JP6748802B2 - An engine system that continuously burns hydrogen and enriched oxygen air. - Google Patents
An engine system that continuously burns hydrogen and enriched oxygen air. Download PDFInfo
- Publication number
- JP6748802B2 JP6748802B2 JP2017545155A JP2017545155A JP6748802B2 JP 6748802 B2 JP6748802 B2 JP 6748802B2 JP 2017545155 A JP2017545155 A JP 2017545155A JP 2017545155 A JP2017545155 A JP 2017545155A JP 6748802 B2 JP6748802 B2 JP 6748802B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- hydrogen
- combustion
- combustion chamber
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 141
- 239000001257 hydrogen Substances 0.000 title claims description 140
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 129
- 229910052760 oxygen Inorganic materials 0.000 title claims description 121
- 239000001301 oxygen Substances 0.000 title claims description 120
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 119
- 238000002485 combustion reaction Methods 0.000 claims description 230
- 239000007789 gas Substances 0.000 claims description 217
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 167
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 128
- 239000000446 fuel Substances 0.000 claims description 88
- 238000002407 reforming Methods 0.000 claims description 69
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 64
- 239000001569 carbon dioxide Substances 0.000 claims description 64
- 238000000926 separation method Methods 0.000 claims description 57
- 238000002347 injection Methods 0.000 claims description 53
- 239000007924 injection Substances 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 52
- 150000002430 hydrocarbons Chemical class 0.000 claims description 45
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 244000144972 livestock Species 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 26
- 238000003786 synthesis reaction Methods 0.000 claims description 26
- 230000015572 biosynthetic process Effects 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 238000000629 steam reforming Methods 0.000 claims description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 19
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 18
- 150000002431 hydrogen Chemical class 0.000 claims description 18
- 239000000567 combustion gas Substances 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000003908 quality control method Methods 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 47
- 229910017052 cobalt Inorganic materials 0.000 description 44
- 239000010941 cobalt Substances 0.000 description 44
- 239000012528 membrane Substances 0.000 description 42
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 23
- 239000000919 ceramic Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 238000003860 storage Methods 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 15
- 238000007254 oxidation reaction Methods 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- 238000002453 autothermal reforming Methods 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000005431 greenhouse gas Substances 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 238000006057 reforming reaction Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 238000003307 slaughter Methods 0.000 description 5
- -1 steam Substances 0.000 description 5
- 239000013589 supplement Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 229910001252 Pd alloy Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- JHRWWRDRBPCWTF-OLQVQODUSA-N captafol Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)C(Cl)Cl)C(=O)[C@H]21 JHRWWRDRBPCWTF-OLQVQODUSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 230000001141 propulsive effect Effects 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000011359 shock absorbing material Substances 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- MVWDJLOUEUAWIE-UHFFFAOYSA-N O=C=O.O=C=O Chemical compound O=C=O.O=C=O MVWDJLOUEUAWIE-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001485 argon Chemical class 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005373 pervaporation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
水素と富化酸素を連続燃焼させるエンジンの技術分野である。 This is the technical field of engines that continuously burn hydrogen and enriched oxygen.
温室効果ガスCO2を燃料に改質する水蒸気改質技術やドライリフォーミング法やオートサーマルリフォーミング法や直接的接触部分酸化法等はすでに実用化されておる技術であり、
上記温室効果ガスCO2を燃料に改質する技術の他の技術には、東北大学金属研究所らのグループでの、海水を電気分解により水素を生成し生成した水素と二酸化炭素から、常圧300℃でメタンの生成と、該生成に使用する触媒の発明を含む技術を発明されておられるが、該電気は中東地区等の砂漠での太陽光発電で発電しており、該二酸化炭素は二酸化炭素排出国からの輸送で調達するものである(グローバル二酸化炭素リサイクル)。
気体の膜による分離(例えば高分子膜分離器や高温ガス膜分離器や金属分離膜等)は、現技術に於いては深冷分離方や吸着分離方と並んで常識と成っておる技術であり、分離膜システムはモンサント、ダウ、セパレック、WRグレース、我が国では、宇部興産(それぞれの名称は会社名)等がそれぞれ独自の分離膜システムを商品化しており、近年では反応器と分離器を一体した物もある。Steam reforming technology for reforming greenhouse gas CO 2 into fuel, dry reforming method, auto thermal reforming method, direct contact partial oxidation method, etc. are already in practical use.
Other techniques for reforming the greenhouse gas CO 2 into a fuel include a group of Tohoku University Institute for Metal Research, which produces hydrogen by electrolysis of seawater, and hydrogen and carbon dioxide produced at atmospheric pressure. He has invented a technology that includes the production of methane at 300°C and the invention of the catalyst used for the production, but the electricity is generated by solar power generation in the desert such as the Middle East, and the carbon dioxide is It is procured by transportation from countries that emit carbon dioxide (global carbon dioxide recycling).
Membrane separation of gas (for example, polymer membrane separator, high temperature gas membrane separator, metal separation membrane, etc.) is a common technology in the current technology, along with cryogenic separation and adsorption separation. Yes, the separation membrane system is Monsanto, Dow, Separek, WR Grace, and in Japan, Ube Industries (each name is a company name) and others have commercialized their own separation membrane system. There is also one thing.
空気から富化酸素を分離した該富化酸素と水素を連続燃焼するエンジンであり、該富化酸素と水素を連続燃する燃焼温度に耐えられる構成の燃焼室部を考案し燃焼後の排気ガスで水蒸気改質を始めとする改質により燃料の水素を生成する技術(例えば特許文献1)がある。
*本願は該技術を基本技術として上記文献の不明瞭な記載を可能な限り明瞭にして更に該特許文献1には記載していない公知技術や派生した技術等を織り込んだ案件としておる。It is an engine that continuously burns enriched oxygen and hydrogen, which is obtained by separating enriched oxygen from air, and devises a combustion chamber part having a structure that can withstand the combustion temperature of continuously burning the enriched oxygen and hydrogen, and exhaust gas after burning There is a technique (for example, Patent Document 1) that produces hydrogen as a fuel by reforming including steam reforming.
* The present application is based on this technology as a basic technology, and makes the ambiguous description of the above-mentioned document as clear as possible, and further incorporates a known technology or a derived technology which is not described in the above-mentioned Patent Literature 1.
この発明に係るプロトン−電子混合伝導性セラミックスは、ペロブスカイト型構造を有する金属酸化物であって、これを構成する金属のモル比の総和を2としたとき、クロム(Cr),マンガン(Mn),鉄(Fe),コバルト(CO),ニッケル(Ni),ルテニュウム(Ru)のうちの少なくとも1種を、モル比で、0.01以上,0.08以下の範囲で含み、プロトン伝導性及び電子伝導性を有する事を特徴とするものである。
該発明によれば、高温領域に於いてプロトンと電子とを導電種として併せもち、プロトン伝導性及び電子伝導性が発現される。これは試験により確認されている、に関する技術(例えば特許文献2)がある。
本願の合成ガスを水素と二酸化炭素に分離する技術として使用している。The mixed proton-electron conductive ceramics according to the present invention is a metal oxide having a perovskite structure, and chromium (Cr), manganese (Mn), where the sum of the molar ratios of the metals forming the same is 2. , Iron (Fe), cobalt (CO), nickel (Ni), and ruthenium (Ru) in a molar ratio of 0.01 or more and 0.08 or less. It is characterized by having electronic conductivity.
According to the present invention, protons and electrons are combined as conductive species in the high temperature region, and proton conductivity and electron conductivity are exhibited. There is a technology (for example, Patent Document 2) related to this being confirmed by a test.
It is used as a technique for separating the synthesis gas of the present application into hydrogen and carbon dioxide.
Ni基超合金基材にコート材を塗布したNi基超合金部材において、コート材が基材界面において相互拡散を生じない化学組成を有するコート材(EQコート材と呼称)であって、質量%として、0.2%以上15%以下のPt(白金)または/およびIr(イリジウム)、Alを2.9%以上16.0%以下、Crを19.6%以下、Moを10.0%以下、Wを15.0%以下、Taを14.0%以下、Hfを3.0%以下、Yを0.1%含有し、残部がNiと不可避的不純物とからなる組成を有することを特徴とする技術(例えば特許文献3)がある。
*本願吸熱構造手段SC及び燃焼室部内壁及び回転力取り出し構造部等の耐熱材としてのコーティング技術とする事も出来る。In a Ni-base superalloy member obtained by coating a Ni-base superalloy base material with a coating material, the coating material is a coating material (called an EQ coating material) having a chemical composition that does not cause mutual diffusion at the base material interface, and the mass% is As Pt (platinum) or/and Ir (iridium) of 0.2% or more and 15% or less, Al of 2.9% or more and 16.0% or less, Cr of 19.6% or less, and Mo of 10.0%. In the following, W has a composition of 15.0% or less, Ta of 14.0% or less, Hf of 3.0% or less, Y of 0.1%, and the balance of Ni and inevitable impurities. There is a characteristic technique (for example, Patent Document 3).
*It is also possible to use coating technology as a heat-resistant material for the heat absorbing structure means SC of the present application, the inner wall of the combustion chamber, the rotational force extracting structure, and the like.
軟化温度が高く、かつ、酸素透過性及びプロトン伝導性に優れた高酸素透過電解質及びその製造方法、並びに、このような高酸素透過電解質の原料として使用することが可能なスルホンイミドモノマを提供する技術(例えば特許文献4)がある.本願にも採用出来る技術である。 Provided are a high oxygen permeable electrolyte having a high softening temperature and excellent oxygen permeability and proton conductivity, a method for producing the same, and a sulfonimide monomer that can be used as a raw material for such a high oxygen permeable electrolyte. There is a technology (for example, Patent Document 4). This is a technology that can be applied to the present application.
フィッシャートロプッシュ合成装置より得られる混合ガスを用いてジメチルエーテル、メタノール又はメタンを製造することを特徴とする混合ガスの製造方法(例えば特許文献5)がある.
*本願の合成ガスの合成に富化酸素と炭化水素化合物(例えばメタンCH4)の酸化法での一酸化炭素と水素の合成ガスあるいは炭化水素化合物(例えばメタンCH4)生成器の反応熱を吸熱出来る技術として本願に取り込める技術である。There is a method for producing a mixed gas characterized by producing dimethyl ether, methanol or methane using the mixed gas obtained from a Fischer-Tropsch synthesizer (for example, Patent Document 5).
* For the synthesis gas synthesis of the present application, the reaction heat of the synthesis gas of carbon monoxide and hydrogen or the hydrocarbon compound (eg methane CH 4 ) generator in the oxidation method of enriched oxygen and hydrocarbon compound (eg methane CH 4 ) is used. This is a technology that can be incorporated into the present application as a technology capable of absorbing heat.
最大の課題は地球温暖化に対処する「CO2」,「NOX」の排出削減・排出抑制であり、その為の施策の1つの方法を構成するエンジン機構を発明する事であり、
1、エンジン燃焼工程に窒素を排除することで「NOX」は生成しないので、該燃焼工程の水素を富化酸素空気で連続燃焼させるエンジンの構成にすれば空気中の窒素は富化酸素分離工程1で分離時に除去されるのでNOXを排出しない構成にする。
2、上記水素を富化酸素空気で連続燃焼させると燃焼火炎の中心温度が概略2800℃と空気で燃焼させた時より(空気で燃焼させると概略1900℃)概略47%燃焼温度が上がる、上記高温に燃焼室部の内壁が直接晒されると内壁が持たない(強度上の限界を超える)、従って水素を富化酸素空気で連続燃焼させても該燃焼室部の内壁を保護出来る構造を考案する事が課題。
3、燃料生成工程内に設けておる水蒸気改質器に水蒸気及び水蒸気を含む排気ガスの熱を使用した改質の水蒸気改質か、水性ガスシフトか、ドライリフォーミングかの何れか1以上の改質路に加えて上記富化酸素の発熱反応の熱を利用したオートサーマルリフォーミングか直接的接触部分酸化法等の改質技術や分離手段(膜透過技術を含む)技術を用いて、水素と一酸化炭素の合成ガスに改質し、該合成ガスを水素分離手段で水素と二酸化炭素に別々に分離して畜ガスタンクに畜ガスして水素を当該エンジンの燃料とする。The biggest challenge is to reduce and suppress the emission of "CO 2 "and "NO X "to cope with global warming, and to invent an engine mechanism that constitutes one of the measures for that.
1. Since "NO X "is not generated by removing nitrogen in the engine combustion process, nitrogen in the air is separated into enriched oxygen when the engine is configured to continuously burn hydrogen in the combustion process with enriched oxygen air. Since NOx is removed during the separation in step 1, NO x is not emitted.
2. When the hydrogen is continuously burned with enriched oxygen air, the central temperature of the combustion flame is approximately 2800° C., and the combustion temperature is increased by approximately 47% from when burned with air (approximately 1900° C. when burned with air). When the inner wall of the combustion chamber is directly exposed to high temperature, the inner wall does not have the strength (exceeding the limit of strength). Therefore, a structure that can protect the inner wall of the combustion chamber even when hydrogen is continuously burned with enriched oxygen air is devised. The task is to do.
3. One or more of steam reforming using water vapor and heat of exhaust gas containing steam in a steam reformer provided in the fuel production process, water gas shift, or dry reforming. In addition to the mass channel, hydrogen is produced by using the reforming technology such as auto thermal reforming or direct contact partial oxidation method that utilizes the heat of the exothermic reaction of the enriched oxygen or separation means (including membrane permeation technology). It is reformed into carbon monoxide synthesis gas, and the synthesis gas is separated into hydrogen and carbon dioxide by a hydrogen separation means, and is stored in a storage gas tank to use hydrogen as fuel for the engine.
