JP6753961B2 - レーザー受信機に入射する受信ビームと回転レーザービームを比較するための方法 - Google Patents

レーザー受信機に入射する受信ビームと回転レーザービームを比較するための方法 Download PDF

Info

Publication number
JP6753961B2
JP6753961B2 JP2018568361A JP2018568361A JP6753961B2 JP 6753961 B2 JP6753961 B2 JP 6753961B2 JP 2018568361 A JP2018568361 A JP 2018568361A JP 2018568361 A JP2018568361 A JP 2018568361A JP 6753961 B2 JP6753961 B2 JP 6753961B2
Authority
JP
Japan
Prior art keywords
laser
rotation
rotating
receiver
laser receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018568361A
Other languages
English (en)
Other versions
JP2019519788A (ja
Inventor
ルーキッチ サッシャ
ルーキッチ サッシャ
ハラズィ アンドラス
ハラズィ アンドラス
カーニー ヤン
カーニー ヤン
カルキッチ エルミン
カルキッチ エルミン
Original Assignee
ヒルティ アクチエンゲゼルシャフト
ヒルティ アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒルティ アクチエンゲゼルシャフト, ヒルティ アクチエンゲゼルシャフト filed Critical ヒルティ アクチエンゲゼルシャフト
Publication of JP2019519788A publication Critical patent/JP2019519788A/ja
Application granted granted Critical
Publication of JP6753961B2 publication Critical patent/JP6753961B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors
    • G01C15/006Detectors therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0219Electrical interface; User interface

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、請求項1の前文に記載の、レーザー受信機に入射する受信ビームと回転レーザービームとを比較するための方法と、請求項13の前文に記載のその方法を実行する装置に関する。
回転レーザー装置は、屋内及び屋外でのレベリング及びマーキング作業に用いられる。係る作業では、対象となる面に水平方向、垂直方向、若しくは対角線方向のレーザーマーキングを表示する、又は水平高角度、垂直方向線、視座線及び垂直点を判定及び検証する作業がある。回転レーザー装置は、水平位置及び垂直位置といった様々な装置位置に配置することができる。ここでは、水平位置のみで用いられる水平方向で使用可能な回転レーザー装置と水平及び垂直位置で用いられる水平及び垂直方向で使用可能な回転レーザー装置とは区別される。
ゴーグル等の保護手段なしで使用可能な回転レーザー装置では、許容されるレーザー出力は限定される。屋外でのレベリング及びマーキング作業の際、許容されるレーザー出力によりレーザービーム見えないか又は視認性が低下することが多い。レーザービームの視認性を改善するに、ターゲット板又はレーザー受信機はレーザービームに向けて保持される。レーザー受信機は、作業者が携帯型の機器としてレーザービームに直接合わせて保持されるか、テレスコピック又はレベリングロッドに取り付けられる。レーザー受信機には高さ測定機能を装備できる。この高さ測定機能は、レーザー受信機の検出フィールドでの受信ビームの到達位置を検出し、高さ位置としての受信ビームから検出フィールドのゼロ位置までの距離を示す。高さ測定機能を有する既知のレーザー受信機は、評価装置と、長手方向及び横断方向の少なくとも1つの検出フィールドとを備える。レーザー受信機は、回転レーザー装置の装置位置に対応して、長手方向配置又は横断方向配置に向けられる。水平位置にある回転レーザー装置では、検出フィールドの長手方向が重力方向と平行に方向付けられる(横断方向配置)。
レベリング及びマーキング作業の際、外部からの放射又は回転レーザービームの反射により測定値が不正確になる。レーザー受信機に入射する受信ビームと回転レーザービームとを比較する様々な方法が知られている。レーザー受信機による不正確な測定の危険性を低減するため、回転レーザー装置の回転レーザービームを変調信号で変調することが知られている。レーザー受信機に入射する受信ビームがレーザー受信機の評価装置に評価され、受信ビームが変調信号で変調されている場合には回転レーザービームとして分類される。欠点は、回転レーザービームの反射面からの反射が評価装置により検出されないことである。反射レーザービームも変調信号により変調されているから、レーザー受信機の評価装置により回転レーザービームとして分類されてしまう。
特許文献1は、レーザー受信機に入射する受信ビームと回転レーザー装置により発せられる回転レーザービームとを比較するもう1つの既知の方法を開示している。レーザー受信機は、複数の光検出器アレイが長手方向に配置された検出フィールドを備える。光検出器アレイはそれぞれ、長手方向に配置された複数の光検出器を備える。受信ビームが検出フィールドに入射すると、評価装置は各光検出器アレイの第1及び第2の参照信号を特定する。これら第1及び第2の参照信号は、受信ビームに検出される光検出器アレイの外部光検出器の振幅を表す。参照信号には、評価装置により、足し算、引き算、及び割り算のための処理が実行され、評価のための数字が算出される。この数字は、予め設定された制限値と比較される。数字が制限値より小さい場合、受信ビームはレーザービーム(「移動するレーザー光の細いビーム」)と分類される。数字が制限値より大きい場合、受信ビームは外部からのビーム(「無指向性の光パルス」)と分類される。
別のレーザー受信機に入射する受信ビームと回転レーザービームを比較するための方法は特許文献2から既知である。レーザー受信機は、複数の光検出器が長手方向に配置された検出フィールドと追加の光検出器とを備える。受信ビームがレーザー受信機に入射し捉えられると、評価装置は第1、第2、及び第3の参照信号を特定する。第1の参照信号は受信ビームが捉える第1の外部光検出器の電気出力を、第2の参照信号は受信ビームが捉える第2の外部光検出器の電気出力を、第3の参照信号は追加の光検出器の電気出力を表す。第3の参照信号に基づき、受信ビームの評価が行われる。第3の参照信号の振幅が十分に低い場合、受信ビームは回転レーザー装置のレーザービームとして分類される。しかし、第3の参照信号の振幅が十分に高い場合、受信ビームは外部からのビーム(「無指向性の光パルス」)として分類される。
