求項1又は請求項2に記載の揮発性有機ガスの濃度希釈方法。   A detour step of bypassing the volatile organic gas before passing through the adsorption layer from the adsorption layer when the concentration of the volatile organic compound in the volatile organic gas before passing through the adsorption layer is lower than a predetermined concentration; The volatile organic gas concentration dilution method according to claim 1 or 2, further comprising: 前記第1方向通過ステップの前、前記第1方向通過ステップの後、前記第2方向通過ステップの前、前記第2方向通過ステップの後のうち少なくともいずれかの箇所で前記揮発性有機ガスに希釈ガスを供給する、請求項1〜3のいずれかに記載の揮発性有機ガスの濃度希釈方法。   Before the first direction passing step, after the first direction passing step, before the second direction passing step, after the second direction passing step, diluted to the volatile organic gas in at least one place The method for diluting a concentration of a volatile organic gas according to claim 1, wherein gas is supplied. 前記吸着層は複数の吸着層から構成され、
前記第1方向通過ステップにおいては前記揮発性有機ガスを前記各吸着層に前記第1方向で通過させ、
前記第2方向通過ステップにおいては前記第2方向で前記揮発性有機ガスを前記各吸着層に通過させる、請求項1〜4に記載の揮発性有機ガスの濃度希釈方法。
The adsorption layer is composed of a plurality of adsorption layers,
In the first direction passing step, the volatile organic gas is passed through the adsorption layers in the first direction,
5. The volatile organic gas concentration dilution method according to claim 1, wherein in the second direction passing step, the volatile organic gas is passed through the adsorption layers in the second direction.
JP2007020993A 2007-01-31 2007-01-31 Concentration dilution method for volatile organic gas Pending JP2008183533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020993A JP2008183533A (en) 2007-01-31 2007-01-31 Concentration dilution method for volatile organic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020993A JP2008183533A (en) 2007-01-31 2007-01-31 Concentration dilution method for volatile organic gas

Publications (1)

Publication Number Publication Date
JP2008183533A true JP2008183533A (en) 2008-08-14

Family

ID=39726910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020993A Pending JP2008183533A (en) 2007-01-31 2007-01-31 Concentration dilution method for volatile organic gas

Country Status (1)

Country Link
JP (1) JP2008183533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131135A (en) * 2019-02-21 2020-08-31 大陽日酸株式会社 Gas purifier and operation method therefor
WO2023042302A1 (en) * 2021-09-15 2023-03-23 カンケンテクノ株式会社 Ethylene oxide gas removal method, and ethylene oxide gas removal system using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131135A (en) * 2019-02-21 2020-08-31 大陽日酸株式会社 Gas purifier and operation method therefor
WO2023042302A1 (en) * 2021-09-15 2023-03-23 カンケンテクノ株式会社 Ethylene oxide gas removal method, and ethylene oxide gas removal system using same
JPWO2023042302A1 (en) * 2021-09-15 2023-03-23
JP7418770B2 (en) 2021-09-15 2024-01-22 カンケンテクノ株式会社 Ethylene oxide gas removal system

Similar Documents

Publication Publication Date Title
JP4299729B2 (en) Device for concentrating oxygen contained in air in an aircraft and method for operating this device
KR101674032B1 (en) Equipment for treating and recycling volatile organic compounds
JP2008183533A (en) Concentration dilution method for volatile organic gas
KR101796242B1 (en) Method and apparatus for controling apparatus of exhaust sintering gas cleaning system
KR101971176B1 (en) Apparatus for Treating Waste Gas comprising VOCs From Pretreatment system
KR20160140533A (en) Apparatus for Treating Waste Gas comprising VOCs From Pretreatment system
JP6229267B2 (en) Gas processing apparatus and gas processing method
WO2019198597A1 (en) Mercury concentration measuring device, exhaust gas treatment device, and exhaust gas treatment method
US6729311B2 (en) Aeration and deaeration device for the fuel tank of an internal combustion engine
JP7064835B2 (en) Gas separator
JP2008183534A (en) Concentration dilution method for volatile organic gas
JP2005503953A5 (en)
KR102659717B1 (en) Removal system for VOCs
KR102430008B1 (en) Carbon dioxide separation device and carbon dioxide separation system
JP6787854B2 (en) Carbon dioxide application device
JP2006272187A (en) Exhaust-gas treatment apparatus
KR101982996B1 (en) Regenerative combustion facility
JP5036378B2 (en) Carbon dioxide removal equipment
KR102675285B1 (en) Volatile organic compounds treatment system
KR100476715B1 (en) Exhaust gas treatment system
JP2007315327A (en) Evaporated fuel treatment device
US20230001346A1 (en) Air treatment device
KR101225792B1 (en) Processing device of exhaust gas for absorbing column
JPH10331624A (en) Harmful gas exhauster
JP3287011B2 (en) Industrial robot