JP6762715B2 - Gasifier - Google Patents

Gasifier Download PDF

Info

Publication number
JP6762715B2
JP6762715B2 JP2015256966A JP2015256966A JP6762715B2 JP 6762715 B2 JP6762715 B2 JP 6762715B2 JP 2015256966 A JP2015256966 A JP 2015256966A JP 2015256966 A JP2015256966 A JP 2015256966A JP 6762715 B2 JP6762715 B2 JP 6762715B2
Authority
JP
Japan
Prior art keywords
shaft
pipe
oxidant
oxidant supply
accommodating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015256966A
Other languages
Japanese (ja)
Other versions
JP2017119771A (en
Inventor
松下 靖治
靖治 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUSHITA, Kodai
MATSUSHITA, KOHEI
ZE Energy Inc
Original Assignee
MATSUSHITA, Kodai
MATSUSHITA, KOHEI
ZE Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015256966A priority Critical patent/JP6762715B2/en
Application filed by MATSUSHITA, Kodai, MATSUSHITA, KOHEI, ZE Energy Inc filed Critical MATSUSHITA, Kodai
Priority to CN201680076812.1A priority patent/CN108884399A/en
Priority to CA3009967A priority patent/CA3009967A1/en
Priority to KR1020187021581A priority patent/KR20180131530A/en
Priority to PCT/JP2016/088980 priority patent/WO2017115817A1/en
Priority to US16/066,842 priority patent/US11034899B2/en
Priority to EP16881791.4A priority patent/EP3399007A4/en
Publication of JP2017119771A publication Critical patent/JP2017119771A/en
Application granted granted Critical
Publication of JP6762715B2 publication Critical patent/JP6762715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/36Fixed grates
    • C10J3/38Fixed grates with stirring beams
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/32Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

本発明は、バイオマス資源をガス化するためのガス化炉とガス化システムとに関する。 The present invention relates to a gasification furnace and a gasification system for gasifying biomass resources.

近年、バイオマス資源(建築廃材の破砕物等の生物由来の資源)をガス化し、燃料等として使用することが盛んに行われるようになってきている。例えば、ガス化炉内にバイオマス資源を投入して着火し、この熱によってバイオマス資源を乾溜し、有機物を熱分解してガス化させ、H2、CH4、CO等を含む燃料用ガスを生成する。 In recent years, biomass resources (resources derived from living organisms such as crushed building waste) have been actively used as fuel or the like. For example, biomass resources are put into a gasification furnace and ignited, and the heat is used to carbonize the biomass resources, pyrolyze organic substances to gasify them, and generate fuel gas containing H 2 , CH 4 , CO, etc. To do.

特開2013−213647号公報Japanese Unexamined Patent Publication No. 2013-213647 特開2010−13583号公報Japanese Unexamined Patent Publication No. 2010-13583 特開2005−146188号公報Japanese Unexamined Patent Publication No. 2005-146188 特開2003−238972号公報Japanese Unexamined Patent Publication No. 2003-238972

バイオマス資源をガス化する場合、ガス化炉内に酸素が充分に存在すると燃焼が進み、熱分解したガスまで燃焼して燃料用ガスを産出できなくなってしまう。このため、ガス化炉内に供給する空気等の酸化剤の量は、バイオマス資源の熱分解に必要な温度が保たれる程度に制限される。 When gasifying biomass resources, if there is sufficient oxygen in the gasification furnace, combustion will proceed, and even the pyrolyzed gas will be burned, making it impossible to produce fuel gas. Therefore, the amount of oxidizing agents such as air supplied into the gasification furnace is limited to the extent that the temperature required for thermal decomposition of biomass resources is maintained.

また、酸化剤を供給する構成としては、バイオマス資源を収容したガス化炉の内壁に設けた供給口から供給する構成や、ガス化炉内に撹拌部材を周設した回転軸を設け、回転軸の先端(下端)から供給する構成が知られている(特許文献3)。 Further, as a configuration for supplying the oxidant, a configuration in which the oxidant is supplied from a supply port provided on the inner wall of the gasification furnace containing the biomass resources, or a rotation shaft in which a stirring member is provided around the gasification furnace is provided to provide a rotation shaft. There is a known configuration in which the gas is supplied from the tip (lower end) of the (Patent Document 3).

このように、ガス化炉の内壁や回転軸の先端から酸化剤の供給部とした構成では、酸化剤とバイオマス資源との反応が供給部の周辺に限られ、効率が悪いという問題があった。 In this way, in the configuration in which the oxidant is supplied from the inner wall of the gasifier or the tip of the rotating shaft, the reaction between the oxidant and the biomass resource is limited to the periphery of the supply, which causes a problem of inefficiency. ..

そこで、本発明の課題は、バイオマス資源を効率良くガス化できるガス化炉を提供することにある。 Therefore, an object of the present invention is to provide a gasification furnace capable of efficiently gasifying biomass resources.

上記課題を解決するために、本発明のガス化炉は、
バイオマス資源を収容する円筒状の収容部を有する炉本体と、
前記炉本体内へ酸化剤を供給する酸化剤供給部と、
前記収容部内の鉛直方向に延設され、前記酸化剤を通す酸化剤供給路を内包するシャフトと、
前記シャフトから前記収容部の内壁へ向かって突出した管状の部材であって、前記収容部内の前記バイオマス資源と接する外面に開口した前記酸化剤の供給口と前記シャフトの前記酸化剤供給路とを連通する酸化剤流路を内包する酸化剤供給管と、
前記収容部内の鉛直方向を回転軸として前記シャフトを回転させることにより、前記酸化剤供給管を前記収容部内で旋回させる駆動部と、
を備える。
In order to solve the above problems, the gasification furnace of the present invention
A furnace body with a cylindrical housing for storing biomass resources,
An oxidant supply unit that supplies the oxidant into the furnace body and
A shaft extending in the vertical direction in the accommodating portion and including an oxidant supply path through which the oxidant is passed, and a shaft.
A tubular member protruding from the shaft toward the inner wall of the housing portion, the oxidant supply port opened on the outer surface in contact with the biomass resource in the storage portion, and the oxidant supply path of the shaft. An oxidizer supply pipe containing an oxidizer flow path that communicates with the
A drive unit that rotates the oxidant supply pipe in the accommodating portion by rotating the shaft about the vertical direction in the accommodating portion.
To be equipped.

前記ガス化炉は、前記シャフトが冷媒の流路を内包すると共に、前記酸化剤供給管がシ
ャフト側の前記流路と連通した前記冷媒の流路を内包しても良い。
前記ガス化炉は、前記収容部の上部から前記バイオマス資源を投入し、目標の高さまで堆積させる場合の前記目標に合わせた高さで、前記シャフトから前記収容部の内壁へ向かって突出した上部スクレーパーを備えても良い。
In the gasification furnace, the shaft may include a flow path of the refrigerant, and the oxidant supply pipe may include the flow path of the refrigerant communicating with the flow path on the shaft side.
The gasifier has an upper portion that protrudes from the shaft toward the inner wall of the accommodating portion at a height that matches the target when the biomass resources are charged from the upper portion of the accommodating portion and deposited to a target height. A scraper may be provided.

前記ガス化炉は、前記収容部を上下に仕切り、上下方向に貫通する複数の開口を有する仕切部を備え、前記仕切部の上面と接した状態又は近接した状態で、前記シャフトから前記収容部の内壁へ向かって突出した下部スクレーパーを備えても良い。 The gasification furnace is provided with a partition portion having a plurality of openings penetrating in the vertical direction by partitioning the accommodating portion vertically, and the accommodating portion is in contact with or close to the upper surface of the partition portion from the shaft. It may be provided with a lower scraper protruding toward the inner wall of the.

前記ガス化炉は、前記収容部を上下に仕切り、上下方向に貫通する複数の孔を有した仕切部を備え、前記仕切部より上方の収容部を第一ガス化室とし、前記仕切部より下方の収容部内に第二ガス化室を備えても良い。 The gasification furnace has a partition portion having a plurality of holes penetrating in the vertical direction by partitioning the accommodating portion up and down, and the accommodating portion above the partition portion is used as a first gasification chamber, and the partition portion is used. A second gasification chamber may be provided in the lower accommodating portion.

前記ガス化炉は、前記シャフト及び前記酸化剤供給管が、前記第一ガス化室と前記第二ガス化室のそれぞれに設けられても良い。 In the gasification furnace, the shaft and the oxidant supply pipe may be provided in each of the first gasification chamber and the second gasification chamber.

前記ガス化炉は、前記シャフトが、前記第一ガス化室と前記第二ガス化室とに渡って設けられ、前記酸化剤供給管が、前記第一ガス化室と前記第二ガス化室のそれぞれに設けられても良い。 In the gasification furnace, the shaft is provided across the first gasification chamber and the second gasification chamber, and the oxidant supply pipe is provided in the first gasification chamber and the second gasification chamber. It may be provided in each of.

前記ガス化炉は、前記シャフトが、上部から前記第一ガス化室内の前記酸化剤供給管へ酸化剤を供給する第一の酸化剤供給路と、下部から前記第二ガス化室内の前記酸化剤供給管へ酸化剤を供給する第二の酸化剤供給路とを備えても良い。 In the gasification furnace, the shaft has a first oxidant supply path for supplying an oxidant from the upper part to the oxidant supply pipe in the first gasification chamber, and the oxidation in the second gasification chamber from the lower part. A second oxidant supply path for supplying the oxidant to the agent supply pipe may be provided.

前記ガス化炉は、前記仕切部の上面と接した状態又は近接した状態で、前記シャフトから前記収容部の内壁へ向かって突出した下部スクレーパーを備えても良い。 The gasification furnace may include a lower scraper protruding from the shaft toward the inner wall of the accommodating portion in a state of being in contact with or close to the upper surface of the partition portion.

本発明によれば、バイオマス資源を効率良くガス化できるガス化炉を提供することができる。 According to the present invention, it is possible to provide a gasification furnace capable of efficiently gasifying biomass resources.

