JP6758552B1 - 加工不具合検出装置、レーザ切断加工装置および放電加工装置 - Google Patents

加工不具合検出装置、レーザ切断加工装置および放電加工装置 Download PDF

Info

Publication number
JP6758552B1
JP6758552B1 JP2020533171A JP2020533171A JP6758552B1 JP 6758552 B1 JP6758552 B1 JP 6758552B1 JP 2020533171 A JP2020533171 A JP 2020533171A JP 2020533171 A JP2020533171 A JP 2020533171A JP 6758552 B1 JP6758552 B1 JP 6758552B1
Authority
JP
Japan
Prior art keywords
processing
defect
feature amount
sound
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020533171A
Other languages
English (en)
Other versions
JPWO2020250496A1 (ja
Inventor
瀬口 正記
正記 瀬口
恭平 石川
恭平 石川
輝章 福岡
輝章 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/023488 external-priority patent/WO2020250380A1/ja
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6758552B1 publication Critical patent/JP6758552B1/ja
Publication of JPWO2020250496A1 publication Critical patent/JPWO2020250496A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0262Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • G07C3/14Quality control systems

Abstract

加工不具合検出装置(30)は、加工時に加工点で発生する加工光を計測する加工光計測部(31)と、加工点で発生する加工音を計測する加工音計測部(32)と、加工で加工不具合が発生したかどうかを判定する演算部(40)と、を備える。演算部(40)は、特徴量抽出部(41)と、判定値算出部(43)と、判定部(48)と、を有する。特徴量抽出部(41)は、加工光計測部(31)で計測された加工光信号から加工光特徴量を抽出し、加工音計測部(32)で計測された加工音信号から加工音特徴量を抽出する。判定値算出部(43)は、加工光特徴量と加工音特徴量とに基づいて合成不具合判定値を算出する。判定部(48)は、合成不具合判定値を判定基準値と比較して加工不具合が発生したかどうかを判定する。