第一の発明は
酸素分離工程1で分離された富化酸素と水素を連続燃焼するエンジンのエンジン燃焼工程2で有って、該燃焼工程2の燃焼室部NEの内外壁間に通水路MHを設けて該通水路に水タンクT4から水導入管にて水を導入しており、該燃焼室部内壁2Uには通水路の水を燃焼室部内に噴射する噴射ノズルTJを複数設けており、燃焼室部NE内には上記水素と冨化酸素を噴射し燃焼する燃料噴射バーナ2Nと該燃料噴射バーナから噴射する水素と冨化酸素に点火する点火栓Pを設けて上記水素と冨化酸素を燃料噴射バーナから噴射し点火栓にて点火し連続燃焼させており上記富化酸素(富化酸素タンクから管路3で供給)と水素(水素タンクから管路2で供給)の燃焼による燃焼火炎の直射熱を受ける吸熱構造部SCを上記燃焼室部内壁2Uの内側に(間隔を開けて)設けており、上記水を噴射ノズルから吸熱構造手段及びエンジンの燃焼室部NE内に噴射しており該エンジンの燃焼室部内の吸熱構造手段(吸熱構造部SCの大径面)に噴射した水は吸熱構造手段の熱を吸熱して該水を水蒸気にしており、該燃焼室部内NEに噴射した水も該燃焼室部内の燃焼熱を吸熱して該水を水蒸気にして該燃焼室部内の冷却手段及び水蒸気生成手段としており、噴射した水は水蒸気と成り上記富化酸素と水素の燃焼で生成された排気ガスとともに排気ガス流路5に排出されており、かつ
上記燃焼工程2に供給する上記水素と上記富化酸素に加えて二酸化炭素を二酸化炭素タンクより(管路21,25で)燃焼室部に導入するかあるいは上記通水路MHに水タンクから水導入管4に合流する管路22から導入するかあるいは燃料生成工程4に直接二酸化炭素タンクより管路23で供給するかのいずれかの手段にて上記エンジンの燃焼室部NEから上記燃料生成工程4間に二酸化炭素を供給して燃料生成工程にて合成ガス(CO+H2)かあるいは炭化水素化合物かの何れかに改質する二酸化炭素供給手段を設けておる事を特徴とする、水素と富化酸素空気を連続燃焼するエンジンシステムを提供する。
*上記エンジンの燃焼室部内に設けておる燃料の燃焼火炎の直射熱を受ける吸熱構造手段SCを耐熱吸熱構造材(例えば熱伝導率及び耐熱温度が高いアルミナAl2O3系合金が好ましい)にして設け、該エンジン燃焼室部内の吸熱構造手段と内壁に水を噴射する噴射手段をエンジン燃焼室の冷却手段と水蒸気生成手段の両方を兼ね備えた手段としたことが富化酸素と水素を連続燃焼させても該燃焼室部の内壁を保護出来るエンジンを考案出来た新規技術である。
第二の発明は
上記エンジンの上記燃焼室部内壁2Uの内側に設けておる吸熱構造部SCに替えて上記水噴射ノズルの水の噴射方向を変えた水噴射ノズルMJを設けて上記燃焼室部内壁2Uの燃焼側内面に噴射して該燃焼室部内壁の燃焼側内面の冷却手段としており、水の噴射方向を変えた水噴射ノズルMJから水を該燃焼室部の内壁面及び燃焼室内に噴射しており該内壁面に噴射した水は内壁面の熱を吸熱して水蒸気になり該燃焼部室NE内に噴射した水は燃焼室部内の燃焼ガスの熱を吸熱して水蒸気と成り該燃焼室部の内壁面に噴射して生成した水蒸気と上記富化酸素と水素の燃焼で生成された排気ガスとともに排気ガス流路5に排出されておる事を特徴とする、第一の発明に記載の水素と富化酸素空気を連続燃焼するエンジンシステムを提供する。
第三の発明は
上記燃焼工程2の排気ガス流路に排気ガス流力を回転力に変換する流力方向変換手段で取り出す回転力取り出し工程3を設けて上記燃焼工程から排出される排気ガスを上記回転力取り出し工程3を貫流させ貫流する排気ガス流力にて流力方向変換手段の回転翼体(ガスタービンの静翼、動翼、蒸気タービン翼を含む)を回転させて回転力として取り出し、取り出した該回転力を機器(運輸機器、発電機等)の駆動力としておる事を特徴とする、第一の発明乃至第二の発明に記載の水素と富化酸素空気を連続燃焼するエンジンシステムを提供する。
第四の発明は
上記エンジンの回転力取り出し工程3を貫流した排気ガス流路中に上記燃料生成工程4を設けており該燃料生成工程4には水蒸気改質か、水性ガスシフトか、ドライリフォーミングかの何れか1以上の改質路にて炭化水素化合物を排気ガス中の水蒸気と二酸化炭素の何れか一方か両方かで、水素と一酸化炭素の合成ガスか二酸化炭素(又は炭化水素化合物)に改質する改質手段を設けており、該改質手段で生成したガスをガス改質分離手段で水素か二酸化炭素(炭化水素化合物の何れか)にして取りだし、取り出した水素と二酸化炭素と上記富化酸素と合成ガス(水素と一酸化炭素)と改質剤の炭化水素化合物は別々に畜ガス出来る畜ガスタンク(水素タンクT1、冨化酸素タンクT2、二酸化炭素タンクT3、炭化水素化合物タンクT5、合成ガス(水素と一酸化炭素)タンクT6)を設けて畜ガスして更に水は水タンクT4に貯水しておる事を特徴とする第一の発明乃至第三の発明に記載の、水素と富化酸素空気を連続燃焼するエンジンシステムを提供する。
第五の発明は
上記エンジンの回転力取り出し工程3を貫流した排気ガス流路中に上記燃料生成工程4を設けており該燃料生成工程4には水蒸気改質か、水性ガスシフトか、ドライリフォーミングかの何れか1以上の改質路にて炭化水素化合物を排気ガス中の水蒸気と吸熱二酸化炭素の何れか一方か両方かで、水素と一酸化炭素の合成ガスか二酸化炭素(又は炭化水素化合物)に改質する改質手段を設けており、該改質手段で生成したガスをガス改質分離手段で水素か二酸化炭素(炭化水素化合物の何れか)にして取りだし、取り出した水素と二酸化炭素と上記富化酸素と合成ガス(水素と一酸化炭素)と改質剤の炭化水素化合物は別々に畜ガス出来る畜ガスタンク(水素タンクT1、冨化酸素タンクT2、二酸化炭素タンクT3、炭化水素化合物タンクT5、合成ガス(水素と一酸化炭素)タンクT6)を設けて畜ガスして更に水は水タンクT4に貯水しておる事を特徴とする第一の発明乃至第四の発明に記載の、富化酸素空気と燃料の燃焼で燃料を生成するエンジンシステムを提供する。
第六の発明は
上記エンジンの1実施例であって、上記エンジンの燃焼室部NEの中央に回転軸を設けたドーナツ状円筒のガスタービン形態の燃焼室部にして設けており、燃焼室部上流に富化酸素を圧縮する圧縮手段(動翼DY、静翼SY)等)を更に設けて富化酸素を圧縮し燃焼室部に供給して燃料と吸気を燃焼させており、前記噴射ノズルからの水の噴射による水蒸気生成手段の水蒸気と燃料の燃焼による排気ガスとのガスでタービン翼を回転させ、該タービン翼の回転力を運輸機器の駆動力にするか発電機の発電動力にするかの何れかにしておる事を特徴とする第一の発明乃至第五の発明に記載の富化酸素空気と燃料を連続燃焼するエンジンシステムを提供する。The first invention is an engine combustion process 2 of an engine that continuously burns the enriched oxygen and hydrogen separated in the oxygen separation process 1, and the water passage MH is provided between the inner and outer walls of the combustion chamber NE of the combustion process 2. Water is introduced into the water passage from a water tank T4 by a water introducing pipe, and a plurality of injection nozzles TJ for injecting the water in the water passage into the combustion chamber portion are provided on the inner wall 2U of the combustion chamber portion. In the combustion chamber NE, a fuel injection burner 2N for injecting and burning the hydrogen and enriched oxygen and a spark plug P for igniting the hydrogen and enriched oxygen injected from the fuel injection burner are provided. Oxygen is injected from the fuel injection burner, ignited by the spark plug and burned continuously, and by combustion of the enriched oxygen (supplied from the enriched oxygen tank through the conduit 3) and hydrogen (supplied from the hydrogen tank through the conduit 2). An endothermic structure portion SC that receives the direct heat of the combustion flame is provided inside the combustion chamber inner wall 2U (at a distance), and the water is injected from the injection nozzle into the endothermic structure means and the combustion chamber portion NE of the engine. Therefore, the water injected to the endothermic structure means (large-diameter surface of the endothermic structure part SC) in the combustion chamber part of the engine absorbs the heat of the endothermic structure part to turn the water into steam. The water injected into the combustion chamber also absorbs the heat of combustion in the combustion chamber to turn the water into steam, which serves as a cooling means and steam generating means in the combustion chamber. Carbon dioxide is discharged from the carbon dioxide tank in addition to the hydrogen and the enriched oxygen, which are discharged to the exhaust gas flow path 5 together with the exhaust gas generated by the combustion and are supplied to the combustion process 2 (pipes 21, 25 Whether it is introduced into the combustion chamber section, introduced into the water passage MH from a water tank which joins the water introduction pipe 4 from the water tank, or is directly supplied to the fuel generation step 4 from a carbon dioxide tank by a pipe 23. By supplying carbon dioxide from the combustion chamber portion NE of the engine during the fuel production process 4 by any one of the above means and converting it into either syngas (CO+H 2 ) or a hydrocarbon compound in the fuel production process. Provided is an engine system which continuously burns hydrogen and enriched oxygen air, which is characterized in that a quality carbon dioxide supply means is provided.
*The heat-absorbing structure means SC that receives the direct heat of the combustion flame of the fuel provided in the combustion chamber of the engine is made of a heat-resistant heat-absorbing structure material (for example, alumina Al 2 O 3 -based alloy having high thermal conductivity and heat-resistant temperature is preferable). It is provided that the endothermic structure means in the engine combustion chamber section and the injection means for injecting water to the inner wall are both means for cooling the engine combustion chamber and means for producing steam, and continuous combustion of enriched oxygen and hydrogen. This is a new technology that can devise an engine that can protect the inner wall of the combustion chamber even if it is done.
A second aspect of the invention is to provide a water injection nozzle MJ in which the water injection direction of the water injection nozzle is changed in place of the heat absorption structure SC provided inside the combustion chamber inner wall 2U of the engine. The inner wall 2U is sprayed onto the inner surface on the combustion side to serve as a cooling means for the inner surface on the combustion side of the inner wall of the combustion chamber, and water is injected from the water injection nozzle MJ whose water injection direction is changed into the inner wall surface of the combustion chamber and the combustion chamber. The water that has been injected and has been injected onto the inner wall surface absorbs the heat of the inner wall surface to become steam, and the water that has been injected into the combustion chamber NE absorbs the heat of the combustion gas inside the combustion chamber part and becomes steam to form the steam. The first aspect of the invention is characterized in that it is discharged into an exhaust gas flow path 5 together with water vapor generated by being injected onto the inner wall surface of the chamber and the exhaust gas generated by the combustion of the enriched oxygen and hydrogen. To provide an engine system for continuously burning hydrogen and enriched oxygen air.
A third aspect of the present invention is provided with a rotational force extraction step 3 for extracting the exhaust gas flow force by a flow force direction conversion means for converting the exhaust gas flow force into a rotational force in the exhaust gas flow path of the combustion step 2 so that the exhaust gas discharged from the combustion step is discharged. The rotating blade body (including the stationary blades, moving blades, and steam turbine blades of the gas turbine) of the flow force direction converting means is rotated by the exhaust gas flow force that flows through the rotational force extraction step 3 and flows out as rotational force. An engine for continuously burning hydrogen and enriched oxygen air according to the first or second invention, characterized in that the extracted rotational force is used as a driving force for equipment (transport equipment, generator, etc.) Provide the system.
According to a fourth aspect of the present invention, the fuel generating step 4 is provided in the exhaust gas flow path that has passed through the rotational force extracting step 3 of the engine. The fuel generating step 4 is steam reforming, water gas shift, or dry reforming. Any one or more of the reforming passages for a hydrocarbon compound by using either or both of steam and carbon dioxide in the exhaust gas, a synthesis gas of hydrogen and carbon monoxide, or carbon dioxide (or a hydrocarbon compound) Is provided with a reforming means for reforming, and the gas produced by the reforming means is taken out as hydrogen or carbon dioxide (either a hydrocarbon compound) by the gas reforming separation means, and the taken out hydrogen and carbon dioxide The enriched oxygen, the synthesis gas (hydrogen and carbon monoxide), and the hydrocarbon compound of the modifier can be separately used as livestock gas tanks (hydrogen tank T1, enriched oxygen tank T2, carbon dioxide tank T3, hydrocarbon compound tank). T5, a synthetic gas (hydrogen and carbon monoxide) tank T6) is provided to store livestock gas, and further water is stored in a water tank T4. An engine system for continuously burning hydrogen and enriched oxygen air is provided.
In a fifth aspect of the invention, the fuel generation step 4 is provided in the exhaust gas flow path that has passed through the rotational force extraction step 3 of the engine, and the fuel generation step 4 is steam reforming, water gas shift, or dry reforming. Any one or more of the reforming passages for the hydrocarbon compound is either a vapor of the exhaust gas and/or an endothermic carbon dioxide, and a synthesis gas of hydrogen and carbon monoxide or carbon dioxide (or a hydrocarbon compound). ) Is provided with a reforming means for reforming, and the gas produced by the reforming means is taken out as hydrogen or carbon dioxide (either a hydrocarbon compound) by the gas reforming separation means, and the taken out hydrogen and carbon dioxide. And the enriched oxygen, the synthesis gas (hydrogen and carbon monoxide), and the hydrocarbon compound of the modifier can be separately used as livestock gas tanks (hydrogen tank T1, enriched oxygen tank T2, carbon dioxide tank T3, hydrocarbon compound A tank T5, a synthetic gas (hydrogen and carbon monoxide) tank T6) are provided to store livestock gas, and further water is stored in a water tank T4. To provide an engine system for producing fuel by combustion of fuel with enriched oxygen air.
A sixth aspect of the present invention is an embodiment of the engine, wherein the combustion chamber portion NE of the engine is provided as a doughnut-shaped cylindrical gas turbine type combustion chamber portion having a rotating shaft provided at the center thereof. A compression means (a moving blade DY, a stationary blade SY, etc.) for compressing the enriched oxygen is further provided upstream to compress the enriched oxygen and supply it to the combustion chamber section to burn the fuel and the intake air. The turbine blades are rotated by the steam of the steam generating means by the injection of water from the water and the exhaust gas generated by the combustion of the fuel, and the rotational force of the turbine blades is used as the driving force of the transportation equipment or the power generation power of the generator. An engine system for continuously combusting enriched oxygen air and fuel according to any one of the first to fifth inventions is provided.
第一の発明の補足記載、(酸素富化手段)
*上記空気大気から窒素N2を分離除去する酸素富化手段であるが、
気体の膜による分離{例えば、プリズムセパレーター(モンサント社)、プリズムアルファガス(モンサント社)PV(透過気化)、等}は、現技術に於いては深冷分離方や吸着分離方と並んで常識と成っておる技術であり、分離膜システムはモンサント、ダウ、セパレック、WRグレース、我が国では、宇部興産(何れも会社名)等がそれぞれ独自の分離膜システムを商品化しておる。
*ガスを分離する膜分離の原理構成は、分離する気体の相対的透過速度により分離する物で、
早いガスは膜の壁を通って簡単に透過し、サイドポートに出て行き、遅いガスは膜の壁の透過が困難なために、中空糸の内部を移動し、排出口から排出される構成であり、
早いガスには、H2O,H2,H2S,CO2,O2があり、遅いガスにはAr,CO3,N2,CH4等がある。
運転圧力8〜150Kg/Cm2G(8Kg/cm2未満の圧力で可能な物もある)
富化酸素ガス純度は97%〜100%未満(燃焼してもNOxを排出しない範囲)
被分離ガスに圧力が有ることが条件であり、該分離膜システムの駆動力は圧力差の利用である。
コンプレッサーとしては、軸流式、往復式、スクリュー式、ロータリ式、スクロール式等のいずれをも用いることが出来るSupplementary description of the first invention, (oxygen enrichment means)
* An oxygen enrichment means for separating and removing nitrogen N 2 from the air atmosphere,
Separation of gas using a membrane (eg, prism separator (Monsanto Co.), prism alpha gas (Monsanto Co. PV) (pervaporation), etc.) is common knowledge in the existing technology along with cryogenic separation and adsorption separation. As for the separation membrane system, Monsanto, Dow, Separek, WR Grace, and in Japan, Ube Industries (all company names) commercialize their own separation membrane systems.