レーザー受信機に入射する受信ビームと回転レーザー装置の回転レーザービームとを比較する手順に係る特許文献1及び特許文献2の方法の欠点は、回転レーザービームの反射面からの反射がレーザー受信機の評価装置に検出されず、誤って回転レーザービームとして分類されることである。反射面での回転レーザービームの反射によっては、参照信号の振幅が変化しないか又は少ししか変化せず、受信ビームの評価基準に影響を与えない。
米国特許第7119316号明細書 米国特許第7224473号明細書
本発明の目的は、レーザー受信機に入射する受信ビームと回転レーザービームとを比較するための方法であって、反射面での回転レーザービームの反射により測定値に不正確さが生じる危険性を低減する方法を提供することである。さらに、本発明の方法はほぼ自動的な実行に適すべきものである。
この目的は、独立項1の技術的特徴によりレーザー受信機に入射する受信ビームと回転レーザービームとを比較する本発明の方法、及び独立項13の技術的特徴によりかかる方法を実施する上述の本発明の装置により達成される。さらなる優位性のある技術的特徴は、従属項に記載されている。
本発明において、レーザー受信機に入射する受信ビームと回転レーザー装置により回転軸周りを回転して進行する回転レーザービームとを比較するための方法であって、このレーザー受信機は評価装置と、長手方向及び横断方向を有する少なくとも1つの検出フィールドとを備える。この方法は以下の工程を備える。
回転レーザー装置は、回転軸の周りで調整が可能な回転プラットフォームに配置され、回転レーザー装置の回転軸は重力場の重力方向に実質的に垂直に向けられ、回転プラットフォームの回転軸は重力場の重力方向に実質的に平行に向けられる。
レーザー受信機は横断方向配置に方向付けられ、この横断方向配置において、少なくとも1つの検出フィールドの長手方向は重力方向と実質的に垂直に向けられ、少なくとも1つの検出フィールドの横断方向は重力方向と実質的に平行に向けられる。
少なくとも受信ビームがレーザー受信機の少なくとも1つの検出フィールドに入射するまで、回転レーザー装置が回転プラットフォームで回転軸周りの回転方向に調整される。
少なくとも1つの検出フィールドの長手方向において、評価装置によりレーザー受信機に対する受信ビームの調整方向が特定される。
この受信信号の調整方向は、評価装置によって回転プラットフォームの回転方向と比較される。
受信信号と回転レーザービームとを比較するための本発明の方法は、調整可能な回転プラットフォームの垂直位置に配置される回転レーザー装置及び横断方向配置に方向付けられるレーザー受信機に適している。回転レーザー装置の垂直位置及びレーザー受信機の横断方向配置は重力場の重力方向に対する構成要素の向きにより定義され、この重力方向は地球の重心に向いている。構成要素の向きは、以下のようになる。回転レーザー装置の回転軸及び検出フィールドの長手方向は重力方向と垂直に方向付けられ、回転プラットフォームの回転軸及び検出フィールドの横断方向は重力方向と平行に向けられ、回転レーザービームは、重力方向と平行に位置する垂直レーザー面を形成する。横断方向配置におけるレーザー受信機の傾きは、本発明の方法を実行するうえで問題ではない。傾いたレーザー受信機であっても、レーザー受信機に対する受信器ビームの調整方向はレーザー受信機の評価装置によって特定され、回転プラットフォームの回転方向と比較することができる。
評価装置は調整方向に基づき受信ビームを評価し、回転レーザービームと反射された回転レーザービームと、そして回転しない外部からのビームとを区別する。本発明の方法により、回転レーザービームの反射面での反射が検出できるうえ、回転軸の周りを回らない外部からのビームを回転レーザービームから区別することができる。回転しない外部からのビームについては、評価装置はレーザー受信機に対する受信ビームのいかなる調整方向も特定することができない。受信ビームの調整方向と回転プラットフォームの回転方向とを比較することにより、回転レーザービームの反射面での反射は評価装置により検出することができる。回転プラットフォームは、所定の回転方向に回転レーザー装置を回転軸の周りに移動させる。回転レーザービームが反射面での反射後にレーザー受信機に受信ビームとして入射する場合、受信ビームの調整方向は回転プラットフォームの既知の回転方向とは反対になる。本発明の方法は、既知の回転レーザー装置、回転プラットフォーム、及びレーザー受信機でこの方法を実行でき、特別な構成要素を必要としない、ことで優位性がある。
好ましくは、少なくとも1つの検出フィールドでの受信ビームの第1の入射位置は評価装置により第1の時点における第1の高さ位置として、後の第2の時点における第2の入射位置は第2の高さ位置として記憶保存され、受信ビームの調整方向が評価装置により第1及び第2の高さ位置から判定される。レーザー受信機の検出フィールドが受信ビームを検出するまで、回転レーザー装置は、回転プラットフォームにより回転軸の周りを回る回転方向に調整される。続けて、回転レーザー装置の回転軸の周りの回転が継続する。回転レーザー装置が回転軸を回転する間に、検出フィールドでの受信ビームの第1及び第2の入射位置が評価装置により特定される。レーザー受信機は長手方向に測定機能を装備しており、測定機能は検出フィールドのゼロ位置に対する垂直レーザー面の位置を測定する。第1の入射位置から検出フィールドのゼロ位置までの距離は、第1の高さ位置Hと特定する。第2の入射位置から検出フィールドのゼロ位置までの距離は、第2の高さ位置Hと特定する。受信ビームの調整方向は検出フィールドの長手方向と平行であり、第1及び第2の高さ位置の差(△=H−H)は受信ビームの調整方向の方向(正方向又は負方向)を決定する。
本発明の方法の次なる工程は、評価装置がレーザー受信機に対する受信ビームの調整方向を第1及び第2の高さ位置から決定できるか否かに基づく。受信ビームの調整方向に基づき、本発明の方法により、回転しない外部からのビームと反射によるレーザービームとを回転レーザービームと区別することができる。
受信ビームがレーザー受信機の評価装置により外部からのビームとして分類されるのは、受信ビームの第1と第2の高さ位置が実質的に一致する場合である。回転レーザー装置の回転レーザービームと異なる如何なるビームも外部からのビームとされる。回転しない外部からのビームについて、検出フィールドに受信ビームにより形成される第1及び第2の高さ位置は実質的に一致し、レーザー受信機の評価装置は第1及び第2の高さ位置からレーザー受信機に対する受信ビームの調整方向を判定することができない。
受信ビームの第1の高さ位置と第2の高さ位置とが異なる場合、受信ビームの調整方向がレーザー受信機の評価装置に判定される。ここで、第1と第2の高さ位置の差(△=H−H)がゼロより大きい場合は受信ビームの調整方向が正方向として判定される。第1と第2の高さ位置の差(△=H−H)がゼロより小さい場合、受信ビームの調整方向が負方向として判定される。
本発明の方法の次なる工程は、受信ビームの調整方向と回転プラットフォームの回転方向が同一方向か、又は反対方向になるか否かに基づく。本発明の方法は、2つの変形態様に分けられる。第1の変形態様においては、受信ビームの調整方向と回転プラットフォームの回転方向とが同一方向である。第2の変形態様においては、受信ビームの調整方向と回転プラットフォームの回転方向とが反対方向である。