図1は、実施形態1に係るガス化炉の説明図である。FIG. 1 is an explanatory diagram of a gasifier according to the first embodiment. 図2は、シャフトの構成を示す図である。FIG. 2 is a diagram showing the configuration of the shaft. 図3は、シャフトの一部を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a part of the shaft. 図4は、図2のB線における酸化剤供給管の断面図である。FIG. 4 is a cross-sectional view of the oxidizing agent supply pipe in line B of FIG. 図5Aは、図2(A)に示した正面と平行に回転中心を通る断面を示す図である。FIG. 5A is a view showing a cross section passing through the center of rotation in parallel with the front surface shown in FIG. 2 (A). 図5Bは、図2(B)に示した側面と平行に回転中心を通る断面を示す図である。FIG. 5B is a view showing a cross section passing through the center of rotation in parallel with the side surface shown in FIG. 2 (B). 図6は、図2のD線における上部スクレーパーの断面図である。FIG. 6 is a cross-sectional view of the upper scraper in line D of FIG. 図7は、図2のC線における断面図である。FIG. 7 is a cross-sectional view taken along the line C of FIG. 図8は、図2のE線における断面図である。FIG. 8 is a cross-sectional view taken along the line E of FIG. 図9は、図8のF線における下部スクレーパーの断面図である。FIG. 9 is a cross-sectional view of the lower scraper in line F of FIG. 図10は、シャフトの変形例を示す図である。FIG. 10 is a diagram showing a modified example of the shaft. 図11は、実施形態2に係るガス化炉の説明図である。FIG. 11 is an explanatory diagram of the gasification furnace according to the second embodiment. 図12は、実施形態3に係るガス化炉の説明図である。FIG. 12 is an explanatory diagram of the gasification furnace according to the third embodiment. 図13は、実施形態4に係るガス化炉の説明図である。FIG. 13 is an explanatory diagram of the gasification furnace according to the fourth embodiment.

〈実施形態1〉
以下、本発明の実施形態について、図面を参照して詳細に説明する。まず、図1を用いて、本発明の実施形態1に係るガス化炉の概要を説明する。
<Embodiment 1>
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the outline of the gasification furnace according to the first embodiment of the present invention will be described with reference to FIG.

<全体構成>
本実施形態1に係るガス化炉は、バイオマス資源を原料とし、この原料を乾溜してガス化するためのユニットである。ガス化炉は、炉本体1、シャフト3、原料投入部4、駆動部5、酸化剤供給部6、パンチングプレート13、下部スクレーパー21、酸化剤供給管22、上部スクレーパー23、送風機12を備えている。
<Overall configuration>
The gasification furnace according to the first embodiment is a unit for using a biomass resource as a raw material and carbonizing the raw material for gasification. The gasification furnace includes a furnace body 1, a shaft 3, a raw material input section 4, a drive section 5, an oxidant supply section 6, a punching plate 13, a lower scraper 21, an oxidant supply pipe 22, an upper scraper 23, and a blower 12. There is.

炉本体1は、内部に原料を収容する円筒状の収容部19を有し、外壁と内壁との間に水冷ジャケット18を有している。水冷ジャケット18は、上部に設けた冷媒導入部11から冷媒として冷却水を導入し、炉本体1の壁内を循環させて炉本体を冷却し、冷却後の冷媒を冷媒排出部15から排出する。 The furnace body 1 has a cylindrical accommodating portion 19 for accommodating raw materials inside, and has a water-cooled jacket 18 between the outer wall and the inner wall. The water-cooled jacket 18 introduces cooling water as a refrigerant from the refrigerant introduction unit 11 provided at the upper portion, circulates in the wall of the furnace body 1 to cool the furnace body, and discharges the cooled refrigerant from the refrigerant discharge unit 15. ..

シャフト3は、収容部19内の鉛直方向に延設され、後述のように酸化剤を通す酸化剤供給路を内包する。 The shaft 3 extends in the vertical direction in the accommodating portion 19 and includes an oxidant supply path through which the oxidant is passed, as will be described later.

原料投入部4は、チップやペレット等の原料を炉本体1内の収容部19へ投入する装置である。原料投入部4は、不図示のチェーンコンベア、バケットエレベータ、スクリューコンベア等の供給系から供給された原料を例えばスクリューフィーダによって収容部19内へ投入する。また、原料投入部4は、原料に着火する電気ヒータ41を備えている。 The raw material charging unit 4 is a device for charging raw materials such as chips and pellets into the accommodating unit 19 in the furnace body 1. The raw material input unit 4 inputs the raw materials supplied from the supply system such as a chain conveyor, a bucket elevator, and a screw conveyor (not shown) into the accommodating unit 19 by, for example, a screw feeder. Further, the raw material input unit 4 includes an electric heater 41 that ignites the raw material.

駆動部5は、駆動源としての電気モータ51、及び電気モータ51の駆動力をシャフト3へ伝達するギヤ等の連結機構52を備え、鉛直方向を回転軸としてシャフト3を回転駆動させる。 The drive unit 5 includes an electric motor 51 as a drive source and a connecting mechanism 52 such as a gear that transmits the driving force of the electric motor 51 to the shaft 3, and rotationally drives the shaft 3 with the vertical direction as a rotation axis.

酸化剤供給部6は、送風機61、ダクト62、接続部63を備え、接続部63が後述のようにシャフト3の酸化剤供給路と連通し、酸化剤としての空気を送風機61で送風し、ダクト62、接続部63、及びシャフト3を介して、収容部19内へ酸化剤を供給する。 The oxidant supply unit 6 includes a blower 61, a duct 62, and a connection unit 63. The connection unit 63 communicates with the oxidant supply path of the shaft 3 as described later, and air as an oxidant is blown by the blower 61. The oxidizing agent is supplied into the accommodating portion 19 via the duct 62, the connecting portion 63, and the shaft 3.

パンチングプレート13は、収容部19を上下に仕切り、上下方向に貫通する複数の開口を有する仕切部である。パンチングプレート13は、収容部19に投入された原料を積載できるように開口の大きさが、投入時の原料の大きさよりも小さく設定され、炭化して細粒となった原料は落下させる構成となっている。本実施形態1のパンチングプレート13は、いわゆるパンチングメタルであるが、これに限らず、メッシュや格子であってもよい。 The punching plate 13 is a partition portion that partitions the accommodating portion 19 vertically and has a plurality of openings that penetrate in the vertical direction. The size of the opening of the punching plate 13 is set to be smaller than the size of the raw material at the time of charging so that the raw material charged into the accommodating portion 19 can be loaded, and the carbonized and fine-grained raw material is dropped. It has become. The punching plate 13 of the first embodiment is a so-called punching metal, but is not limited to this, and may be a mesh or a lattice.

下部スクレーパー21は、パンチングプレート13の上面と接した状態又は近接した状態で、シャフト3から収容部19の内壁へ向かって水平方向に突出した構成となっている。なお、近接した状態とは、パンチングプレート13上の原料を移動させることができるように、下部スクレーパー21の下端とパンチングプレート13との隙間が、原料の大きさに近いか、原料の大きさよりも小さくなるように近づいた状態である。 The lower scraper 21 has a configuration in which the lower scraper 21 projects horizontally from the shaft 3 toward the inner wall of the accommodating portion 19 in a state of being in contact with or close to the upper surface of the punching plate 13. In addition, in the close state, the gap between the lower end of the lower scraper 21 and the punching plate 13 is close to the size of the raw material or larger than the size of the raw material so that the raw material on the punching plate 13 can be moved. It is in a state of approaching to become smaller.

酸化剤供給管22は、シャフト3から収容部19の内壁へ向かって水平に突出した管状の部材であって、収容部内の原料と接する外面に開口した酸化剤の供給口とシャフトの前記酸化剤供給路とを連通する酸化剤流路を内包する。 The oxidant supply pipe 22 is a tubular member that protrudes horizontally from the shaft 3 toward the inner wall of the accommodating portion 19, and has an oxidant supply port opened on the outer surface in contact with the raw material in the accommodating portion and the oxidant of the shaft. It contains an oxidant flow path that communicates with the supply path.

上部スクレーパー23は、収容部19の上部から原料を投入し、目標の高さまで堆積させる場合の前記目標に合わせた高さで、シャフト3から収容部19の内壁へ向かって水平
に突出した構成となっている。
The upper scraper 23 has a structure in which the raw material is charged from the upper part of the accommodating portion 19 and has a height that matches the target when the raw material is deposited to the target height, and the upper scraper 23 projects horizontally from the shaft 3 toward the inner wall of the accommodating portion 19. It has become.

送風機12は、吸気側が収容部19のパンチングプレート13より下の空間と接続し、収容部、19内でガス化した燃料ガスを吸い出し、配管14を介してガスタービン等の需要側へ送出している。 In the blower 12, the intake side is connected to the space below the punching plate 13 of the accommodating portion 19, the fuel gas gasified in the accommodating portion 19 is sucked out, and is sent to the demand side of the gas turbine or the like via the pipe 14. There is.

このようにガス化炉は、原料投入部4により原料を収容部19内へ投入し、原料をパンチングプレート13上に堆積させ、シャフト3を回転駆動することにより酸化剤供給管22を収容部19内で水平に旋回させた状態で原料を乾溜し、有機物をガス化させて燃料ガスを産出し、需要側へ送出する。このとき本実施形態1のガス化炉は、酸化剤供給管22を収容部19内で水平方向に旋回させながら酸化剤を供給するので、収容部19内の水平方向の広い範囲で反応を起こさせることができ、これに伴う熱分解も広い範囲で生じることになるため、効率良くガス化を行うことができる。 In this way, in the gasification furnace, the raw material is charged into the accommodating unit 19 by the raw material input unit 4, the raw material is deposited on the punching plate 13, and the shaft 3 is rotationally driven to accommodate the oxidant supply pipe 22 in the accommodating unit 19. The raw material is dried and stored while being swirled horizontally inside, and the organic material is gasified to produce fuel gas, which is sent to the demand side. At this time, since the gasifier of the first embodiment supplies the oxidant while rotating the oxidant supply pipe 22 in the accommodating portion 19 in the horizontal direction, the reaction occurs in a wide range in the horizontal direction in the accommodating portion 19. Since it can be caused and the thermal decomposition accompanying this occurs in a wide range, gasification can be performed efficiently.