* The principle structure of the membrane separation that separates gas is that which separates by the relative permeation rate of the separated gas,
A structure in which early gas easily permeates through the wall of the membrane and goes out to the side port, and slow gas moves inside the hollow fiber and is discharged from the outlet because the permeation through the wall of the membrane is difficult. And
The fast gas includes H 2 O, H 2 , H 2 S, CO 2 and O 2 , and the slow gas includes Ar, CO 3 , N 2 and CH 4 .
Operating pressure 8 to 150 Kg/Cm 2 G (some pressures below 8 Kg/cm 2 are possible)
Enriched oxygen gas purity is 97% to less than 100% (range that does not emit NOx even if burned)
The condition is that the gas to be separated has a pressure, and the driving force of the separation membrane system is the use of the pressure difference.
As the compressor, any of an axial flow type, a reciprocating type, a screw type, a rotary type and a scroll type can be used.
第一の発明の補足記載、(吸気に関する理論)
*水が蒸発する時に必要な発熱量は1molあたり9,7kcal(100℃)
地球上には14億Km3の水が存在Sその97%が海水で約3%が陸水である。
*空燃比 1CCのガソリンに対して850CCの空気が必要で本願酸素富化空気を使用すれば、165CCの酸素で良く660CCの窒素と25CCのアルゴンの混合ガスが分離され、窒素とアルゴンの混合ガスは大気に放出される理論量であり、このアルゴンも分離畜ガスすれば価値あるガスとして利用される構成にもできる。165/850は19%で窒素とアルゴンの取り扱い構造が約80%不要となり、仮に排気量2000CCのエンジンであれば理論上400CCの排気量のエンジンで同じ出力が得られることになる。Supplementary description of the first invention, (Theory of intake)
*The amount of heat required to evaporate water is 9,7 kcal per 100 mol (100°C)
There are 1.4 billion Km 3 of water on the earth S 97% of which is seawater and about 3% is land water.
*Air-fuel ratio requires 1850cc of air for 850cc of air, and if the oxygen enriched air of the present application is used, 165cc of oxygen is sufficient and 660cc of nitrogen and 25cc of argon gas mixture are separated, and nitrogen/argon gas mixture. Is the theoretical amount released into the atmosphere, and this argon can also be configured to be used as a valuable gas if separated and separated. The 165/850 is 19%, and about 80% of the structure for handling nitrogen and argon is unnecessary, and if an engine with a displacement of 2000 CC is theoretically the same output can be obtained with an engine with a displacement of 400 CC.
第一の発明補足(水蒸気生成手段)
*本願の富化酸素空気を使用した構成では改質に使用出来る水蒸気を、水素の燃焼で生成される水蒸気とエンジン内での水蒸気生成手段による水蒸気との両方を使用しており、該エンジン内での水蒸気生成手段はエンジン燃焼室部内で燃料の直射熱を受ける直射熱受け体(吸熱構造手段SC)を上記燃焼室部内壁の内側中心方向に間隔を開けて設けて(図1参照)おり、水か温水を噴射する噴射ノズルTJを燃焼室内壁に複数設けて該水を噴射ノズルTJから吸熱構造手段(の大径方向)外面及びエンジンの燃焼室部内に噴射しており該エンジンの燃焼室部内の吸熱構造手段に噴射した水は吸熱構造手段SCの熱を吸熱して該水を水蒸気にしており、燃焼室部NE内に噴射した水も該燃焼室部内の燃焼熱(排気ガスの熱)を吸熱して該水を水蒸気にして水蒸気を多く生成できる構成にしており、更に富化酸素空気の燃焼で燃焼火炎の中心温度を47%(計算値)UPしておるので水蒸気改質器及び吸熱改質器を多数設けることが出来、更に酸素分離装置1Aで分離した富化酸素をオートサーマルリフォーミング法(ATR)KG4、や直接的接触部分酸化法(D−CPOX)KG5等の酸化熱(発熱反応)を使用出来るので水素の製造を多く出来る。
*燃焼ガスの持つ全エネルギー量はガス流量とその温度の積に比例するので、水素と富化酸素の燃焼で燃焼温度をUPした排気ガスを生成し、さらに水を水蒸気にする水蒸気生成手段で生成した水蒸気との両方でガス流量を多くしておりその上酸素の発熱反応により得られる熱エネルギーで該燃焼ガスの持つ全エネルギー量を多くしておる。
*第一の発明に記載の吸熱構造手段SCの耐熱吸熱構造材
エンジンの燃焼室部内の耐熱構造部は例えばタングステンWかハフニュウムHfかセラミックスかアルミナAl2O3かチタンTiかニッケルNiかあるいはタングステンWかハフニュウムHfかセラミックスかアルミナかチタンかニッケル化合物か耐熱金属(例えばニッケル)にチタンかセラミックスをコーティング(蒸着)した物質でも可能であるが、
上記耐熱(吸熱)構造材には例えば熱伝導率及び耐熱温度が高いアルミナAl2O3が好ましいので上記耐熱構造をアルミナとする事も出来る。
例えば西村陶業(企業名)ではアルミナAl2O3を主材として、用途により伝熱性(熱伝導率39W/m・K)や、耐熱性(1500℃)の製品を製造しておるので同社の製品を使用する事も出来る。1st invention supplement (steam generation means)
* In the configuration using the enriched oxygen air of the present application, the steam that can be used for reforming uses both the steam generated by the combustion of hydrogen and the steam generated by the steam generating means in the engine. In the steam generating means, the direct heat receiving body (heat absorbing structure means SC) that receives the direct heat of the fuel in the engine combustion chamber is provided at a distance in the inner center direction of the inner wall of the combustion chamber (see FIG. 1). , A plurality of injection nozzles TJ for injecting water or hot water are provided on the inner wall of the combustion chamber, and the water is injected from the injection nozzle TJ to the outer surface (in the large diameter direction) of the heat absorption structure means and the combustion chamber portion of the engine. The water injected to the endothermic structure means in the chamber absorbs the heat of the endothermic structure means SC to turn the water into steam, and the water injected into the combustion chamber NE also includes the heat of combustion in the combustion chamber (of exhaust gas). Heat) to turn the water into steam to generate a large amount of steam, and further, the central temperature of the combustion flame is increased by 47% (calculated value) by combustion of enriched oxygen air, so steam reforming A large number of reactors and endothermic reformers can be provided, and the enriched oxygen separated by the oxygen separator 1A can be supplied by the auto thermal reforming method (ATR) KG4, the direct contact partial oxidation method (D-CPOX) KG5, or the like. Since heat of oxidation (exothermic reaction) can be used, hydrogen production can be increased.
*Since the total energy content of combustion gas is proportional to the product of the gas flow rate and its temperature, it is possible to generate exhaust gas whose combustion temperature is increased by the combustion of hydrogen and enriched oxygen, and to use water vapor generation means to turn water into steam. The gas flow rate is increased both with the generated water vapor, and the total energy amount of the combustion gas is increased with the thermal energy obtained by the exothermic reaction of oxygen.
*The heat-resistant heat-absorbing structure material of the heat-absorbing structure means SC according to the first invention is, for example, tungsten W, hafnium Hf, ceramics, alumina Al 2 O 3, titanium Ti, nickel Ni, or tungsten. It is possible to use W, hafnium Hf, ceramics, alumina, titanium, nickel compounds, or refractory metal (eg nickel) coated with titanium or ceramics (vapor deposition),
As the heat resistant (heat absorbing) structure material, for example, alumina Al 2 O 3 having high thermal conductivity and heat resistant temperature is preferable, and thus the heat resistant structure may be made of alumina.
For example, Nishimura Ceramics (company name) uses alumina Al 2 O 3 as the main material and manufactures products with heat conductivity (heat conductivity 39 W/mK) and heat resistance (1500°C) depending on the application. You can also use the product.
第一発明の補足記載、(燃焼部の冷却手段)
*エンジンの燃焼室部内の冷却構造であってエンジン燃焼部内外壁間に通水路MHを設けて、水を該通水路に導入しており、該燃焼部内壁に複数設けておる噴射ノズルTJから燃焼室内に水か温水を噴射してエンジン燃焼室部NEの燃料の燃焼熱を吸熱するとともにエンジン燃焼部内壁の一次熱受け部として耐熱構造部SCを上記燃焼室部内壁の内側中心方向に間隔を開けて設けており(図1参照)、該耐熱構造部(吸熱構造手段SC)に水か温水かの何れかを噴射して該吸熱構造手段SCに噴射した水は燃焼部内の熱を吸熱して水蒸気となり、燃焼室部に噴射した水は該燃焼室内の燃焼ガスの熱を吸熱して水蒸気となり該燃焼室部内壁及び燃焼室部内を冷却する冷却手段としておる。
*この冷却構造はジェットターボエンジンの燃焼部の冷却は空気を使用して多数の穴から燃焼室内に空気を墳出しており、この空気の墳出により燃焼部の冷却をして燃焼部内壁の冷却(耐熱)手段としておる。
本願は該空気に換えて水を使用しており、水が吸熱した水蒸気で冷却するとともに該水蒸気を燃料生成の水蒸気として活用しておる。(ガスタービンエンジンの動翼及び静翼の冷却も同じである。)
*富化酸素空気と水素の燃焼では燃焼火炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼火炎の中心温度は1900℃程度で富化酸素空気の使用により47%程度燃焼火炎の中心温度が上がる、富化酸素空気を使用したエンジンと、空気(の酸素)を使用したエンジンとでは上記改質器か水素分離手段かの何れかを計算上47%多く出来る。Supplementary description of the first invention, (cooling means for combustion section)
* A cooling structure in the combustion chamber of the engine, a water passage MH is provided between the inner and outer walls of the engine combustion portion to introduce water into the water passage, and combustion is performed from a plurality of injection nozzles TJ provided on the inner wall of the combustion portion. Water or hot water is injected into the room to absorb the combustion heat of the fuel in the engine combustion chamber part NE, and the heat resistant structure part SC is provided as a primary heat receiving part of the inner wall of the engine combustion part with an interval in the inner center direction of the inner wall of the combustion chamber part. It is provided open (see FIG. 1 ), and either water or hot water is injected into the heat resistant structure (heat absorbing structure means SC), and the water injected into the heat absorbing structure means SC absorbs heat in the combustion section. The water that has become the water vapor injected into the combustion chamber absorbs the heat of the combustion gas in the combustion chamber and becomes water vapor that serves as cooling means for cooling the inner wall of the combustion chamber and the inside of the combustion chamber.
*This cooling structure uses air to cool the combustion part of the jet turbo engine from a large number of holes into the combustion chamber. By discharging this air, the combustion part is cooled to cool the inner wall of the combustion part. It is used as a cooling (heat resistant) means.
In the present application, water is used instead of the air, and the water is used as water vapor for fuel generation while cooling with water vapor that has absorbed heat. (The same applies to cooling the moving blades and stationary blades of a gas turbine engine.)
*In the combustion of enriched oxygen air and hydrogen, the center temperature of the combustion flame is about 2800°C, and in the combustion of air (oxygen in it) and hydrogen, the center temperature of the combustion flame is about 1900°C and 47% due to the use of enriched oxygen air. In the engine using the enriched oxygen air and the engine using the air (oxygen) in which the central temperature of the combustion flame is increased to some extent, either the reformer or the hydrogen separating means can be increased by 47% in calculation.
第二の発明の補足記載、(燃焼部の冷却手段)
*エンジンの燃焼室部内の冷却構造であって上記耐熱構造部SCに替えて水噴射ノズルTJの水の噴射方向を変えた水噴射ノズルMJを複数設けており該噴射ノズルMJは水を該燃焼室部の内壁面及び燃焼室内に噴射しており該内壁面に噴射した水は内壁面の熱を吸熱して水蒸気になり該燃焼部室NE内に噴射した水は燃焼室部内の燃焼ガスの熱を吸熱して水蒸気にして、該燃焼室部の内壁面及び該燃焼部室NE内の冷却手段としており該噴射ノズルMJを設ける事で上記耐熱構造部SCを設けなくても該燃焼室部を富化酸素と水素を連続燃焼に耐えられるエンジン燃焼工程2としておる。Supplementary description of the second invention, (combustion part cooling means)
* A plurality of water injection nozzles MJ, which are cooling structures in the combustion chamber of the engine, are provided in place of the heat-resistant structure SC, and the water injection nozzles TJ change the water injection direction, and the injection nozzles MJ burn the water. The water that has been injected into the inner wall surface of the chamber and the combustion chamber absorbs the heat of the inner wall to become water vapor, and the water that has been injected into the combustion chamber NE has the heat of the combustion gas in the combustion chamber. Is absorbed into water vapor to serve as a cooling means for the inner wall surface of the combustion chamber and the combustion chamber NE, and by providing the injection nozzle MJ, the combustion chamber can be enriched without the heat-resistant structure SC. This is the engine combustion process 2 that can withstand continuous combustion of oxygenated oxygen and hydrogen.
第一の発明及び第四の発明の補足記載、
燃料生成工程で生成した二酸化炭素CO2を大気に排出しない構成とする為には燃料生成工程4で生成して畜ガスタンクT3に畜ガスしておる二酸化炭素をエンジン内の燃焼室部NE(燃焼工程2)から上記燃料生成工程4間の何れかから二酸化炭素を供給する供給手段を設けて燃料生成工程4で分離改質するかあるいは燃料生成工程の中間工程で合成した二酸化炭素を含むガスを分離改質器BRで分離するか畜ガスタンクに畜ガスしておる水素畜ガスタンクT1及び二酸化炭素畜ガスタンクT3から燃料生成工程内の改質器KG(KG1〜KG5)に供給して該改質器KGで改質して合成ガスCO+H2か炭化水素化合物に改質するかの何れかの手段としておることが二酸化炭素を大気に排出しない排出削減技術である。
本願では上記燃料生成工程4で分離改質した二酸化炭素CO2を含むガス(富化酸素、水素、合成ガス(CO+H2)を畜ガスタンク経由にしておるが畜ガスタンクに畜ガスして燃料生成工程の改質器に必要量供給できるメリットがあるので畜ガスタンク経由にしておるが畜ガスタンクを経由させない構成でも良いSupplementary description of the first invention and the fourth invention,
In order to prevent the carbon dioxide CO 2 generated in the fuel generation process from being emitted to the atmosphere, the carbon dioxide generated in the fuel generation process 4 and stored in the storage gas tank T3 is used as the combustion chamber NE (combustion) in the engine. A supply means for supplying carbon dioxide from any of the steps 2) to 4) is provided to separate and reform the carbon dioxide in the fuel generation step 4 or to generate a gas containing carbon dioxide synthesized in the intermediate step of the fuel generation step. The reformer KG (KG1 to KG5) is supplied to the reformer KG (KG1 to KG5) in the fuel production process from the hydrogen storage gas tank T1 and the carbon dioxide storage gas tank T3 which are separated by the separation reformer BR and stored in the storage gas tank. Emission reduction technology that does not emit carbon dioxide to the atmosphere is provided as a means of reforming with KG and reforming into synthesis gas CO+H 2 or a hydrocarbon compound.
In the present application, the gas containing carbon dioxide CO 2 separated and reformed in the fuel producing step 4 (enriched oxygen, hydrogen, synthesis gas (CO+H 2 ) is passed through the animal gas tank, but the animal gas tank is used as animal gas to produce the fuel. Since there is a merit that the required amount can be supplied to the reformer, the livestock gas tank is used, but a configuration without a livestock gas tank is also possible.