受信ビームの調整方向と回転プラットフォームの回転方向とが同一方向に向いている場合、受信ビームはレーザー受信機の評価装置により回転レーザービームと分類される。回転レーザー装置は回転レーザービームを回転軸の周りの所定の回転方向に進行させ、回転プラットフォームは回転レーザー装置を回転軸の周りを回る既知の回転方向に動かす。反射面で反射することなく回転レーザービームがレーザー受信機に受信ビームとして入射する場合、受信ビームの調整方向は回転プラットフォームの既知の回転方向と同一方向になる。本発明の方法において、受信ビームの調整方向と回転プラットフォームの回転方向が同一方向の場合、レーザー受信機の評価装置により受信ビームが回転レーザービームと常に分類される。
回転レーザービームの反射が偶数回の場合、受信ビームの調整方向も同様に回転プラットフォームの所定の回転方向と同方向になり、回転レーザービームの反射が偶数回の場合に発せられる受信ビームは評価装置により誤って回転レーザービームと分類される。回転レーザー装置及びレーザー受信機の実用的な用途において、反射面での回転レーザービームの単純反射は誤測定の最も一般的な原因である。したがって、本発明の方法は誤測定のリスクを低減させるものの、完全に防ぐことはできない。
レーザー受信機は評価装置により測定モードに切り替えられ、測定モードではレーザー受信機の検出フィールドでの受信ビームの高さ位置が特定される、ことが特に好ましい。到達した受信ビームがレーザー受信機の評価装置により回転レーザービームと分類された場合、レーザー受信機は所定の通り使用にすることができる。このために、評価装置によりレーザー受信機を測定モードに切り替えることができる。
受信ビームの調整方向と回転プラットフォームの回転方向が反対方向の場合、受信ビームはレーザー受信機の評価装置により反射レーザービームと分類される。回転レーザー装置は回転レーザービームを回転軸の周りを所定の回転方向に回るように進行させ、回転プラットフォームは回転レーザー装置を回転軸周りの所定の回転方向に動かす。回転レーザービームが反射面での反射後にレーザー受信機に受信ビームとして入射する場合、受信ビームの調整方向は回転プラットフォームの既知の回転方向と反対方向となる。本発明の方法において、レーザー受信機の評価装置により受信ビームが常に反射レーザービームと分類されるのは、受信ビームの調整方向と回転プラットフォームの回転方向とが反対方向の場合である。
回転レーザービームの反射が奇数回の場合も、受信ビームの調整方向も同様に回転プラットフォームの既知の回転方向と反対方向になり、回転レーザービームの反射が奇数回の場合に発せられる受信ビームは評価装置により正しく反射レーザービームと分類される。
本発明の方法において、回転レーザービームが形成する垂直レーザー面は回転プラットフォームにより調整される。レーザー受信機の評価装置は垂直レーザー面の調整方向を定め、調整方向と回転プラットフォームの回転方向を比較する。ここで、調整方向はレーザー受信機の位置に基づき、レーザー受信機を挟んで反対位置の調整方向は互いに反対方向であるということは重要である。レーザー受信機の回転レーザー装置に対する位置は、回転レーザービームにより特定し得る。
第1のさらに好ましい方法の態様において、回転レーザービームは、角度φが360°未満に限定される垂直レーザー面を形成する。ここで、限定された垂直レーザー面は、回転レーザー装置の回転モード又はスキャンモードで形成することができる。回転モードではレーザービームは繰り返し回転軸の周りを360°同じ回転方向に進行し、スキャンモードではレーザービームは回転軸の周りを制限された角度で、交互の回転方向に前進及び後進する。
方法の第1の変形態様において、回転レーザービームは回転軸の周りを360°回る回転方向に進行し、レーザービームは角度(φ)内でスイッチが入り、角度(φ)内でスイッチが切れる。第1の変形態様は、回転モードを有する回転レーザー装置に適している。
方法の第2の変形態様では、回転レーザービームが角度φ内で回転軸の周りを交互の回転方向に前進及び後進する。第2の変形態様は、スキャンモードを有する回転レーザー装置に適している。
方法の第2のさらに好ましい態様において、回転レーザービームは回転軸の周りを360°回るように回転方向に進行し、360°の角度は第1及び第2の角度範囲に再分割され、第1及び第2の角度範囲の回転レーザービームは1つの又は複数のビーム特性により区別される。本発明の方法の一つとして、レーザー受信機の評価装置は到達した受信ビームを分析する。第1及び第2の角度範囲で区別される回転レーザービームのビーム特性に基づき、評価装置は、レーザー受信機の検出フィールドが受信ビームに入射される角度範囲を特定することができる。
回転レーザービームは変調信号を用いて変調され、第1の角度範囲では第1の変調信号が、第2の角度範囲では第1の変調信号とは異なる第2の変調信号が用いられる、ことが好ましい。第1と第2の変調信号は、振幅、形状、及び/又は変調周波数において互いに異なる。本発明の方法の一つとして、レーザー受信機の評価装置は到達した受信ビームを分析し、受信ビームの変調した変調信号を特定することができる。変調信号に基づき、評価装置は、レーザー受信機の検出フィールドが受信ビームに入射された角度範囲を判定することができる。
本発明において、レーザー受信機に入射する受信ビームと回転レーザービームとを比較するための方法を実施するため、回転軸の周りを回転方向に回転するレーザービームを発し、回転軸の周りで調整可能な回転プラットフォームに設置される回転レーザー装置と、評価装置及び少なくとも1つの検出フィールドとを有するレーザー受信機と、を備えた装置が提供される。回転レーザー装置は調節可能な回転プラットフォームに垂直位置に設置され、レーザー受信機は横断方向配置に向けて設置される。構成要素については、以下が適用される。回転レーザー装置の回転軸及び検出フィールドの長手方向は重力方向と実質的に垂直に向けられ、回転プラットフォームの回転軸及び検出フィールドの横断方向は重力方向と実質的に平行に向けられ、回転レーザービームは重力方向と平行にな垂直レーザー面を形成する。
レーザー受信機は、重力場の重力方向に対するレーザー受信機の傾斜を計測する傾斜センサを有する、ことが特に好ましい。この傾斜センサは、レーザー受信機の向きを明確に特定するために使用され得る。本発明の方法を実施する際、レーザー受信機は横断方向に方向付けられ、横断方向に配置された検出フィールドの横断方向は重力方向と平行であり、横断方向に配置された検出フィールドの長手方向は重力方向と垂直である。検出フィールドの横断方向と重力方向とは、同一方向又は反対方向でよい。この傾斜センサを用いて、「同じ向き」及び「反対向き」という2つの向きを互いに区別することができる。
回転プラットフォームとレーザー受信機とは通信接続経由で通信目的に接続することができ、レーザー受信機の評価装置と回転プラットフォームの制御装置の通信が実現することが特に好ましい。本発明の方法を実行する際、レーザー受信機の評価装置は、第1及び第2の高さ位置から、レーザー受信機に対する受信ビームの調整方向を特定し、受信ビームの調整方向と回転プラットフォームの回転方向とを比較する。回転プラットフォームの回転方向は通信接続経由でレーザー受信機の評価装置に送信することができ、本発明の方法は自動的に実施することができる。