Description

本発明は、レーザ切断加工および放電加工などの加工の不具合を検出する加工不具合検出装置、レーザ切断加工装置および放電加工装置に関する。
レーザ溶接加工では、溶接加工の良不良の判断は、溶接物の外観の観察からでは困難であり、溶接断面を調べることによって行われる。しかし、溶接加工後に溶接断面を調べるのは現実的ではない。そこで、特許文献1には、レーザ溶接時に発生する加工光および加工音の少なくとも一方についてセンサで計測を行い、計測された加工光および加工音の少なくとも一方の強度または振幅を含む特徴量を、レーザ溶接が正常に行われた場合の適正値と比較して加工不具合の検出を行うレーザ溶接方法が開示されている。
特開2007−253197号公報
しかしながら、特許文献1は、レーザ溶接加工に関する技術であり、レーザ切断加工に関する技術ではない。レーザ切断加工では、切断物の良不良の判断は、切断物の外観の観察によって行われる。しかし、切断途中に軽微な加工不良が発生した場合には、レーザ切断加工中には切断物の良不良の判断を行うことができず、レーザ切断加工の完了後に判断しなければならない。そのため、レーザ切断加工の途中でも切断物の良不良の判断を行うことができる技術が求められていた。また、被加工物の材質または板厚を含む加工条件が変更されると、センサで取得される特徴量にばらつきが生じることがある。特許文献1に記載の技術では、適正値はレーザ溶接が正常に行われた場合のセンサの計測値に基づいて算出されるが、適正値の算出の際にこのような特徴量のばらつきが考慮されていない。そのため、特徴量のばらつきが生じると妥当な適正値を設定できず、加工不具合の検出精度を高めることができないという問題があった。また、レーザ切断加工だけではなく、放電加工などの他の加工においても、加工条件が変更された場合の加工不具合の検出を従来に比して高めることができる技術が望まれていた。
本発明は、上記に鑑みてなされたものであって、加工条件が変更された場合でも加工不具合の検出を従来に比して高めることができる加工不具合検出装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の加工不具合検出装置は、加工時に加工点で発生する加工光を計測する加工光計測部と、加工点で発生する加工音を計測する加工音計測部と、加工で加工不具合が発生したかどうかを判定する演算部と、を備える。演算部は、特徴量抽出部と、判定値算出部と、判定部と、を有する。特徴量抽出部は、加工光計測部で計測された加工光信号から加工光特徴量を抽出し、加工音計測部で計測された加工音信号から加工音特徴量を抽出する。判定値算出部は、加工光特徴量と加工音特徴量とに基づいて合成不具合判定値を算出する。判定部は、合成不具合判定値を判定基準値と比較して加工不具合が発生したかどうかを判定する。判定値算出部は、加工光特徴量および加工音特徴量に、加工条件に応じて定められた重み付けを行って合成することにより合成不具合判定値を算出する。
本発明にかかる加工不具合検出装置は、加工条件が変更された場合でも加工不具合の検出を従来に比して高めることができるという効果を奏する。
実施の形態1にかかるレーザ切断加工装置の構成の一例を模式的に示す図 実施の形態1のレーザ切断加工時の加工点周辺の様子を模式的に示す図 実施の形態1の切断スリットと加工光計測部との間の配置の一例を示す図 加工光計測部を通り、切断スリットの延在方向に垂直な面Pで図3に示した被加工物と加工光計測部とを切断した面で、切断スリットが一定の幅を有する場合の一例を示す図 加工光計測部を通り、切断スリットの延在方向に垂直な面Pで図3に示した被加工物と加工光計測部とを切断した面で、切断スリットが一定の幅を有する場合の一例を示す図 実施の形態1によるレーザ切断加工の不具合の種類による加工光および加工音での相対的な検知精度の一例を示す図 実施の形態1による重み付け情報の一例を示す図 実施の形態1による演算部のハードウェア構成の一例を示す図 実施の形態2にかかるレーザ切断加工装置の構成の一例を模式的に示す図 実施の形態2による重み付け情報の一例を示す図 実施の形態3にかかるレーザ切断加工装置の構成の一例を模式的に示す図 実施の形態4にかかるレーザ切断加工装置の構成の一例を模式的に示す図 実施の形態5による重み付け情報の一例を示す図 実施の形態6にかかるワイヤ放電加工装置の構成の一例を模式的に示す図 被加工物の厚さが厚い場合の放電加工時の加工開始時の状況の一例を模式的に示す図 被加工物の厚さが厚い場合の放電加工時の図15よりも加工が進んだ状況の一例を模式的に示す図 被加工物の厚さが薄い場合の放電加工時の加工が進んだ状況の一例を模式的に示す図
以下に、本発明の実施の形態にかかる加工不具合検出装置、レーザ切断加工装置および放電加工装置を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1にかかるレーザ切断加工装置の構成の一例を模式的に示す図である。レーザ切断加工装置1は、被加工物100にレーザ光Lを照射して加工を行うレーザ切断加工部10と、レーザ切断加工部10でのレーザ切断加工の不具合を検出する加工不具合検出装置である加工不具合検出部30と、を備える。
レーザ切断加工部10は、被加工物100を載置するステージ11と、レーザ光Lを出力するレーザ発振器12と、レーザ発振器12からのレーザ光Lを被加工物100に集光させる加工ヘッド13と、レーザ発振器12から加工ヘッド13へとレーザ光Lを伝播させる光ファイバ14と、を有する。
レーザ発振器12の種類は限定されない。レーザ発振器12の一例は、炭酸ガスレーザ等の気体レーザ、ファイバレーザ発振器またはYAG(Yttrium Aluminum Garnet)結晶を励起媒体とするYAGレーザ等の固体レーザである。また、レーザ発振器12は、レーザダイオードの光をそのまま利用するダイレクトダイオードレーザであってもよい。
加工ヘッド13は、レーザ光Lを被加工物100へ集光する光学系131と、レーザ切断加工時に被加工物100にレーザ光Lが照射される加工点に加工ガスを供給する加工ノズル132と、を有する。加工ノズル132から加工ガスを供給することで、レーザ光Lにより溶融した金属ドロスが吹き飛ばされる。加工ガスの一例は、酸素または窒素である。酸素ガスを加工ガスとして供給することで、酸化反応による加工が促進される。窒素ガスを加工ガスとして供給することで、加工面の酸化防止によって、加工面の品質の向上を図ることができる。なお、加工ノズル132には、加工ガスが供給される図示しない加工ガス供給部が接続されている。また、レーザ切断加工部10で形状加工を実施する場合には、加工ヘッド13とステージ11との間の相対的位置関係を変更する少なくとも1つ以上の図示しない駆動装置が設けられる。
加工不具合検出部30は、レーザ切断加工部10が被加工物100をレーザ切断加工中であるときに発生する光および音を計測し、この計測結果に基づいてレーザ切断加工に不具合が発生していないかを判定する。加工不具合検出部30は、加工光計測部31と、加工音計測部32と、演算部40と、を備える。
加工光計測部31は、レーザ切断加工中に高温となった被加工物100の表面または被加工物100の表面周辺に発生するプラズマからの加工光を計測し、計測した加工光を時系列に並べた加工光信号を演算部40に出力する。加工光計測部31は、光センサまたは分光器を搭載する。光センサの一例は、フォトダイオード、光電子管、CCD(Charge-Coupled Device)センサ、CMOS(Complementary Metal-Oxide-Semiconductor)センサである。分光器の一例は、スペクトル分光器である。
図2は、実施の形態1のレーザ切断加工時の加工点周辺の様子を模式的に示す図である。加工光計測部31は、加工点で発生する加工光を計測することができるように配置されていればよい。加工光計測部31は、図1に示されるように、加工ノズル132の外部に設けられてもよいし、図2に示されるように、加工ノズル132の内部に設けられてもよい。これらの場合において、加工光計測部31は、被加工物100に対してレーザ光Lが照射される側に設置される。また、これらの場合において、ハーフミラーを含む光学系を用いて、加工点からの加工光が加工光計測部31に導かれるようにしてもよい。切断スリット101で発生する加工不具合またはレーザ光Lが照射されている斜めの面である切断フロント102の情報が加工光の信号光強度の変化として計測される。
図1に戻り、加工音計測部32は、レーザ切断加工中に加工点周辺で発生する加工音を計測し、計測した加工音を時系列に並べた加工音信号を演算部40に出力する。加工音計測部32は、加工音検出センサを搭載する。加工音検出センサの一例は、マイクである。加工音計測部32は、加工ヘッド13の外部で加工点の周辺に設置される。
加工点周辺で発生する加工音は、主に、ノズル通過音、ガス散逸音、あるいは切断部通過音である。ノズル通過音は、加工ガスの流れが加工ノズル132を通過する際に発生する音である。ガス散逸音は、加工ガスの流れが加工ノズル132の先端と被加工物100との隙間を通過して周囲に散逸する際に発生する音である。切断部通過音は、図2に示されるように、レーザ切断中に被加工物100に形成される切断スリット101と呼ばれる細い隙間を加工ガスの流れが通過する際に発生する音である。切断スリット101は加工状況によって、幅または加工点でのテーパ形状が変化するため、加工ガスが流れる流路形状が変化し、この変化が、加工音、特に切断部通過音の変化として計測される。
図1に戻り、演算部40は、加工光計測部31からの加工光信号および加工音計測部32からの加工音信号を用いて、レーザ切断加工での加工不具合の発生の検出を判定する。
演算部40は、特徴量抽出部41と、不具合判定情報記憶部42と、判定値算出部43と、重み付け情報記憶部46と、判定基準値記憶部47と、判定部48と、を備える。
特徴量抽出部41は、加工光特徴量抽出部411と、加工音特徴量抽出部412と、を有する。加工光特徴量抽出部411は、加工光計測部31から得られる時系列の加工光信号を解析し、加工の特性を示す加工光特徴量を抽出する。加工光特徴量の一例は、時系列の加工光信号の強度を平均化した平均加工光信号強度、平均加工光信号強度で規格化された加工光信号の分散である加工光の変動係数である。
加工音特徴量抽出部412は、加工音計測部32から得られる時系列の加工音信号を解析し、加工の特性を示す加工音特徴量を抽出する。加工音特徴量の一例は、時系列の加工音信号の強度を平均化した平均加工音信号強度、平均加工音信号強度で規格化された加工音信号の分散である加工音の変動係数である。
不具合判定情報記憶部42は、加工不具合が発生したときの特徴量を示す不具合判定情報を記憶する。レーザ切断加工で検出することが望まれる加工不具合の一例は、切断部閉塞による加工不具合および切断面内の加工不具合である。切断部閉塞による加工不具合には、レーザ光Lで加熱された被加工物100が溶融した金属ドロスが切断スリット101を塞ぐことによって発生するバーニングまたはガウジングがある。また、切断面内の加工不具合には、切断面内の被加工物100中の不純物またはレーザ光Lの強度不足、強度過多もしくは不安定性、あるいは溶融金属表面の溶融不安定性によるドロス排出が不連続となって生じるキズまたは荒れがある。
不具合判定情報では、これらの切断部閉塞による加工不具合および切断面内の加工不具合を検出するために、加工不具合の種類と不具合判定基準値とが対応付けられている。不具合判定基準値は、抽出した特徴量が加工不具合と判定される基準である。切断部閉塞による不具合のときに抽出される加工光の変動係数および加工音の変動係数を切断部閉塞の不具合に対応付けたものは、不具合判定情報の一例である。また、切断面の不具合のときに観測される加工光の変動係数および加工音の変動係数を切断面の不具合に対応付けたものは、不具合判定情報の一例である。なお、ここでは、不具合の種類として、切断部閉塞による不具合と、切断面内の不具合と、を例示したが、加工光および加工音によって検出することができるものであれば、このほかの不具合が含まれてもよい。この他の不具合として、金属ドロスが切断スリット下端で固化したドロス付着が挙げられる。