第三の発明の補足記載
排気流力を回転力として取り出す回転力取り出し工程3であるが、流体(水、水蒸気、燃焼ガス)の略直線方向の流力を回転力にして取り出す構造にはダムからの落水力や潮流の干満潮の流力、農業用水路の水流力等の水の流れる力を回転力に替える技術及び蒸気機関(水蒸気の圧力を利用してピストンの往復運動を回転力にする原動機)やタービン(燃焼ガスや水蒸気を吹き付けて羽根車を回転運動させる原動機の翼体やガスタービンの圧縮空気に燃料をまぜて燃焼させた高温・高圧のガスを使ってタービン軸体を回す原動機の翼体(静翼・動翼))があり、本願では常識(公知の技術)に成っておる翼体(回転力に変換する回転力変換手段)の基本形状を1例として取り上げており上記回転力取出し工程3を貫流する排気ガス及び水蒸気は少なくとも600℃の高温なので必要に応じて耐熱構造手段(例えばニッケル合金にセラミックコーティング等の加工をする)を設けるかあるいは上記通水路MHの水を上記回転力取出し工程3の入り口5aから回転翼体3aに噴射する構成とする事で上記回転力変換手段の冷却手段とする事が出来る。Supplementary description of the third invention The rotational force extracting step 3 for extracting the exhaust fluid force as the rotational force is a dam for the structure for extracting the fluid force of the fluid (water, steam, combustion gas) in the substantially linear direction as the rotational force. Technology to convert the force of water flow such as falling force from the river, tidal flow of tidal current, and water flow of agricultural canals into rotational force, and steam engine (using the pressure of water vapor to turn the reciprocating motion of the piston into rotational force) Engines and turbines (engines that rotate the turbine shaft by using high-temperature and high-pressure gas that is burned by mixing fuel with the blades of the engine that blows combustion gas and steam to rotate the impeller and the compressed air of the gas turbine) There is a wing body (static blade/moving blade) of the present invention, and in this application, the basic shape of the wing body (rotational force converting means for converting into rotational force), which is common knowledge (known technology), is taken as an example. Since the exhaust gas and water vapor flowing through the rotational force extraction step 3 are at a high temperature of at least 600° C., heat-resistant structure means (for example, nickel alloy is processed by ceramic coating or the like) is provided as necessary, or the water in the water passage MH is removed. A cooling means for the rotational force converting means can be obtained by injecting the rotary blade body 3a from the inlet 5a of the rotational force extracting step 3.
第四の発明の補足記載
上記エンジンの回転力取り出し工程3を貫流した排気ガス流路中に上記燃料生成工程4を設けており該燃料生成工程4には上記酸素分離装置1Aで分離された富化酸素とエンジン燃焼工程で生成された水蒸気か水蒸気と吸熱気体の二酸化炭素か畜ガスされておる二酸化炭素と炭化水素化合物か(必要によっては貯水タンクに貯水されておる水)が供給されており、上記供給材を水蒸気改質か、水性ガスシフトか、ドライリフォーミングかの何れか1以上の改質路にて排気ガス中の水蒸気と吸熱気体の二酸化炭素の何れか一方か両方かを、水素と一酸化炭素の合成ガスか二酸化炭素か炭化水素化合物かの何れか1以上に生成する生成手段を設けており、該生成手段で生成したガスをガス改質分離手段で水素と二酸化炭素か炭化水素化合物の何れかに分離して取りだす上記燃料生成工程4であり、
*水蒸気改質は炭化水素を水蒸気と反応させる吸熱反応であり生成ガス中の水素濃度を高く出来る特徴が有り、
CnHm+nH2O→nCO+(n+m/2)H2の反応式で示され、
例えば被改質物質としてメタンCH4を用いた改質反応式は、
CH4+H2O⇔CO+3H2
炭化水素化合物をメタンとした場合の水蒸気改質反応では、CmHn+mH2O→(m+n/2)H2+mCO・・又はCH4+CO2→2H2+2COこの反応式は改質温度が高温の時であり、改質温度を低温にする改質路を上記改質路の下流に設けて,H2及びCOの割合を変えて再度排熱にて反応させると、3H2+CO→CH4+H2Oとする事も出来る(改質には上記改質用の触媒を用いる)
又被改質物質をジメチルエーテルとした場合は、ジメチルエーテルに水蒸気か二酸化炭素の何れか一方か両方かとともに触媒に接触させると、
A.CH3OCH3+H2O(水蒸気)→2CO+4H2→48.9 kal/mol
B.CH3OCH3+CO2(二酸化炭素)→3CO+3H2→58.8kal/mol
A+Bは概略1600kJ/moi
その反応温度は200〜500℃、好ましくは250〜450℃であり、その反応圧力は常圧〜10Kg/cm2が好ましいとしておる、
又改質触媒等の条件を変える事により下式の二酸化炭素と水素にもできる。
C.CH3OCH3+3H2O→2CO2+6H2→29.3kal/mol
ジメチルエーテル1molを燃焼させた時の熱量は約1300kJ/moi
*メタンの水蒸気改質
CH4+H2O→3H2+CO 改質温度650〜800℃
上式のCO一部は更に水蒸気と反応して
シフト反応 CO+H2O→CO2+H2
水素1moiあたりの燃焼熱285.8kj/molSupplementary description of the fourth aspect of the invention The fuel producing step 4 is provided in the exhaust gas flow path that has flowed through the rotational force extracting step 3 of the engine, and the fuel producing step 4 contains the wealth separated by the oxygen separator 1A. Oxygen and water vapor generated in the engine combustion process or water vapor and carbon dioxide as an endothermic gas or carbon dioxide as a storage gas and a hydrocarbon compound (if necessary, water stored in a water storage tank) are supplied. In the reforming passage of any one or more of steam reforming, water gas shift, and dry reforming of the above-mentioned feed material, hydrogen is supplied to either or both of steam in exhaust gas and carbon dioxide of endothermic gas. And a production means for producing at least one of carbon monoxide synthesis gas, carbon dioxide, and a hydrocarbon compound, and the gas produced by the production means is hydrogen and carbon dioxide or carbonized by the gas reforming separation means. In the fuel production step 4 in which one of the hydrogen compounds is separated and taken out,
*Steam reforming is an endothermic reaction that reacts hydrocarbons with steam, and has the characteristic that the hydrogen concentration in the produced gas can be increased.
CnHm+nH 2 O→nCO+(n+m/2)H 2
For example, the reforming reaction formula using methane CH 4 as the substance to be reformed is
CH 4 +H 2 O ⇔ CO+3H 2
In the steam reforming reaction using methane as the hydrocarbon compound, CmHn+mH 2 O→(m+n/2)H 2 +mCO... Or CH 4 +CO 2 →2H 2 +2CO When a reforming passage for lowering the reforming temperature is provided downstream of the above reforming passage and the ratio of H 2 and CO is changed and the reaction is performed again by exhaust heat, 3H 2 +CO→CH 4 +H 2 O can be used (for reforming, the above reforming catalyst is used)
Also, when the substance to be modified is dimethyl ether, contacting the catalyst with dimethyl ether together with either steam or carbon dioxide, or both,
A. CH 3 OCH 3 +H 2 O (steam)→2CO+4H 2 →48.9 kal/mol
B. CH 3 OCH 3 +CO 2 (carbon dioxide)→3CO+3H 2 →58.8 kal/mol
A+B is approximately 1600 kJ/moi
The reaction temperature is 200 to 500° C., preferably 250 to 450° C., and the reaction pressure is preferably atmospheric pressure to 10 Kg/cm 2 ,
Also, by changing the conditions such as the reforming catalyst, carbon dioxide and hydrogen in the following formula can be used.
C. CH 3 OCH 3 +3H 2 O → 2CO 2 +6H 2 → 29.3 kal/mol
The amount of heat when burning 1 mol of dimethyl ether is about 1300 kJ/moi.
* Steam reforming of methane CH 4 +H 2 O → 3H 2 +CO Reforming temperature 650-800°C
A part of CO in the above formula further reacts with steam to cause a shift reaction CO+H 2 O→CO 2 +H 2
Combustion heat per 1 moi of hydrogen 285.8 kj/mol
第四の発明の補足記載、(二酸化炭素の改質)
*二酸化炭素の改質は、二酸化炭素と水蒸気の改質材とともに炭化水素化合物(例えばジメチルエーテル)を触媒と接触させて水素(H2)と一酸化炭素(CO)の混合気体を取り出す技術の特開平11−106770を本願に組み込んで二酸化炭素をも該エンジンの燃料とする事で、燃費向上を図り更なる温室効果ガス排出削減策としている物である。
*本願は水蒸気改質を例示した構成であるが公知技術の合成ガスの生成方法には、前記水蒸気改質方法、乾燥改質法や部分酸化方法や、オートサーマル改質方法等もあり、本願の水蒸気改質方法に替えて上記合成ガスの生成方法を採用する事も出来る。
*オートサーマル{自己熱改質}
部分酸化反応と水蒸気改質反応の両方により水素を生成する方式。
部分酸化方式は発熱反応であり、外部加熱が不要で添加材として酸素富化空気を使用すれば、所定温度に達する迄の起動時間を短縮出来る。
炭化水素化合物と酸素O2を反応させ水蒸気(スチーム)と二酸化炭素CO2を製造するとともに、反応熱を用いて触媒上で炭化水素化合とスチームおよびCO2とのリフォーミング反応を行わせる方法。
(オートサーマルリフォーミング)
CH4+2O2→CO2+2H2O(ΔH298=−802kj/mol (4)
水蒸気改質に比べて温度の制御性が困難と言う問題もある。
例えば被改質物質としてメタンCH4を用いた改質反応式
CH4+H2O⇔3H2+CO (1)
CO+H2O⇔H2+CO2 (2) シフト反応(1)の反応時に副次的に起こる
*上記水蒸気改質用触媒としては、例えば、ニッケル系触媒などの公知の触媒を用いることができる、 ・改質温度650〜800℃
*ドライリフォーミング(CO2リフォーミング)法
大きな吸熱反応を伴う反応で例えば被改質物質としてメタンCH4を用いた改質反応式
CH4+CO2⇔2H2+2CO (3)
式(3)の反応時に式(2)の判応が副次的に起こる
*その他の改質として
直接的接触部分酸化法(D−CPOX・・Direct−Catalytic Partial Oxidation)
炭化水素化合物を化学量論量の半分程度の酸素と反応させ、酸化反応を中途にとどめ、H2とCOを製造する。 例えば被改質物質としてメタンCH4を用いた改質反応式
CH4+0.5O2→2H2+CO(ΔH298=−36kj/mol)(5)
上記方法は上記オートサーマルリフォーミング法(ATR)と比較して反応器サイズを1/10〜1/100程度とコンパクト化が期待できるので船上など限られたスペースへの設置が期待できる。
*上記以外にも合成ガスを合成する技術は公開(開示)されており、該公開技術を使用することも出来る。Supplementary description of the fourth invention, (reformation of carbon dioxide)
*Reforming of carbon dioxide is a feature of the technology that takes out a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO) by bringing a hydrocarbon compound (eg, dimethyl ether) into contact with a catalyst together with a carbon dioxide and steam reforming material. By incorporating Kaihei 11-106770 into the present application and using carbon dioxide as a fuel for the engine, it is possible to further improve the fuel consumption and reduce greenhouse gas emissions.
* Although the present application has a configuration exemplifying steam reforming, known methods of producing synthesis gas include the steam reforming method, the dry reforming method, the partial oxidation method, and the autothermal reforming method. It is also possible to adopt the above-mentioned synthesis gas generation method in place of the steam reforming method described above.
* Auto thermal {autothermal reforming}
A method of producing hydrogen by both partial oxidation reaction and steam reforming reaction.
The partial oxidation method is an exothermic reaction, and external heating is unnecessary, and if oxygen-enriched air is used as an additive, the start-up time until reaching a predetermined temperature can be shortened.
A method in which a hydrocarbon compound is reacted with oxygen O 2 to produce steam (steam) and carbon dioxide CO 2, and at the same time, a hydrocarbon compound and a reforming reaction of steam and CO 2 are carried out on a catalyst by using heat of reaction.
(Auto thermal reforming)
CH 4 +2O 2 →CO 2 +2H 2 O(ΔH 298 =−802 kj/mol (4)
There is also a problem that temperature controllability is more difficult than steam reforming.
For example, a reforming reaction formula CH 4 +H 2 O ⇔ 3H 2 +CO using methane CH 4 as a substance to be reformed (1)
CO + H 2 O⇔H 2 + CO 2 (2) shift reaction (1) of occurring side upon reaction * As the steam reforming catalyst, for example, be a known catalyst such as nickel catalysts Yes, reforming temperature 650-800℃
*Dry reforming (CO 2 reforming) method
A reaction involving a large endothermic reaction, for example, a reforming reaction formula CH 4 +CO 2 ⇔ 2H 2 +2CO using methane CH 4 as a substance to be reformed (3)
The reaction of the formula (2) occurs secondarily during the reaction of the formula (3). * As another modification, a direct contact partial oxidation method (D-CPOX... Direct-Catalytic Partial Oxidation)
The hydrocarbon compound is reacted with about half the stoichiometric amount of oxygen to stop the oxidation reaction to produce H 2 and CO. For example, a reforming reaction formula CH 4 +0.5O 2 →2H 2 +CO (ΔH 298 =−36 kj/mol) using methane CH 4 as a substance to be reformed (5)
The above-mentioned method can be expected to be installed in a limited space such as on a ship because it can be expected to make the reactor size as compact as 1/10 to 1/100 as compared with the above-mentioned auto-thermal reforming method (ATR).
*Other than the above, the technology for synthesizing syngas has been disclosed (disclosed), and the disclosed technology can also be used.