<各部の構成>
次に各部の構成を詳細に説明する。図2は、シャフト3の構成を示す図であり、図2(A)はシャフト3の正面図、図2(B)は側面図、図2(C)はA−A断面図である。また、図3は、シャフト3の一部を示す分解斜視図である。
<Structure of each part>
Next, the configuration of each part will be described in detail. 2A and 2B are views showing the configuration of the shaft 3, FIG. 2A is a front view of the shaft 3, FIG. 2B is a side view, and FIG. 2C is a sectional view taken along the line AA. Further, FIG. 3 is an exploded perspective view showing a part of the shaft 3.

シャフト3は、図2,図3に示すように、中心に冷媒の流路である冷却水の往き管34を有し、往き管34に上部シャフト33が外嵌され、往き管34の外周面と上部シャフト33の内周面との間の空間を冷媒の流路である冷却水の還り管332としている。 As shown in FIGS. 2 and 3, the shaft 3 has a cooling water outflow pipe 34 which is a flow path of the refrigerant in the center, and an upper shaft 33 is externally fitted in the outbound pipe 34 to form an outer peripheral surface of the outbound pipe 34. The space between the upper shaft 33 and the inner peripheral surface of the upper shaft 33 is a cooling water return pipe 332 which is a flow path of the refrigerant.

上部シャフト33の下方には下部シャフト31が接続されている。下部シャフト31は、中心に往き管34を有し、往き管34と同心円状に外郭317を有し、往き管34の外周面と外郭317の内周面との間の空間を縦割りに4分割している。換言すると、下部シャフト31は、回転軸と直交する断面において、往き管34の外周面と外郭317の内周面との間の空間を仕切り板313〜316で4分割している。本実施形態1のシャフトは、この4つに分割した空間のうち、往き管34を中心として点対称の位置にある一対の空間を冷媒の流路である冷却水の還り管319とし、他の一対の空間を酸化剤供給路318としている。 A lower shaft 31 is connected below the upper shaft 33. The lower shaft 31 has a forward pipe 34 at the center, has an outer shell 317 concentrically with the forward pipe 34, and vertically divides the space between the outer peripheral surface of the forward pipe 34 and the inner peripheral surface of the outer shell 317. It is divided. In other words, the lower shaft 31 divides the space between the outer peripheral surface of the going pipe 34 and the inner peripheral surface of the outer shell 317 into four by partition plates 313 to 316 in a cross section orthogonal to the rotation axis. In the shaft of the first embodiment, of the four divided spaces, a pair of spaces located point-symmetrically with respect to the outgoing pipe 34 is used as a cooling water return pipe 319 which is a flow path of the refrigerant, and the other A pair of spaces are used as an oxidant supply path 318.

そして、下部シャフト31の上端部において、還り管319・319は上部シャフト33よりも外側の部分を蓋部328・328で閉塞されている。また、酸化剤供給路318・318は上部シャフト33よりも内側の部分を蓋部329・329で閉塞されている。即ち、上部シャフト33の還り管332は、下部シャフト31の蓋部329・329が設けられていない領域で還り管319と連通されている。なお、下部シャフト31の外郭317は、円管を縦割りに4分割し、仕切り板313〜316の間に夫々接続した構成となっている。これらの外郭317は、上部シャフト33の下端よりも上方まで延設され、上部シャフト33の外面との間に空間を形成し、上端が蓋部312で閉塞されている。この空間のうち、仕切り板314,315で挟む酸化剤供給路318、及び仕切り板316,313で挟む酸化剤供給路318と面した外郭317の上部には、外周面と内周面とを貫通した孔311を設けている。酸化剤の供給口としての孔311は、下部シャフト31の蓋部329・329が設けられていない領域で酸化剤供給路318・318と連通されている。 Then, at the upper end of the lower shaft 31, the return pipes 319 and 319 are closed with lids 328 and 328 on the outer side of the upper shaft 33. Further, the oxidant supply passages 318 and 318 are closed with lids 329 and 329 at a portion inside the upper shaft 33. That is, the return pipe 332 of the upper shaft 33 is communicated with the return pipe 319 in the region where the lid portions 329 and 329 of the lower shaft 31 are not provided. The outer shell 317 of the lower shaft 31 is configured such that a circular pipe is vertically divided into four and connected to each of the partition plates 313 to 316. These outer shells 317 extend above the lower end of the upper shaft 33, form a space between them and the outer surface of the upper shaft 33, and the upper end is closed by the lid portion 312. In this space, the outer peripheral surface and the inner peripheral surface penetrate through the upper part of the outer shell 317 facing the oxidant supply path 318 sandwiched between the partition plates 314 and 315 and the oxidant supply path 318 sandwiched between the partition plates 316 and 313. The hole 311 is provided. The hole 311 as the oxidant supply port is communicated with the oxidant supply passages 318 and 318 in the region where the lid portion 329 and 329 of the lower shaft 31 is not provided.

一方、シャフト3の上部において、往き管34の上端部には、キャップ状の接続部169が接続され、接続部169に対して往き管34が回転可能であって、接続部169と往き管34とが不図示のシール等によって水密に保たれている。この接続部169は、不図示の冷熱源からの冷却水が往き管16を介して供給され、シャフト3の往き管34へ冷却
水を供給する。
On the other hand, in the upper part of the shaft 3, a cap-shaped connecting portion 169 is connected to the upper end portion of the outgoing pipe 34, the outgoing pipe 34 is rotatable with respect to the connecting portion 169, and the connecting portion 169 and the outgoing pipe 34 Is kept watertight by a seal (not shown). In this connection portion 169, cooling water from a cold heat source (not shown) is supplied via the outbound pipe 16, and the cooling water is supplied to the outbound pipe 34 of the shaft 3.

また、上部シャフト33と同様に接続管35が、往き管34に外嵌し、接続管35の下端を上部シャフト33の上端に突き当て、接続管35に対して上部シャフト33を回転可能に接続している。また、接続管35に対して往き管34も回転可能となっている。更に、この往き管34と接続管35との間、及び上部シャフト33と接続管35との間は、不図示のシール機構により水密に保持されている。この接続管35は、上部スクレーパー23、酸化剤供給管22、下部スクレーパー21内を循環した冷却水を還り管17を介して冷熱源側へ還流させる。このように接続部169及び接続管35に対してシャフト3が接続可能に接続しているので、シャフト3は、回転駆動されても冷媒の流路としての往き管34及び還り管319,332に冷媒を循環させることができる。 Further, similarly to the upper shaft 33, the connecting pipe 35 is fitted onto the outgoing pipe 34, the lower end of the connecting pipe 35 is abutted against the upper end of the upper shaft 33, and the upper shaft 33 is rotatably connected to the connecting pipe 35. are doing. Further, the outgoing pipe 34 can also rotate with respect to the connecting pipe 35. Further, the space between the going pipe 34 and the connecting pipe 35 and the space between the upper shaft 33 and the connecting pipe 35 are watertightly held by a sealing mechanism (not shown). The connecting pipe 35 returns the cooling water circulating in the upper scraper 23, the oxidant supply pipe 22, and the lower scraper 21 to the cold heat source side via the return pipe 17. Since the shaft 3 is connectable to the connection portion 169 and the connection pipe 35 in this way, the shaft 3 is connected to the forward pipe 34 and the return pipe 319, 332 as the flow path of the refrigerant even if it is rotationally driven. Refrigerant can be circulated.

また、図1、図2に示すように、下部シャフト31の孔311の周囲を覆うように酸化剤供給部6の接続部63が設けられ、送風機61からダクト62を介して酸化剤が接続部63内に送られると、孔311・311を介して酸化剤供給路318へ供給する。また、シャフト3は、接続部63に対して回転可能に接続されているため、回転駆動されても酸化剤を酸化剤供給路318へ供給させることができる。 Further, as shown in FIGS. 1 and 2, a connecting portion 63 of the oxidizing agent supply portion 6 is provided so as to cover the periphery of the hole 311 of the lower shaft 31, and the oxidizing agent is connected from the blower 61 via the duct 62. When sent into the 63, it is supplied to the oxidant supply path 318 through the holes 311 and 311. Further, since the shaft 3 is rotatably connected to the connecting portion 63, the oxidant can be supplied to the oxidant supply path 318 even if it is rotationally driven.

次に図1〜図5Bを用いて酸化剤供給管22について説明する。図2(C)に示すように、酸化剤供給管22は、下部シャフト31を中心として放射状に複数の酸化剤供給管22が隣接する他の酸化剤供給管22と等間隔に設けられている。図2(C)の例では4本の酸化剤供給管22が放射状に設けられている。換言すると、一直線上に2本の酸化剤供給管22が下部シャフト31を挟んで設けられ、この直線と直交する直線上に他の2本の酸化剤供給管22が下部シャフト31を挟んで設けられている。 Next, the oxidizing agent supply pipe 22 will be described with reference to FIGS. 1 to 5B. As shown in FIG. 2C, the oxidant supply pipe 22 is provided with a plurality of oxidant supply pipes 22 radially centered on the lower shaft 31 at equal intervals with other oxidant supply pipes 22 adjacent to each other. .. In the example of FIG. 2C, four oxidizing agent supply pipes 22 are provided radially. In other words, two oxidant supply pipes 22 are provided on a straight line with the lower shaft 31 interposed therebetween, and two other oxidant supply pipes 22 are provided on a straight line orthogonal to this straight line with the lower shaft 31 interposed therebetween. Has been done.

図4は、図2に示すB線における酸化剤供給管22の断面図である。図4に示すように、酸化剤供給管22は、中心に冷媒の流路である冷却水の往き管222を有し、断面を往き管222と同心円状とする外管223を有している。なお、酸化剤供給管22の基端部は、シャフト3と接続され、先端部は不図示の蓋部で閉塞されている。 FIG. 4 is a cross-sectional view of the oxidizing agent supply pipe 22 in line B shown in FIG. As shown in FIG. 4, the oxidant supply pipe 22 has a cooling water outflow pipe 222 which is a flow path of the refrigerant in the center, and has an outer pipe 223 whose cross section is concentric with the outbound pipe 222. .. The base end portion of the oxidant supply pipe 22 is connected to the shaft 3, and the tip end portion is closed by a lid portion (not shown).