以下で本発明の実施例を図面により説明する。これは、実施例を縮小して記載することを意図したものではなく、説明目的で有用となるように図面に概略的及び/又は若干の変更を加えて描かれている。本発明の要旨から逸脱することがなければ、実施例の形態及び詳細に様々な変更を加えることができるということは重要である。本発明の要旨は以下で示され、記載された好ましい実施例のそのままの形態又は詳細に限定されることはなく、かつ請求項に記載された技術的特徴との比較において、限定されていることもあり得る技術的特徴に限定されることもない。提示されている寸法範囲内については、記載された制限内の値は、制限値として開示されたものであり、所望に応じて使用しても記載してもよい。簡潔にするため、以下では同じ参照番号が同一若しくは類似の要素又は同一若しくは類似の機能に付与されている。
図は以下の通りである。
回転レーザー装置とレーザー受信機とを有する装置を示す図である。 図1の回転レーザー装置及びレーザー受信機を示し、回転レーザー装置は垂直位置に方向付けられ、レーザー受信機は横断方向配置に方向付けられた三次元図である。 レーザー受信機の構造及び回転レーザー装置との相互作用を示す構成図である。 レーザー受信機に入射する受信ビームと回転レーザー装置の回転レーザービームとを比較する本発明の方法を実行する、図1の装置を示す図である。 回転レーザー装置の回転レーザービームがレーザー受信機の検出フィールドに形成する、第1及び第2の入射位置を示す図である。 回転レーザー装置の回転レーザービームが、反射面での反射後に、レーザー受信機の検出フィールドに形成する、第1及び第2の入射位置を示す図である。 回転しない外部からのビームとして形成される受信ビームがレーザー受信機の検出フィールドに形成する、第1及び第2の入射位置を示す図である。
図1は、回転レーザー装置11と、通信接続13経由で接続可能なレーザー受信機12とを有する装置10を示す。この通信接続13は、ワイヤレス通信接続又は有線の通信接続として構成される。回転レーザー装置11は垂直位置に方向付けられ、この垂直位置は回転レーザー装置11の垂直方向での応用技術のために配置される。レーザー受信機12は横断方向配置に配置される。装置10は、レーザー受信機12に入射する受信ビームと回転レーザー装置11の回転レーザービームとを比較する本発明の方法を実施するために配置される。
回転レーザー装置11は電動回転プラットフォーム14に設置され、この回転プラットフォーム14は回転レーザー装置11の回転方向16における回転軸15周りの自動角度調節を可能とする。さらに、高さ調整装置17が、回転レーザー装置11の高さ方向18での自動高さ調節を可能とするように設けられ得る。回転プラットフォーム14と高さ調整装置17とは互いに接続される別部品として構成しても、又は回転プラットフォーム14と高さ調整装置17を統合して三脚に組み込んでもよい。回転レーザー装置11は水平及び垂直方向で使用可能であり、回転レーザー装置11の回転軸21の周りを回る回転レーザービーム22を発する。回転レーザービーム22は回転軸21の周りを回転方向23に回転し、回転軸21に垂直に配置されるレーザー面を形成する。
レーザー受信機12には高さ測定機能が装備されている。この高さ測定機能は、レーザー受信機12の検出フィールド25における受信ビーム24の入射位置を特定し、受信ビーム24から検出フィールド25のゼロ位置26までの距離を高さ位置として示す。レーザー受信機12の向きは、検出フィールド25及び重力場の重力方向27により定義される。レーザー受信機12の検出フィールド25は、その長手方向28が検出高さで、横断方向29が検出幅である。長手方向28はレーザー受信機12の測定方向に対応し、横断方向29は長手方向25に垂直である。レーザー受信機12の向きが長手方向配置と定義される場合、検出フィールド25の長手方向28が重力方向27と平行に方向付けられ、且つ検出フィールド25の横断方向29が重力方向27に垂直と方向付けられる。さらに、レーザー受信機12の向きが横断方向配置と定義される場合、検出フィールド25の長手方向28が重力方向27と垂直に方向付けられ、且つ検出フィールド25の横断方向29が重力方向27に平行と方向付けられる。
図2は図1の回転レーザー装置11及びレーザー受信機12を3次元図で示し、回転レーザー装置11及びレーザー受信機12が本発明の方法の実行のために垂直位置又は横断方向配置に方向付けられている。
回転レーザー装置11は、装置ハウジング31と装置ハウジング31に配置された測定装置とを備える。この装置ハウジング31は、基礎ハウジング32と、回転ヘッド33と、複数のハンドル34とから成る。回転レーザー装置11の操作は操作装置35により行われる。この操作装置35は基礎ハウジングに32組み込まれ、外部から操作が可能である。基礎ハウジング32に組み込まれた操作装置35の他に、遠隔操作装置36を配置してもよい。この遠隔操作装置36は、回転レーザー装置11に通信接続経由で接続できるよう配置できる。基礎ハウジング32内で回転レーザー装置11の測定装置がレーザービームを生成し、レーザービームは、回転軸18の周りを回転する偏向レンズ37に入射する。レーザービームは偏向レンズ37により90°偏向され、レーザー面を形成する回転レーザー装置11の回転レーザービーム22を形成する。回転レーザービーム22は、回転レーザー装置11の垂直位置において、垂直のレーザー面39を形成する。
レーザー受信機12は、受信器ハウジング41と、操作装置42と、光学ディスプレイ43と、スピーカー44と、検出フィールド25とを備える。検出フィールド25は、長手方向28が検出高さHで、横断方向29が検出幅Bである。操作装置42、光学ディスプレイ43、スピーカー44、及び検出フィールド25は、レーザー受信機12の受信器ハウジング41に組み込まれる。作業者は、光学ディスプレイ43を見てレーザー受信機12に関する情報を読むことができる。この情報には、例えば、レーザー受信機12の充電状態、通信接続13から回転レーザー装置11への情報、及びスピーカー44の設定音量が含まれる。さらに、受信ビーム24からレーザー受信機12のゼロ位置26までの距離は視覚的に数値で表すことができる。光学ディスプレイ43に代わるもの又は追加として、受信ビーム24の距離はスピーカー44経由で伝えることができる。検出フィールド25のゼロ位置26は、刻み目45により受信器ハウジング41に示すことができる。
図3は、レーザー受信機12の構造の詳細及びレーザー受信機12と回転レーザー装置11の相互作用を示す構成図である。レーザー受信機12と回転レーザー装置11の通信は、通信接続13経由で行うことができる。通信接続13は、レーザー受信機12の第1の送受信装置46を回転レーザー装置11の第2の送受信装置47に接続する。第1及び第2の送受信装置46、47は、例えば、無線モジュールとして形成される。レーザー受信機12と回転レーザー装置11の通信は、無線接続として構成される通信接続13経由で行われる。
検出フィールド25、光学ディスプレイ43、及びスピーカー44は、受信器ハウジング41内に設けられる評価装置48に接続される。この評価装置48は、レーザー受信機12を制御するための制御部49に接続されている。評価装置48と制御装置49は、例えば、マイクロチップコントローラーとして形成される監視装置51として統合される。レーザー受信機12は、傾斜センサ52をさらに備えてもよい。この傾斜センサ52は、受信器ハウジング41内に設けられ、制御装置41に接続される。この傾斜センサ52を用いて、重力場の重力方向27に対するレーザー受信機12の傾斜を計測することができる。傾斜センサ52は、例えば、1つの2軸加速度センサ又は2つの1軸加速度センサを備え得る。
図4は、受信ビーム24と回転レーザービーム22とを比較するための本発明の方法を実施する装置10を示す。回転レーザー装置11は垂直位置で回転プラットフォーム14に配置され、レーザー受信機12は横断方向配置に設置される。重力方向27に対する装置10の要素11、12、14の向きについては、以下のようになる。すなわち、回転レーザー装置11の回転軸21及び検出フィールド25の長手方向28は重力方向27と垂直に向き、回転プラットフォーム14の回転軸15及び検出フィールド25の横断方向29は重力方向27と平行に向いている。回転レーザービーム22は、重力方向27と平行な垂直レーザー面39を形成する。
回転レーザー装置11は回転プラットフォーム14により、回転軸15の周りの回転方向16に調整され、レーザー受信機12の検出フィールド25が受信ビームを検出するようになる。次に回転レーザー装置11の回転軸15の周りの回転は継続される。回転レーザー装置11が回転軸15の周りを回転している際に、検出フィールド25での受信ビームの入射位置は、様々な時点において評価装置48により判定される。
第1の時点tにおいて、評価装置48は、検出フィールド25での受信ビームの入射位置を第1の入射位置61として特定し、第1の入射位置61から検出フィールド25のゼロ位置26までの距離を第1の高さ位置Hとして記憶保存する。後の時点tにおいて、評価装置48は、検出フィールド25での受信ビームの入射位置を第2の入射位置62として特定し、第2の入射位置62から検出フィールド25のゼロ位置26までの距離を第2の高さ位置Hとして記憶保存する。評価装置48は、第1及び第2の高さ位置H、Hから、レーザー受信機12に対する受信ビーム24の調整方向63を判定する。
図5は、第1及び第2の入射位置61、62を示し、これらは回転レーザー装置21の回転レーザービーム22が、レーザー受信機12の検出フィールド25に形成するものである。第1の入射位置61から検出フィールド25のゼロ位置26までの距離は第1の距離H、第2の入射位置62から検出フィールド25のゼロ位置26までの距離は第2の距離Hである。受信ビーム24の調整方向63は、検出フィールド25の長手方向28と平行である。
レーザー受信機12の評価装置48は、第1及び第2の高さ位置H、Hから、レーザー受信機12に対する受信ビーム24の調整方向63を定め、受信ビーム24の調整方向63と回転プラットフォーム14の回転方向16とを比較する。受信ビーム24の調整方向63と回転プラットフォーム14の回転方向16は同じ方向であり、この受信ビーム24はレーザー受信機12の評価装置48により回転レーザービーム22として分類される。
図6は、第1及び第2の入射位置71、72を示し、これらは回転レーザービーム22が、反射面における単純な反射の後に、レーザー受信機12の検出フィールド25に形成するものである。第1の入射位置71から検出フィールド25のゼロ位置26までの距離は第1の距離、第2の入射位置72から検出フィールド25のゼロ位置26までの距離は第2の距離であり、第1の距離を第1の高さ位置H、第2の距離を第2の高さ位置Hとする。
第1及び第2の高さ位置H、Hから、レーザー受信機12の評価装置48は、レーザー受信機12に対する受信ビーム24の調整方向73を特定し、受信ビーム24の調整方向73と回転プラットフォーム14の回転方向16とを比較する。受信ビーム24の調整方向73と回転プラットフォーム14の回転方向16は反対方向であり、この受信ビーム24はレーザー受信機12の評価装置48により反射レーザービームとして分類される。
検出フィールド25での受信ビームの調整方向は、回転レーザービーム22が反射面に単純に反射することにより反転する。この調整方向の反転を用いて、反射面に反射する回転レーザービームと回転レーザービームとを区別する。
図7は、第1及び第2の入射位置81、82を示し、これらは回転しない外部からのビームとして生成される受信ビーム24により、レーザー受信機12の検出フィールド25に形成するものである。第1の入射位置81から検出フィールド25のゼロ位置26までの距離は第1の距離、第2の入射位置82から検出フィールド25のゼロ位置26までの距離は第2の距離であり、第1の距離を第1の高さ位置H、第2の距離を第2の高さ位置Hとする。
レーザー受信機12の評価装置48は、第1と第2の高さ位置H、Hの差を特定する。第1の入射位置81は実質的に第2の入射位置82に一致し、第1と第2の高さ位置H、Hの差はゼロである。差がゼロの場合、レーザー受信機12の評価装置48は、レーザー受信機12に対する受信ビーム24の調整方向を判定することができない。受信ビーム24が回転しない外部からのビームとして生成されているため、回転レーザー装置11の回転軸15の周りを回る回転は、検出フィールド25上の受信ビーム24の入射位置に影響しない。
本発明の方法を実施するため、回転レーザー装置11は垂直位置に設置され、レーザー受信機12は横断方向に配置される。回転レーザービーム22が形成する垂直レーザー面39は、回転プラットフォーム14により回転プラットフォーム14の回転軸15の周りに調整される。レーザー受信機12の評価装置48は調整方向を定め、この調整方向と回転プラットフォーム14の回転方向16とを比較する。調整方向がレーザー受信機12の位置に基づき、レーザー受信機12を挟んで反対位置の調整方向は互いに反対方向にある、ということは重要である。回転レーザー装置11に対するレーザー受信機12の位置は、回転レーザービーム22を用いて特定できる。
回転レーザービームは、角度φが360°度未満に限定された垂直レーザー面を形成し、180°未満の角度が角度φに特に適している。回転レーザー装置11は、ゼロ角度と定義される回転角度から回転軸21の周りの回転を始める。ゼロ角度を起点に、0°から+180°の正角度範囲及び0°から−180°の負角度範囲を規定できる。
これに代えて、回転レーザービームは回転軸21の周りを360°回転して進行し、その360°の角度が第1と第2の角度範囲に再分割され、例えば、0°から+180°の正角度範囲を第1の角度範囲、及び0°から−180°の負角度範囲を第2の角度範囲と定義することができる。第1と第2の角度範囲を区別するために、回転レーザービームは少なくとも1つの異なるビーム特性を第1及び第2の角度範囲で有する。第1及び第2の角度範囲で異なる回転レーザービーム22のビーム特性に基づき、レーザー受信機12の評価装置48は、レーザー受信機12の受信ビーム24が入射する検出フィールド25における角度範囲を特定することができる。
変調信号は、例えば、第1と第2の角度範囲の区別に用いることができるビーム特性として適している。ここで、第1の変調信号は第1の角度範囲で用いられ、第1の変調信号と異なる第2の変調信号は第2の角度範囲で用いられる。第1と第2の変調信号は、振幅、形状、及び/又は変調周波数において互いに異なっている。本発明の方法の一つとして、レーザー受信機12の評価装置48は到達する受信ビーム24を分析し、受信ビーム24の変調された変調信号を判定することができる。この変調信号により、評価装置48は、受信信号24が入射したレーザー受信機12の検出フィールド25の角度範囲を判定することができる。

Claims (14)

  1. レーザー受信機(12)に入射する受信ビーム(24)と、回転レーザー装置(11)により前記回転レーザー装置(11)の回転軸(21)の周りを進行しレーザー面(39)を形成する回転レーザービーム(22)と、を比較するための方法であって、前記レーザー受信機(12)は評価装置(48)と、前記レーザー受信機の測定方向に対応する長手方向(28)及び前記長手方向(28)に垂直な横断方向(29)を有する少なくとも1つの検出フィールド(25)とを備え、
    前記回転レーザー装置(11)は、回転プラットフォーム(14)上で前記回転プラットフォーム(14)の回転軸(15)の周りで調整されて配置され、前記回転レーザー装置(11)の回転軸(21)は重力場の重力方向(27)と垂直に向き、前記回転プラットフォーム(14)の回転軸(15)は前記重力場の前記重力方向(27)と平行に向けられる工程と、
    前記レーザー受信機(12)は横断方向に配置され、前記横断方向の配置において、前記少なくとも1つの検出フィールド(25)の長手方向(28)は前記重力方向(27)と垂直に向けられ、前記少なくとも1つの検出フィールド(25)の横断方向(29)は前記重力方向(27)と平行に向けられる工程と、
    少なくとも前記受信ビーム(24)が前記レーザー受信機(12)の前記少なくとも1つの検出フィールド(25)に入射するまで、前記回転レーザー装置(11)が前記回転プラットフォーム(14)上で前記回転プラットフォームの回転軸(15)の周りの回転方向(16)に調整される工程と、
    前記回転プラットフォームの回転軸(15)の周りの回転方向(16)への前記回転レーザー装置(11)の回転が継続され、前記回転レーザー装置(11)の回転中に、前記少なくとも1つの検出フィールド(25)における前記受信ビーム(24)の第1の入射位置(61、71、81)と第2の入射位置(62、72、82)とが前記評価装置(48)により特定され、第1の時点(t1)における第1の入射位置(61、71、81)は第1の高さ位置(H1)として、後の時点(t2)における第2の入射位置(62、72、82)は第2の高さ位置(H2)として、前記評価装置(48)により記憶保存される工程と、
    前記少なくとも1つの検出フィールド(25)の前記長手方向(28)において、前記評価装置により前記レーザー受信機(12)に対する前記受信ビーム(24)の調整方向(63、73)が前記第1の高さ位置(H1)と前記第2の高さ位置(H2)とから特定される工程と、
    前記評価装置(48)により、前記受信ビーム(24)の前記調整方向が前記回転プラットフォーム(14)の前記回転方向(16)と比較される工程と
    を備える方法。
  2. 前記受信ビーム(24)の前記第1及び第2の高さ位置(H1、H2)が実質的に一致する場合に、前記受信ビーム(24)は前記評価装置(48)により外部からのビームとして分類される、ことを特徴とする請求項に記載の方法。
  3. 前記受信ビーム(24)の前記第1及び第2の高さ位置(H1、H2)が異なる場合に、前記受信ビーム(24)の前記調整方向(63、73)が前記評価装置(48)により判定される、ことを特徴とする請求項に記載の方法。
  4. 前記受信ビーム(24)の前記調整方向(63)と前記回転プラットフォーム(14)の前記回転方向(16)が同じ方向である場合に、前記受信ビーム(24)は前記評価装置(48)により回転レーザービーム(22)と分類される、ことを特徴とする請求項に記載の方法。
  5. 前記レーザー受信機(12)は前記評価装置(48)により測定モードに切り替わり、前記受信ビーム(24)の位置は前記測定モードで判定される、ことを特徴とする請求項に記載の方法。
  6. 前記受信ビーム(24)の前記調整方向(73)と前記回転プラットフォーム(14)の前記回転方向(16)が反対方向である場合に、前記受信ビーム(24)は前記評価装置(48)により反射レーザービームとして分類される、ことを特徴とする請求項に記載の方法。
  7. 前記回転レーザービーム(22)は、角度(φ)が360°未満の垂直レーザー面(39)を形成する、ことを特徴とする請求項1に記載の方法。
  8. 前記回転レーザービーム(22)は、前記回転レーザー装置(11)の前記回転レーザー装置の回転軸(21)の周りを回る回転方向(23)に360°進行し、前記回転レーザービーム(22)は前記角度(φ)内でスイッチが入り、前記角度(φ)外ではスイッチが切れている、ことを特徴とする請求項に記載の方法。
  9. 前記回転レーザービーム(22)は、前記角度(φ)内で前記回転レーザー装置の回転軸(21)の周りを交互の回転方向(23)に前進及び後進する、ことを特徴とする請求項に記載の方法。
  10. 前記回転レーザービーム(22)は、前記回転レーザー装置(11)の前記回転レーザー装置の回転軸(21)の周りを回る回転方向(23)に360°進行し、前記360°の角度は第1及び第2の角度範囲に再分割され、前記第1及び第2の角度範囲の前記回転レーザービーム(22)は1つ又は複数のビーム特性により区別される、ことを特徴とする請求項1に記載の方法。
  11. 前記回転レーザービーム(22)は変調信号で変調され、前記第1の角度範囲では第1の変調信号が、前記第2の角度範囲では前記第1の変調信号とは異なる第2の変調信号が用いられる、ことを特徴とする請求項10に記載の方法。
  12. 回転レーザー装置の回転軸(21)の周りを回転方向(23)に回転するレーザービーム(22)を発し、回転プラットフォームの回転軸(15)の周りで調整が可能な回転プラットフォーム(14)に設置された回転レーザー装置(11)と、評価装置(48)と少なくとも1つの検出フィールド(25)とを有するレーザー受信機(12)とを備えた、請求項1乃至11の何れか1つに記載の方法を実施するための装置(10)。
  13. 前記レーザー受信機(12)は、前記重力方向(27)に対する前記レーザー受信機(12)の傾斜を計測する傾斜センサ(52)を有する、ことを特徴とする請求項12に記載の装置。
  14. 前記回転プラットフォーム(14)と前記レーザー受信機(12)とは通信接続経由で通信のために接続することができ、前記レーザー受信機(12)の前記評価装置(48)と前記回転プラットフォーム(14)の制御装置との通信が実現する、ことを特徴とする請求項12又は13に記載の装置。
JP2018568361A 2016-06-30 2017-06-21 レーザー受信機に入射する受信ビームと回転レーザービームを比較するための方法 Active JP6753961B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16177222.3 2016-06-30
EP16177222.3A EP3264039A1 (de) 2016-06-30 2016-06-30 Verfahren zum vergleichen eines auf einen laserempfänger auftreffenden empfangsstrahls mit einem rotierenden laserstrahl
PCT/EP2017/065157 WO2018001803A1 (de) 2016-06-30 2017-06-21 Verfahren zum vergleichen eines auf einen laserempfänger auftreffenden empfangsstrahls mit einem rotierenden laserstrahl

Publications (2)

Publication Number Publication Date
JP2019519788A JP2019519788A (ja) 2019-07-11
JP6753961B2 true JP6753961B2 (ja) 2020-09-09

Family

ID=56321810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018568361A Active JP6753961B2 (ja) 2016-06-30 2017-06-21 レーザー受信機に入射する受信ビームと回転レーザービームを比較するための方法

Country Status (5)

Country Link
US (1) US10823566B2 (ja)
EP (2) EP3264039A1 (ja)
JP (1) JP6753961B2 (ja)
CN (1) CN109313027B (ja)
WO (1) WO2018001803A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066939B2 (en) 2015-10-13 2018-09-04 Stanley Black & Decker Inc. Laser level
EP3264039A1 (de) * 2016-06-30 2018-01-03 HILTI Aktiengesellschaft Verfahren zum vergleichen eines auf einen laserempfänger auftreffenden empfangsstrahls mit einem rotierenden laserstrahl
US11320263B2 (en) 2019-01-25 2022-05-03 Stanley Black & Decker Inc. Laser level system
CN111337003A (zh) * 2020-04-16 2020-06-26 湖南科技大学 一种分体式智能激光扫平仪
CN112815929B (zh) * 2020-12-31 2022-03-29 美国西北仪器公司 使用激光扫平仪追踪探测器的方法及激光追踪系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100478B2 (ja) * 1992-10-27 2000-10-16 株式会社トプコン 往復レーザ走査システムを有するレーザ回転照射装置
US5343033A (en) * 1993-06-22 1994-08-30 Apache Technology Inc. Method and apparatus for detecting laser light having a plurality of pulse integrator and automatic gain control circuits
US5612781A (en) * 1993-09-09 1997-03-18 Kabushiki Kaisha Topcon Object reflector detection system
JP3504791B2 (ja) 1995-01-11 2004-03-08 株式会社トプコン レーザレベル装置
EP0722080B1 (en) * 1995-01-11 2000-03-15 Kabushiki Kaisha Topcon Laser levelling device
JPH08285594A (ja) * 1995-04-14 1996-11-01 Nikon Corp レーザ投光装置
JP3941839B2 (ja) * 1995-10-30 2007-07-04 株式会社トプコン レーザ回転照射装置
JPH10170268A (ja) * 1996-12-13 1998-06-26 Kubota Corp 投光装置
DE69838535T2 (de) * 1997-08-07 2008-07-10 Fujitsu Ltd., Kawasaki Optisch abtastende berührungsempfindliche Tafel
JP3794180B2 (ja) * 1997-11-11 2006-07-05 セイコーエプソン株式会社 座標入力システム及び座標入力装置
US5959739A (en) * 1998-02-12 1999-09-28 Spectra Precision, Inc. System for distinguishing true target reflections from ghost target reflections
US6031614A (en) * 1998-12-02 2000-02-29 Siemens Aktiengesellschaft Measurement system and method for measuring critical dimensions using ellipsometry
JP3846572B2 (ja) * 2001-09-20 2006-11-15 ソニー株式会社 固体撮像装置
JP2004144675A (ja) * 2002-10-25 2004-05-20 Toshihiro Tsumura 光学的距離測定装置
JP4140391B2 (ja) * 2003-01-30 2008-08-27 ソニー株式会社 3次元計測装置および3次元計測方法
JP4328653B2 (ja) 2004-03-23 2009-09-09 株式会社トプコン レーザ測定システム
US7119316B2 (en) 2004-09-08 2006-10-10 Trimble Navigation Limited Strobe light and laser beam detection for laser receiver
US7224473B2 (en) 2004-10-19 2007-05-29 Trimble Navigation Limited Strobe light and laser beam detection for laser receiver
US7838808B1 (en) * 2005-03-16 2010-11-23 Trimble Navigation Limited Laser light detector with reflection rejection algorithm
US7836808B2 (en) 2006-01-23 2010-11-23 Szymanski David A Safety chain and rotational devices and replaceable teeth therefor
US7970519B2 (en) 2006-09-27 2011-06-28 Caterpillar Trimble Control Technologies Llc Control for an earth moving system while performing turns
EP2053353A1 (de) * 2007-10-26 2009-04-29 Leica Geosystems AG Distanzmessendes Verfahren und ebensolches Gerät
DE102010061725A1 (de) 2010-11-22 2012-05-24 Hilti Aktiengesellschaft Rotationslasergerät mit einer geneigten Laserebene und Verfahren zur Ausrichtung eines Rotationslasergerätes
US8826553B2 (en) * 2012-04-20 2014-09-09 Trimble Navigation Limited Layout equipment and layout method
JP2013250233A (ja) * 2012-06-04 2013-12-12 Nikon Corp 位置特定装置、位置特定方法及び位置特定プログラム
JP6340851B2 (ja) * 2014-03-19 2018-06-13 株式会社リコー 物体検出装置及びセンシング装置
US9689986B2 (en) * 2014-05-12 2017-06-27 Faro Technologies, Inc. Robust index correction of an angular encoder based on read head runout
CN105157687B (zh) * 2015-09-08 2017-07-28 北京控制工程研究所 一种基于wMPS的动态物体的位置姿态测量方法
EP3173741A1 (de) * 2015-11-30 2017-05-31 HILTI Aktiengesellschaft Verfahren zum überprüfen und/oder kalibrieren einer horizontalachse eines rotationslasers
EP3173740A1 (de) * 2015-11-30 2017-05-31 HILTI Aktiengesellschaft Verfahren zum messen einer messentfernung zwischen einem rotationslaser und einem laserempfänger
EP3264038A1 (de) * 2016-06-30 2018-01-03 HILTI Aktiengesellschaft Verfahren zum vergleichen eines auf einen laserempfänger auftreffenden empfangsstrahls mit einem rotierenden laserstrahl
EP3264039A1 (de) * 2016-06-30 2018-01-03 HILTI Aktiengesellschaft Verfahren zum vergleichen eines auf einen laserempfänger auftreffenden empfangsstrahls mit einem rotierenden laserstrahl

Also Published As

Publication number Publication date
EP3264039A1 (de) 2018-01-03
CN109313027A (zh) 2019-02-05
US20190154445A1 (en) 2019-05-23
WO2018001803A1 (de) 2018-01-04
CN109313027B (zh) 2021-03-09
EP3479063A1 (de) 2019-05-08
US10823566B2 (en) 2020-11-03
EP3479063B1 (de) 2021-06-02
JP2019519788A (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6753962B2 (ja) レーザー受信機に入射する受信ビームと回転レーザービームとを比較するための方法
JP6753961B2 (ja) レーザー受信機に入射する受信ビームと回転レーザービームを比較するための方法
JP7163085B2 (ja) 測量方法、測量装置およびプログラム
US11536568B2 (en) Target instrument and surveying system
JP6653028B2 (ja) レーザー受信機に入射する受信ビームと回転レーザービームとを比較するための方法
US9846029B2 (en) Laser system with a laser receiver capable to detect its own movements
JP4648025B2 (ja) 測量システム
EP3136049B1 (en) Total station
JP2013190272A (ja) 3次元レーザ測量装置及び3次元レーザ測量方法
JP2016505839A (ja) 目標物の位置座標を決定するための方法及び装置
JP6982424B2 (ja) 測量システム
US20180095166A1 (en) Measurement device and measurement method
KR20130072268A (ko) 회전 레이저
US11598854B2 (en) Surveying system
JP2021156855A (ja) 測量装置及び測量システム
JP2021043155A (ja) 3次元測量装置、3次元測量方法および3次元測量プログラム
JP6761715B2 (ja) 測量装置
JP7324097B2 (ja) 3次元測量装置、3次元測量方法および3次元測量プログラム
JP7336927B2 (ja) 3次元測量装置、3次元測量方法および3次元測量プログラム
JP7078486B2 (ja) 角度検出システムおよび角度検出方法
JP6749191B2 (ja) スキャナ装置および測量装置
JP7139184B2 (ja) 測量システム、計測モジュール、および測量方法
WO2024141498A1 (en) Reflective target and method for determining a rotational position of the target
JP2018163029A (ja) 計測装置、測量システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6753961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250