第四の発明の補足記載 分離膜による分離
水素の膜分離で工業的に実績のある物にポリイミド、ポリアミド、ポリスルホン、等が有り
・パラジュウムPd金属薄膜BR2
金属パラジュウム膜は、水素分子のみ透過する。すなわち、水素分子が膜表面で原子化してプロトン(H+)とエレクトロン(e)となり、これが膜中を拡散して膜の表面で再結合し、分子化して分離する物であり、パラジュウム合金の細管を300℃〜500℃に加熱する事で水素を分離出来る、この膜は高純度の水素製造に適している。
・高温水素ガス分離膜(セラミックス)BR3
700℃程度の高温水素ガス分離膜システムがあり例えば600℃〜1000℃で改質をする水蒸気改質で改質された水素と一酸化炭素の合成ガスから水素を分離して取り出す高温ガス分離に適している。
本願改質器KGでの改質を該分離膜に替える構成(気体の温度・圧力・透過したガスの純度等の条件が合えば)にする事も出来る。
*プロトン導電セラミック管による分離
プロトン導電セラミックスは燃焼温度に応じた耐熱性を有すると共に、燃焼ガスを通過させ得る連通気孔を備えたもので、ストロンチウムセレートベースとジルコン酸塩ベースのベログスカイト酸化セラミックス等の、プロトン導電セラミックスは水素、酸素を活性化させる作用を有する点で、特に合成ガスを水素と二酸化炭素を分離して取り出すのに有利である。
一例として本願のプロトン導電セラミックスはプロトン伝導性及び電子伝導性の双方を有し,水素を透過できるプロトン−電子混合伝導性セラミックスを使用する事でも良い。
この酸化物は高温でも安定であり、特に400〜700℃において良好なプロトン導電性を示す。
・特開2008−302334の記載では含酸素炭化水素を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用いて改質反応、部分酸化反応、分解反応等の化学反応を利用して、水素を含む混合ガスを生成した後に、水素を選択的に透過させることの出来る選択透過膜(例えばパラジウム合金膜)によって混合ガスから水素を分離して取り出す反応器であり上記化学反応と選択分離とを同時に行うことの可能な選択透過膜型反応器(メンブレンリアクタともいう)である
*また特開2006−298664の記載では多孔質支持体と、この上に形成された酸素イオン・電子混合伝導性固体電解質からなる緻密層と、前記緻密層の上に形成された触媒層とからなる3層構造の反応構造体を用いた膜型反応器であって、前記触媒層表面に炭化水素を主成分とした被処理ガスを、前記多孔質支持体側表面に高純度酸素ガスを、それぞれ供給することを特徴とすると言った高純度酸素ガスを供給する固体電解質膜型反応器の記載もある。
上記膜型反応器の採用により改質等の反応と透過による分離が一体化した装置となるので装置のコンパクト化に寄与するとともに自動車等の移動体に搭載可能な技術であり今後上記のような化学反応を伴う改質と改質された物(気体)の分離を一体化した装置の開発が進めば本願エンジンを適用した装置となるので装置のコンパクト化に寄与するとともに自動車等の移動体に搭載可能な技術であり今後上記のような化学反応を伴う改質と改質された物(気体)の分離を一体化した装置の開発が進めば本願エンジンの適用範囲はひろがる。Supplementary description of the fourth invention Separation by separation membrane Industrially proven in membrane separation of hydrogen include polyimide, polyamide, polysulfone, etc.-Palladium Pd metal thin film BR2
Only hydrogen molecules permeate the metal palladium film. That is, hydrogen molecules are atomized on the surface of the film to become protons (H + ) and electrons (e), which diffuse in the film and recombine on the surface of the film to be molecularized and separated. This membrane is suitable for producing high-purity hydrogen, because hydrogen can be separated by heating a thin tube to 300°C to 500°C.
・High-temperature hydrogen gas separation membrane (ceramics) BR3
There is a high-temperature hydrogen gas separation membrane system at about 700°C, and for high-temperature gas separation for separating and extracting hydrogen from hydrogen reformed by steam reforming reforming at 600°C to 1000°C and carbon monoxide synthesis gas. Are suitable.
A configuration in which the reforming in the present reformer KG is replaced with the separation membrane (if conditions such as gas temperature, pressure, and purity of permeated gas are suitable) can be adopted.
* Separation by proton conductive ceramic tube Proton conductive ceramics have heat resistance according to the combustion temperature, and are equipped with continuous vents that allow combustion gas to pass through. Strontium serate-based and zirconate-based belogskite oxide ceramics, etc. In particular, the proton conductive ceramics has an effect of activating hydrogen and oxygen, and is particularly advantageous for separating synthetic gas from hydrogen and carbon dioxide.
As an example, the proton conductive ceramics of the present application may be a proton-electron mixed conductive ceramic that has both proton conductivity and electron conductivity and is permeable to hydrogen.
This oxide is stable even at high temperatures, and particularly exhibits good proton conductivity at 400 to 700°C.
In the description of JP-A 2008-302334, a chemical reaction such as a reforming reaction, a partial oxidation reaction, or a decomposition reaction is performed by using oxygen-containing hydrocarbon as a main raw material gas and water (steam), carbon dioxide, oxygen or the like as a sub raw material gas. Is a reactor for producing hydrogen-containing mixed gas, and then separating and taking out hydrogen from the mixed gas by means of a selective permeation membrane (for example, a palladium alloy membrane) capable of selectively permeating hydrogen. It is a permselective membrane reactor (also referred to as a membrane reactor) capable of performing reaction and selective separation at the same time. * Also, in the description of JP-A-2006-298664, a porous support and oxygen ions formed thereon A membrane-type reactor using a reaction structure having a three-layer structure composed of a dense layer made of an electronically mixed conductive solid electrolyte and a catalyst layer formed on the dense layer, wherein a catalyst layer is formed on the surface of the catalyst layer. Description of a solid electrolyte membrane reactor for supplying a high-purity oxygen gas, which is characterized in that a gas to be treated containing hydrocarbon as a main component and a high-purity oxygen gas are respectively supplied to the surface of the porous support side. There is also.
By adopting the above membrane reactor, the reaction such as reforming and the separation by permeation become an integrated device, which contributes to downsizing of the device and is a technology that can be mounted on a moving body such as an automobile. If the development of a device that integrates the reforming accompanied by a chemical reaction and the separation of the reformed substance (gas) is advanced, it will be a device to which the engine of the present application is applied, which contributes to the compactness of the device and to the moving body such as an automobile. This is a technology that can be installed, and if the development of a device that integrates the reforming accompanied by the chemical reaction as described above and the separation of the reformed substance (gas) progresses in the future, the applicable range of the engine of the present application will be expanded.
第四の発明の補足記載、(燃料を合成ガスとした技術)
*特開2002‐039022 燃料改質ガスエンジンの改質ガス供給装置の記載では、
炭化水素系燃料を、触媒等を有する改質器で改質ガスに改質し、この改質ガスを改質ガス供給装置によりエンジンに供給し、エンジンの運転を行うものである。このエンジンに供給される燃料は、水素と一酸化炭素を主成分とする改質ガスであるために、希薄燃焼限界が高く、希薄域でも安定したエンジンの運転が可能であり、低NOx 、高効率を同時に実現することが可能であり、
本願の水素に替えて合成ガスを燃料とする事が出来るとした技術であり、上記合成ガスを燃料とする事も出来る。Supplementary description of the fourth invention, (technology using fuel gas as syngas)
* Japanese Patent Laid-Open No. 2002-039022 describes a reformed gas supply device for a fuel reformed gas engine.
The hydrocarbon fuel is reformed into a reformed gas by a reformer having a catalyst and the like, and the reformed gas is supplied to the engine by a reformed gas supply device to operate the engine. Since the fuel supplied to this engine is a reformed gas containing hydrogen and carbon monoxide as the main components, it has a high lean burn limit, enables stable engine operation even in the lean range, and has low NO x , It is possible to achieve high efficiency at the same time,
This is a technique that allows the use of syngas as fuel instead of hydrogen in the present application, and the above syngas can also be used as fuel.
第四の発明の補足(改質器設置例)
*燃料生成工程4内の上流部に合成ガス改質器KGの中の水蒸気改質器KG1とCO2リフォーミングKG2を設けて、酸素を供給して発熱反応させる改質器KG4,KG5を例えば隣接(並列)もしくは上記発熱反応改質を外側、吸熱改質を中側に配置する事で吸熱されて温度の下がった水蒸気の温度をあげる(温度を長く維持する)事が出来る。
上記合成ガス改質器KGで生成したH2+COのH2を気体分離器による分離器で分離して分離したH2は畜ガスタンクに畜ガスし分離した他方のCOは畜ガスタンクを設けて畜ガスする形態をとるか気体改質分離器KBに直接導入して水素と二酸化炭素に分離して畜ガスタンクに畜ガスするかの形態をとるのが好ましい改質器設置形態である。
上記燃料生成工程4を例えば自動車等の小型移動体に搭載するには直接的接触部分酸化法KG5や膜型反応器KB2を使用する形態にコンパクト化すれば本願エンジンの使用範囲は広がる。Supplement of the fourth invention (reformer installation example)
* A steam reformer KG1 and a CO 2 reforming KG2 in the syngas reformer KG are provided in the upstream part of the fuel generation process 4, and the reformers KG4 and KG5 for supplying oxygen to cause an exothermic reaction are provided, for example. By arranging adjacent (parallel) or the above exothermic reaction reforming on the outside and the endothermic reforming on the inside, it is possible to raise the temperature of steam that has been absorbed and decreased in temperature (maintaining the temperature for a long time).
The synthesis gas reformer KG H 2 that of H 2 in the generated H 2 + CO were separated and separated by the separator by the gas separator in the other CO was then slaughtered gas separation to slaughter gas tank provided with a slaughtering gas tank slaughtering It is a preferable reformer installation form to take a form of gas or take a form of introducing the gas directly into the gas reforming separator KB to separate it into hydrogen and carbon dioxide and storing it as a livestock gas in a livestock gas tank.
In order to mount the fuel production process 4 on a small moving body such as an automobile, if the direct contact partial oxidation method KG5 or the membrane reactor KB2 is used in a compact form, the range of use of the engine of the present application is expanded.
第四の発明の補足(燃料生成工程設置例)
本願エンジンは窒素を除去した富化酸素を使用しておるので窒素取扱い構造が不要と成るため在来のガスタービンエンジンに比較して少なくとも1/3程度の体積のエンジンとする事が出来る、従って燃料生成工程で反応時間が必要な場合、改質ガスの量を多くする場合等を同時進行で行いたい場合等に複数の燃料生成工程を設ける構成にも出来るし、上記改質で吸熱された後の150℃〜300℃の排気ガスを使用した改質器を別に設けることも出来る。Supplement to the fourth invention (example of fuel production process installation)
Since the engine of the present application uses enriched oxygen from which nitrogen has been removed, the structure for handling nitrogen is not required, so that the engine can be at least about 1/3 the volume of the conventional gas turbine engine. If a reaction time is required in the fuel generation process, or if it is desired to increase the amount of reformed gas at the same time, it is possible to provide a plurality of fuel generation processes. A reformer using exhaust gas at 150° C. to 300° C. may be provided separately.
第四の発明の補足(水の分離・回収手段)
上記燃料生成工程で生成し畜ガスするガスに水蒸気を含む場合及び大気に廃棄する排ガスに水を含んでおる場合には水膜分離器(図9参照)を設けて分離回収して水の消費量を少なくする手段としておる。Supplement of the fourth invention (water separation/recovery means)
When the gas produced in the above fuel production process contains water vapor and when the exhaust gas to be discarded into the atmosphere contains water, a water film separator (see FIG. 9) is provided to separate and collect water for consumption. It is a means to reduce the amount.
炭化水素化合物の合成
燃料生成工程4に炭化水素化合物合成器(触媒を対峙しておる)を設け、本願エンジンで生成した炭化水素化合物合成材のガス(富化酸素、水素、二酸化炭素、一酸化炭素、合成ガス(水素+一酸化炭素)水蒸気)を該炭化水素化合物合成器に導入して炭化水素化合物を合成する。
例えば上記炭化水素化合物をジメチルエーテルCH3OCH3とした場合上記炭化水素化合物合成器(触媒を対峙しておる)を設け本願エンジンで生成した上記ガスを炭化水素化合物合成器に導入して該炭化水素化合物合成器にてジメチルエーテルを合成する事が出来る。
3H2+3CO→CH3OCH3+CO2 式で表される。
**又炭化水素化合物ジメチルエーテルの合成技術は数多く開示されており、その多くは以下の反応によって行われる。
2H2+CO→CH3OH・・・(1)
2CH3OH→CH3OCH3+H2O・・・(2)
CO+H2O→H2+CO2・・・(3)
ジメチルエーテルの合成法としては、間接法と直接法とがあり、間接法では上記反応式(1)および(2)によってジメチルエーテルが合成される。一方、直接法では上記反応式(1)〜(3)の反応が同時に起こる。上記反応式(1)〜(3)で示される反応をまとめると、下記反応式(4)として示すことができる。
3H2+3CO→CH3OCH3+CO2・・・(4)
上記反応式(4)から、ジメチルエーテルの合成において水素および一酸化炭素の濃度が高い程、ジメチルエーテルの収率が増加すると、特開2009-242248ジメチルエーテルの製造方法および製造装置に記載されておる。
*本願では一酸化炭素は700℃〜900℃での水蒸気改質KG1で合成した水素と一酸化炭素の合成ガスから水素を分離するSi−N結合主体の繰返し構造を基本骨格とするセラミック膜(特開2002−187706(高温対応型膜型改質器)に記載されておる)を使用して水素を分離し分離後のOFFガスである一酸化炭素を畜ガスする畜ガスタンクを設けて畜ガスして、水素と一酸化炭素を必要量上記二酸化炭素の水蒸気改質器KG1に供給し改質材のジメチルエーテルを必要量ずつ供給する事が出来るので、外部からの炭化水素化合物の補充は原則必要なく改質ロス分の補充でよくなり、該炭化水素化合物を当該燃料生成工程で合成出来る事は本願のエンジンは「水H2O」を主燃料とするエンジンとする事が出来る。A hydrocarbon compound synthesizer (opposing a catalyst) is provided in the synthetic fuel production step 4 of the hydrocarbon compound, and the gas of the hydrocarbon compound synthetic material produced by the engine of the present application (enriched oxygen, hydrogen, carbon dioxide, monoxide) Carbon and synthesis gas (hydrogen+carbon monoxide) steam are introduced into the hydrocarbon compound synthesizer to synthesize a hydrocarbon compound.
For example, when the hydrocarbon compound is dimethyl ether CH 3 OCH 3 , the hydrocarbon compound synthesizer (opposed to the catalyst) is provided and the gas produced by the engine of the present application is introduced into the hydrocarbon compound synthesizer to produce the hydrocarbon. Dimethyl ether can be synthesized with a compound synthesizer.
3H 2 +3CO→CH 3 OCH 3 +CO 2 represented by the formula.
** Also, many synthetic techniques for the hydrocarbon compound dimethyl ether have been disclosed, and most of them are carried out by the following reactions.
2H 2 +CO→CH 3 OH...(1)
2CH 3 OH→CH 3 OCH 3 +H 2 O...(2)
CO+H 2 O→H 2 +CO 2 ...(3)
As a method for synthesizing dimethyl ether, there are an indirect method and a direct method. In the indirect method, dimethyl ether is synthesized by the above reaction formulas (1) and (2). On the other hand, in the direct method, the reactions of the above reaction formulas (1) to (3) occur simultaneously. The reactions represented by the above reaction formulas (1) to (3) can be summarized as the following reaction formula (4).
3H 2 +3CO→CH 3 OCH 3 +CO 2 ... (4)
From the above reaction formula (4), the higher the concentration of hydrogen and carbon monoxide in the synthesis of dimethyl ether, the more the yield of dimethyl ether increases.
* In the present application, carbon monoxide is a ceramic membrane whose basic skeleton is a repeating structure mainly composed of Si-N bonds which separates hydrogen from a hydrogen-synthesis gas synthesized from steam reforming KG1 at 700°C to 900°C ( Japanese Patent Application Laid-Open No. 2002-187706 (described in the high-temperature compatible membrane reformer) is used to separate hydrogen, and a livestock gas tank is provided for livestock gas of carbon monoxide that is OFF gas after separation. Then, hydrogen and carbon monoxide can be supplied to the steam reformer KG1 of the above carbon dioxide in the required amounts, and dimethyl ether as the reforming agent can be supplied in the required amounts. Therefore, in principle, it is necessary to supplement the hydrocarbon compound from the outside. Instead, the reforming loss can be replenished, and the hydrocarbon compound can be synthesized in the fuel production process. Therefore, the engine of the present application can be an engine using “water H 2 O” as the main fuel.