また、酸化剤供給管22は、往き管222の外周面と外管223の内周面との間の空間を仕切り板226で上下に2分割している。本実施形態1の酸化剤供給管22は、この2分割した上部の空間を冷媒の還り管224とし、下部の空間を酸化剤流路225としている。この酸化剤流路を形成する外管223には、長手方向の所定位置において原料と接する外面に開口し、内部の酸化剤流路225と連通した酸化剤供給口227を有している。本実施形態1の酸化剤供給管22は、長手方向に略等間隔の9カ所に2つずつ酸化剤供給口227を有している。このように酸化剤供給管22は、長手方向に複数設けた酸化剤供給口227の夫々から酸化剤を供給する。 Further, the oxidant supply pipe 22 divides the space between the outer peripheral surface of the outgoing pipe 222 and the inner peripheral surface of the outer pipe 223 into upper and lower parts by a partition plate 226. In the oxidant supply pipe 22 of the first embodiment, the upper space divided into two is used as the refrigerant return pipe 224, and the lower space is used as the oxidant flow path 225. The outer tube 223 forming the oxidant flow path has an oxidant supply port 227 that opens to the outer surface in contact with the raw material at a predetermined position in the longitudinal direction and communicates with the internal oxidant flow path 225. The oxidant supply pipe 22 of the first embodiment has two oxidant supply ports 227 at nine locations at substantially equal intervals in the longitudinal direction. In this way, the oxidant supply pipe 22 supplies the oxidant from each of the plurality of oxidant supply ports 227 provided in the longitudinal direction.

往き管222は、酸化剤供給管22の先端付近で、還り管224と接続されており、往き管222により先端部へ供給された冷媒が、還り管224に折り返して下部シャフト31内の還り管319へ還流する。 The outgoing pipe 222 is connected to the return pipe 224 near the tip of the oxidant supply pipe 22, and the refrigerant supplied to the tip by the outgoing pipe 222 is folded back to the return pipe 224 and the return pipe in the lower shaft 31. Reflux to 319.

なお、各酸化剤供給管22の上部には、平板状の撹拌羽根221が、酸化剤供給管22の長手方向に所定の間隔を空けて2枚、立設されている。この酸化剤供給管22の長手方向における撹拌羽根221の位置は、酸化剤供給管22毎に異なっているため、各酸化剤供給管22の撹拌羽根221が長手方向の異なる位置を撹拌でき、収容部19内を隈なく撹拌することができる。 Two flat plate-shaped stirring blades 221 are erected on the upper portion of each oxidant supply pipe 22 at predetermined intervals in the longitudinal direction of the oxidant supply pipe 22. Since the position of the stirring blade 221 in the longitudinal direction of the oxidant supply pipe 22 is different for each oxidant supply pipe 22, the stirring blade 221 of each oxidant supply pipe 22 can stir and accommodate the different positions in the longitudinal direction. The inside of the portion 19 can be thoroughly stirred.

図5Aは、図2(A)に示した正面と平行に回転中心を通る断面を示す図であり、図5
Bは、図2(B)に示した側面と平行に回転中心を通る断面を示す図である。図5A、図5Bに示すように、下部シャフト31の往き管34と各酸化剤供給管22の往き管222とが接続されている。また、下部シャフト31と酸化剤供給管22の接続部分の周囲に外環部材32を設け、下部シャフト31の外面と外環部材32の内面との間に空間を形成している。この空間は、酸化剤供給管22の冷媒の還り管224と連通する上部空間326と、酸化剤供給管22の酸化剤流路225と連通する下部空間327とに、不図示の仕切板によって仕切られている。
FIG. 5A is a view showing a cross section passing through the center of rotation in parallel with the front surface shown in FIG. 2 (A).
FIG. B is a cross section showing a cross section passing through the center of rotation in parallel with the side surface shown in FIG. 2 (B). As shown in FIGS. 5A and 5B, the outgoing pipe 34 of the lower shaft 31 and the outgoing pipe 222 of each oxidant supply pipe 22 are connected. Further, an outer ring member 32 is provided around the connecting portion between the lower shaft 31 and the oxidizing agent supply pipe 22, and a space is formed between the outer surface of the lower shaft 31 and the inner surface of the outer ring member 32. This space is partitioned by a partition plate (not shown) into an upper space 326 communicating with the refrigerant return pipe 224 of the oxidant supply pipe 22 and a lower space 327 communicating with the oxidant flow path 225 of the oxidant supply pipe 22. Has been done.

図5Aに示すように、下部シャフト31の外郭317には、冷却水の還り管319と、この還り管319の外側に位置する上部空間326とを連通する連絡孔321が、設けられている。更に、この上部空間326と酸化剤供給管22の冷媒の流路224とが連通している。 As shown in FIG. 5A, the outer shell 317 of the lower shaft 31 is provided with a connecting hole 321 for communicating the cooling water return pipe 319 and the upper space 326 located outside the return pipe 319. Further, the upper space 326 and the refrigerant flow path 224 of the oxidant supply pipe 22 communicate with each other.

これらの構成により、下部シャフト31の往き管34から、各酸化剤供給管22の往き管222を介して各酸化剤供給管22の先端部に送られた冷媒は、各酸化剤供給管22の先端部で還り管224へ折返す。そして、酸化剤供給管22の還り管224に戻った冷媒は、上部空間326及び、外郭317の連絡孔321を介して下部シャフト31の還り管319へ還流する。 With these configurations, the refrigerant sent from the going pipe 34 of the lower shaft 31 to the tip of each oxidant supply pipe 22 via the going pipe 222 of each oxidant supply pipe 22 is the oxidant supply pipe 22. Fold back to the return pipe 224 at the tip. Then, the refrigerant returned to the return pipe 224 of the oxidant supply pipe 22 returns to the return pipe 319 of the lower shaft 31 through the upper space 326 and the connecting hole 321 of the outer shell 317.

また、図5Bに示すように、下部シャフト31の外郭317には、酸化剤供給路318と、外環部材32内の下部空間327とを連通する連絡孔322が、設けられている。更に、この下部空間327と酸化剤供給管22の酸化剤流路225とが連通している。 Further, as shown in FIG. 5B, the outer shell 317 of the lower shaft 31 is provided with a connecting hole 322 for communicating the oxidizing agent supply path 318 and the lower space 327 in the outer ring member 32. Further, the lower space 327 and the oxidant flow path 225 of the oxidant supply pipe 22 communicate with each other.

これらの構成により、下部シャフト31の酸化剤供給路318に供給された酸化剤としての空気は、連絡孔322を介して下部空間327へ供給される。そして、酸化剤としての空気は、下部空間327から酸化剤供給管22の酸化剤流路225へ送られ、酸化剤流路225に設けられた酸化剤供給口227から原料に対して供給される。なお、図5Bにおいて、冷媒の流路224は、上部空間326と連通しており、冷媒の流路224に折り返してきた冷媒は、上部空間326に導入される。そして、上部空間は、周方向につながっているので、上部空間326の冷媒は、図5Aに示した連絡孔321を介して下部シャフト31の冷媒流路319へ還流する。また、図5Aにおいても、酸化剤供給管22の酸化剤流路225は下部空間327と連通している。そして、下部空間は、周方向につながっているので、図5Bに示した連絡孔322を介して下部空間327へ導入された酸化剤は、図5Aに示した下部空間327から酸化剤供給管22の酸化剤流路225へ送られる。 With these configurations, the air as an oxidant supplied to the oxidant supply path 318 of the lower shaft 31 is supplied to the lower space 327 through the connecting hole 322. Then, air as an oxidant is sent from the lower space 327 to the oxidant flow path 225 of the oxidant supply pipe 22, and is supplied to the raw material from the oxidant supply port 227 provided in the oxidant flow path 225. .. In FIG. 5B, the refrigerant flow path 224 communicates with the upper space 326, and the refrigerant that has returned to the refrigerant flow path 224 is introduced into the upper space 326. Since the upper space is connected in the circumferential direction, the refrigerant in the upper space 326 returns to the refrigerant flow path 319 of the lower shaft 31 through the connecting hole 321 shown in FIG. 5A. Further, also in FIG. 5A, the oxidant flow path 225 of the oxidant supply pipe 22 communicates with the lower space 327. Since the lower space is connected in the circumferential direction, the oxidant introduced into the lower space 327 through the connecting hole 322 shown in FIG. 5B is transferred from the lower space 327 shown in FIG. 5A to the oxidant supply pipe 22. Is sent to the oxidant flow path 225 of.

次に図6,図7を用いて上部スクレーパー23の構成を説明する。図6は、図2のD線における上部スクレーパー23の断面図である。図6に示すように、上部スクレーパー23は、中心に冷媒の流路である冷却水の往き管231を有し、図6の断面において往き管231と同心円状に外管232を有している。また、上部スクレーパー23は、往き管231の外周面と外管232の内周面との間の空間を冷媒の還り管233とし、往き管231が、上部スクレーパー23の先端付近で開放され、還り管233と接続されている。そして、上部スクレーパー23の基端部は、シャフト3と接続され、先端部は不図示の蓋部で閉塞されている。 Next, the configuration of the upper scraper 23 will be described with reference to FIGS. 6 and 7. FIG. 6 is a cross-sectional view of the upper scraper 23 in line D of FIG. As shown in FIG. 6, the upper scraper 23 has a cooling water outflow pipe 231 which is a flow path of the refrigerant in the center, and has an outer pipe 232 concentrically with the outflow pipe 231 in the cross section of FIG. .. Further, in the upper scraper 23, the space between the outer peripheral surface of the outgoing pipe 231 and the inner peripheral surface of the outer pipe 232 is used as a return pipe 233 for the refrigerant, and the outgoing pipe 231 is opened near the tip of the upper scraper 23 and returns. It is connected to the pipe 233. The base end portion of the upper scraper 23 is connected to the shaft 3, and the tip end portion is closed by a lid portion (not shown).

図7は、図2のC線における断面図である。下部シャフト31内の往き管34から上部スクレーパー23の往き管231に供給された冷媒は、往き管231により上部スクレーパー23の先端部へ送られ、還り管233に折り返して下部シャフト31内の還り管319へ還流する。このように冷媒が往き管231及び還り管233内を循環することで、上部スクレーパー23は冷却される。 FIG. 7 is a cross-sectional view taken along the line C of FIG. The refrigerant supplied from the outgoing pipe 34 in the lower shaft 31 to the outgoing pipe 231 of the upper scraper 23 is sent to the tip of the upper scraper 23 by the outgoing pipe 231 and turned back to the return pipe 233 to return the return pipe in the lower shaft 31. Reflux to 319. The upper scraper 23 is cooled by circulating the refrigerant in the forward pipe 231 and the return pipe 233 in this way.

次に図8,図9を用いて下部スクレーパー21の構成を説明する。図8は、図2のE線における断面図、図9は、図8のF線における下部スクレーパー21の断面図である。図8に示すように、下部スクレーパー21は、下部シャフト31を挟んで一直線上に2本設けられている。これに限らず、下部スクレーパー21は、下部シャフト31を中心として3本以上の下部スクレーパー21が放射状に設けられてもよい。 Next, the configuration of the lower scraper 21 will be described with reference to FIGS. 8 and 9. 8 is a cross-sectional view taken along the line E of FIG. 2, and FIG. 9 is a cross-sectional view of the lower scraper 21 taken along the line F of FIG. As shown in FIG. 8, two lower scrapers 21 are provided in a straight line with the lower shaft 31 interposed therebetween. Not limited to this, the lower scraper 21 may be provided with three or more lower scrapers 21 radially around the lower shaft 31.

また、下部スクレーパー21は、中心に冷媒の流路である冷却水の往き管213を有し、図9の断面において往き管213と同心円状に外管210を有している。また、下部スクレーパー21は、往き管213の外周面と外管210の内周面との間の空間を冷媒の還り管214とし、往き管213が、下部スクレーパー21の先端付近で開放され、還り管214と接続されている。そして、下部スクレーパー21の基端部は、下部シャフト31と接続され、先端部は不図示の蓋部で閉塞されている。なお、下部スクレーパー21についても図7に示した上部スクレーパー23と同様に、往き管213が下部シャフト31の往き管34と接続し、還り管214が下部シャフト31の還り管319と接続している。この下部シャフト31内の往き管34から下部スクレーパー21の往き管213に供給された冷媒は、往き管213により下部スクレーパー21の先端部へ送られ、還り管214に折り返して下部シャフト31内の還り管319へ還流する。このように冷媒が往き管213及び還り管214内を循環することで、下部スクレーパー21は冷却される。 Further, the lower scraper 21 has a cooling water outflow pipe 213 which is a flow path of the refrigerant in the center, and has an outer pipe 210 concentrically with the outbound pipe 213 in the cross section of FIG. Further, in the lower scraper 21, the space between the outer peripheral surface of the outgoing pipe 213 and the inner peripheral surface of the outer pipe 210 is used as the refrigerant return pipe 214, and the outgoing pipe 213 is opened near the tip of the lower scraper 21 and returns. It is connected to the pipe 214. The base end portion of the lower scraper 21 is connected to the lower shaft 31, and the tip end portion is closed by a lid portion (not shown). As for the lower scraper 21, similarly to the upper scraper 23 shown in FIG. 7, the outgoing pipe 213 is connected to the outgoing pipe 34 of the lower shaft 31, and the return pipe 214 is connected to the return pipe 319 of the lower shaft 31. .. The refrigerant supplied from the outgoing pipe 34 in the lower shaft 31 to the outgoing pipe 213 of the lower scraper 21 is sent to the tip of the lower scraper 21 by the outgoing pipe 213, and is folded back to the return pipe 214 to return in the lower shaft 31. Reflux to tube 319. The lower scraper 21 is cooled by circulating the refrigerant in the forward pipe 213 and the return pipe 214 in this way.

また、下部スクレーパー21は下部シャフト31の回転に伴って矢印219方向、即ち図8において時計方向に回転する。下部スクレーパー21は、この回転方向において、外管210の前側に平板状の押し板211を備えている。なお、下部スクレーパー21は、この押し板211の下端、或は外管210の下端が、パンチングプレート13の上面と接する位置又は近接する位置に設けられている。この位置に設けられた下部スクレーパー21が回転し、押し板211が原料を押し退けるように撹拌することで、炭化して細粒化した原料がパンチングプレート13の孔を介して落下する。これにより炭化した原料を排除し、パンチングプレート13上の原料を入れ替えて持続的にガス化を行うことができる。 Further, the lower scraper 21 rotates in the arrow 219 direction, that is, in the clockwise direction in FIG. 8 as the lower shaft 31 rotates. The lower scraper 21 is provided with a flat plate-shaped push plate 211 on the front side of the outer tube 210 in this rotation direction. The lower scraper 21 is provided at a position where the lower end of the push plate 211 or the lower end of the outer tube 210 is in contact with or close to the upper surface of the punching plate 13. The lower scraper 21 provided at this position rotates and the push plate 211 stirs the raw material so as to push it away, so that the carbonized and finely divided raw material falls through the holes of the punching plate 13. As a result, the carbonized raw material can be eliminated, and the raw material on the punching plate 13 can be replaced to continuously gasify.

<ガス化方法>
上記構成のガス化炉において、ガス化を行う場合、先ず、原料投入部4により、原料を収容部19内に投入する。このとき原料投入部4の電気ヒータ41により原料に着火し、着火した状態で原料を投入する。
<Gasification method>
When gasification is performed in the gasification furnace having the above configuration, first, the raw material is charged into the storage unit 19 by the raw material charging unit 4. At this time, the raw material is ignited by the electric heater 41 of the raw material charging unit 4, and the raw material is charged in the ignited state.

一方、不図示の冷熱源は、冷媒としての冷却水を往き管16を介してシャフト3に供給し、シャフト3内を循環させて冷却する。なお、循環後の冷却水は還り管17から排出させる。また、この冷熱源は、冷却水を冷媒導入部11を介して炉本体1の水冷ジャケット18へ供給し、水冷ジャケット18内を循環させて冷却する。なお、循環後の冷却水は冷媒排出部15から排出させる。 On the other hand, a cooling heat source (not shown) supplies cooling water as a refrigerant to the shaft 3 via an outgoing pipe 16 and circulates in the shaft 3 to cool the shaft 3. The cooling water after circulation is discharged from the return pipe 17. Further, this cooling heat source supplies cooling water to the water cooling jacket 18 of the furnace main body 1 via the refrigerant introduction unit 11 and circulates in the water cooling jacket 18 for cooling. The cooling water after circulation is discharged from the refrigerant discharge unit 15.

また、駆動部5は、モータ51の駆動によりシャフト3を回転駆動させる。これによりシャフト3に接続された上部スクレーパー23、酸化剤供給管22及び下部スクレーパー21も収容部19内で旋回する。 Further, the drive unit 5 rotationally drives the shaft 3 by driving the motor 51. As a result, the upper scraper 23, the oxidant supply pipe 22, and the lower scraper 21 connected to the shaft 3 also rotate in the accommodating portion 19.

更に、酸化剤供給部6は、送風機61により、酸化剤としての空気を送出し、ダクト62及び接続部63を介してシャフト3内へ供給する。シャフト3内に供給された空気は、酸化剤供給路318を介して酸化剤供給管22へ供給され、酸化剤流路225を介して酸化剤供給口227から原料へ供給される。収容部19内に原料を所定量堆積させた状態で空気を供給すると、原料投入部4で着火した原料から燃え広がり、収容部19内に堆積した原料全体に火が回る。そして収容部19内の酸素が消費されると、乾留状態となる。酸
化剤供給部6は、この乾留状態を維持するように適度な量の空気を供給する。
Further, the oxidant supply unit 6 sends out air as an oxidant by the blower 61 and supplies it into the shaft 3 via the duct 62 and the connection unit 63. The air supplied into the shaft 3 is supplied to the oxidant supply pipe 22 via the oxidant supply path 318, and is supplied to the raw material from the oxidant supply port 227 via the oxidant flow path 225. When air is supplied with a predetermined amount of the raw material deposited in the accommodating portion 19, the raw material ignited in the raw material input unit 4 burns and spreads, and the entire raw material deposited in the accommodating portion 19 is ignited. Then, when the oxygen in the accommodating portion 19 is consumed, it becomes a carbonization state. The oxidant supply unit 6 supplies an appropriate amount of air so as to maintain this carbonization state.

この乾留により原料中の有機物が熱分解してガス化し、このガスを送風機12の駆動に吸い出し、燃料ガスとして配管14を介して需要側へ供給する。 By this carbonization, the organic matter in the raw material is thermally decomposed and gasified, and this gas is sucked out to drive the blower 12 and supplied as fuel gas to the demand side through the pipe 14.

なお、下部スクレーパー21は、パンチングプレート13上で原料の撹拌を行い、炭化して細粒化した原料をパンチングプレート13の孔を介して排出する。即ち、パンチングプレート13の下の空間は、燃料ガスの吸い出しチャンバとして機能すると共に、ガス化後の原料の受け部として機能する。 The lower scraper 21 stirs the raw material on the punching plate 13 and discharges the carbonized and finely divided raw material through the holes of the punching plate 13. That is, the space under the punching plate 13 functions as a suction chamber for fuel gas and also as a receiving portion for the raw material after gasification.

このようにガス化及び排出によって減じた原料を補うように原料投入部4から原料が投入され、収容部19内に規定量の原料が保持される。例えば本実施形態1では、収容部19内に堆積した原料が目標の高さとなるように制御する。なお、この制御は、センサ等により原料の堆積量を測定し、制御装置によって原料投入部4の投入量を制御して行っても良いし、人が原料投入部4による投入量を制御しても良い。 The raw material is input from the raw material input unit 4 so as to supplement the raw material reduced by gasification and discharge, and a specified amount of the raw material is held in the accommodating unit 19. For example, in the first embodiment, the raw material deposited in the accommodating portion 19 is controlled to have a target height. This control may be performed by measuring the deposited amount of the raw material with a sensor or the like and controlling the input amount of the raw material input unit 4 with a control device, or a person controls the input amount by the raw material input unit 4. Is also good.

この原料投入部4から固定的に原料を投入すると、投入箇所に原料の山ができ、堆積した原料の高さが不均一となって、ガス化の効率を低下させるので、原料を堆積させる目標の高さに合わせた位置に上部スクレーパー23を備えた。この上部スクレーパーが旋回することで、投入された原料の山が均され、原料の高さが均一となる。 When the raw material is fixedly input from the raw material input section 4, a pile of raw materials is formed at the input location, the height of the deposited raw material becomes non-uniform, and the efficiency of gasification is lowered. The upper scraper 23 was provided at a position adjusted to the height of the above. By turning the upper scraper, the pile of the input raw material is leveled and the height of the raw material becomes uniform.

<実施形態1の効果>
以上のように、本実施形態1によれば、酸化剤供給管22が収容部19内を旋回しながら酸化剤を供給するので、収容部19内の広い範囲で適切に酸化反応を行わせることができ、効率良くガス化を行うことができる。
<Effect of Embodiment 1>
As described above, according to the first embodiment, since the oxidant supply pipe 22 supplies the oxidant while swirling in the accommodating portion 19, the oxidation reaction is appropriately performed in a wide range in the accommodating portion 19. And can be gasified efficiently.

また、原料を堆積させる目標の高さに合わせた位置に上部スクレーパー23を備えたことにより、堆積させた原料の高さを均一にでき、収容部19内で上部スクレーパー23の旋回によってカバーされる広範囲にわたって適切にガス化を行わせることができる。 Further, by providing the upper scraper 23 at a position corresponding to the target height for depositing the raw material, the height of the deposited raw material can be made uniform, and the height of the deposited raw material can be made uniform and covered by the rotation of the upper scraper 23 in the accommodating portion 19. Appropriate gasification can be performed over a wide range.

なお、本実施形態1では、下部スクレーパー21、酸化剤供給管22及び上部スクレーパー23を設けたが下部スクレーパー21や上部スクレーパー23は省略しても良い。この場合、酸化剤供給管22が下部スクレーパー21や上部スクレーパー23を兼用しても良い。また、酸化剤供給管22を設置する高さは、任意に設定して良い。例えば、酸化剤供給管22を設置する高さは、原料や反応条件、収容部の形状等に応じて設定される。
なお、本実施形態1では、酸化剤供給管22から酸化剤を供給する構成としたが、上部スクレーパー23や下部スクレーパー21に酸化剤流路を内包させ、上部スクレーパー23や下部スクレーパー21から酸化剤を供給する構成としても良い。
In the first embodiment, the lower scraper 21, the oxidant supply pipe 22, and the upper scraper 23 are provided, but the lower scraper 21 and the upper scraper 23 may be omitted. In this case, the oxidant supply pipe 22 may also serve as the lower scraper 21 or the upper scraper 23. Further, the height at which the oxidant supply pipe 22 is installed may be arbitrarily set. For example, the height at which the oxidant supply pipe 22 is installed is set according to the raw material, reaction conditions, the shape of the accommodating portion, and the like.
In the first embodiment, the oxidant is supplied from the oxidant supply pipe 22, but the upper scraper 23 and the lower scraper 21 include the oxidant flow path, and the upper scraper 23 and the lower scraper 21 include the oxidant. May be configured to supply.

〈変形例〉
上述の実施形態1では、図2に示すようにシャフト3の中心に往き管34を有し、その周囲の空間を4分割して酸化剤供給路318、還り管319とした例を示したが、これに限らず、図10(A)〜図10(F)の構成としっても良い。
<Modification example>
In the above-described first embodiment, as shown in FIG. 2, an example is shown in which the going pipe 34 is provided at the center of the shaft 3, and the space around the going pipe 34 is divided into four to form an oxidant supply path 318 and a return pipe 319. The configuration is not limited to this, and the configurations of FIGS. 10 (A) to 10 (F) may be used.

図10(A)は、酸化剤供給路401を中心とし、酸化剤供給路401の外周面と外管400の内周面との間の空間を仕切り板409で2分割し、一方を往き管402、他方を還り管403としている。 In FIG. 10 (A), the space between the outer peripheral surface of the oxidant supply path 401 and the inner peripheral surface of the outer pipe 400 is divided into two by a partition plate 409 with the oxidant supply path 401 as the center, and one of them is an outgoing pipe. 402, the other is the return pipe 403.

図10(B)は、外管400の内空を仕切板408によって放射状に8分割した例である。この8つの空間のうち、4つを酸化剤供給路401とし、2つを往き管402、残り
の2つを還り管403としている。
FIG. 10B is an example in which the inner space of the outer pipe 400 is radially divided into eight by a partition plate 408. Of these eight spaces, four are oxidant supply paths 401, two are outbound pipes 402, and the remaining two are return pipes 403.

図10(C)は、外管400の内空を仕切板408によって4分割した例である。この4つの空間のうち、2つを酸化剤供給路401とし、1つを往き管402、残りの1つを還り管403としている。 FIG. 10C is an example in which the inner space of the outer pipe 400 is divided into four by a partition plate 408. Of these four spaces, two are used as an oxidant supply path 401, one is used as an outgoing pipe 402, and the other one is used as a return pipe 403.

また、シャフトの断面形状は、円形に限らず、他の形状であっても良い。例えば図10(D)〜(F)は四角形としている。 Further, the cross-sectional shape of the shaft is not limited to a circular shape, and may be another shape. For example, FIGS. 10 (D) to 10 (F) are quadrangles.

図10(D)は、酸化剤供給路401を中心とし、酸化剤供給路401の外周面と外管410の内周面との間の空間を仕切り板407で2分割し、一方を往き管402、他方を還り管403としている。 In FIG. 10 (D), the space between the outer peripheral surface of the oxidant supply path 401 and the inner peripheral surface of the outer tube 410 is divided into two by a partition plate 407 with the oxidant supply path 401 as the center, and one of them is an outgoing pipe. 402, the other is the return pipe 403.

図10(E)は、外管410の内空を仕切板406によって対角線状に4分割した例である。この4つの空間のうち、2つを酸化剤供給路401とし、1つを往き管402、残りの1つを還り管403としている。 FIG. 10 (E) shows an example in which the inner space of the outer pipe 410 is diagonally divided into four by a partition plate 406. Of these four spaces, two are used as an oxidant supply path 401, one is used as an outgoing pipe 402, and the other one is used as a return pipe 403.

図10(F)は、外管410の内空を仕切板405によって縦横に4分割した例である。この4つの空間のうち、2つを酸化剤供給路401とし、1つを往き管402、残りの1つを還り管403としている。 FIG. 10F is an example in which the inner space of the outer pipe 410 is divided into four vertically and horizontally by the partition plate 405. Of these four spaces, two are used as an oxidant supply path 401, one is used as an outgoing pipe 402, and the other one is used as a return pipe 403.

なお、酸化剤供給路401、往き管402、還り管403配置は、図10(A)〜図10(F)のように、回転軸を中心として点対称に配置するのが望ましい。 It is desirable that the oxidant supply path 401, the forward pipe 402, and the return pipe 403 are arranged point-symmetrically with respect to the rotation axis as shown in FIGS. 10A to 10F.

〈実施形態2〉
図11は、実施形態2に係るガス化炉の説明図である。本実施形態2のガス化炉は、前述の実施形態1と比べてパンチングプレート13の下部に第二ガス化室を備えた構成が異なり、他の構成は同じであるため、同一の要素には同符号を付す等して再度の説明を省略している。
<Embodiment 2>
FIG. 11 is an explanatory diagram of the gasification furnace according to the second embodiment. The gasification furnace of the second embodiment has a different configuration in which the second gasification chamber is provided in the lower part of the punching plate 13 as compared with the first embodiment, and the other configurations are the same. The explanation is omitted again by adding the same reference numerals.

本実施形態2では、図11に示すように、収容部19内のパンチングプレート13よりも上の領域が第一ガス化室、パンチングプレート13よりも下の領域が第二ガス化室である。 In the second embodiment, as shown in FIG. 11, the region above the punching plate 13 in the accommodating portion 19 is the first gasification chamber, and the region below the punching plate 13 is the second gasification chamber.

本実施形態2では、シャフト3をパンチングプレート13の下方の第二ガス化室まで延設し、第二ガス化室内において上部スクレーパー123、酸化剤供給管122を備えている。なお、上部スクレーパー123は、前述の上部スクレーパー23と同じ構成であり、酸化剤供給管122は、前述の酸化剤供給管22と同じ構成であるため、詳細な構成の説明は省略する。 In the second embodiment, the shaft 3 extends to the second gasification chamber below the punching plate 13, and the upper scraper 123 and the oxidant supply pipe 122 are provided in the second gasification chamber. Since the upper scraper 123 has the same configuration as the above-mentioned upper scraper 23 and the oxidant supply pipe 122 has the same configuration as the above-mentioned oxidant supply pipe 22, detailed description of the configuration will be omitted.

本実施形態2のガス化炉では、パンチングプレート13の下方の第二ガス化室を備えたため、第一ガス化室で炭化した原料(以下単に炭化物とも称す)が、パンチングプレート13の孔から落ちて第二ガス化室内に堆積する。この第二ガス化室内に堆積した炭化物に酸化剤としての空気を供給しつつ乾留することで、CO等のガスを発生させる。 Since the gasification furnace of the second embodiment is provided with a second gasification chamber below the punching plate 13, the raw material carbonized in the first gasification chamber (hereinafter, also simply referred to as carbide) falls from the holes of the punching plate 13. And deposit in the second gasification chamber. Gases such as CO are generated by carbonizing the carbides deposited in the second gasification chamber while supplying air as an oxidizing agent.

このように本実施形態2によれば、第一ガス化室から排出された炭化物を再利用して更なるガス化を行い、ガス化の効率を向上させることができる。 As described above, according to the second embodiment, the carbides discharged from the first gasification chamber can be reused for further gasification, and the efficiency of gasification can be improved.

なお、本実施形態2では、酸化剤供給管122及び上部スクレーパー123を設けたが上部スクレーパー123を省略しても良い。また、酸化剤供給管122及び上部スクレー
パー123に加えて下部スクレーパーを備えても良い。
In the second embodiment, the oxidizing agent supply pipe 122 and the upper scraper 123 are provided, but the upper scraper 123 may be omitted. Further, a lower scraper may be provided in addition to the oxidizing agent supply pipe 122 and the upper scraper 123.

また、第二ガス化室において酸化剤供給管122から酸化剤を供給する構成としたが、上部スクレーパー123や下部スクレーパーに酸化剤流路を内包させ、上部スクレーパー123や下部スクレーパーから酸化剤を供給する構成としても良い。 Further, although the configuration is such that the oxidant is supplied from the oxidant supply pipe 122 in the second gasification chamber, the oxidant flow path is included in the upper scraper 123 and the lower scraper, and the oxidant is supplied from the upper scraper 123 and the lower scraper. It may be configured to be used.

〈実施形態3〉
図12は、実施形態3に係るガス化炉の説明図である。本実施形態3のガス化炉は、前述の実施形態2と比べて、冷媒の流路と酸化剤供給路を第一ガス化室と第二ガス化室とで独立にした構成が異なり、他の構成は同じであるため、同一の要素には同符号を付す等して再度の説明を省略している。
<Embodiment 3>
FIG. 12 is an explanatory diagram of the gasification furnace according to the third embodiment. The gasification furnace of the third embodiment is different from the second embodiment in that the flow path of the refrigerant and the supply path of the oxidant are independent in the first gasification chamber and the second gasification chamber. Since the configurations of the above are the same, the same elements are given the same reference numerals and the description is omitted again.

本実施形態3では、図12に示すように、収容部19内のパンチングプレート13よりも上の領域が第一ガス化室、パンチングプレート13よりも下の領域が第二ガス化室である。 In the third embodiment, as shown in FIG. 12, the region above the punching plate 13 in the accommodating portion 19 is the first gasification chamber, and the region below the punching plate 13 is the second gasification chamber.

本実施形態3では、第二ガス化室の冷媒の流路及び酸化剤供給路を第一ガス化室と異ならせ、シャフト3の下端から第二ガス化室用の酸化剤と冷却水を供給させる構成である。図12に示すように酸化剤供給部106は、第二ガス化室用の空気を送風機161で送風し、ダクト162、連結管163、及びシャフト3を介して酸化剤供給管122に空気を供給し、当該空気を酸化剤供給管122から炭化物に供給する。 In the third embodiment, the flow path of the refrigerant and the oxidant supply path of the second gasification chamber are made different from those of the first gasification chamber, and the oxidant and cooling water for the second gasification chamber are supplied from the lower end of the shaft 3. It is a configuration to make it. As shown in FIG. 12, the oxidant supply unit 106 blows air for the second gasification chamber by the blower 161 and supplies air to the oxidant supply pipe 122 via the duct 162, the connecting pipe 163, and the shaft 3. Then, the air is supplied to the carbide from the oxidant supply pipe 122.

このように本実施形態3によれば、第二ガス化室の冷媒の流路及び酸化剤供給路を第一ガス化室と異ならせたため、冷媒及び酸化剤の供給条件を第一ガス化室と第二ガス化室とでそれぞれ適切に設定することができる。 As described above, according to the third embodiment, since the flow path of the refrigerant and the oxidant supply path of the second gasification chamber are different from those of the first gasification chamber, the supply conditions of the refrigerant and the oxidant are set to the first gasification chamber. And the second gasification chamber can be set appropriately.

〈実施形態4〉
図13は、実施形態4に係るガス化炉の説明図である。本実施形態4のガス化炉は、前述の実施形態3と比べて、第一ガス化室と第二ガス化室とでシャフトを独立にした構成が異なり、他の構成は同じであるため、同一の要素には同符号を付す等して再度の説明を省略している。
<Embodiment 4>
FIG. 13 is an explanatory diagram of the gasification furnace according to the fourth embodiment. The gasification furnace of the present embodiment 4 has a different configuration in which the shafts are independent in the first gasification chamber and the second gasification chamber as compared with the above-described third embodiment, and the other configurations are the same. The same elements are designated by the same reference numerals, and the description is omitted again.

本実施形態4では、図13に示すように、第一ガス化室のシャフト3とは別に、第二ガス化室にシャフト103を設け、シャフト103に上部スクレーパー123及び酸化剤供給管122が接続されている。また、駆動部105は、駆動源としての電気モータ151、及び電気モータ151の駆動力をシャフト103へ伝達するギヤ等の連結機構152を備え、鉛直方向を回転軸としてシャフト103を回転駆動させる。 In the fourth embodiment, as shown in FIG. 13, a shaft 103 is provided in the second gasification chamber separately from the shaft 3 in the first gasification chamber, and the upper scraper 123 and the oxidant supply pipe 122 are connected to the shaft 103. Has been done. Further, the drive unit 105 includes an electric motor 151 as a drive source and a connecting mechanism 152 such as a gear that transmits the driving force of the electric motor 151 to the shaft 103, and rotationally drives the shaft 103 with the vertical direction as the rotation axis.

このように本実施形態4によれば、第二ガス化室のシャフト103を第一ガス化室と別体に設けたため、第一ガス化室と第二ガス化室とを容易に分離することができ、メンテナンス性が向上する。シャフトの回転速度や回転を開始させるタイミングなどの回転条件を第一ガス化室と第二ガス化室とでそれぞれ適切に設定することができる。 As described above, according to the fourth embodiment, since the shaft 103 of the second gasification chamber is provided separately from the first gasification chamber, the first gasification chamber and the second gasification chamber can be easily separated. And maintainability is improved. Rotational conditions such as the rotation speed of the shaft and the timing at which rotation is started can be appropriately set in the first gasification chamber and the second gasification chamber, respectively.

1 炉本体
3 シャフト
4 原料投入部
5 駆動部
6 酸化剤供給部
12 送風機
13 パンチングプレート
19 収容部
21 下部スクレーパー
22 酸化剤供給管
23 上部スクレーパー
31 下部シャフト
33 上部シャフト
35 接続管
61 送風機
62 ダクト
63 接続部
1 Furnace body 3 Shaft 4 Raw material input part 5 Drive part 6 Oxidizing agent supply part 12 Blower 13 Punching plate 19 Storage part 21 Lower scraper 22 Oxidizing agent supply pipe 23 Upper scraper 31 Lower shaft 33 Upper shaft 35 Connection pipe 61 Blower 62 Duct 63 Connection

Claims (8)

バイオマス資源を収容する円筒状の収容部を有する炉本体と、前記炉本体内へ酸化剤を供給する酸化剤供給部とを備えるガス化炉であって、
前記収容部内の鉛直方向に延設され、前記酸化剤を通す酸化剤供給路及び冷媒を流通させる冷媒流路を内包するシャフトと、
前記シャフトから前記収容部の内壁へ向かって突出した管状の部材であって、前記収容部内の前記バイオマス資源と接する外面に開口した前記酸化剤の供給口と前記シャフトの前記酸化剤供給路とを連通する酸化剤流路を内包すると共に、前記シャフトの前記冷媒流路と連通して、媒を前記管状の部材の長手方向に沿って基端から先端側へ送る往き管と、前記往き管の先端と連通して、前記冷媒を先端から基端側へ還流させる還り管とを備え、前記シャフトから放射状に延設された複数の酸化剤供給管と、
前記収容部内の鉛直方向を回転軸として前記シャフトを回転させることにより、前記酸化剤供給管を前記収容部内で旋回させる駆動部と、
を備え、前記シャフトが、前記冷媒流路のうち、シャフト側往き管と前記複数の酸化剤供給管の往き管とを連通させる往き管連通部と、前記冷媒流路のうち、シャフト側還り管と前記複数の酸化剤供給管の還り管とを連通させる還り管連通部とを備えるガス化炉。
A gasification furnace including a furnace body having a cylindrical storage part for storing biomass resources and an oxidant supply part for supplying an oxidant into the furnace body.
A shaft extending in the vertical direction in the accommodating portion and including an oxidant supply path through which the oxidant is passed and a refrigerant flow path through which the refrigerant is circulated.
A tubular member protruding from the shaft toward the inner wall of the accommodating portion, the oxidant supply port opened on the outer surface in contact with the biomass resource in the accommodating portion, and the oxidant supply path of the shaft. together containing the oxidizing agent passage communicating, communicates with the refrigerant passage of the shaft, the forward pipe for sending distally from the proximal end along the refrigerant in the longitudinal direction of the tubular member, the forward pipe A plurality of oxidant supply pipes extending radially from the shaft , provided with a return pipe that communicates with the tip of the refrigerant and returns the refrigerant from the tip to the base end side .
A drive unit that rotates the oxidant supply pipe in the accommodating portion by rotating the shaft about the vertical direction in the accommodating portion.
The shaft communicates with the shaft-side outbound pipe and the outbound pipes of the plurality of oxidizing agent supply pipes in the refrigerant flow path, and the shaft-side return pipe in the refrigerant flow path. wherein the plurality of oxidant went back tube and gasifier Ru and an went back tube communicating portion for communicating the supply pipe.
前記収容部の上部から前記バイオマス資源を投入し、目標の高さまで堆積させる場合の前記目標に合わせた高さで、前記シャフトから前記収容部の内壁へ向かって突出した上部スクレーパーを備える請求項1に記載のガス化炉。 1. Claim 1 comprising an upper scraper protruding from the shaft toward the inner wall of the accommodating portion at a height corresponding to the target when the biomass resource is charged from the upper part of the accommodating portion and deposited to a target height. The gasifier described in. 前記収容部を上下に仕切り、上下方向に貫通する複数の開口を有する仕切部を備え、前記仕切部の上面と接した状態又は近接した状態で、前記シャフトから前記収容部の内壁へ向かって突出した下部スクレーパーを備える請求項1又は2に記載のガス化炉。 The accommodating portion is partitioned up and down, and a partition portion having a plurality of openings penetrating in the vertical direction is provided, and the accommodating portion projects from the shaft toward the inner wall of the accommodating portion in a state of being in contact with or close to the upper surface of the partition portion. The gasification furnace according to claim 1 or 2, further comprising a lower scraper. 前記収容部を上下に仕切り、上下方向に貫通する複数の開口を有する仕切部を備え、前記仕切部より上方の収容部を第一ガス化室とし、前記仕切部より下方の収容部内に第二ガス化室を備えた請求項1又は2に記載のガス化炉。 The accommodating portion is partitioned up and down, and a partition portion having a plurality of openings penetrating in the vertical direction is provided. The accommodating portion above the partition portion is used as a first gasification chamber, and a second accommodating portion below the partition portion is provided. The gasification furnace according to claim 1 or 2, which is provided with a gasification chamber. 前記シャフト及び前記酸化剤供給管が、前記第一ガス化室と前記第二ガス化室のそれぞれに設けられている請求項4に記載のガス化炉。 The gasification furnace according to claim 4, wherein the shaft and the oxidant supply pipe are provided in each of the first gasification chamber and the second gasification chamber. 前記シャフトが、前記第一ガス化室と前記第二ガス化室とに渡って設けられ、前記酸化剤供給管が、前記第一ガス化室と前記第二ガス化室のそれぞれに設けられている請求項4に記載のガス化炉。 The shaft is provided across the first gasification chamber and the second gasification chamber, and the oxidant supply pipe is provided in each of the first gasification chamber and the second gasification chamber. The gasification furnace according to claim 4. 前記シャフトが、上部から前記第一ガス化室内の前記酸化剤供給管へ酸化剤を供給する第一の酸化剤供給路と、下部から前記第二ガス化室内の前記酸化剤供給管へ酸化剤を供給する第二の酸化剤供給路とを備える請求項6に記載のガス化炉。 The shaft provides an oxidant from the upper part to the first oxidant supply path for supplying the oxidant to the oxidant supply pipe in the first gasification chamber, and from the lower part to the oxidant supply pipe in the second gasification chamber. The gasification furnace according to claim 6, further comprising a second oxidant supply path for supplying the gas. 前記仕切部の上面と接した状態又は近接した状態で、前記シャフトから前記収容部の内壁へ向かって突出した下部スクレーパーを備える請求項4〜7の何れか1項に記載のガ
ス化炉。
The gasification furnace according to any one of claims 4 to 7, further comprising a lower scraper protruding from the shaft toward the inner wall of the accommodating portion in a state of being in contact with or close to the upper surface of the partition portion.
JP2015256966A 2015-12-28 2015-12-28 Gasifier Active JP6762715B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015256966A JP6762715B2 (en) 2015-12-28 2015-12-28 Gasifier
CA3009967A CA3009967A1 (en) 2015-12-28 2016-12-27 Gasification furnace
KR1020187021581A KR20180131530A (en) 2015-12-28 2016-12-27 Gas furnace
PCT/JP2016/088980 WO2017115817A1 (en) 2015-12-28 2016-12-27 Gasification furnace
CN201680076812.1A CN108884399A (en) 2015-12-28 2016-12-27 gasification furnace
US16/066,842 US11034899B2 (en) 2015-12-28 2016-12-27 Gasification furnace
EP16881791.4A EP3399007A4 (en) 2015-12-28 2016-12-27 Gasification furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256966A JP6762715B2 (en) 2015-12-28 2015-12-28 Gasifier