判定値算出部43は、加工光特徴量および加工音特徴量に、加工条件に応じて定められた重み付けを行って合成することにより合成不具合判定値を算出する。実施の形態1では、判定値算出部43は、加工光特徴量および加工音特徴量を用いて算出された加工光不具合判定値および加工音不具合判定値に、加工条件による重み付けを行うことによって合成不具合判定値を算出する。判定値算出部43は、加工光特徴量および加工音特徴量のそれぞれについて不具合判定値を算出する不具合判定値算出部44と、加工光の不具合判定値と加工音の不具合判定値とを重み付けして合成不具合判定値を算出する合成不具合判定値算出部45と、を有する。
不具合判定値算出部44は、加工光不具合判定値算出部441と、加工音不具合判定値算出部442と、を有する。加工光不具合判定値算出部441は、加工光特徴量抽出部411で抽出された加工光特徴量と、不具合判定情報中の不具合判定基準値と、を比較し、加工不具合の発生の可能性の度合いを示す加工光不具合判定値を算出する。加工光不具合判定値の一例は、加工光特徴量と、不具合判定情報中の加工光の不具合判定基準値と、の間の一致度である。
加工音不具合判定値算出部442は、加工音特徴量抽出部412で抽出された加工音特徴量と、不具合判定情報中の不具合判定基準値と、を比較し、不具合の発生の度合いを示す加工音不具合判定値を算出する。加工音不具合判定値の一例は、加工音特徴量と、不具合判定情報中の加工音の不具合判定基準値と、の間の一致度である。
なお、不具合判定情報に複数種類の加工不具合がある場合には、加工光不具合判定値算出部441および加工音不具合判定値算出部442は、すべての種類の加工不具合に対して加工光および加工音の不具合判定値を算出し、最も一致度の高いものを選択する。また、最も一致度の高い不具合判定値が閾値未満である場合には、加工光不具合判定値算出部441および加工音不具合判定値算出部442は、不具合が発生していないと判定してもよい。つまり、一致度がある閾値未満の場合には不具合が発生していないものとし、このような場合には、後述する合成不具合判定値算出部45での合成不具合判定値の算出を行わないようにすることができる。
以下に、レーザ切断加工中における加工光を用いた加工不具合の判定の容易さについて説明する。上記したように、加工光計測部31は、加工ヘッド13の内側または加工ヘッド13の外側周辺の、被加工物100に対してレーザ光Lが照射される側に配置されている。
切断部閉塞による加工不具合であるバーニングまたはガウジングの際には、加工中に発生する金属ドロスは、良好切断時のように図2の切断スリット101が形成された被加工物100の下方には排出されずに、被加工物100の表面の加工点周辺に留まったままとなる。そのため、加工点周辺に留まった金属ドロスはレーザ光Lの照射を受けることになるので、被加工物100の表面の加工点周辺の溶融金属は非常に高温となり、強い加工光が発生する。つまり、加工光計測部31では容易に加工光を計測することができ、加工光特徴量抽出部411では加工光の高い光信号光強度を得ることができる。その結果、加工光不具合判定値算出部441では、加工光を用いた金属ドロスによる加工不具合の判定を容易に行うことが可能である。
一方、切断面内の加工不具合であるキズまたは荒れに対しては、板厚または加工不具合が発生する部位によって、判定容易度が異なる。図2で、加工ノズル132の加工ノズル出口132aから、レーザ光Lと加工ガスとが被加工物100の加工点に供給される。レーザ光Lにより溶融した溶融金属は自重、表面張力または加工ガスによって下方に流れていく。図2の例では、被加工物100に対して、加工ヘッド13を相対的に左方向に移動させることで、被加工物100の表面上のエッジで挟まれる切断スリット101が形成される。以上のようにして、切断加工が行われる。
この切断スリット101中で、レーザ光Lが照射されている斜めの面が切断フロント102である。切断加工中には、切断フロント102の表面には溶融金属が存在している。溶融金属の温度が低い場合には粘性が高く、表面張力が大きくなるため、この粘性および表面張力に打ち勝つ溶融金属の自重が大きくなるまで、図2の下方には排出されない。溶融が進行し溶融金属の体積が大きく自重が大きくなると、溶融金属の自重は粘性および表面張力に打ち勝ち、図2の下方に排出される。この場合、一度に排出される体積が大きくなるために、切断フロント102の表面の面粗さが大きくなり、キズまたは荒れなどが発生しやすくなる。これに対して、溶融金属の温度が高い場合には、溶融金属の粘性が低くなるため、この粘性および表面張力に打ち勝つための溶融金属の自重あるいは体積はより小さくても、図2の下方に排出される。この場合、一度に排出される体積が小さくなるために、切断フロント102の表面の面粗さは小さくなり、キズまたは荒れなどは発生し難くなる。つまり、一度に排出される溶融金属の体積が小さい程、切断面の面粗さは小さくなり、切断面の面粗さ、キズまたは荒れは、切断フロント102の温度に依存する。なお、この場合の溶融金属の温度の高低および体積の大小は、レーザ切断加工の対象となる被加工物100の材質と、使用される加工ガスと、に依存するものである。特に、溶融金属の温度の高低および体積の大小は、溶融金属の材質の温度に対する粘性と、溶融金属の密度に依存する。
また、切断フロント102は、溶融金属の組成、酸化状態もしくは温度分布で決まる粘性分布、厚さ分布または密度分布により決定される固有振動数で振動するので、加工状態に応じて切断フロント102上の溶融金属の表面形状が変化する。レーザ光Lが照射されている切断フロント102は高温であるために、対応する放射分布を持ち切断フロント102の振動に合わせて、加工光も照射方向を変化させる。さらに、切断フロント102から放出される溶融金属またはプラズマもまた高温であるために、切断スリット101内あるいは被加工物100の加工点の周辺の上方にて加工光を発生させる。
このような加工点周辺で発生する加工光は、切断フロント102の情報を多く持っており、この加工光を計測することで加工状況を推測できる。図2で示したような切断スリット幅に対して被加工物100の厚さが薄い場合には、加工光計測部31中のセンサから、切断フロント102が観察可能である。そのため、加工光によって切断スリット101内に発生するキズまたは荒れを高精度に判定することができる。
これに対して、被加工物100に形成された切断スリット101の幅に対して、被加工物100の厚さが厚い場合について説明する。図3は、実施の形態1の切断スリットと加工光計測部との間の配置の一例を示す図である。図3に示されるように、加工光計測部31は、加工点が観察される位置に配置される。なお、ここで被加工物100の厚さに対して厚い場合とする際の厚さは、被加工物100の種類または加工条件に依存するものである。一例では、被加工物100の厚さが薄い場合を9mm以下であるとし、厚い場合を19mm以上であるとし、中間的な厚さを有する場合を9mmよりも大きく19mmよりも小さいものとすることができる。あるいは、一例として、切断スリット幅をWとし、被加工物100の厚さをTとし、切断スリット幅に対する被加工物100の厚さの比率をT/Wとした場合には、被加工物100の厚さが薄い場合をT/Wが15以下であるとし、厚い場合をT/Wが20以上であるとし、中間的な厚さを有する場合をT/Wが15よりも大きく20よりも小さいものとすることができる。
図4は、加工光計測部を通り、切断スリットの延在方向に垂直な面Pで図3に示した被加工物と加工光計測部とを切断した面で、切断スリットが一定の幅を有する場合の一例を示す図である。切断スリット101の幅に対して被加工物100の厚さが厚い場合には、切断スリット101の下部で発生する加工光は、図4に示されるように、加工光計測部31に到達するまでに厚くて狭い切断スリット101を通過する必要があるので、加工光計測部31に到達可能な立体角は小さくなる。つまり、加工光計測部31で計測できる加工光の強度は小さくなり、検出精度は低くなってしまう。
図5は、加工光計測部を通り、切断スリットの延在方向に垂直な面Pで図3に示した被加工物と加工光計測部とを切断した面で、切断スリットが一定の幅を有する場合の一例を示す図である。図5に示されるような、被加工物100の厚さ方向の中間部にくびれ状の形状を持つ切断スリット101の場合には、切断スリット101の中間部よりも下方で発生する加工光は、加工光計測部31に直線的に到達することはできない。そのため、くびれ状の形状よりも下の位置で発生した加工不具合を加工光によって検出することはより困難となる。
したがって、切断スリット101内の加工不具合によって発生する加工光を加工光計測部31で計測する場合には、切断スリット101の上部の加工不具合によって発生する加工光の方が下部の加工不具合部によって発生する加工光よりも計測は容易である。これに応じて、切断スリット101の上部で発生するキズまたは荒れの検知精度と比較して、下部に発生するキズまたは荒れの検知精度は相対的に低くなる。ただし、切断スリット101の下部であっても、隙間を塞ぐほど大きなキズまたは荒れの場合には、この部位からの加工光は検出可能であり、検知精度は高くなる。
つぎに、レーザ切断加工中における加工音を用いた加工不具合の判定の容易さについて説明する。前述のように、ノズル通過音、ガス散逸音、または切断部通過音に着目し、加工状況によって切断スリット101の幅または形状が変化することで加工ガスが流れる流路形状が変化し、これが加工音の変化として加工音計測部32で計測される。
切断部閉塞による加工不具合であるバーニングまたはガウジングの際には、切断スリット101が溶融金属で塞がれるために、切断スリット101に加工ガスが全く流れなくなる。つまり、バーニングまたはガウジングの発生後には、切断部通過音が観測されなくなる。このように、バーニングまたはガウジングの発生前後での加工音の変化は著しく、加工音による加工不具合の判定は容易である。
また、切断面内の加工不具合であるキズまたは荒れに対しては、板厚または加工不具合が発生する部位によって、判定容易度が異なる。図3のように切断スリット幅に対して被加工物100の厚さが厚い場合には、加工ガスとレーザ切断加工によって生じた加工面との間の相互作用する距離が長くなり、加工音信号が強くなる。そのため、切断スリット101の下部でのキズまたは荒れの加工不具合が発生した場合に、切断スリット101内全体の加工ガスの流れ状況が変化する。その結果、加工音の大きな変化として、切断面に発生する加工不具合を計測することが可能である。
逆に、図2のように切断スリット101幅に対して被加工物100の厚さが薄い場合には、加工ガスと加工面との間の相互作用する距離が短い。そのため、加工音信号変化は弱く、切断面に発生する加工不具合の検知精度は相対的に低くなる。
図6は、実施の形態1によるレーザ切断加工の不具合の種類による加工光および加工音での相対的な検知精度の一例を示す図である。この図は、上記した内容をまとめたものである。切断部閉塞による加工不具合の場合には、加工光および加工音ともに高精度で不具合を検知することができる。切断面内の加工不具合の場合には、切断スリット幅に対して被加工物100の厚さが厚い場合には、加工光では加工不具合を検知する精度は低くなるが、加工音では、高精度で不具合を検知することができる。ただし、切断スリット101の上部からの加工光を用いる場合には、高精度で不具合を検知することができ、下部からの加工光を用いる場合には、不具合の検知精度は低下する。また、切断スリット幅に対して被加工物100の厚さが薄い場合には、加工光では高精度で不具合検知することができるが、加工音では不具合を検知する精度は低くなる。
図1に戻り、合成不具合判定値算出部45は、加工光不具合判定値、加工音不具合判定値、および重み付け量を用いて、合成不具合判定値を算出する。このとき、合成不具合判定値算出部45は、加工条件データ71に対する重み付け量を、重み付け情報記憶部46の重み付け情報から取得する。重み付け情報については、後述する。合成不具合判定値は、加工光不具合判定値および加工音不具合判定値にそれぞれ重み付け量を乗算して、足し合わせたものである。
重み付け情報記憶部46は、被加工物100をレーザ切断加工する場合の加工条件に対して、加工光不具合判定値および加工音不具合判定値の重み付け量を定めた重み付け情報を記憶する。図7は、実施の形態1による重み付け情報の一例を示す図である。この例では、加工条件として、被加工物100の板厚が例示されている。板厚は、絶対的な厚さでもよいし、切断スリット幅に対する被加工物100の板厚の比である相対的な厚さでもよい。そして、それぞれの板厚の範囲に対して、加工光不具合判定値および加工音不具合判定値の重み付け量が定められている。
上記したように、加工光計測による加工不具合判定、または加工音計測による加工不具合判定では、被加工物100の厚さ等の加工条件、あるいは加工不具合の発生状況によって検知精度が高くなったり、低くなったりする。したがって、加工光による検知精度と加工音による検知精度はそれぞれ一定では無く、加工条件によって異なることになる。そのため、場合によっては、加工光計測だけによる加工不具合判定、あるいは加工音計測だけによる加工不具合判定では十分な精度を確保できないことになる。
また、図6で示したように、切断面内の加工不具合を検出する場合で、切断スリット101の幅に対して被加工物100の厚さが厚い場合には、加工光計測による検知精度が低くなることに反し、加工音計測による検知精度は高くなる。逆に、切断スリット101の幅に対して被加工物100の厚さが薄い場合には、加工光計測による検知精度が高くなることに反し、加工音計測による検知精度が低くなるという、正反対の挙動を示す。
そこで、本実施の形態では、被加工物100の板厚が薄い場合、図7の例では、板厚がxx[cm]未満の場合には、加工音不具合判定値算出部442の判定では、加工不具合の検知精度を高くできないので、この加工音不具合判定値に対して重み付けを小さくするとともに、加工光不具合判定値に対する重み付けを大きくとるようにしている。その結果、加工不具合の発生について検知精度の高い結果が得られる。
また、被加工物100の板厚が厚い場合、図7の例では、板厚がxx[cm]以上の場合には、切断スリット101の上部の加工不具合の発生箇所では、加工光不具合判定値によって高精度に加工不具合を判定することができるが、切断スリット101の下部の加工不具合の発生箇所では、加工光不具合判定値による検知精度は低くなる。一方、加工音不具合判定結果を用いる場合には、加工不具合の発生箇所に関わらず、精度よく不具合の発生の判定を行うことができる。そこで、このような場合には、加工光不具合判定値に対する重み付けを小さくするとともに、加工音不具合判定値に対する重み付けを大きくしている。その結果、加工不具合の発生について検知精度の高い結果が得られる。このように、実施の形態1では、加工光不具合判定値を用いた加工不具合の発生の可能性についての検知精度と、加工音不具合判定値を用いた加工不具合の発生の可能性についての検知精度と、の間の相対的な検知精度の高低に応じた重み付け量が加工条件ごとに予め決定される。
なお、このような重み付けとしても、加工光計測および加工音計測による検知精度がともに高い切断部閉塞による加工不具合を高精度に検知することができる。つまり、このような重み付けでも、切断部閉塞による加工不具合の検知精度が落ちることはない。その結果、切断面内の加工不具合での検知精度の高低について定められた重み付け量が、加工条件全体のものに適用されている。
また、図7の例では、加工条件が被加工物100の板厚であり、板厚によって加工光不具合判定値および加工音不具合判定値が変わる場合を示した。この他にも、被加工物100の材質、表面状態、レーザ光Lの出力、加工ガス圧、送り速度によっても、加工光不具合判定値および加工音不具合判定値の検知精度が変わることもある。
一例として、加工光不具合判定結果は、加工ガス圧の変化に対して検知精度が大きく変わらず検知精度が高いが、加工ガス圧が高い場合の加工音不具合判定結果は、低い場合に比して検知精度が低くなることもある。また、一例として、加工音不具合判定結果は、送り速度の変化に対して検知精度が大きく変わらず検知精度が高いが、送り速度が大きい場合の加工光不具合判定結果は、小さい場合に比して検知精度が高くなることもある。そのため、被加工物100の材質、板厚、表面状態、レーザ光Lの出力、加工ガス圧、送り速度を組み合わせた加工条件に対して、加工不具合ごとに重み付け量を定めてもよい。加工条件としては、その他にレーザ光Lの集光径、被加工物100の表面に対する集光点の位置、加工ノズル132の形状、加工ノズル132と被加工物100との間の距離なども考慮して、加工不具合ごとに重み付け量を定めてもよい。
図1に戻り、判定基準値記憶部47は、レーザ切断加工で不具合が発生しているか否かを合成不具合判定値によって判定するための判定基準値を記憶する。この例では、判定基準値は、レーザ切断加工で不具合が発生していることを示す合成不具合判定値の範囲を示すものとする。判定基準値は、実験によって取得した良好なレーザ切断加工時の合成不具合判定値および加工不具合が発生しているレーザ切断加工時の合成不具合判定値を用いて決定される。
判定部48は、合成不具合判定値を判定基準値と比較し、レーザ切断加工時に加工不具合が発生しているか否かを判定する。すなわち、判定部48は、不具合が発生していることを示す判定基準値の範囲内に合成不具合判定値がある場合には、不具合が発生していると判定し、判定基準値の範囲外に合成不具合判定値がある場合には、不具合が発生していないと判定する。そして、判定部48は、判定結果81を出力する。一例として、判定部48は、レーザ切断加工部10を制御する制御部に出力する。不具合が発生しているという判定を受けた場合には、レーザ切断加工部10の制御部は、レーザ切断加工を一時停止する。
以上のように加工条件によって、加工光不具合判定値および加工音不具合判定値に対する重み付けを変更することで、判定部48は、安定して加工不具合を高精度に検出することができる。
ここで、演算部40のハードウェア構成について説明する。図8は、実施の形態1による演算部のハードウェア構成の一例を示す図である。演算部40は、入出力インタフェース401と、メモリ402と、CPU(Central Processing Unit)403と、を備える。
入出力インタフェース401は、加工光計測部31および加工音計測部32からの信号の入力を受け付けたり、判定部48によってレーザ切断加工で加工不具合が発生していると判定された場合に、レーザ切断加工部10に出力したりする。
メモリ402は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせをプログラムとして格納する。メモリ402は、レーザ切断加工中に不具合が生じているかを判定するプログラムを含む。また、メモリ402は、加工光計測部31および加工音計測部32での計測結果である信号を記憶する。さらに、メモリ402は、加工条件データと、不具合判定情報と、重み付け情報と、判定基準値と、を記憶する。メモリ402は、不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、光ディスク、または光磁気ディスクによって構成される。不揮発性または揮発性の半導体メモリとしては、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、またはEEPROM(登録商標)(Electrically EPROM)が用いられる。メモリ402によって不具合判定情報記憶部42、重み付け情報記憶部46および判定基準値記憶部47の機能が実現される。
CPU403は、メモリ402に記憶された計測結果、加工条件データ、不具合判定情報、重み付け情報および判定基準値を用いて、メモリ402に格納されたプログラムを実行して、レーザ切断加工部10で実行中のレーザ切断加工の加工不具合の判定を行う。CPU403によって、特徴量抽出部41、判定値算出部43および判定部48の機能が実現される。
つぎに、このような構成の加工不具合検出部30を備えるレーザ切断加工装置1での動作について、図1を参照しながら説明する。レーザ切断加工部10は、予め設定された加工条件にしたがって被加工物100に対してレーザ切断加工を行う。レーザ切断加工の最中には、加工光計測部31によって加工点で発生する加工光が計測され、加工音計測部32によって加工点で発生する加工音が計測される。レーザ切断加工部10の加工条件は、加工条件データ71として、加工不具合検出部30に入力される。
加工光計測部31での計測結果である加工光信号は加工光特徴量抽出部411へと渡され、加工光特徴量抽出部411は、加工光信号から特徴量を抽出する。加工光不具合判定値算出部441は、抽出された特徴量と、不具合判定情報記憶部42中の不具合判定情報と、を用いて加工光不具合判定値を算出する。加工光不具合判定値算出部441は、加工光不具合判定値を合成不具合判定値算出部45に出力する。
加工音計測部32での計測結果である加工音信号は加工音特徴量抽出部412へと渡され、加工音特徴量抽出部412は、加工音信号から特徴量を抽出する。加工音不具合判定値算出部442は、抽出された特徴量と、不具合判定情報記憶部42中の不具合判定情報と、を用いて加工音不具合判定値を算出する。加工音不具合判定値算出部442は、加工音不具合判定値を合成不具合判定値算出部45に出力する。
合成不具合判定値算出部45は、加工条件データ71に対応する重み付け量を重み付け情報記憶部46から取得する。そして、合成不具合判定値算出部45は、加工光不具合判定値と加工音不具合判定値とにそれぞれ重み付け係数を掛けた後、足し合わせた合成不具合判定値を算出し、判定部48に出力する。
その後、判定部48は、合成不具合判定値が判定基準値記憶部47の加工不具合が発生していることを示す判定基準値の範囲に存在するか否かを判定し、判定結果81を出力する。合成不具合判定値が判定基準値の範囲に存在する場合には、判定部48は、レーザ切断加工時に加工不具合が発生していると判定する。また、合成不具合判定値が判定基準値の範囲に存在しない場合には、判定部48は、レーザ切断加工時に不具合が発生していないと判定する。
なお、上記した説明では、加工条件として、被加工物100の厚さが薄い場合と厚い場合とで重み付け量を変える場合を示したが、被加工物100の厚さに応じて、重み付け量を変えるとともに、加工光計測部31および加工音計測部32を使い分けてもよい。すなわち、中間的な厚さについては、加工光計測部31および加工音計測部32での計測結果から得られる各加工不具合判定値に対して重み付けを用いて合成不具合判定値が算出されるが、厚板については、加工音計測部32での計測結果から得られる加工音不具合判定値のみが用いられ、薄板については、加工光計測部31での計測結果から得られる加工光不具合判定値のみが用いられるといった加工不具合判定が行われてもよい。これは加工条件としての板厚に応じて、加工音による加工音不具合判定値と加工光による加工光不具合判定値とを足し合わせる際の重み付け量を1または0と極端に設定した場合に相当する。中間的な厚さ以外の厚さである場合には、判定処理で使用されるのは、加工光計測部31および加工音計測部32のいずれかの信号のみでよいので、加工不具合判定を行う計算処理が軽くなり、より短時間で判定を行うことができる。
実施の形態1では、加工光の特徴量から算出した加工光不具合判定結果と、加工音の特徴量から算出した加工音不具合判定結果と、のそれぞれに加工条件に応じて定められた重み付けを行って足し合わせた合成判定値を算出する。そして、加工不具合が発生していることを示す判定基準値の範囲内に合成判定値がある場合に、レーザ切断加工に加工不具合が発生していると判定した。これによって、被加工物100の材質、厚さ、表面状態、レーザ出力、送り速度等の加工条件に応じて、検知精度が高くなるセンサによる判定結果の重み付け量が高められ、検知精度が低くなるセンサによる判定結果の重み付けが低められる。その結果、レーザ切断加工の不具合に対する検知精度を高めることができる。つまり、加工条件に応じてレーザ切断加工の加工特性を示す特徴量の適正値が変動するような場合でも、加工不具合の検出を行うことができるという効果を有する。
実施の形態2.
実施の形態1では、加工光の特徴量から算出した加工光不具合判定結果と、加工音の特徴量から算出した加工音不具合判定結果と、のそれぞれに加工条件に応じて定められた重み付けを行って足し合わせた合成判定値を算出した。実施の形態2では、加工条件と加工不具合の種類に応じて重み付けを行う場合について説明する。
図9は、実施の形態2にかかるレーザ切断加工装置の構成の一例を模式的に示す図である。実施の形態2では、合成不具合判定値算出部45に、加工条件データ71に加えて加工不具合の種類を示す加工不具合データ72が入力される。
重み付け情報記憶部46は、加工条件および加工不具合の種類の組み合わせに対して重み付け量を設定した重み付け情報を記憶する。図10は、実施の形態2による重み付け情報の一例を示す図である。重み付け情報では、加工条件および加工不具合の種類の組み合わせに対して、重み付け量が設定されている。この例では、加工条件として、被加工物100の板厚が用いられている。また、加工不具合の種類は、加工不具合の種類を大きく分類した第1分類と、第1分類の中でさらに細かく分類した第2分類と、を含む。第1分類は、切断部閉塞による加工不具合と、切断面内の加工不具合と、を含む。また、図6で示したように、切断面内の加工不具合で板厚が厚い場合の加工光による検知精度は、加工不具合の発生場所によって、異なる。そこで、図10の例では、加工条件の板厚がxx[cm]よりも大きい場合の切断面内の加工不具合の場合には、第2分類で上部および下部に分類して、細かく重み付け量が設定されるようにしている。
板厚>xx[cm]の場合または板厚<xx[cm]の場合で、切断部閉塞による加工不具合の場合には、上記したように加工光および加工音ともに高精度で加工不具合を検出することができるので、重み付けが同等となっている。
板厚<xx[cm]の場合で切断面内の加工不具合の場合には、上記したように加工音による加工不具合の検知精度は、加工光による加工不具合の検知精度に比して相対的に低くなるので、加工光の方が重み付け量を大きくしている。
板厚>xx[cm]の場合かつ切断面内の加工不具合の場合で、切断スリット101の上部におけるキズまたは荒れについては、加工光不具合判定値算出部441および加工音不具合判定値算出部442で検出可能であるため、重み付けが同等とされる。
これに対し、板厚>xx[cm]の場合かつ切断面内の加工不具合の場合で、切断スリット101の下部におけるキズまたは荒れについては、加工光不具合判定値算出部441では検出精度が低いので重み付けが小さくされ、加工音不具合判定値算出部442では検出精度が高いので重み付けが大きくされることで、合成不具合判定値による検知精度を高めることができる。
ただし、切断面上の小さい傷の検出では、切断フロント形状の変化が軽微となり加工音では切断スリット内の流路断面積の傷発生による断面積変化が小さいために加工音としての変化は小さく検出精度が低くなることに対し、加工光では瞬間的に切断フロントが加工光計測部31の方に向かうために高い検知精度で検出可能である。
図9に戻り、合成不具合判定値算出部45は、合成不具合判定値を算出するとき、加工条件データ71および加工不具合データ72の組み合わせに対応する重み付け量を、重み付け情報から取得する。そして、合成不具合判定値算出部45は、加工光不具合判定値、加工音不具合判定値、および重み付け量を用いて、合成不具合判定値を算出する。
なお、その他の構成は、実施の形態1と同一であるので、その説明を省略する。また、演算部40での処理も、実施の形態1で説明したものと同様であるので、その説明を省略する。
実施の形態2では、加工条件および加工不具合の組み合わせに応じて、加工光不具合判定値および加工音不具合判定値に対する重み付け量を設定した。そして、合成不具合判定値算出部45は、それぞれの加工不具合に応じて合成不具合判定値を出力する。これによって、加工不具合の状況をより詳細に判定することができるので、より高精度な加工条件の調整ができるようになるという効果を有する。
また、検出すべき加工不具合に応じて、計測する時系列信号の状況が変化する。そのため、検出したい加工不具合に応じて、時系列信号の特徴量の重み付けまたは不具合判定値の重み付けを変更することで、対応する加工不具合ごとに検知精度を高めることが可能となる。
実施の形態3.
実施の形態1,2では、時系列の加工光信号から特徴量を抽出することで、この特徴量から加工光不具合判定値を算出し、同様に時系列の加工音信号から特徴量を抽出することで、この特徴量から加工音不具合判定値を算出し、この2つの不具合判定値に対して、加工条件またはこれに加えて加工不具合の種類に応じて重み付けを行った合成不具合判定値を算出していた。実施の形態3では、加工光信号から抽出した加工光特徴量と、加工音信号から抽出した加工音特徴量と、から加工条件またはこれに加えて加工不具合の種類について定められた合成特徴量を抽出し、この合成特徴量を用いて合成不具合判定値を算出する場合を説明する。
図11は、実施の形態3にかかるレーザ切断加工装置の構成の一例を模式的に示す図である。実施の形態3では、判定値算出部43aの構成が、実施の形態1,2とは異なる。判定値算出部43aは、合成特徴量抽出部49と、合成不具合判定値算出部45と、を有する。
合成特徴量抽出部49は、加工光特徴量抽出部411により抽出された加工光特徴量および加工音特徴量抽出部412により抽出された加工音特徴量に対して、加工条件データ71またはこれに加えて加工不具合データ72について定められた演算処理を行って合成特徴量を抽出する。演算処理として、加工光特徴量および加工音特徴量の重み付けされた和、積または比などを例示することができる。また、合成特徴量の一例は、加工光の変動係数と加工音の変動係数との2変数の関数である。関数としては、実施の形態1,2で説明したように、加工条件またはこれに加えて加工不具合の種類に応じて重み付けを加味した2変数の和、または最大値を選択するものであってもよい。このような合成特徴量の変動から切断フロント102の振動状況等を高精度に評価することができるので、加工不具合判定についても高精度に判定可能となる。また、上記した例では、加工光特徴量と加工音特徴量とを組合せた合成特徴量を示したが、実施の形態がこれに限定されるものではない。合成特徴量は、異なる加工光特徴量を組み合わせたものであってもよいし、異なる加工音特徴量を組み合わせたものであってもよい。この場合には、加工光特徴量抽出部411は、m(mは自然数)種類の加工光特徴量を抽出し、加工音特徴量抽出部412は、n(nは自然数)種類の加工音特徴量を抽出する。ただし、mおよびnの少なくとも一方は2以上の自然数とする。そして、合成特徴量抽出部49は、m種類の加工光特徴量およびn種類の加工音特徴量を用いて加工条件データ71またはこれに加えて加工不具合データ72について定められ得た演算処理を行うことによって、合成特徴量を求める。なお、合成特徴量抽出部49は、重み付け情報記憶部46の重み付け情報を参照することができる。
不具合判定情報記憶部42で記憶される不具合判定情報は、加工不具合が発生する合成特徴量の範囲を示すものであり、加工条件および加工不具合の種類の組み合わせに対して、不具合判定基準値となる合成特徴量が定められている。
合成不具合判定値算出部45は、合成特徴量を用いて合成加工不具合判定を行う。具体的には、合成特徴量と、不具合判定情報記憶部42中の加工条件データ71と加工不具合データ72との組み合わせに対応する不具合判断基準値と、を比較し、不具合の発生度合いを示す合成不具合判定値を算出する。
なお、その他の構成は、実施の形態1と同一であるので、その説明を省略する。また、演算部40での処理も、実施の形態1で説明したものと同様であるので、その説明を省略する。
実施の形態3では、加工光特徴量および加工音特徴量の両方を考慮した合成特徴量を算出し、合成特徴量を用いてレーザ切断加工の加工不具合を判定した。これによって、加工光計測部31および加工音計測部32からの特徴量を考慮した、実施の形態1,2の場合に比してより特徴量空間の自由度をより高めることができる。つまり、より加工不具合判定に適合する特徴量の選定の自由度を高めることができる。その結果、レーザ切断加工の加工不具合の検知精度をより高めることができる。
実施の形態4.
実施の形態1から実施の形態3では、各特徴量から算出した不具合判定値あるいは各特徴量を、加工条件または検出したい加工不具合の種類に対して予め設定した重み付け量を用いて、合成不具合判定値を算出していた。ところが、レーザ切断加工装置を使用する各ユーザによって、あるいは被加工物をレーザ切断加工によって切断した部材の適用用途によって、許容可能な加工不具合レベルは異なる。そのため、予め設定した重み付けによる加工不具合判定結果では厳しすぎて、この加工不具合判定結果に基づいて加工条件を調整すると、ユーザが望む加工速度を設定することができないことがある。反対に、予め設定した重み付けによる加工不具合判定結果は緩すぎて、特定のユーザにとっては満足できる切断面品質に到達できない可能性がある。つまり、ユーザごとまたは加工用途ごとに、加工不具合の閾値が異なる。そこで、実施の形態4では、ユーザごとまたは加工用途ごとに加工不具合の閾値、すなわち重み付け量を変えることができるレーザ切断加工装置について説明する。
図12は、実施の形態4にかかるレーザ切断加工装置の構成の一例を模式的に示す図である。実施の形態4では、判定値算出部43bの構成が、実施の形態1,2とは異なる。判定値算出部43bは、機械学習部50をさらに有する。
機械学習部50は、学習部51と、データ取得部52と、を備える。学習部51は、機械学習により、入力と結果のデータの組を学習する。学習部51の機械学習のアルゴリズムとしてはどのようなものを用いてもよいが、例えば、教師あり学習のアルゴリズムを用いることができる。データ取得部52は、学習部51における入力として、加工光不具合判定値算出部441からの加工光不具合判定値と、加工音不具合判定値算出部442からの加工音不具合判定値と、加工条件データ71と、加工不具合状態値73と、を学習部51へ入力する。加工不具合状態値73は、ユーザによるレーザ切断加工の加工結果を判断した評価値である。
学習部51は、上記した入力を教師データとして与えることで重み付け量を学習する。これによって、ユーザが所望する加工不具合判定結果へとより一致させる重み付け量が求められる。このようにして求められた重み付け量は、重み付け情報記憶部46に記憶される。
教師データの与え方としては、予め必要な数の加工光および加工音の時系列データと、被加工物100の切断面品質状況と、を準備しておき、ユーザが所望する加工不具合の閾値を選ぶことで、教師データとしてもよい。あるいは、ユーザが実際に加工を行いながら、各加工結果に切断面品質に対する加工不具合状態値73のユーザ評価を与えることで学習させてもよい。
なお、その他の構成は、実施の形態1,2と同一であるので、その説明を省略する。また、演算部40での加工不具合の発生の有無の判定処理も、実施の形態1で説明したものと同様であるので、その説明を省略する。
実施の形態4では、機械学習部50で、加工光不具合判定値と、加工音不具合判定値と、加工条件データ71と、加工不具合状態値73と、を用いて、重み付け量を学習させた。これによって、ユーザごとまたは加工用途ごとに、加工不具合の閾値を選択することができるという効果を有する。
実施の形態5.
実施の形態4では、ユーザごとまたは加工用途ごとに、加工不具合の閾値を選択できるようにしたが、実施の形態5では、レーザ切断加工において、優先する項目のそれぞれについて、加工条件と加工不具合の種類の組み合わせごとに、重み付け量を準備しておく場合を説明する。
実施の形態5にかかるレーザ切断加工装置1の構成は、実施の形態1から実施の形態4に示したものとすることができる。ただし、重み付け情報記憶部46に記憶される重み付け情報は、優先する内容について、加工条件またはこれに加えて加工不具合の種類ごとに重み付け量が定められたものとなる。
図13は、実施の形態5による重み付け情報の一例を示す図である。図13では、図10の内容に優先内容という項目が追加されている。優先内容は、レーザ切断加工において相対する選択肢を示すものである。相対する選択肢の一例は、速度優先であるか、加工品質優先であるか、である。図13に示されるように、優先内容と加工条件と加工不具合の種類の組み合わせごとに、重み付け量が設定される。このようにしておくことで、ユーザは加工する際に、各自の所望する優先度に従って加工不具合検出を行うことができるようになる。一例として、加工条件と加工不具合の種類が決まっている場合に、速度を優先したいときには、重み付け情報の中から、対応する重み付け量が加工不具合検出部30に設定される。
図13では、速度優先と加工品質優先の2択の例を示したが、2つの項目間に中間レベルを設けることで、加工用途に従って選択できるようにしてもよい。これによって、加工用途に従って変わる許容加工品質レベルを満たしながら、より最速な切断加工を簡単に選択できるようになる。また、選択肢としては、上記した2項目以外に加工安定性優先等を加えた3項目としてもよいし、更に他の項目を増やしてもよい。
実施の形態5では、重み付け情報記憶部46には、優先内容、加工条件および加工不具合の種類の組み合わせごとに、重み付け量を設定した重み付け情報が記憶される。そして、ユーザが優先したい内容と、加工条件および加工不具合の種類の組み合わせと、について定められた重み付け量によって加工不具合の判定を行うようにした。これによって、ユーザによって、あるいは加工の目的について定められた加工不具合の判定を行うことができるという効果を有する。
実施の形態6.
実施の形態1から5までは加工装置としてレーザ切断加工装置に関する形態を示した。実施の形態6では、加工装置としてワイヤ放電加工装置に加工不具合検出装置を適用した形態について示す。
図14は、実施の形態6にかかるワイヤ放電加工装置の構成の一例を模式的に示す図である。なお、実施の形態1と同一の構成要素には、同一の符号を付して、その説明を省略する。ワイヤ放電加工装置200は、加工液中で被加工物100に近接したワイヤ202からの放電パルスにより加工を行う放電加工部201と、放電加工部201での放電加工の不具合を検出する加工不具合検出装置である加工不具合検出部230と、を備える。
放電加工部201は、被加工物100を載置するステージ11と、放電パルスを被加工物100に印加する電極であるワイヤ202と、電源205と、ワイヤ202が繰り出されるワイヤボビン206と、ワイヤ202に接触する一対の給電子203と、ワイヤ202を支持する一対のダイス204と、を有する。ワイヤ202は、被加工物100において加工したい位置に予め定められた距離を置いて配置される。電源205は、給電子203とステージ11とに接続され、給電子203すなわちワイヤ202と被加工物100との間にパルス電圧を印加する。パルス電圧は、ワイヤ202と被加工物100との間で放電を生じさせる放電パルス電圧である。放電加工部201は、ワイヤボビン206から繰り出されたワイヤ202を被加工物100へ向けて走行させる送給ローラ207と、ワイヤ202を回収する回収ローラ209と、被加工物100を通過したワイヤ202を回収ローラ209へ向けて走行させる下部ローラ208と、を有する。また放電加工部201で形状加工を実施する場合には、ワイヤ202と被加工物100との間の相対的位置関係を変更する少なくとも1つ以上の図示しない駆動装置が設けられる。
加工不具合検出部230は、実施の形態1から5と同様に、放電加工部201が被加工物100を放電加工中に発生する光および音を計測し、この計測結果に基づいて放電加工に不具合が発生していないかを判定する。加工不具合検出部230は、実施の形態1から5と同様に、加工光計測部231と、加工音計測部232と、演算部40と、を備える。
加工光計測部231は、放電加工時に、被加工物100とワイヤ202との間に印加された放電電圧によって発生する放電パルスにより発せられる加工光を計測し、計測した加工光を時系列に並べた加工光信号を演算部40に出力する。加工光計測部231は、実施の形態1から5の加工光計測部31と同様であり、光センサまたは分光器を搭載する。
加工音計測部232は、放電加工時に加工点周辺で発生する加工音を計測し、計測した加工音を時系列に並べた加工音信号を演算部40に出力する。ここで、加工音の緒言について説明を加える。ワイヤ202から被加工物100へ放電パルス電流が流れる際に、電流が被加工物100を加工する際の音が加工音として計測される。あるいは、このとき、放電発生点付近の加工液は数千度の高温となることから、急速に気化爆発して気泡が生成される。これに伴い付近の加工液は急激な圧力変化を受けることになり、これが超音波の衝撃波として伝搬し、加工音として計測される。
ここで、ワイヤ202から被加工物100へ印加する放電パルス電流が大きいと、放電により被加工物100から除去される金属の量も多くなるため、加工速度は速くなるが、表面粗さは大きくなる。また、放電タイミングは、ワイヤ202と被加工物100との距離により自発的に決定されるため、放電反力を受けて振動するワイヤ202の状況により異なるとともに、ワイヤ202が被加工物100に近づいた際の放電は強くなり、遠い場合の放電は弱くなる。したがって、加工光および加工音は、放電エネルギ、放電タイミング、放電持続時間および放電波形に依存した時系列データとなる。
実施の形態1から5のレーザ加工装置の場合と同様に、演算部40において、加工音特徴量および加工光特徴量が抽出されたのち、それぞれ、あるいはこれらを組み合わせた特徴量に対して加工不具合が判定される。放電加工装置の場合には、演算部40は、各放電パルス印加時に、計測される加工光および加工音の時系列データに対して、強度、強度ばらつき、周波数、タイミングばらつき等の特徴量を抽出して、分析する。その結果、放電集中による火花放電を検知し、ワイヤ断線、被加工面でのキズ発生、あるいは面粗さ劣化等を判定することができる。なお、図14では、演算部40は、実施の形態1に示した演算部40と同一の構成を有する場合を示した。しかし、演算部40は、実施の形態1から5のいずれかの構成を有するものであればよい。
実施の形態1から5のレーザ加工装置の場合と同様に、被加工物100の厚さおよび形状、並びに発生する不具合に応じて、加工音または加工光による良否判定の容易度が異なる。
まず、放電加工中における加工光の計測について説明を行う。図15は、被加工物の厚さが厚い場合の放電加工時の加工開始時の状況の一例を模式的に示す図である。図16は、被加工物の厚さが厚い場合の放電加工時の図15よりも加工が進んだ状況の一例を模式的に示す図である。通常のワイヤ放電加工装置200の切断溝幅は、ワイヤ202の直径に被加工物100とワイヤ202とのギャップの2倍を足したもの相当になる。ワイヤ202は、通常0.02mm以上0.3mm以下の直径を有するものが使用されるために、切断溝幅は広くても約0.5mm程度となる。このため、図15に示されるように、切断した長さである切り込み量が短い場合には、被加工物100の厚さが厚い場合であっても切り込みの開口部から加工光を計測することが容易である。しかし、図16に示されるように加工が進行して切り込み量が長い場合には、スリット幅が狭いために徐々に開口部から加工光を計測することが困難となっていく。特に、被加工物100の厚さ方向における中心部から下方の位置で発生した放電による加工光を計測することは難しくなる。
図17は、被加工物の厚さが薄い場合の放電加工時の加工が進んだ状況の一例を模式的に示す図である。図17は、図16と同様の状況であるが、被加工物100の厚さが図16の場合に比して薄い場合を示している。図17に示されるように、被加工物100の厚さが薄い場合には、切り込み量が長い場合であっても加工光を計測することは容易であり、加工不具合の発生の判定を行うことが可能である。以上の説明において、被加工物100の厚さの厚い、薄いは、一例では、実施の形態1で説明した内容を準用することができる。
つぎに、放電加工中における加工音の計測について説明を行う。加工音についてはマイク等で空気中を伝搬する音を検出するほか、被加工物100の内部を伝搬する音波を被加工物100の表面に設置したセンサを用いて計測することができる。また、複数のセンサを使用すると音波を検知した時間差によって放電が発生した位置を特定することができる。したがって、加工音計測では被加工物100の厚さ、放電が発生した位置に関わらず、計測することが可能である。ただし、加工音計測では、加工光計測と比較して計測できる周波数が低いため、放電波形に対応する高分解能な波形解析は困難である。そのため、例えば1マイクロ秒以下の短パルスの放電の解析に対しては加工音計測に比して加工光計測の方が有利となる。
なお、実施の形態6におけるワイヤ放電加工装置200における加工不具合の発生の判定は、実施の形態1から5で示したものと同様であるので、説明を省略する。
また、実施の形態6においては、ワイヤ放電加工装置200の例について説明したが、電極としてワイヤ202の代わりに金型を用いる型彫放電加工装置に対して加工不具合検出装置を適用すれば、同様に電流集中による電極の劣化または加工面粗さの劣化等の検知が容易となる。以上のように、ワイヤ放電加工装置200および型彫放電加工装置を含む放電加工装置について、実施の形態1から5の加工不具合検出装置を適用することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 レーザ切断加工装置、10 レーザ切断加工部、11 ステージ、12 レーザ発振器、13 加工ヘッド、14 光ファイバ、30,230 加工不具合検出部、31,231 加工光計測部、32,232 加工音計測部、40 演算部、41 特徴量抽出部、42 不具合判定情報記憶部、43,43a,43b 判定値算出部、44 不具合判定値算出部、45 合成不具合判定値算出部、46 重み付け情報記憶部、47 判定基準値記憶部、48 判定部、49 合成特徴量抽出部、50 機械学習部、51 学習部、52 データ取得部、71 加工条件データ、72 加工不具合データ、73 加工不具合状態値、81 判定結果、100 被加工物、131 光学系、132 加工ノズル、200 ワイヤ放電加工装置、201 放電加工部、202 ワイヤ、203 給電子、204 ダイス、205 電源、206 ワイヤボビン、207 送給ローラ、208 下部ローラ、209 回収ローラ、411 加工光特徴量抽出部、412 加工音特徴量抽出部、441 加工光不具合判定値算出部、442 加工音不具合判定値算出部。

Claims (14)

  1. 加工時に加工点で発生する加工光を計測する加工光計測部と、
    前記加工点で発生する加工音を計測する加工音計測部と、
    前記加工で加工不具合が発生したかどうかを判定する演算部と、
    を備え、
    前記演算部は、
    前記加工光計測部で計測された加工光信号から加工光特徴量を抽出し、前記加工音計測部で計測された加工音信号から加工音特徴量を抽出する特徴量抽出部と、
    前記加工光特徴量と前記加工音特徴量とに基づいて合成不具合判定値を算出する判定値算出部と、
    前記合成不具合判定値を判定基準値と比較して前記加工不具合が発生したかどうかを判定する判定部と、
    を有し、
    前記判定値算出部は、前記加工光特徴量および前記加工音特徴量に、加工条件に応じて定められた重み付けを行って合成することにより前記合成不具合判定値を算出することを特徴とする加工不具合検出装置。
  2. 加工時に加工点で発生する加工光を計測する加工光計測部と、
    前記加工点で発生する加工音を計測する加工音計測部と、
    前記加工で加工不具合が発生したかどうかを判定する演算部と、
    を備え、
    前記演算部は、
    前記加工光計測部で計測された加工光信号から加工光特徴量を抽出し、前記加工音計測部で計測された加工音信号から加工音特徴量を抽出する特徴量抽出部と、
    前記加工光特徴量と前記加工音特徴量とに基づいて合成不具合判定値を算出する判定値算出部と、
    前記合成不具合判定値を判定基準値と比較して前記加工不具合が発生したかどうかを判定する判定部と、
    を有し、
    前記判定値算出部は、前記加工光特徴量および前記加工音特徴量を用いて算出した加工光不具合判定値および加工音不具合判定値に加工条件に応じて定められた重み付けを行って前記合成不具合判定値を算出することを特徴とする加工不具合検出装置。
  3. 前記判定値算出部は、前記加工条件および前記加工不具合の種類の組み合わせと重み付け量とを対応させた重み付け情報を参照して、前記加工における加工条件データと検出したい前記加工不具合の種類を示す加工不具合データとの組み合わせについて定められた前記重み付け量を用いて前記合成不具合判定値を算出することを特徴とする請求項に記載の加工不具合検出装置。
  4. 前記判定値算出部は、検出したい前記加工不具合の種類に応じて、前記加工光計測部からの前記加工光信号と前記加工音計測部からの前記加工音信号と、を使い分けて前記合成不具合判定値を算出することを特徴とする請求項に記載の加工不具合検出装置。
  5. 前記加工光不具合判定値および前記加工音不具合判定値は、前記加工光特徴量および前記加工音特徴量と、前記加工光特徴量および前記加工音特徴量が加工不具合であると判定される不具合判定基準値と、の間の一致度であり、
    前記判定値算出部は、前記加工光不具合判定値および前記加工音不具合判定値を、すべての種類の加工不具合に対して算出し、最も一致度の高い前記加工光不具合判定値および前記加工音不具合判定値が予め設定された閾値未満である場合に、前記加工不具合は発生していないと判定することを特徴とする請求項に記載の加工不具合検出装置。
  6. 前記判定値算出部は、前記加工光特徴量および前記加工音特徴量を加工条件または加工条件に加えて加工不具合の種類に応じて定められた演算処理を行った合成特徴量を用いて前記合成不具合判定値を算出することを特徴とする請求項1に記載の加工不具合検出装置。
  7. 前記特徴量抽出部は、m(mは自然数)種類の前記加工光特徴量およびn(nは自然数)種類の前記加工音特徴量を抽出し、
    前記判定値算出部は、m種類の前記加工光特徴量およびn種類の前記加工音特徴量を用いて前記加工条件または前記加工条件に加えて前記加工不具合の種類に応じて定められた前記演算処理を行って前記合成特徴量を算出し、
    mおよびnのうち少なくとも一方は2以上の自然数であることを特徴とする請求項に記載の加工不具合検出装置。
  8. 前記演算部は、前記加工光特徴量、前記加工音特徴量および前記加工条件を学習する機械学習部をさらに備えることを特徴とする請求項またはに記載の加工不具合検出装置。
  9. 前記機械学習部は、前記重み付け量をさらに学習することを特徴とする請求項に記載の加工不具合検出装置。
  10. 前記重み付け情報は、前記加工で優先する優先内容と、前記加工条件と、前記加工不具合の種類と、の組み合わせごとに、前記重み付け量を有することを特徴とする請求項に記載の加工不具合検出装置。
  11. 前記加工がレーザ切断加工であることを特徴とする請求項1から10のいずれか1つに記載の加工不具合検出装置。
  12. 請求項11に記載の加工不具合検出装置と、
    前記レーザ切断加工の対象となる被加工物を載置するステージと、
    レーザ発振器と、
    前記レーザ発振器からのレーザ光を前記加工点に照射する加工ヘッドと、
    を備えることを特徴とするレーザ切断加工装置。
  13. 前記加工が放電加工であることを特徴とする請求項1から10のいずれか1つに記載の加工不具合検出装置。
  14. 請求項13に記載の加工不具合検出装置と、
    前記放電加工の対象となる被加工物を載置するステージと、
    前記被加工物において加工したい位置に予め定められた距離を置いて配置される電極と、
    放電パルス電圧を前記ステージと前記電極との間に印加する電源と、
    を備えることを特徴とする放電加工装置。
JP2020533171A 2019-06-13 2020-02-25 加工不具合検出装置、レーザ切断加工装置および放電加工装置 Active JP6758552B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/023488 WO2020250380A1 (ja) 2019-06-13 2019-06-13 加工不具合検出装置およびレーザ切断加工装置
JPPCT/JP2019/023488 2019-06-13
PCT/JP2020/007482 WO2020250496A1 (ja) 2019-06-13 2020-02-25 加工不具合検出装置、レーザ切断加工装置および放電加工装置

Publications (2)

Publication Number Publication Date
JP6758552B1 true JP6758552B1 (ja) 2020-09-23
JPWO2020250496A1 JPWO2020250496A1 (ja) 2021-09-13

Family

ID=72517839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533171A Active JP6758552B1 (ja) 2019-06-13 2020-02-25 加工不具合検出装置、レーザ切断加工装置および放電加工装置

Country Status (4)

Country Link
US (1) US11474512B2 (ja)
JP (1) JP6758552B1 (ja)
CN (1) CN113993653B (ja)
DE (1) DE112020002341T5 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932044B (zh) * 2022-12-22 2024-02-20 江苏先进光源技术研究院有限公司 一种激光加工过程中工件缺陷实时检测方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857912A (en) * 1988-07-27 1989-08-15 The United States Of America As Represented By The Secretary Of The Navy Intelligent security assessment system
JPH0475822A (ja) 1990-07-12 1992-03-10 I N R Kenkyusho:Kk 放電加工装置
JPH0577073A (ja) 1991-09-25 1993-03-30 Brother Ind Ltd レーザ加工状態監視装置
JPH06246467A (ja) 1993-03-03 1994-09-06 Mazda Motor Corp レーザ溶接品質の検査装置および検査方法
US5681490A (en) * 1995-09-18 1997-10-28 Chang; Dale U. Laser weld quality monitoring system
US8676538B2 (en) * 2004-11-02 2014-03-18 Advanced Micro Devices, Inc. Adjusting weighting of a parameter relating to fault detection based on a detected fault
JP5073955B2 (ja) 2006-03-23 2012-11-14 株式会社総合車両製作所 レーザ溶接方法
JP5328708B2 (ja) 2010-03-30 2013-10-30 三菱電機株式会社 レーザ加工装置
US9217731B2 (en) * 2010-05-21 2015-12-22 Kabushiki Kaisha Toshiba Welding inspection method and apparatus thereof
MY192904A (en) 2015-02-17 2022-09-14 Fujitsu Ltd Determination device, determination method, and determination program
JP6596244B2 (ja) 2015-06-23 2019-10-23 株式会社総合車両製作所 レーザ溶接方法
JP6625914B2 (ja) 2016-03-17 2019-12-25 ファナック株式会社 機械学習装置、レーザ加工システムおよび機械学習方法
JP6457473B2 (ja) 2016-12-16 2019-01-23 ファナック株式会社 ロボットおよびレーザスキャナの動作を学習する機械学習装置,ロボットシステムおよび機械学習方法
JP6769343B2 (ja) 2017-02-28 2020-10-14 オムロン株式会社 作業支援装置、方法、プログラムおよび工具
JP6680751B2 (ja) * 2017-11-24 2020-04-15 ファナック株式会社 レーザ加工中に保護ウインドの汚れを警告するレーザ加工装置
US11559854B2 (en) * 2018-11-09 2023-01-24 General Electric Company Methods for detecting errors in an additive manufacturing process
JP2022527875A (ja) * 2019-04-08 2022-06-07 スリープ ナンバー コーポレイション ベッド環境を感知して制御するためのシステム
CN111136382A (zh) * 2019-12-29 2020-05-12 北京航空航天大学合肥创新研究院 一种基于声波监测的激光制造过程调控方法

Also Published As

Publication number Publication date
DE112020002341T5 (de) 2022-01-27
JPWO2020250496A1 (ja) 2021-09-13
CN113993653A (zh) 2022-01-28
CN113993653B (zh) 2022-11-04
US11474512B2 (en) 2022-10-18
US20220147036A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
US6670574B1 (en) Laser weld monitor
EP1969346B1 (en) Apparatus and method for on-line detecting welding part of strip
Schleier et al. Burr formation detector for fiber laser cutting based on a photodiode sensor system
JP4662621B2 (ja) 高エネルギビームを用いて材料加工する方法及び装置
JP6758552B1 (ja) 加工不具合検出装置、レーザ切断加工装置および放電加工装置
Levichev et al. Real-time monitoring of fiber laser cutting of thick plates by means of photodiodes
CN113365774B (zh) 用于自动化地求取激光加工参数对激光加工的影响的方法以及激光加工机和计算机程序产品
WO2020250496A1 (ja) 加工不具合検出装置、レーザ切断加工装置および放電加工装置
JP2014113597A (ja) レーザ加工装置
JP7390680B2 (ja) レーザ溶接品質検査の方法及びレーザ溶接品質検査装置
Park et al. A fuzzy pattern recognition based system for monitoring laser weld quality
JPH08281456A (ja) レーザ溶接の貫通検知方法およびその装置
JP6688021B2 (ja) レーザ溶接監視装置とレーザ溶接監視方法
JP3407655B2 (ja) レーザ溶接監視方法
CA2322531A1 (en) Testing a weld seam
JPH08215869A (ja) レーザ溶接方法およびその装置
Brežan et al. Fusing optical coherence tomography and photodiodes for diagnosis of weld features during remote laser welding of copper-to-aluminum
Garmendia et al. Optical monitoring of fiber laser based cutting processes for in-situ quality assurance
JP3603829B2 (ja) レーザ溶接の品質検査方法
JP4136551B2 (ja) レーザ溶接方法
JP3209035B2 (ja) レーザ溶接の品質検査方法およびその装置
US11975410B2 (en) Laser welding quality inspection method and laser welding quality inspection apparatus
JP2533153B2 (ja) レ―ザ加工状態監視装置及びレ―ザ加工状態監視方法
JPS589783A (ja) レ−ザ加工検査方法
JP2008068325A (ja) レーザ溶接の出力変調波形の決定方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200616

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6758552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250