畜ガスタンクの補足記載
本願発明の畜ガスタンクを運搬機器に搭載する運搬機器搭載形態の畜ガスタンクであるが、前記タンクは、35MPaの高圧水素ガス貯蔵タンクは必要無く、該エンジンで生成されたガスで少なくとも(最小限)該エンジン改質路が正常に機能する(暖気運転に相当)までに必要な燃料を畜ガス出来るタンクであれば良いので多くて1MPaの程度の圧力のタンクが好ましい。
又タンク損傷を防止する損傷防止手段であるが、例えば1〜複数個のタンクを1個の包括体にして発泡ポリエチレン、ボロン繊維強化プラスチック、等の衝撃緩衝材を固着して車上部に固定保持しており、前記固定保持の固定保持具で車上部に固着固定している固定具に固着した物であり、タンク分離手段は前記固定具に衝撃が掛かるとV字状の切り欠け部が集中応力により破断し、前記衝撃緩衝材の包括体(タンク支持体を一体としている)が前記固定具から外れる(完全に外れ飛ぶのでは無く線体等で前記固定具等に係止する構造を取ることが、前記衝撃緩衝材の包括体が完全に外れ飛ぶ2次被害を回避する策と成るので好ましい形態である)例示構造にしており、前記タンク損傷を防止する損傷防止手段かあるいは衝突時に車のタンク設置部からタンクを分離する、タンク分離手段かの、何れかの一方かあるいは両方かの何れかの手段を設けておる事を特徴とするものであり、更に前記畜ガス手段の非定置設備(例えば自動車)畜ガスタンクで構成され、該畜ガスタンクを車の車体上部に搭載するか、あるいはトラックのシャーシー部に車載するか、前記非定置設備に附帯設置する形態かのいずれかにするのが好ましいが、定置設備(例えば発電所)の場合は安全基準(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)内の構造と材質で構成されなければならないので、非定置設備の畜ガスタンクと定置設備(例えば化学工場)の畜ガスタンクはそれぞれ前記安全基準内か若しくは少なくとも安全基準を変更させ得る要素を持っているもので構成されなければならない、従って、非定置設備(例えば自動車)畜ガスタンクと定置設備の(例えば化学工場)畜ガスタンクはガスを溜めると言う機能は同じであっても構造(規格)は全く違うものである。Supplementary description of livestock gas tank The livestock gas tank of the present invention is a livestock gas tank in which the livestock gas tank is installed in a transport device, but the tank does not require a high-pressure hydrogen gas storage tank of 35 MPa, and is a gas generated by the engine. At least (minimum), a tank having a pressure of at most about 1 MPa is preferable as long as it can store the fuel required for the engine reforming path to function normally (corresponding to warm-up operation).
Further, as a damage preventing means for preventing tank damage, for example, one to a plurality of tanks are made into one package and shock-absorbing materials such as foamed polyethylene, boron fiber reinforced plastic, etc. are fixed and fixedly held on the upper part of the vehicle. The V-shaped cutouts are concentrated when the shock is applied to the fixing device, which is fixed to the fixing device which is fixedly fixed to the upper part of the vehicle by the fixing holding device of the fixed holding. It is broken by stress, and the package of the shock absorbing material (integrating the tank support body) is disengaged from the fixture (it does not fly completely away, but is locked to the fixture etc. by a wire or the like). This is a preferable form because it is a measure to avoid secondary damage in which the package of the shock-cushioning material completely comes off.) The present invention is characterized in that any one or both of tank separating means for separating the tank from the tank setting part of the above is provided, and the non-stationary gas storage means is further provided. The equipment (eg, automobile) is composed of a livestock gas tank, and the livestock gas tank is mounted on the upper part of the vehicle body, mounted on the chassis part of the truck, or attached to the non-stationary equipment. However, in the case of stationary equipment (for example, power plants), it is composed of the structure and material within the safety standard (in Japan, the registration of JIS B 8265 has been completed. There is ISO 16528 internationally). Since it must be, non-stationary livestock gas tanks and stationary equipment (for example, chemical plants) livestock gas tanks must each be configured within the above safety standards or at least having elements that can change the safety standards, Therefore, even if the non-stationary facility (for example, automobile) livestock gas tank and the stationary facility (for example, chemical factory) livestock gas tank have the same function of storing gas, their structures (standards) are completely different.
エンジンから生成した水素ガス蓄ガスタンクを移動体の上部に設け、前記貯ガスタンクに、衝撃緩衝材(発砲ポリエチレン,ボロン繊維強化プラスチック等)を固着あるいはコーティングあるいは多層に積層した物の何れかを固着・若しくは貯ガスタンクに包括固着して設け車が大破する事故時の破裂・爆発対策とした貯ガスタンク。
現行法規(日本ではJIS B 8265の登録を完了している段階であり・国際的にはISO 16528がある)では輸送用のCFRP(高密度ポリエチレンライナーの全面をガラス繊維や炭素繊維で強化したタンク)容器は圧力35MPa容量360Lまでと成っているので該容器を活用するには規制緩和が必要である。(日本産業ガス協会,水素ガス容器基準)A hydrogen gas storage gas tank generated from the engine is installed on the upper part of the moving body, and either an impact cushioning material (foamed polyethylene, boron fiber reinforced plastic, etc.) is fixed to the gas storage tank, or one of coatings or multi-layers is fixed. Alternatively, a gas storage tank that is firmly attached to the gas storage tank and is used as a measure against rupture and explosion in the event of a car crash.
According to the current regulations (the registration of JIS B 8265 is completed in Japan, ISO 16528 is internationally available), CFRP for transportation (a high density polyethylene liner entirely reinforced with glass fiber or carbon fiber tank ) Since the container has a pressure of up to 35 MPa and a capacity of 360 L, deregulation is necessary to utilize the container. (Japan Industrial Gas Association, hydrogen gas container standard)
上記畜ガスタンクの構造で移動体(固定形態でも良い)に搭載できる事は例えばH2+COの合成ガスを上記燃料生成工程4内の改質器で生成して次工程で炭化水素化合物に改質する該改質器に供給する(あるいは燃料として使用する)H2/CO比が異なる場合に問題となる、そこで生成されたH2+COの合成ガスを畜ガスタンクに畜ガスしてからその後気体分離膜(BR2,BR3)により水素を分離するかあるいは気体改質分離器(KB1,例えばプロトン導電セラミック管改質器)で水素と二酸化炭素に分離して分離した水素は水素畜ガスタンクT1に二酸化炭素は二酸化炭素畜ガスタンクT3に畜ガスする構成にすることで炭化水素化合物に改質する該改質器にH2/CO比を適正な量を水素畜ガスタンクT1と二酸化炭素は二酸化炭素畜ガスタンクT3との何れか一方か両方から供給出来る、The fact that the structure of the animal gas tank can be mounted on a moving body (may be a fixed form) is that, for example, H 2 +CO synthesis gas is generated by the reformer in the fuel generation step 4 and reformed into a hydrocarbon compound in the next step. There is a problem when the H 2 /CO ratios supplied to the reformer (or used as fuel) are different. The produced H 2 +CO synthesis gas is stored in the storage gas tank and then separated into gas. Hydrogen is separated by membranes (BR2, BR3) or separated into hydrogen and carbon dioxide by a gas reforming separator (KB1, for example, a proton conductive ceramic tube reformer), and the separated hydrogen is stored in a hydrogen storage gas tank T1. carbon dioxide livestock gas tank T3 to the slaughter gas constitutes proper H 2 / CO ratio in the reformer for reforming a hydrocarbon compound by a quantity of hydrogen slaughter gas tank T1 carbon dioxide carbon dioxide livestock tank T3 Can be supplied from either or both,
最大の課題は地球温暖化に対処する「CO2」の排出削減であり、富化酸素空気を使用する事で、窒素酸化物「NOX」を排出しないエンジンとするとともに課題である二酸化炭素をも燃料に改質する事で、温室効果ガス削減施策課題の1つを構成する温室効果ガス排出削減策のエンジンとする事が出来た、この事が最大の効果である。
第二の発明の補足記載、(燃焼部の冷却手段)
*エンジンの燃焼室部内の冷却構造であって上記耐熱構造部SCに替えて水噴射ノズルTJの水の噴射方向を変えた水噴射ノズルMJを複数設けており該噴射ノズルMJは水を該燃焼室部の内壁面及び燃焼室内に噴射しており該内壁面に噴射した水は内壁面の熱を吸熱して水蒸気になり該燃焼部室NE内に噴射した水は燃焼室部内の燃焼ガスの熱を吸熱して水蒸気にして、該燃焼室部の内壁面及び該燃焼部室NE内の冷却手段としており該噴射ノズルMJを設ける事で上記耐熱構造部SCを設けなくても該燃焼室部を富化酸素と水素を連続燃焼に耐えられるエンジン燃焼工程2としておる。The biggest challenge is to reduce the emission of "CO 2 "to deal with global warming, and by using enriched oxygen air, it becomes an engine that does not emit nitrogen oxides "NO x " and the issue of carbon dioxide By reforming also into fuel, we were able to use it as an engine for greenhouse gas emission reduction measures that constitutes one of the greenhouse gas reduction policy issues, which is the greatest effect.
Supplementary description of the second invention, (combustion part cooling means)
* A plurality of water injection nozzles MJ, which are cooling structures in the combustion chamber of the engine, are provided in place of the heat-resistant structure SC, and the water injection nozzles TJ change the water injection direction, and the injection nozzles MJ burn the water. The water that has been injected into the inner wall surface of the chamber and the combustion chamber absorbs the heat of the inner wall to become water vapor, and the water that has been injected into the combustion chamber NE has the heat of the combustion gas in the combustion chamber. Is absorbed into water vapor to serve as a cooling means for the inner wall surface of the combustion chamber and the combustion chamber NE, and by providing the injection nozzle MJ, the combustion chamber can be enriched without the heat-resistant structure SC. This is the engine combustion process 2 that can withstand continuous combustion of oxygenated oxygen and hydrogen.
1、 上記富化酸素と水素の燃焼による燃焼火炎の直射熱を受ける吸熱構造手段SCを上記燃焼室部内壁2Uの内側中心方向に間隔を開けて設け、かつ、吸熱構造手段SCに水を噴射して該吸熱構造手段の冷却をするとともに噴射した水を水蒸気とする事が出来、水素を富化酸素空気で連続燃焼させるエンジンとする事ができた。
2、 又上記富化酸素と水素の燃焼による燃焼火炎の直射熱を受ける吸熱構造手段SCに替えて水噴射ノズルTJの水の噴射方向を変えた水噴射ノズルMJを複数設けて上記燃焼室部内の冷却手段とする事が出来た。1. The endothermic structure means SC for receiving the direct heat of the combustion flame due to the combustion of the enriched oxygen and hydrogen are provided at intervals toward the inner center of the inner wall 2U of the combustion chamber portion, and water is injected to the endothermic structure means SC. As a result, the endothermic structure means can be cooled and the injected water can be made into steam, and an engine can be obtained in which hydrogen is continuously burned with enriched oxygen air.
2. Further, in place of the heat absorbing structure means SC which receives the direct heat of the combustion flame due to the combustion of the enriched oxygen and hydrogen, a plurality of water injection nozzles MJ in which the water injection direction of the water injection nozzle TJ is changed are provided, and the inside of the combustion chamber is provided. Could be used as a cooling means.
3、上記1〜2項により富化酸素と水素の燃焼による水蒸気の生成と吸熱構造手段SCと及び上記燃焼室内に水を噴射して水蒸気(火炎Fの中心温度が47%UPしておる分程生成量は多い)の生成をプラスする事が出来た、此の事は水素の生成を多くする事が出来た。 3. According to the above-mentioned items 1 and 2, steam is generated by combustion of oxygen and hydrogen enriched with heat and endothermic structure means SC, and water is injected into the combustion chamber to generate steam (the central temperature of the flame F is 47% UP. It was possible to increase the production of hydrogen.) This was able to increase the production of hydrogen.
4、窒素(空気中の約80%)を取り込まないのでその分燃焼室部を小さくした構造(少なくとも1/3程度)の燃焼室部にする事が出来た。 4. Since it does not take in nitrogen (about 80% of the air), it was possible to make the combustion chamber part smaller (at least about 1/3) by that amount.
5、さらに水蒸気改質器での改質材の炭化水素化合物を生成する炭化水素化合物生成改質器を設け該炭化水素化合物(例えばメタンCH4,ジメチルエーテルCH3OCH3等)を生成する事が出来るので該炭化水素化合物の補充をしない(又は少なくする)構成に出来た。5. Further, by providing a hydrocarbon compound generation reformer for generating a hydrocarbon compound of the reforming material in the steam reformer, it is possible to generate the hydrocarbon compound (for example, methane CH 4 , dimethyl ether CH 3 OCH 3, etc.). As a result, it was possible to obtain a structure in which the hydrocarbon compound was not replenished (or reduced).
6、2016年のパリ協定による温室効果ガスCO2の排出量を今世紀後半に実質「ゼロ」にする効果ある1施策と成る。It will be one effective measure to reduce the greenhouse gas CO 2 emissions by the 2016 Paris Agreement to virtually zero in the latter half of this century.
図面に於けるそれぞれの寸法関係は、重要部分は拡大し、詳細が解り難いところは誇張している、また広範囲部分、又は本願発明で重要度の低い部分を、記載する時は縮小している、従って図面間及び図面内の寸法は比例していないし、実寸、縮尺寸法ではない。
又線間の間隔が狭い場合スキャンの段階で黒く太く1本の線に成り易いので、線間の間隔を広げるか、一本の線で記載している。
更に本願発明の根幹(主要)機構以外部に付いては、図面間で省略している部分もある。Regarding the respective dimensional relationships in the drawings, important portions are enlarged, exaggerated portions where details are difficult to understand, and reduced when describing a wide range portion or a portion of low importance in the present invention. Therefore, the dimensions between drawings and within drawings are not proportional, and are not actual or reduced scale.
Also, if the line spacing is narrow, it tends to become one black thick line at the scanning stage, so the line spacing is widened or described as one line.
Furthermore, parts other than the basic (main) mechanism of the present invention are omitted in some drawings.