Publications (2)

Publication Number Publication Date
JP2017119771A JP2017119771A (en) 2017-07-06
JP6762715B2 true JP6762715B2 (en) 2020-09-30

Family

ID=59225305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256966A Active JP6762715B2 (en) 2015-12-28 2015-12-28 Gasifier

Country Status (7)

Country Link
US (1) US11034899B2 (en)
EP (1) EP3399007A4 (en)
JP (1) JP6762715B2 (en)
KR (1) KR20180131530A (en)
CN (1) CN108884399A (en)
CA (1) CA3009967A1 (en)
WO (1) WO2017115817A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111189051B (en) * 2020-01-13 2021-06-11 浙江传超环保科技有限公司 Garbage incineration method
DE102020119003A1 (en) * 2020-07-17 2022-01-20 Prodana GmbH Device for pyrolysing pyrolysis material
CN111944562B (en) * 2020-08-06 2021-12-03 台州市路桥友顺纸塑包装材料厂 Two-section type gas producer for glass production
AT525730B1 (en) * 2022-06-03 2023-07-15 Andreas Fritsche carburetor device
DE102022124762A1 (en) * 2022-09-27 2024-03-28 Blue Energy Group AG Gas generator

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1911586A (en) * 1933-05-30 Litain
US1857355A (en) * 1926-07-29 1932-05-10 Cooper Bessemer Corp Ash removing apparatus for gas producers and the like
US2147324A (en) * 1936-01-16 1939-02-14 Koppers Co Inc Gas producer
US2689786A (en) * 1949-01-20 1954-09-21 Hubmann Otto Process for the gasification of solid fuels
US3454382A (en) * 1965-11-26 1969-07-08 Mcdowell Wellman Eng Co Two-stage type gas producer
US4011059A (en) * 1976-01-30 1977-03-08 General Electric Company Self-centering traversing stirrer shaft for fixed bed gasifier
US4137051A (en) 1978-01-06 1979-01-30 General Electric Company Grate for coal gasifier
US4225392A (en) * 1978-09-05 1980-09-30 Taylor Leland T Pyrolysis apparatus
JPS5827311B2 (en) * 1980-08-20 1983-06-08 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン gas generator
JPS5827311A (en) 1981-08-10 1983-02-18 Hitachi Ltd Connector for stationary induction apparatus
NL8200417A (en) 1982-02-04 1983-09-01 Tab B V Wood-fuelled gas generator supplying IC engine - has annular combustion zone with variable cross=section passing fuel to reduction zone
AU8961682A (en) * 1982-08-18 1984-02-23 Rogers, C.D. Biomass gasification
US4659340A (en) * 1985-06-24 1987-04-21 Weaver Lloyd E Pressurized downdraft gasifier
JPS63167148U (en) * 1987-04-20 1988-10-31
US4929254A (en) * 1989-07-13 1990-05-29 Set Technology B.V. Down-draft fixed bed gasifier system
JPH10221223A (en) 1997-02-07 1998-08-21 Shimadzu Corp Collecting/removing method for atmospheric material and its device
EP1205532A4 (en) 2000-02-29 2008-09-10 Mitsubishi Heavy Ind Ltd Biomass gasifying furnace and system for methanol synthesis using gas produced by gasifying biomass
JP2003238972A (en) 2002-02-15 2003-08-27 Shimane Denko Kk Apparatus for producing lignous biomass gas
JP2004051647A (en) * 2002-07-16 2004-02-19 Fuji Electric Systems Co Ltd Gasifier for solid biomass fuel
US7964026B2 (en) * 2003-08-04 2011-06-21 Power Reclamation, Inc. Gasification apparatus
JP2005146188A (en) 2003-11-19 2005-06-09 Satake Corp Biomass gas generation furnace
US8961626B1 (en) * 2006-01-25 2015-02-24 Randall J. Thiessen Rotating and movable bed gasifier
US7554440B2 (en) 2006-07-25 2009-06-30 United Parcel Service Of America, Inc. Systems and methods for monitoring travel conditions
WO2008039400A1 (en) * 2006-09-22 2008-04-03 Lew Holdings, Llc Bulk fueled gasifiers
JP4187783B1 (en) * 2008-04-22 2008-11-26 有限会社東根製作所 Fuel gas generator
JP5397878B2 (en) 2008-07-04 2014-01-22 一般財団法人電力中央研究所 Gasification facility and gasification power generation facility using biomass fuel
CN102844409B (en) * 2010-02-16 2014-12-03 大荷兰人国际有限公司 Gasification device and gasification method
CN101781585B (en) * 2010-03-10 2012-12-12 周少海 Gasification agent injection device of biomass gasifier
JP2011236260A (en) * 2010-05-04 2011-11-24 Shigeki Kobayashi Garbage biomass power generator
CN103314081B (en) * 2010-11-08 2015-06-03 株式会社Ze能源 Gasification furnace, gasification system, reforming device, and reforming system
CN102191089A (en) 2011-03-29 2011-09-21 万贤法 Two-stage high-temperature preheated steam biomass gasification furnace
FI123665B (en) * 2012-02-20 2013-09-13 Raute Oyj A method for optimizing the operation of a gas generator and a gas generator
JP5945929B2 (en) 2012-04-04 2016-07-05 Jfeエンジニアリング株式会社 Waste gasification and melting equipment
CN102863990B (en) * 2012-09-26 2014-06-11 潍坊金丝达环境工程股份有限公司 Disintegrating slag breaker of gasification furnace
AT513811B1 (en) * 2013-01-04 2016-06-15 Fritsche Andreas carburetor device
US10047308B2 (en) * 2015-09-10 2018-08-14 Ag Energy Solutions, Inc. Gasifier system

Also Published As

Publication number Publication date
JP2017119771A (en) 2017-07-06
US11034899B2 (en) 2021-06-15
EP3399007A1 (en) 2018-11-07
EP3399007A4 (en) 2019-05-29
US20190002776A1 (en) 2019-01-03
KR20180131530A (en) 2018-12-10
WO2017115817A1 (en) 2017-07-06
CN108884399A (en) 2018-11-23
CA3009967A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6762715B2 (en) Gasifier
JP2008082640A (en) Valuable metal recovering device
JP2009198112A (en) Chaff combustion method and its device
KR102424561B1 (en) Continuous pyrolysis device
JP2006008736A (en) Carbonization treatment apparatus for organic waste
JP2006316143A (en) Apparatus for gasifying granule
WO2017138157A1 (en) Reformer furnace and gasification system using same
JP2003253267A (en) Apparatus for continuous carbonization of solid waste
JP2007263534A (en) Waste gasifier and its operating method
JP4981408B2 (en) Powder gasifier
KR100885759B1 (en) Carbonizer
JP4552999B2 (en) Raw material distributor for a split rotary kiln
JP2006241354A (en) Waste gasification unit
JP2006220365A (en) Waste gasifying device
JPWO2017138157A1 (en) Reforming furnace and gasification system using the same
JP2008298418A (en) Combustion device and fuel producing method for organic matter
JP3676033B2 (en) Waste incinerator
JP3742947B2 (en) Waste incineration method and incinerator
JP2005211719A (en) Organic matter treatment method and system therefor
CN104736674B (en) The efficient drying of carbonaceous material and pyrolysis
KR101000309B1 (en) Rotary thermal decomposition apparatus
KR102190765B1 (en) Multi layer high temperature pyrolysis incineration apparatus
KR100565447B1 (en) Apparatus for burning waste material
JP2021060160A (en) Incinerator
CN1605797A (en) Continuous carbonization apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350