水素(H2)を富化酸素(O2)で連続(間欠にも出来る)燃焼させるエンジンの燃焼工程の概略構成フロー図(図1)であって、エンジン燃焼工程2に空気から窒素を分離除去する酸素分離装置1Aを設けており、該酸素分離装置には空気圧縮器と空気を富化酸素と窒素とに分離する分離装置{例えばメンブレン分離膜(図9A)}と分離した富化酸素を畜ガスする畜ガスタンクT1を備えており、該畜ガスタンクから富化酸素導入管3にて燃料噴射バーナ2Nに供給されており、燃料の水素を畜ガスしておる水素畜ガスタンクT2より水素導入管2にて燃料噴射バーナに供給されており、該燃焼バーナから燃焼室部NEに噴射された燃料の水素と富化酸素に点火栓2Pにて点火され連続燃焼し、該燃焼による排気ガス(大半は水蒸気)は排気口5から排出される。
上記エンジン燃焼工程(外郭体)の内外壁間(2G,2U間)に通水路MHを設けて該通水路MHに水タンクT4から水導入管4にて水を該通水路MHに導入しており、燃焼室部内壁2Uには上記通水路の水を燃焼室部内に噴射する噴射ノズルTJを複数設けており、上記富化酸素と水素の連続燃焼による燃焼火炎の直射熱を受ける吸熱構造手段SCを上記燃焼室部内壁の内側中心方向に間隔を開けて設けて水素と富化酸素の燃焼による燃焼室内壁面の(燃焼温度に対する)保護手段としており、該水を噴射ノズルTJから吸熱構造手段SCの大径面及びエンジンの燃焼室部内に噴射しており該エンジンの燃焼室部内の吸熱構造手段に噴射した水は吸熱構造手段SCの熱を吸熱して該水を水蒸気にしており、燃焼室部内NEに噴射した水も該燃焼室部内の燃焼熱(排気ガスの熱)を吸熱して該水を水蒸気にして該燃焼室部内の冷却手段及び水蒸気生成手段としており、噴射された水は水蒸気と成り上記富化酸素と水素の燃焼で生成された排気ガスとともに排気ガス流路5に排出さている、水素と富化酸素空気を連続燃焼するエンジンの燃焼工程2。(上記吸熱構造手段内に通水路を設けて該吸熱構造手段から水を噴射して燃焼室部の冷却手段とする事も出来る。)FIG. 1 is a schematic configuration flow diagram (FIG. 1) of a combustion process of an engine in which hydrogen (H 2 ) is continuously (intermittently) combusted with enriched oxygen (O 2 ), and nitrogen is separated from air in an engine combustion process 2. An oxygen separator 1A for removing oxygen is provided, and the oxygen separator is an air compressor and a separator for separating air into enriched oxygen and nitrogen (eg, membrane separation membrane (FIG. 9A)) and separated enriched oxygen. It is equipped with a livestock gas tank T1 for producing livestock gas, and is supplied to the fuel injection burner 2N from the livestock gas tank through the enriched oxygen introduction pipe 3, and hydrogen is introduced from the hydrogen livestock gas tank T2 which uses the livestock gas for hydrogen as fuel. The hydrogen and enriched oxygen of the fuel, which is supplied to the fuel injection burner through the pipe 2 and is injected from the combustion burner into the combustion chamber NE, is ignited by the spark plug 2P and continuously burned, and the exhaust gas ( Most of the water vapor is discharged from the exhaust port 5.
A water passage MH is provided between the inner and outer walls (between 2G and 2U) of the engine combustion process (outer shell), and water is introduced into the water passage MH from the water tank T4 through the water introduction pipe 4 to the water passage MH. A plurality of injection nozzles TJ for injecting the water in the water passage into the combustion chamber are provided on the inner wall 2U of the combustion chamber, and the heat absorbing structure means for receiving the direct heat of the combustion flame due to the continuous combustion of the enriched oxygen and hydrogen. SCs are provided at intervals toward the inner center of the inner wall of the combustion chamber to serve as a protection means (for the combustion temperature) of the wall surface of the combustion chamber by the combustion of hydrogen and enriched oxygen, and the water is absorbed from the injection nozzle TJ by the heat absorption structure means. The water that has been injected into the large-diameter surface of the SC and the combustion chamber of the engine and injected into the endothermic structure means in the combustion chamber of the engine absorbs the heat of the endothermic structure means SC and turns the water into steam. The water injected to the NE in the chamber also absorbs the combustion heat (heat of the exhaust gas) in the combustion chamber and turns the water into steam to serve as a cooling means and a steam generating means in the combustion chamber. Combustion step 2 of the engine for continuously combusting hydrogen and enriched oxygen air, which becomes steam and is discharged to the exhaust gas passage 5 together with the exhaust gas generated by the combustion of the enriched oxygen and hydrogen. (A water passage may be provided in the heat absorption structure means to inject water from the heat absorption structure means to serve as a cooling means for the combustion chamber portion.)
図2は、上記図1に記載の富化酸素と水素の連続燃焼による燃焼火炎の直射熱を受ける吸熱構造手段SCに替えて上記燃焼室部NE内壁の燃焼側内面を該燃焼火炎Fの直射熱に耐えられる耐熱手段を設けた物で該耐熱手段は上記通水路の水を燃焼室部内に噴射する複数の噴射ノズルTJの、ノズルの噴射方向を上記燃焼室部NE内壁の燃焼側内面(図2C参照)と燃焼室部内に噴射する様にノズルの噴射口角度を上記燃焼室部NE内壁の燃焼側内面に噴射するノズルMJにして設けており該噴射ノズルMJから噴射した水は上記燃焼室部NE内壁の燃焼側内面に噴射して反射し上記燃焼室部NE内壁の燃焼側内面(図2C参照)と燃焼室部内を冷却する冷却手段とし更に該噴射ノズルMJから噴射した水は(跳ね返った水も)上記燃焼室部NE内壁の燃焼側内面と上記燃焼室部NE内の熱を吸熱して該水を水蒸気にして該燃焼室部内の水蒸気生成手段としておる。 FIG. 2 shows that the combustion-side inner surface of the inner wall of the combustion chamber portion NE is directly exposed to the combustion flame F instead of the heat absorption structure means SC that receives the direct heat of combustion flame from the continuous combustion of enriched oxygen and hydrogen described in FIG. A heat-resistant means for withstanding heat is provided, and the heat-resistant means has a plurality of injection nozzles TJ for injecting the water in the water passage into the combustion chamber portion, and the injection direction of the nozzles is the inner surface of the combustion chamber portion NE on the combustion side ( (See FIG. 2C) and the injection port angle of the nozzle is set to be a nozzle MJ for injecting to the inner surface of the combustion chamber portion NE inner wall on the combustion side so as to inject the water into the combustion chamber portion. The water injected from the injection nozzle MJ is used as a cooling means for injecting and reflecting on the combustion side inner surface of the chamber NE inner wall to cool the combustion side inner surface of the combustion chamber NE inner wall (see FIG. 2C) and the inside of the combustion chamber. The water that has bounced back also absorbs the heat inside the combustion chamber part NE and the combustion side inner surface of the combustion chamber part NE and turns the water into steam to serve as a steam generating means in the combustion chamber part.
図3の上記エンジンの燃焼工程2の排気ガス出口5aに排気ガスの流力を回転力に変換する流力方向変換手段で回転力を取り出す回転力取り出し工程3を設けたエンジンシステム(図3、4図参照)、上記エンジンの燃焼工程2から排出された排気ガス5aを回転力取り出し工程3の流力方向変換手段の回転翼体3aに貫流させて回転翼体(本図の場合は3、4図に公知技術の回転翼体3aを説明図として記載している)を排気ガスの排気流力にて回転させてその回転力を回転軸3dから取り出し、取り出した該回転力を駆動力(もしくは発電力)としておる回転力取り出し工程3。 An engine system provided with a rotational force extracting step 3 for extracting rotational force by a flow force direction converting means for converting exhaust gas flow force into rotation force at the exhaust gas outlet 5a of the engine combustion step 2 of FIG. 3 (FIG. 3, (See FIG. 4), the exhaust gas 5a discharged from the combustion process 2 of the engine is caused to flow through the rotary blade body 3a of the hydrodynamic direction changing means in the rotational force extracting step 3 to make the rotary blade body (3 in the case of this figure, A rotary blade body 3a of a known technique is illustrated as an explanatory view in FIG. 4) is rotated by the exhaust flow force of exhaust gas to extract the rotational force from the rotary shaft 3d, and the extracted rotational force is a driving force ( (Or power generation) as a rotational force extracting step 3.
上記富化空気と水素を燃焼する水素燃焼エンジン燃焼工程2の排気口部5に回転力取り出し工程3を設けたエンジンであり(図3)該回転力取り出し工程3を貫流した排気ガスは次工程の燃料生成工程4(4図参照)に導入されており、該燃料生成工程4には合成ガス改質器KG,水蒸気改質法(スチームリフォーミング法)KG1、ドライリフォーミング(CO2リフォーミング法)KG2、スチーム/CO2リフォーミングKG3、オートサーマルリフォーミングKG4,直接的接触酸化法KG5,)と気体分離膜による分離器BR
(高分子膜分離器BR1、金属分離膜(パラジュウム合金薄膜等)BR2,高温水素ガス分離膜(セラミックス分離膜等)BR3、気体改質分離器KB,(プロトン導電セラミックス管改質器KB1,膜型反応器(反応器と分離器一体型)KB2から,
1燃料と成る水素を多く取り出せる改質法を選択する(富化酸素の反応熱を使った改質法も考慮する)
2、二酸化炭素を改質して合成ガスを生成する改質法を選択する(必須改質法)。
3、合成ガスから水素を分離する方法を選択する(必須分離法)。
4、可能な限りコンパクトに出来る装置を選択する。
上記条件を考慮すると(水蒸気改質法)KG1、CO2リフォーミング法(ドライリフォーミング)KG2、気体分離膜による分離器BRの内700℃〜IOOO°の使用では金属分離膜(パラジュウム合金薄膜等)BR2,高温水素ガス分離膜(セラミックス分離膜等)BR3、の内何れか、気体改質分離器KBではプロトン導電セラミックス管改質器KB1を選択するのが上記燃料生成工程の好ましい組み合わせである。It is an engine in which a rotational force extracting step 3 is provided in the exhaust port portion 5 of the hydrogen combustion engine combustion step 2 for combusting the enriched air and hydrogen (FIG. 3), and the exhaust gas flowing through the rotational force extracting step 3 is the next step. Is introduced into the fuel production step 4 (see FIG. 4) of the fuel cell, which includes the synthesis gas reformer KG, the steam reforming method (steam reforming method) KG1, and the dry reforming (CO 2 reforming). Method) KG2, steam/CO 2 reforming KG3, auto thermal reforming KG4, direct contact oxidation method KG5,) and gas separation membrane separator BR
(Polymer membrane separator BR1, metal separation membrane (palladium alloy thin film etc.) BR2, high temperature hydrogen gas separation membrane (ceramics separation membrane etc.) BR3, gas reforming separator KB, (proton conductive ceramic tube reformer KB1, membrane Type reactor (reactor and separator integrated type) KB2,
Select a reforming method that can extract a large amount of hydrogen as one fuel (consider a reforming method that uses reaction heat of enriched oxygen)
2. Select a reforming method that reforms carbon dioxide to generate synthesis gas (essential reforming method).
3. Select a method for separating hydrogen from synthesis gas (essential separation method).
4. Select a device that can be as compact as possible.
Considering the above conditions (steam reforming method) KG1, CO 2 reforming method (dry reforming) KG2, and metal separators (paradium alloy thin films, etc.) when used at 700°C to IOOO° in the separator BR using a gas separation membrane. ) BR2, a high temperature hydrogen gas separation membrane (ceramics separation membrane, etc.) BR3, or the gas reforming separator KB is selected to be the proton conductive ceramics tube reformer KB1 is a preferable combination of the above fuel producing steps. ..
上記水素燃焼エンジン燃焼工程2と回転力取り出し工程3と燃料生成工程4を具備したエンジンの構成を使用した用途の1例であって、(図6参照)
図6は上記エンジンの燃焼室部NEの中央にメインタービンMTA・低圧タービンLTAの回転軸を設けたドーナツ状円筒のガスタービン形態の燃焼室部NEにして設けており、ガス(燃焼ガスと冷却手段で生成された水蒸気と吸熱二酸化炭素を主とするガス)の流力でメインタービンMTA・低圧タービンLTAの動翼DYを回転させ動力を得る構造のガスタービン構成であって、大気から遠心式圧縮機(軸流式、往復式、スクリュー式、ロータリ式、スクロール式等コンプレッサーの何れでも良い)にて圧縮した空気を酸素(窒素)分離部に導入して富化酸素を分離して(蓄ガスタンクに畜ガスして)おり、上記水素燃焼タービン本体に設けておる圧縮機で更に圧縮して燃焼室部の燃焼バーナ2Nに導入しており、該燃焼室部の内外壁間に通水路MTと該内壁に複数の噴射ノズルTJを設けており燃焼室内には該圧縮した富化酸素と燃料を燃焼ノズルに導入して燃焼させており、(燃焼バーナ2Nは複数個に1個の割合で点火栓2Pを設けておる)燃料の燃焼による燃焼直射熱を受ける耐熱構造部SCを設けて該噴射ノズルから水か温水を該燃焼室部NE内と該燃焼室内に設けておる耐熱構造部SCとに噴射して該耐熱構造部を含む燃焼室部内の冷却をするとともに噴射した水か温水を水蒸気にして燃焼での排ガスとともに低圧タービン翼LTAの静翼から動翼に→メインタービン翼MTAの静翼から動翼に噴射しており、前記ガス(燃焼ガスと水蒸気生成手段の水蒸気)でメインタービンの動翼を回転させその回転力を前方に取り出し(本願の場合は1例としてVベルトとプーリーを使用して動力伝達を行った形態であるが航空機のターボプロップエンジンの主動力の伝達は減速ギヤー装置を使用して動力伝達をしており本願の主動力の伝達をギヤー伝達とする事も出来る)駆動力とするか発電動力とするかにしておる。(低圧タービンの回転動力は空気及び富酸素圧縮器の動力として使用している)
上記タービンを貫流した排気ガスは次工程の燃料生成工程4にて水素を自給する構成の水素燃焼タービン。FIG. 6 is an example of an application using the configuration of the engine including the hydrogen combustion engine combustion step 2, the rotational force extraction step 3 and the fuel generation step 4 (see FIG. 6).
FIG. 6 shows a doughnut-shaped cylindrical gas turbine type combustion chamber section NE in which the rotary shafts of the main turbine MTA and the low-pressure turbine LTA are provided in the center of the combustion chamber section NE of the engine. A gas turbine configuration of a structure in which the blades DY of the main turbine MTA and the low-pressure turbine LTA are rotated by the flow force of steam generated by the means and a gas mainly composed of endothermic carbon dioxide to obtain power, which is a centrifugal type from the atmosphere. Air compressed by a compressor (which may be any of compressors such as axial flow type, reciprocating type, screw type, rotary type, scroll type, etc.) is introduced into the oxygen (nitrogen) separation section to separate enriched oxygen (storage The gas is stored in a gas tank), is further compressed by a compressor provided in the hydrogen combustion turbine main body, and is introduced into the combustion burner 2N in the combustion chamber portion. The water passage MT is provided between the inner and outer walls of the combustion chamber portion. And a plurality of injection nozzles TJ are provided on the inner wall, and the compressed enriched oxygen and fuel are introduced into the combustion nozzle to burn in the combustion chamber. (The spark plug 2P is provided.) The heat-resistant structure SC is provided with the heat-resistant structure SC for receiving the direct heat of combustion due to the combustion of the fuel, and water or hot water is provided from the injection nozzle in the combustion chamber NE and in the combustion chamber. To cool the inside of the combustion chamber portion including the heat-resistant structure portion and to make the injected water or hot water into steam and the exhaust gas in the combustion, from the vane of the low-pressure turbine blade LTA to the moving blade → of the main turbine blade MTA. Injecting from the stationary blade to the moving blade, the moving blade of the main turbine is rotated by the gas (combustion gas and steam of the steam generating means) to take out its rotational force forward (in the case of the present application, as an example, V belt Although the power is transmitted using the pulley, the main power of the turboprop engine of the aircraft is transmitted by using the reduction gear device, and the main power transmission of the present application is the gear transmission. It can also be used as driving force or power generation power. (The rotary power of the low-pressure turbine is used as the power of the air and oxygen-rich compressor)
The exhaust gas that has flowed through the turbine is a hydrogen combustion turbine configured to self-supply hydrogen in the fuel production step 4 in the next step.
図6(B)はメインタービンの駆動力をエンジン後方に取り出した形態を現した概略図である。 FIG. 6B is a schematic view showing a form in which the driving force of the main turbine is extracted to the rear of the engine.
図7Aは図6の燃焼室部位を含む部位のA−A半断面図であり、燃焼室部内外壁間(2G−2U間)に複数の水噴射ノズルTJにて耐熱構造部SCに噴射する構成と燃焼ノズル2Nの配置(複数円形に配置)と、更に点火栓2Pを複数(2〜3個)設けておる事を現した図である。 FIG. 7A is an AA half cross-sectional view of a portion including the combustion chamber portion of FIG. 6, in which a plurality of water injection nozzles TJ are used to inject into the heat resistant structure SC between the inner and outer walls of the combustion chamber (between 2G and 2U). FIG. 3 is a view showing that the combustion nozzles 2N are arranged (arranged in a plurality of circles), and that a plurality of spark plugs 2P (2 to 3 pieces) are further provided.
図7BはA図がタービン燃焼室部を円筒形にした1燃焼室部で構成しておるのに対してタービン回転軸LTAKJ・MTAKJを中心として円を描くように複数個の燃焼室部を設けた構成にしたもので、燃焼室部を小径にする事で燃焼室部の加工(例えば成形・焼成等,特に耐熱構造部SCをアルミナ成形等とした場合での焼成)では有利である。In FIG. 7B, FIG. 7B is composed of one combustion chamber part in which the turbine combustion chamber part is made cylindrical, whereas a plurality of combustion chamber parts are drawn in a circle around the turbine rotation axis LTA KJ /MTA KJ. Is provided, and it is advantageous in processing the combustion chamber portion by making the diameter of the combustion chamber portion small (for example, forming/firing, particularly firing when the heat-resistant structure portion SC is alumina forming). ..
図8は実施例2の燃焼工程と該燃焼工程内に耐熱構造部SCと耐熱構造部SCを含む燃焼室部とタービン翼冷却構造部RYとの冷却手段を設けておる水素燃焼タービンエンジンの構造の外面にターボフアンFAによって吸い込まれた空気で富酸素分離部に導入する空気以外(用途により異なるが軍用以外では5/6程度)を排気口に流出させるバイパス流路BRを設けたターボフアンエンジン(航空機に搭載)とした構成であり、該図では大気を酸素分離部に導入(用途により異なるが軍用以外では概略1/6)して富酸素を分離して分離した窒素は排気口近傍でバイパス流の空気と合流させて墳出しており、分離した富化酸素は導入管3で軸流圧縮機へ導入され更に圧縮されて燃焼部の燃料噴射バーナ2Nに送られ、他方燃料の水素は水素タンクから水素供給管2で燃焼部の燃料噴射ノズルに送られ、点火栓2Pにて点火し該水素と富化酸素を燃焼する。
当該エンジンの排気流路に設けた合成ガス改質器にて燃料(水素)を生成して通常の飛行時には畜ガスタンク経由で生成した水素の概略1/2弱を当該エンジンの推進力として使用する構成にするかあるいは生成する全ガスを推進力として噴出する必要時用に(例えば飛行機の離陸時か戦闘飛行機が戦闘態勢に成った時に当該エンジンの燃料として)生成燃料の1部を畜ガスする構成にするかの何れかにしておる。
上記エンジンに供給する二酸化炭素は二酸化炭素畜ガスタンクより燃料生成工程に直接供給する管路23にて供給しており、該燃料生成工程に直接供給することで、該航空機の推進力と成る排気ガス中には二酸化炭素を含有しない、すなわち大気に「CO2」を排出しない航空機となる。FIG. 8 is a structure of a hydrogen combustion turbine engine in which a combustion process of Example 2 and a cooling means for a heat-resistant structure part SC, a combustion chamber part including the heat-resistant structure part SC, and a turbine blade cooling structure part RY are provided in the combustion process. Turbofan engine with a bypass flow passage BR that allows air other than the air drawn into the oxygen-rich separation section to be introduced into the oxygen-rich separation section (about 5/6 for non-military purposes) to be exhausted to the exhaust port on the outer surface of the engine In this figure, the atmosphere is introduced into the oxygen separation section (depending on the application, but approximately 1/6 for non-military purposes) to separate oxygen-rich oxygen and separate the separated nitrogen near the exhaust port. The separated enriched oxygen is merged with the air in the bypass flow and is ejected, and the separated enriched oxygen is introduced into the axial flow compressor by the introduction pipe 3, further compressed and sent to the fuel injection burner 2N of the combustion section, while the hydrogen of the fuel is The hydrogen is supplied from the hydrogen tank to the fuel injection nozzle of the combustion section through the hydrogen supply pipe 2, and is ignited by the spark plug 2P to burn the hydrogen and the enriched oxygen.
The fuel (hydrogen) is generated by the syngas reformer installed in the exhaust flow path of the engine, and approximately 1/2 of the hydrogen generated via the animal gas tank is used as the propulsive force for the engine during normal flight. A portion of the produced fuel is slaughtered when it is needed to be configured or to expel all of the produced gas as propulsion (eg, as fuel for the engine when the aircraft takes off or when a combat plane is in combat). It is either configured.
The carbon dioxide to be supplied to the engine is supplied from the carbon dioxide storage gas tank through the pipe line 23 which is directly supplied to the fuel production process. By directly supplying it to the fuel production process, the exhaust gas which becomes the propulsive force of the aircraft. The aircraft does not contain carbon dioxide, that is, does not emit "CO 2 "into the atmosphere.
図9(A)は上記実施例に記載の酸素分離部の構成を簡単に図示した物で、
例えば空気Airをコンプレッサー等で圧縮してフィルターで不純物を除去した空気をプリズムセパレーター=中空糸複合膜に導入して該中空糸複合膜で酸素はプリズムセパレーターの外側に排出され窒素ガスはセパレーター排出口から排出される構造を図示したものである。FIG. 9(A) is a diagram simply showing the configuration of the oxygen separation part described in the above embodiment.
For example, air that has been compressed with a compressor or the like to remove impurities with a filter is introduced into a prism separator = hollow fiber composite membrane, oxygen is discharged outside the prism separator in the hollow fiber composite membrane, and nitrogen gas is discharged through the separator. It is the figure which showed the structure discharged|emitted from.
図9(B)は水分離に該プリズムセパレーター=中空糸複合膜を水(水蒸気)の分離に適用した物であり分離基本原理(水素等のガスや水蒸気)は相対的透過係数により分離するものや、拡散係数の差により分離するもの等がある。 FIG. 9B shows a prism separator = hollow fiber composite membrane applied to water (water vapor) separation for water separation, and the basic separation principle (gas such as hydrogen and water vapor) is separated by a relative permeation coefficient. Alternatively, there are those that are separated according to the difference in diffusion coefficient.
水素を燃料としたロータリ−エンジン車は、マツダプレマシーハイドロジェンREハイブリッド車で、水素を燃料とする走行とガソリンを燃料とする走行を選択できる構造にしており、高圧水素燃料タンク(35MPa,74L)と、ガソリンタンクを車載しており、水素ロータリーエンジンの回転で発電してリチウムイオンバッテリーに蓄電しており、車輪の駆動はバッテリーに蓄電しておる電気であり、この車の特徴は燃費の良い条件(一定の条件)でエンジンを運転して、車の走行状態による車速変動等の制御は電気制御としており、その運転制御及び発電構成部分を、本願エンジン(運搬機器搭載形態)にも適用出来る。 The hydrogen-fueled rotary engine vehicle is a Mazda Premacy Hydrogen RE hybrid vehicle with a structure that allows selection between hydrogen-fueled driving and gasoline-fueled driving. High-pressure hydrogen fuel tank (35 MPa, 74 L) And, a gasoline tank is mounted on the vehicle, electricity is stored in a lithium-ion battery by the rotation of a hydrogen rotary engine, and the wheels are driven by electricity stored in the battery. The engine is operated under certain conditions (constant conditions), and the control of vehicle speed fluctuations, etc., depending on the running state of the vehicle is electric control, and its operation control and power generation components can also be applied to the engine of this application (transport equipment mounting form). ..
本願の特許請求の範囲に記載の権利範囲事項から容易に想到出来る構造を使用したもの全て本願の権利範囲である。 Anything using a structure that can be easily conceived from the scope of rights described in the claims of the present application is the scope of the present application.
本願は空気中の酸素を分離した富化酸素と水素を燃焼させるエンジンであり、空気と水があれば駆動力(駆動体を動かす力、発電力を含む)として幅広く産業に利用できるエンジンである。 The present application is an engine that burns enriched oxygen and hydrogen that separates oxygen from the air, and is an engine that can be widely used in industry as a driving force (including a force that moves a driving body and power generation) if there is air and water. ..
Claims (4)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150899 | 2016-07-31 | ||
JP2016150899 | 2016-07-31 | ||
PCT/JP2016/079312 WO2017065038A1 (en) | 2015-10-16 | 2016-10-03 | Engine system performing continuous combustion of oxygen and oxygen-enriched air |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017065038A1 JPWO2017065038A1 (en) | 2019-12-12 |
JP6748802B2 true JP6748802B2 (en) | 2020-09-02 |
Family
ID=61195286
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017545155A Expired - Fee Related JP6748802B2 (en) | 2016-07-31 | 2016-10-03 | An engine system that continuously burns hydrogen and enriched oxygen air. |
JP2017092049A Expired - Fee Related JP6473955B2 (en) | 2016-07-31 | 2017-05-04 | An engine that burns oxygen and hydrogen separated by separation means. |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017092049A Expired - Fee Related JP6473955B2 (en) | 2016-07-31 | 2017-05-04 | An engine that burns oxygen and hydrogen separated by separation means. |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6748802B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019130619A1 (en) * | 2017-12-28 | 2019-07-04 | 泉寛治 | Engine burning hydrogen and oxygen |
JP7004887B2 (en) * | 2019-12-03 | 2022-02-07 | 寛治 泉 | An engine that burns hydrogen and oxygen. |
JPWO2022172914A1 (en) * | 2021-02-15 | 2022-08-18 | ||
CN115285937B (en) * | 2022-07-12 | 2023-06-16 | 哈尔滨工程大学 | Ammonia reforming and separating integrated device and hydrogen-ammonia hybrid power system comprising same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3939389B2 (en) * | 1997-01-28 | 2007-07-04 | 株式会社イオン中央研究所 | Catalyst for producing hydrogen and oxygen and method for producing hydrogen and oxygen by thermal decomposition of water |
JP3786759B2 (en) * | 1997-06-26 | 2006-06-14 | エア・ウォーター株式会社 | Gas generator |
CA2312903A1 (en) * | 1997-12-09 | 1999-06-17 | Era Power Company | Method for generating electrical power from fuel cell powered cars parked in a conventional parking lot |
JP2000161015A (en) * | 1998-11-19 | 2000-06-13 | Takeshi Hatanaka | Closed-cycle power system |
JP2001231106A (en) * | 2000-02-10 | 2001-08-24 | Toyota Motor Corp | Vehicle |
JP2002008673A (en) * | 2000-06-21 | 2002-01-11 | Nippon Telegr & Teleph Corp <Ntt> | Power generating system using fuel cell electric vehicle, and its controlling method |
US7008707B2 (en) * | 2002-02-15 | 2006-03-07 | General Motors Corporation | Direct water vaporization for fuel processor startup and transients |
JP2004011933A (en) * | 2002-06-03 | 2004-01-15 | Nissan Motor Co Ltd | Combustor, fuel reformer, and fuel cell system |
JP4278136B2 (en) * | 2003-06-04 | 2009-06-10 | 本田技研工業株式会社 | Nitrogen oxide NOx treatment system and apparatus in exhaust gas of internal combustion engine |
JP4075787B2 (en) * | 2003-12-05 | 2008-04-16 | 三菱電機株式会社 | Power transmission / distribution system, emergency electrical equipment, and operation method of power transmission / distribution system |
JP2005239488A (en) * | 2004-02-26 | 2005-09-08 | Tohoku Techno Arch Co Ltd | Thermochemical decomposition method for water |
JP2006017367A (en) * | 2004-06-30 | 2006-01-19 | Toshiba Corp | Hydrogen/oxygen burning method and device |
US7650744B2 (en) * | 2006-03-24 | 2010-01-26 | General Electric Company | Systems and methods of reducing NOx emissions in gas turbine systems and internal combustion engines |
US7802434B2 (en) * | 2006-12-18 | 2010-09-28 | General Electric Company | Systems and processes for reducing NOx emissions |
JP2010216454A (en) * | 2009-03-19 | 2010-09-30 | Toyota Motor Corp | Working medium circulation type engine |
GB0912081D0 (en) * | 2009-07-11 | 2009-08-19 | Tonery David | Combustion method and apparatus |
PL2473706T3 (en) * | 2009-09-01 | 2019-12-31 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
TWI593878B (en) * | 2010-07-02 | 2017-08-01 | 艾克頌美孚上游研究公司 | Systems and methods for controlling combustion of a fuel |
EP2915779B1 (en) * | 2012-10-31 | 2019-11-06 | Korea Institute Of Machinery & Materials | Integrated carbon dioxide conversion system for connecting oxy-fuel combustion and catalytic conversion process |
WO2015146368A1 (en) * | 2014-03-24 | 2015-10-01 | 寛治 泉 | Internal combustion engine and/or device as measure to reduce emission of greenhouse gas |
-
2016
- 2016-10-03 JP JP2017545155A patent/JP6748802B2/en not_active Expired - Fee Related
-
2017
- 2017-05-04 JP JP2017092049A patent/JP6473955B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPWO2017065038A1 (en) | 2019-12-12 |
JP6473955B2 (en) | 2019-02-27 |
JP2018025375A (en) | 2018-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240301818A1 (en) | Cracking and separation of ammonia fuel | |
JP5967682B1 (en) | An engine that produces fuel by the combustion of enriched oxygen air and fuel. | |
JP6748802B2 (en) | An engine system that continuously burns hydrogen and enriched oxygen air. | |
CN108884761B (en) | Ammonia cracking | |
US9506400B2 (en) | Hydrogen generator, ammonia-burning internal combustion engine, and fuel cell | |
CN100549389C (en) | The power generation system of carbon dioxide separation and method | |
EP1582502A1 (en) | System and method for co-production of hydrogen and electrical energy | |
EP1284923A2 (en) | Fuel system | |
US10981785B2 (en) | Installation and method for carbon recovery and storage, without the use of gas compression | |
CN102874754B (en) | System and method for preparing hydrogen by using methanol water | |
JP2003282119A (en) | Fuel cell device | |
Prigent | On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques | |
JP6680431B2 (en) | An engine that burns hydrogen and oxygen. | |
CN103058137B (en) | Movable type methanol water hydrogen manufacturing system and method | |
WO2017051610A1 (en) | Internal combustion engine | |
CN102616741A (en) | Hydrogen preparation method and device | |
WO2021121762A1 (en) | Energy conversion system | |
WO2017065038A1 (en) | Engine system performing continuous combustion of oxygen and oxygen-enriched air | |
CN103738919B (en) | Rich hydrogen machine and prepare the method for rich hydrogen | |
CN203593616U (en) | Hydrogen-rich machine | |
CN203006938U (en) | Movable type methanol-water hydrogen production system | |
EP3441360B1 (en) | System for alcohol reforming and hydrogen production, units of the system and method thereof | |
CN102849679B (en) | Hydrogen-producing device and hydrogen-producing method thereof | |
CN202808345U (en) | System for preparing hydrogen from methanol water | |
JP6071575B2 (en) | Power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200526 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200529 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6748802 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |