WO2017051610A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2017051610A1
WO2017051610A1 PCT/JP2016/072581 JP2016072581W WO2017051610A1 WO 2017051610 A1 WO2017051610 A1 WO 2017051610A1 JP 2016072581 W JP2016072581 W JP 2016072581W WO 2017051610 A1 WO2017051610 A1 WO 2017051610A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
fuel
gas
catalyst
Prior art date
Application number
PCT/JP2016/072581
Other languages
French (fr)
Japanese (ja)
Inventor
金枝 雅人
助川 義寛
重雄 幡宮
久幸 折田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017051610A1 publication Critical patent/WO2017051610A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a CO 2 recovery device and a recovery method for an internal combustion engine that reduce CO 2 emitted from an internal combustion engine represented by a passenger car or a diesel engine.
  • Patent Documents 1 and 2 As a method for reducing CO 2 emitted from the internal combustion engine, an attempt has been made to reduce CO 2 generated by improving the fuel consumption of the internal combustion engine. Furthermore, techniques for synthesizing fuel using a CO 2 obtained by separation and recovery of CO 2 generated is disclosed (Patent Documents 1 and 2).
  • Patent Document 1 describes that a CO 2 recovery means and a hydrogen supply means are provided, and fuel is synthesized using the recovered CO 2 as a raw material. Furthermore, the use of a CO 2 separation membrane as a CO 2 recovery means is also described. However, it is necessary to create a pressure difference on both sides of the membrane using a blower for CO 2 separation, and the required blower power is considered large.
  • Patent Document 2 describes a technology that includes a CO 2 separation unit and an H 2 supply unit and synthesizes methane using CO 2 discharged from a power generation facility. It is also described that a CO 2 separation membrane can be used as a CO 2 separation method. However, a specific CO 2 separation method using a separation membrane is not clearly described.
  • An object of the present invention can reduce the energy at the time of recovering the CO 2 discharged from the internal combustion engine, and more can be enhanced synthesis efficiency of the fuel with CO 2, the internal combustion engine the CO 2 recovery apparatus, the recovery It is to provide a method.
  • CO 2 emitted from an internal combustion engine can be recovered with low energy. Furthermore, it is possible to synthesize fuel using recovered CO 2 as a raw material and use it as fuel for internal combustion engines, so that it is possible to highly reduce fuel consumption and reduce CO 2 emissions associated with fuel consumption. Is possible.
  • a diagram showing the installation of a CO 2 separation membrane and a methanation catalyst to capture and methanate CO 2 in engine exhaust gas It is the figure which installed the heat exchanger in the engine exhaust gas flow path. It is the figure which installed the thermoelectric conversion element in the engine exhaust gas flow path. It is the figure which showed introducing into the engine the gas obtained by the modification
  • CO 2 of several percent to several tens percent in the exhaust gas discharged from an internal combustion engine typified by a car or a diesel engine are contained, it is global warming to reduce the amount of CO 2 discharged from these internal combustion engine This is thought to lead to the prevention of transformation.
  • CO 2 in the atmosphere contains about 400 ppm, to reduce the CO 2 in the atmosphere leads to the prevention of global warming.
  • the present inventors have The flow path of the gas containing CO 2, arranged CO 2 separation membrane separating CO 2 in the gas, and the CO 2 and CO 2 separated from the separation layer, H 2 obtained from H 2 supply source
  • the internal combustion engine provided with a fuel synthesis catalyst for synthesizing a fuel containing carbon and hydrogen in the molecular structure by using the H 2 as a carrier gas for the CO 2 separation membrane
  • the exhaust gas is discharged from the internal combustion engine. It was clarified that CO 2 in the atmosphere and CO 2 in the atmosphere can be recovered with high efficiency.
  • the type of CO 2 separation membrane is not particularly limited.
  • inorganic membranes using zeolite, mesoporous silica, etc., organic membranes using dendrimers, cardo polymers, and ionic liquids can be used. Since the CO 2 separation performance varies depending on the CO 2 separation membrane used, the amount of CO 2 separation can be optimized by changing the flow rate and pressure of the CO 2 -containing gas and carrier gas.
  • the ratio of the obtained mixed gas of CO 2 and H 2 may change.
  • the flow rate and concentration of the gas containing CO 2 are measured in advance, and the obtained CO 2 and H 2 are obtained by changing the flow rate and pressure of the H 2 gas used as the carrier gas based on the measured value.
  • the ratio of the mixed gas can be controlled.
  • CO 2 concentration of the CO 2 containing gas flowing into the CO 2 separation membrane depends on the type of CO 2 containing gas. In the case of exhaust gas from an internal combustion engine, the gas type may be 10% or more. When the gas type is air, it is expected to be around 400 ppm. And it flows into the CO 2 separation membrane, CO 2 amount, the CO 2 concentration, it is necessary to select the CO 2 separation membrane.
  • the fuel synthesized from CO 2 and H 2 is not particularly limited as long as it contains hydrogen and carbon in the molecular structure.
  • alkanes such as methane, ethane and propane, alkenes such as ethylene and propylene, and alkynes such as acetylene are conceivable.
  • fuels containing oxygen in the molecular structure in addition to hydrogen and carbon such as alcohols such as methanol and ethanol, and dimethyl ether are also conceivable.
  • the fuel obtained depends on the composition of the fuel synthesis catalyst and the temperature and pressure of the gas flowing into the catalyst.
  • the internal combustion engine targeted by the present invention is not particularly limited as long as it generates CO 2 .
  • an internal combustion engine such as a gasoline vehicle, a diesel vehicle, or a natural gas vehicle, an internal combustion engine used for a construction machine, an agricultural machine, or a ship can be considered. It can also be a stationary engine.
  • An internal combustion engine that uses natural gas mainly composed of methane as fuel is preferable from the viewpoint of reducing CO 2 emissions.
  • ships loaded with diesel engines and diesel generators are also targeted. In this case, it is also conceivable to use the electricity generated from the diesel generator for water electrolysis. Or it can also be used as electricity used for lighting and air conditioning in a ship by using together electricity obtained by converting exhaust heat.
  • the fuel synthesis catalyst is not particularly limited as long as it is a catalyst that can react with CO 2 and hydrogen to accelerate the fuel synthesis reaction including hydrogen and carbon in the molecular structure.
  • the methanation catalyst when a methanation catalyst is applied, is composed of a porous carrier of an inorganic compound and Rh, Pt, Pd, Ir, Ni supported on the porous carrier as a catalytically active component. , Mn, and Cu, and the porous carrier is a catalyst containing at least one selected from Al, Ce, La, Ti, and Zr, so that the methanation performance is improved. . Rh, Pt, Pd, Ir, Ni, Mn, and Cu are highly dispersed by using an oxide having a high specific surface area as a porous support for the methanation catalyst, and the methanation performance is enhanced.
  • the specific surface area of the porous carrier used in the present invention is preferably in the range of 30 to 800 m 2 / g, particularly preferably in the range of 50 to 400 m 2 / g.
  • Rh, Pt, Pd, Ir, Ni, Mn, and Cu may be included as catalytic active components.
  • the total supported amount of the catalytically active components Rh, Pt, Pd, Ir, Ni, Mn and Cu is preferably 0.0003 mol parts to 1.0 mol parts in terms of elements with respect to 2 mol parts of the porous carrier. If the total supported amount of Rh, Pt, Pd, Ir, Ni, Mn and Cu is less than 0.0003 mol part, the loading effect is insufficient, while if it exceeds 1.0 mol part, the specific surface area of the active ingredient itself decreases. In addition, the catalyst cost is increased.
  • mol part means the content ratio of each component in terms of mol number.
  • the loading amount of B component is 1 mol part with respect to 2 mol part of A component, regardless of the absolute amount of A component.
  • the amount of fuel used in the internal combustion engine can be reduced by introducing the fuel obtained by the fuel synthesis reaction into the engine that drives the internal combustion engine as a fuel source for the internal combustion engine.
  • a water electrolysis device is installed in an internal combustion engine and hydrogen is generated by electrolysis of water, it is possible to use water generated during fuel synthesis as a water supply source.
  • the method for generating H 2 is not particularly concerned.
  • a hydrogen tank in the internal combustion engine and supply H 2 from the tank to the methanation catalyst.
  • the tank can be loaded with H 2 by compressing or liquefying hydrogen as a gas.
  • an H 2 carrier such as an organic hydride or a hydrogen storage alloy can be used.
  • organic hydride or hydrogen storage alloy When organic hydride or hydrogen storage alloy is used, a storage tank is required, but it is thought that H 2 can be transported with lower energy than transporting H 2 itself. Heat is required when taking out H 2 from these H 2 carriers, but if exhaust heat from the engine is used, the temperature of the H 2 carrier can be increased efficiently.
  • Ammonia can also be used as the H 2 carrier, but when H 2 is extracted from NH 3 , N 2 is also generated at the same time, so when using it as a carrier gas for a CO 2 separation membrane, the carrier gas A step of removing N 2 is required before use as a substrate.
  • the method for electrolyzing water is not particularly concerned. Any method may be used as long as H 2 is obtained by the following reaction.
  • a method for electrolyzing 2H 2 O ⁇ 2H 2 + O 2 water for example, an alkaline water electrolysis type, a solid polymer type, or the like can be considered. Electricity is needed to electrolyze water. In that case, for example, it is conceivable that the heat of engine exhaust gas from the internal combustion engine is recovered to generate electricity, and the obtained electricity is used for water electrolysis.
  • the exhaust gas discharged from the internal combustion engine can be over 400 ° C. Therefore, it is also effective to obtain electricity using the heat of exhaust gas.
  • One possible method is to use a combination of a heat exchanger, an expander and a working medium.
  • the working medium is circulated in advance in the heat exchanger.
  • the working medium changes from liquid to gas by the heat of the exhaust gas.
  • the working medium converted into gas can be sent to the expander to generate electricity.
  • the working medium is then sent back to the liquid by being sent to the condenser.
  • electricity can be generated by circulating the working medium and recovering the heat of the exhaust gas.
  • the obtained electricity can be used for water electrolysis.
  • the working medium to be used is not particularly limited as long as it meets the above purpose.
  • ethylene glycol, water, etc. can be considered.
  • thermoelectric conversion element As one method for obtaining electricity using the heat of exhaust gas, the use of a thermoelectric conversion element is also conceivable. By installing a thermoelectric conversion element in the exhaust gas passage and bringing the exhaust gas into contact with the thermoelectric conversion element, the heat of the exhaust gas is converted into electricity, and electricity can be obtained. The obtained electricity can be used as electricity during water electrolysis.
  • thermoelectric conversion element used is not particularly limited.
  • an element made of bismuth and tellurium, an element containing lead, an element made of silicon and germanium, and the like are conceivable.
  • Any catalyst that can burn H 2 , CO, hydrocarbons, etc. is not particularly limited.
  • a catalyst in which at least one selected from Pt, Pd, and Rh as a catalyst active component is supported on a porous carrier containing alumina can be considered.
  • the following can be considered as a reaction for reforming methane with steam.
  • the 2CH 4 + 2H 2 O ⁇ 2CO + 3H 2 reaction is an endothermic reaction, and combustion heat is higher when CO and H 2 obtained by the above reaction are combusted than when CH 4 is combusted. Therefore, the fuel efficiency of the internal combustion engine is improved when CO, H 2 obtained as the fuel is used as the fuel of the internal combustion engine, compared with the case where CH 4 is used as the fuel. Therefore, it is considered that this method of once reforming the fuel is effective as a measure for improving the fuel consumption of the internal combustion engine.
  • the catalyst temperature needs to be 700 ° C. or higher although it depends on the catalyst composition and gas conditions used. Therefore, it is conceivable to use alcohol, for example, as a means for advancing the reaction for reforming the fuel using lower temperature exhaust heat.
  • alcohol for example, as a means for advancing the reaction for reforming the fuel using lower temperature exhaust heat.
  • the steam reforming reaction of ethanol is described by the following reaction formula. C 2 H 5 OH + H 2 O ⁇ 2CO + 4H
  • the two reactions are also endothermic. Combustion heat is better when the CO and H 2 obtained by the above reaction are burned than when C 2 H 5 OH is burned. high.
  • the reforming catalyst is not particularly limited as long as it can reform the fuel.
  • the reforming catalyst has a porous carrier of an inorganic compound and at least one selected from Pt, Pd, Rh, Ni, and Co supported as a catalytically active component on the porous carrier,
  • the reforming performance is enhanced when the porous support is a catalyst containing at least one selected from Al, Ce, La, Ti, Zr and Zn.
  • the porous carrier used for the methanation catalyst or the active ingredient may be supported on a substrate.
  • the base material cordierite that has been used conventionally, ceramics made of Si-Al-O, or heat-resistant metal substrates such as stainless steel are suitable.
  • the loading amount of the material is 10 g or more and 300 g or less with respect to 1 L of the base material in order to improve the CO 2 capture performance and methanation performance. If it is 10 g or less, the CO 2 capture performance and methanation performance will deteriorate.
  • the weight is 300 g or more, when the substrate has a honeycomb shape, problems such as clogging of the gas flow path are likely to occur.
  • a preparation method of the methanation catalyst for example, a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, a vapor deposition method, a preparation method using a chemical reaction, or the like may be used. it can.
  • the methanation catalyst As a starting material for the methanation catalyst, various compounds such as nitric acid compounds, chlorides, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, metals, and metal oxides can be used.
  • the catalyst component when two or more elements are combined as a catalyst active component, the catalyst component is uniformly supported by preparing it by a co-impregnation method using an impregnating solution in which the active component is present in the same solution. Can do.
  • the shape of the methanation catalyst can be appropriately adjusted according to the application.
  • a honeycomb structure obtained by coating the purification catalyst of the present invention on a honeycomb structure made of various base materials such as cordierite, Si-Al-O, SiC, stainless steel, pellets, plates, granules, Examples include powder.
  • a honeycomb shape it is preferable to use a structure made of cordierite or Si—Al—O as the base material, but a honeycomb may be formed only with a porous carrier and a catalytically active component.
  • FIG. 1 shows an embodiment in which a CO 2 separation membrane and a methanation catalyst are combined.
  • CO 2 separation by CO 2 separation membrane is caused by both sides of the CO 2 partial pressure difference CO 2 separation membrane.
  • exhaust gas discharged from the engine 26 is introduced into one side of the CO 2 separation membrane 25. Further, H 2 obtained by electrolyzing water obtained from the water tank 27 using the water electrolysis device 28 is introduced as a carrier gas to the other side of the CO 2 separation membrane 25. The CO 2 in the exhaust gas passes through the membrane due to the CO 2 partial pressure difference on both sides of the CO 2 separation membrane and mixes with the carrier gas H 2 .
  • the obtained mixed gas of CO 2 and H 2 is introduced into the methanation catalyst 29.
  • CO 2 and H 2 react on the methanation catalyst 29 to obtain a gas containing CH 4 and water.
  • this gas By introducing this gas into the condenser 30, water is separated and only CH 4 is obtained.
  • the separated water is returned to the water tank 27 and reused for water electrolysis.
  • the obtained CH 4 is compressed by the compressor 31 and then stored in the methane storage section 32, introduced into the engine 26 as necessary, and used as engine fuel.
  • a battery mounted on the internal combustion engine, a solar cell installed in the internal combustion engine, or the like can be considered.
  • FIG. 2 shows an embodiment in which a heat exchanger 23 is installed in front of the CO 2 separation membrane.
  • a gasoline engine was assumed as the engine 26.
  • a working medium is circulated to the heat exchanger 23.
  • the working medium is changed from liquid to gas using the heat of the exhaust gas.
  • the obtained gas is introduced into the expander 20 to generate electricity and obtain electricity.
  • the working medium gas that has passed through the expander 20 is introduced into the condenser 21, returned to the liquid, and circulated by the pump 22.
  • the electricity obtained as described above is used for electrolysis of water by the water electrolysis device 28.
  • This configuration makes it possible to obtain electricity used during water electrolysis.
  • FIG. 3 shows an example in which a thermoelectric conversion element 33 is installed in front of the CO 2 separation membrane. By letting the exhaust gas flow into the thermoelectric conversion element, the heat of the exhaust gas is converted into electricity. The obtained electricity is used for electrolysis of water by the water electrolysis device 28.
  • This configuration makes it possible to obtain electricity used during water electrolysis.
  • FIG. 4 shows an embodiment in which a heat exchanger 23 is installed in front of the CO 2 separation membrane and a fuel reformer 41 is further installed. Part of the methane obtained by the method shown in the figure is introduced into the heat exchanger 23, and the temperature of the methane is increased. Thereafter, CO and H 2 are obtained by introducing the fuel reformer together with H 2 O. H 2 O is used of H 2 O obtained in the condenser 30. CO.H 2 obtained by reforming methane is used as fuel for the engine 26. Compared to the combustion heat of methane, the combustion heat of CO and H 2 obtained by reforming methane once is larger. Therefore, by adopting this configuration, the heat of the exhaust gas can be recovered, and the fuel consumption of the internal combustion engine can be improved.
  • FIG. 5 shows an embodiment in which the hydrogen storage material 42 is used instead of the electrolysis of water as the H 2 supply method for the configuration shown in the fourth embodiment.
  • the hydrogen storage material 42 an organic hydride such as toluene can be considered.
  • exhaust heat from the engine exhaust gas is used as heat when taking out H 2 from the organic hydride.

Abstract

Provided is an internal combustion engine which recovers CO2 in a gas with low energy and synthesizes a fuel. An internal combustion engine according to the present invention is characterized in that: a CO2 separation membrane for separating CO2 from a gas that contains CO2 is arranged in a flow path for the gas; and H2 is used as a carrier gas for the CO2 separation membrane.

Description

内燃機関Internal combustion engine
 本発明は、乗用車やディーゼルエンジンに代表される内燃機関から排出されるCO2を低減する内燃機関のCO2回収装置及び回収方法に関する。 The present invention relates to a CO 2 recovery device and a recovery method for an internal combustion engine that reduce CO 2 emitted from an internal combustion engine represented by a passenger car or a diesel engine.
 近年、地球温暖化を抑制する観点から、内燃機関から排出されるCO2量及び大気中のCO2量を低減させることが求められている。 Recently, from the viewpoint of suppressing global warming, it is required to reduce the amount of CO 2 CO 2 amount and the air discharged from an internal combustion engine.
 内燃機関から排出されるCO2を減らす方法としては、内燃機関の燃費を向上させることで生成するCO2を減らす試みがなされている。更には、発生したCO2を分離回収して得られたCO2を用いて燃料を合成する技術が開示されている(特許文献1、2)。 As a method for reducing CO 2 emitted from the internal combustion engine, an attempt has been made to reduce CO 2 generated by improving the fuel consumption of the internal combustion engine. Furthermore, techniques for synthesizing fuel using a CO 2 obtained by separation and recovery of CO 2 generated is disclosed (Patent Documents 1 and 2).
特開2005-069005号公報Japanese Patent Laying-Open No. 2005-069005 特開2012-219233号公報JP 2012-219233 A
 特許文献1には、CO2回収手段と水素供給手段を備え、回収したCO2を原料として用いて燃料を合成することが記載されている。更にはCO2回収手段としてCO2分離膜を用いることも記載されている。しかしCO2分離に際してブロアを用いて膜の両側に圧力差を生じさせる必要があり、必要とするブロアの動力が大きいと考えられる。 Patent Document 1 describes that a CO 2 recovery means and a hydrogen supply means are provided, and fuel is synthesized using the recovered CO 2 as a raw material. Furthermore, the use of a CO 2 separation membrane as a CO 2 recovery means is also described. However, it is necessary to create a pressure difference on both sides of the membrane using a blower for CO 2 separation, and the required blower power is considered large.
 特許文献2には、CO2分離部とH2供給部を備え、発電設備から排出されたCO2を用いてメタンを合成する技術が記載されている。CO2分離手法としてCO2分離膜が使用できることも記載されている。しかし分離膜を用いた具体的なCO2分離方法が明示されていない。 Patent Document 2 describes a technology that includes a CO 2 separation unit and an H 2 supply unit and synthesizes methane using CO 2 discharged from a power generation facility. It is also described that a CO 2 separation membrane can be used as a CO 2 separation method. However, a specific CO 2 separation method using a separation membrane is not clearly described.
 本発明の目的は、内燃機関から排出されるCO2を回収する際のエネルギーを低減でき、更にはCO2を用いた燃料の合成効率も高めることができる、内燃機関のCO2回収装置、回収方法を提供することにある。 An object of the present invention can reduce the energy at the time of recovering the CO 2 discharged from the internal combustion engine, and more can be enhanced synthesis efficiency of the fuel with CO 2, the internal combustion engine the CO 2 recovery apparatus, the recovery It is to provide a method.
 上記目的を達成するために本発明に係る内燃機関は、CO2を含むガスの流路に、前記ガス中のCO2を分離するCO2分離膜を配置し、前記CO2分離膜のキャリアガスとしてH2を用いる。 Internal combustion engine according to the present invention in order to achieve the above object, in the flow path of a gas containing CO 2, arranged CO 2 separation membrane separating CO 2 in the gas, the carrier gas of the CO 2 separation membrane H 2 is used as
 本発明によれば、内燃機関から排出されるCO2を低エネルギーで回収することができる。更には回収CO2を原料として燃料を合成し内燃機関の燃料として用いることも可能であるため、燃料消費量を高度に抑制することができ、燃料消費に伴うCO2排出量も削減することが可能である。 According to the present invention, CO 2 emitted from an internal combustion engine can be recovered with low energy. Furthermore, it is possible to synthesize fuel using recovered CO 2 as a raw material and use it as fuel for internal combustion engines, so that it is possible to highly reduce fuel consumption and reduce CO 2 emissions associated with fuel consumption. Is possible.
CO2分離膜とメタン化触媒を設置してエンジン排ガス中のCO2を回収しメタン化することを示した図。A diagram showing the installation of a CO 2 separation membrane and a methanation catalyst to capture and methanate CO 2 in engine exhaust gas. エンジン排ガス流路へ熱交換器を設置した図である。It is the figure which installed the heat exchanger in the engine exhaust gas flow path. エンジン排ガス流路へ熱電変換素子を設置した図である。It is the figure which installed the thermoelectric conversion element in the engine exhaust gas flow path. 燃料の改質により得られたガスをエンジンへ導入することを示した図である。It is the figure which showed introducing into the engine the gas obtained by the modification | reformation of a fuel. 水素供給手法として水素吸蔵材を用いた図である。It is the figure which used the hydrogen storage material as a hydrogen supply technique.
 以下、本発明を詳細に説明する。一般に、乗用車やディーゼルエンジンに代表される内燃機関から排出される排ガスには数%~数10%のCO2が含有されており、これら内燃機関から排出されるCO2量を減らすことは地球温暖化の防止につながると考えられる。一方、大気中にもCO2は400ppm程度含まれており、大気中のCO2を減らすことも地球温暖化の防止につながる。 Hereinafter, the present invention will be described in detail. In general, CO 2 of several percent to several tens percent in the exhaust gas discharged from an internal combustion engine typified by a car or a diesel engine are contained, it is global warming to reduce the amount of CO 2 discharged from these internal combustion engine This is thought to lead to the prevention of transformation. On the other hand, CO 2 in the atmosphere contains about 400 ppm, to reduce the CO 2 in the atmosphere leads to the prevention of global warming.
 本発明者らは、鋭意検討した結果、
 CO2を含むガスの流路に、該ガス中のCO2を分離するCO2分離膜を配置し、かつ該CO2分離膜から分離したCO2と、H2供給源から得られたH2とを反応させて、炭素と水素を分子構造に含む燃料を合成する燃料合成触媒が設けられた内燃機関において、該CO2分離膜のキャリアガスとして該H2を用いることで、内燃機関から排出されるCO2及び大気中のCO2を高効率に回収することができることを明らかにした。
As a result of intensive studies, the present inventors have
The flow path of the gas containing CO 2, arranged CO 2 separation membrane separating CO 2 in the gas, and the CO 2 and CO 2 separated from the separation layer, H 2 obtained from H 2 supply source In the internal combustion engine provided with a fuel synthesis catalyst for synthesizing a fuel containing carbon and hydrogen in the molecular structure by using the H 2 as a carrier gas for the CO 2 separation membrane, the exhaust gas is discharged from the internal combustion engine. It was clarified that CO 2 in the atmosphere and CO 2 in the atmosphere can be recovered with high efficiency.
 <CO2分離膜によるCO2分離について>
 CO2分離膜によるCO2分離について述べる。CO2分離膜の片側((a)CO2含有ガス流通側)へ、内燃機関等から排出されたCO2を含むガスを流通させる。一方でCO2分離膜のもう一方の側((b)キャリアガス流通側)にはH2供給部から供給されたH2をキャリアガスとして流通させる。そうすることでCO2分離膜の両側にCO2分圧差が生じ、CO2を含むガスからCO2ガスが分離膜を通過し、キャリアガスと混ざる。得られたCO2とH2の混合ガスを燃料合成触媒へ導入することで、CO2とH2が反応し、炭素と水素を分子構造に含む燃料を合成することができる。
<For CO 2 separation by CO 2 separation membrane>
This paper describes CO 2 separation using a CO 2 separation membrane. CO to 2 on one side of the separation membrane ((a) CO 2 containing gas flow side), circulating a gas containing CO 2 discharged from an internal combustion engine or the like. Meanwhile on the other side of the CO 2 separation membrane ((b) the carrier gas flow side) circulating of H 2 supplied from the H 2 supply unit as a carrier gas. CO 2 minutes pressure difference occurs on each side of the CO 2 separation membrane in doing so, CO 2 gas is passed through the separation membrane from a gas containing CO 2, mixed with the carrier gas. By introducing the obtained mixed gas of CO 2 and H 2 into the fuel synthesis catalyst, CO 2 and H 2 react to synthesize a fuel containing carbon and hydrogen in the molecular structure.
 CO2を含むガスからCO2を分離するのみの目的であれば、(b)キャリアガス流通側のCO2分圧を低下させればよい。そのための手法としては、(b)キャリアガス流通側を真空引きする、N2やO2等のガスを流通させる等が考えられる。しかし、真空引きする場合には真空にする為に多くの動力がかかる。またN2やO2等のH2ガス以外のガスをキャリアガスとして流通させた場合、後段に設置した燃料合成触媒に、N2やO2等の他のガスが多量に流入することになり、燃料合成反応の効率が低下する。従って、本発明で述べるように、(b)キャリアガス流通側に流通させるガスとしてはH2ガスが最適である。 If the purpose of only separating CO 2 from a gas containing CO 2, it is sufficient to lower the partial pressure of CO 2 (b) the carrier gas flow side. As a technique for that purpose, (b) evacuating the carrier gas circulation side, circulating a gas such as N 2 or O 2, etc. can be considered. However, when evacuating, a lot of power is applied to create a vacuum. In addition, if a gas other than H 2 gas such as N 2 or O 2 is circulated as a carrier gas, a large amount of other gas such as N 2 or O 2 will flow into the fuel synthesis catalyst installed in the subsequent stage. The efficiency of the fuel synthesis reaction is reduced. Therefore, as described in the present invention, (b) H 2 gas is optimal as a gas to be circulated to the carrier gas distribution side.
 CO2分離膜の種類は特に拘らない。例えばゼオライトやメソポーラスシリカ等を用いた無機膜、デンドリマーやカルドポリマー及びイオン性液体を用いた有機膜等も使用可能である。使用するCO2分離膜によってCO2分離性能が異なる為、CO2含有ガス及びキャリアガスの流通量や圧力を変化させることでCO2分離量を最適化できる。 The type of CO 2 separation membrane is not particularly limited. For example, inorganic membranes using zeolite, mesoporous silica, etc., organic membranes using dendrimers, cardo polymers, and ionic liquids can be used. Since the CO 2 separation performance varies depending on the CO 2 separation membrane used, the amount of CO 2 separation can be optimized by changing the flow rate and pressure of the CO 2 -containing gas and carrier gas.
 CO2を含むガスの流量や濃度が変わると、得られるCO2とH2の混合ガスの比率が変動する場合がある。この場合、CO2を含むガスの流量や濃度を予め計測しておき、この計測値に基づいてキャリアガスとして使用するH2ガスの流量や圧力を変化させることで、得られるCO2とH2の混合ガスの比率を制御することができる。 When the flow rate or concentration of the gas containing CO 2 changes, the ratio of the obtained mixed gas of CO 2 and H 2 may change. In this case, the flow rate and concentration of the gas containing CO 2 are measured in advance, and the obtained CO 2 and H 2 are obtained by changing the flow rate and pressure of the H 2 gas used as the carrier gas based on the measured value. The ratio of the mixed gas can be controlled.
 CO2分離膜に流入するCO2含有ガス中のCO2濃度は、CO2含有ガスの種類によって異なる。ガス種が、内燃機関の排ガスの場合には10%以上になる事もある。ガス種が大気の場合には、400ppm程度と予想される。CO2分離膜へ流入する、CO2量、CO2濃度によって、CO2分離膜を選定する必要がある。 CO 2 concentration of the CO 2 containing gas flowing into the CO 2 separation membrane depends on the type of CO 2 containing gas. In the case of exhaust gas from an internal combustion engine, the gas type may be 10% or more. When the gas type is air, it is expected to be around 400 ppm. And it flows into the CO 2 separation membrane, CO 2 amount, the CO 2 concentration, it is necessary to select the CO 2 separation membrane.
 CO2含有ガスの圧力が高い場合、CO2分離膜の両側のCO2分圧差が大きくなる為、CO2が分離しやすくなる。従って、予めCO2含有ガスの圧力を高めることも好適である。 When the pressure of the CO 2 -containing gas is high, the CO 2 partial pressure difference between the two sides of the CO 2 separation membrane becomes large, so that CO 2 is easily separated. Therefore, it is also preferable to increase the pressure of the CO 2 -containing gas in advance.
 <合成燃料について>
 CO2とH2から合成する燃料に関し、水素と炭素を分子構造に含む燃料であれば特に限定は無い。例えば、メタン、エタン、プロパン等のアルカン、エチレン、プロピレン等のアルケン、アセチレン等のアルキンが考えられる。更にはメタノール、エタノール等のアルコールやジメチルエーテル等の、水素と炭素以外に、酸素を分子構造に含む燃料も考えられる。燃料合成触媒の組成や、触媒に流入するガスの温度、圧力等により得られる燃料も異なってくる。
<About synthetic fuel>
The fuel synthesized from CO 2 and H 2 is not particularly limited as long as it contains hydrogen and carbon in the molecular structure. For example, alkanes such as methane, ethane and propane, alkenes such as ethylene and propylene, and alkynes such as acetylene are conceivable. Furthermore, fuels containing oxygen in the molecular structure in addition to hydrogen and carbon, such as alcohols such as methanol and ethanol, and dimethyl ether are also conceivable. The fuel obtained depends on the composition of the fuel synthesis catalyst and the temperature and pressure of the gas flowing into the catalyst.
 <内燃機関について>
 本発明が対象とする内燃機関は、CO2を発生するものであれば特に限定は無い。例えば、ガソリン車、ディーゼル車、天然ガス車等の内燃機関、更には建設機械や農業用機械及び船舶に使用される内燃機関等が考えられる。また、定置用エンジンも対象となりえる。メタンを主成分とする天然ガスを燃料として用いる内燃機関は、CO2排出量削減の観点から好ましい。更に例えば、ディーゼルエンジン及びディーゼル発電機を積んだ船舶も対象となる。この場合、ディーゼル発電機から発生した電気を、水の電気分解へ使用することも考えられる。もしくは排熱を変換して得られた電気も併用することで、船舶内の照明や空調に用いる電気として使用することも考えられる。
<Internal combustion engine>
The internal combustion engine targeted by the present invention is not particularly limited as long as it generates CO 2 . For example, an internal combustion engine such as a gasoline vehicle, a diesel vehicle, or a natural gas vehicle, an internal combustion engine used for a construction machine, an agricultural machine, or a ship can be considered. It can also be a stationary engine. An internal combustion engine that uses natural gas mainly composed of methane as fuel is preferable from the viewpoint of reducing CO 2 emissions. Furthermore, for example, ships loaded with diesel engines and diesel generators are also targeted. In this case, it is also conceivable to use the electricity generated from the diesel generator for water electrolysis. Or it can also be used as electricity used for lighting and air conditioning in a ship by using together electricity obtained by converting exhaust heat.
 <燃料合成触媒について>
 燃料合成触媒としては、CO2と水素を反応させて水素と炭素を分子構造に含む燃料合成反応を促進できる触媒であれば特に拘らない。
<About fuel synthesis catalyst>
The fuel synthesis catalyst is not particularly limited as long as it is a catalyst that can react with CO 2 and hydrogen to accelerate the fuel synthesis reaction including hydrogen and carbon in the molecular structure.
 想定される合成反応としては、例えば、メタンを合成する反応であれば、
 CO2+4H2→CH4+2H2O
 エタノールを合成する反応であれば
 2CO2+6H2→C2H5OH+3H2O
 等が考えられる。
As an assumed synthesis reaction, for example, if it is a reaction that synthesizes methane,
CO 2 + 4H 2 → CH 4 + 2H 2 O
If it is a reaction to synthesize ethanol, 2CO 2 + 6H 2 → C 2 H 5 OH + 3H 2 O
Etc. are considered.
 燃料合成触媒の一例として、メタン化触媒を適用する場合、メタン化触媒を、無機化合物の多孔質担体と、当該多孔質担体上に触媒活性成分として担持されたRh, Pt, Pd, Ir, Ni, Mn, Cuから選ばれた少なくとも1種とを有し、前記多孔質担体が、Al, Ce, La, Ti, Zrから選ばれた少なくとも1種を含む触媒とすることでメタン化性能が高まる。メタン化触媒の多孔質担体として比表面積が高い酸化物を用いることでRh, Pt, Pd, Ir, Ni, Mn, Cuが高分散化し、メタン化性能が高まる。特に多孔質担体としてAlを含む酸化物を使用すると安定して高いメタン化性能が得られる。本発明において用いる多孔質担体の比表面積は、30~800m2/gの範囲が好ましく、特に50~400m2/gの範囲が好ましい。 As an example of a fuel synthesis catalyst, when a methanation catalyst is applied, the methanation catalyst is composed of a porous carrier of an inorganic compound and Rh, Pt, Pd, Ir, Ni supported on the porous carrier as a catalytically active component. , Mn, and Cu, and the porous carrier is a catalyst containing at least one selected from Al, Ce, La, Ti, and Zr, so that the methanation performance is improved. . Rh, Pt, Pd, Ir, Ni, Mn, and Cu are highly dispersed by using an oxide having a high specific surface area as a porous support for the methanation catalyst, and the methanation performance is enhanced. In particular, when an oxide containing Al is used as the porous carrier, high methanation performance can be stably obtained. The specific surface area of the porous carrier used in the present invention is preferably in the range of 30 to 800 m 2 / g, particularly preferably in the range of 50 to 400 m 2 / g.
 触媒活性成分としてRh, Pt, Pd, Ir, Ni, Mn, Cuから選ばれた二種以上を含有させても良い。 Two or more kinds selected from Rh, Pt, Pd, Ir, Ni, Mn, and Cu may be included as catalytic active components.
 触媒活性成分のRh, Pt, Pd, Ir, Ni, Mn, Cuの合計担持量は、好ましくは、多孔質担体2mol部に対して元素換算で0.0003mol部~1.0mol部である。Rh, Pt, Pd, Ir, Ni, Mn, Cuの合計担持量が0.0003mol部未満であると、担持効果は不十分となり、一方、1.0mol部を越えると、活性成分自体の比表面積が低下し、さらに触媒コストが高くなる。 The total supported amount of the catalytically active components Rh, Pt, Pd, Ir, Ni, Mn and Cu is preferably 0.0003 mol parts to 1.0 mol parts in terms of elements with respect to 2 mol parts of the porous carrier. If the total supported amount of Rh, Pt, Pd, Ir, Ni, Mn and Cu is less than 0.0003 mol part, the loading effect is insufficient, while if it exceeds 1.0 mol part, the specific surface area of the active ingredient itself decreases. In addition, the catalyst cost is increased.
 ここで「mol部」とは、各成分のmol数換算での含有比率を意味する。例えば、A成分2mol部に対してB成分の担持量が1mol部とは、A成分の絶対量の多少に関わらず、mol数換算でA成分が2に対し、B成分が1の割合で担持されていることを意味する。 Here, “mol part” means the content ratio of each component in terms of mol number. For example, the loading amount of B component is 1 mol part with respect to 2 mol part of A component, regardless of the absolute amount of A component. Means that
 燃料合成反応によって得られた燃料は、内燃機関の燃料源として、内燃機関を駆動するエンジンへ導入することで内燃機関の燃料使用量を減らせることができる。また、内燃機関に水電解装置を設置し、水の電気分解により水素を発生させる場合には、水の供給源として、燃料合成時に生じた水を使用することも可能である。 The amount of fuel used in the internal combustion engine can be reduced by introducing the fuel obtained by the fuel synthesis reaction into the engine that drives the internal combustion engine as a fuel source for the internal combustion engine. In addition, when a water electrolysis device is installed in an internal combustion engine and hydrogen is generated by electrolysis of water, it is possible to use water generated during fuel synthesis as a water supply source.
 <H2の供給源について>
 H2を発生させる方法にも特に拘らない。例えば、水素用のタンクを内燃機関に設置して、タンクからH2をメタン化触媒へ供給する事が考えられる。この場合、水素をガスのまま圧縮する、もしくは液化することでタンクにH2を積むことができる。
<About the source of H 2 >
The method for generating H 2 is not particularly concerned. For example, it is conceivable to install a hydrogen tank in the internal combustion engine and supply H 2 from the tank to the methanation catalyst. In this case, the tank can be loaded with H 2 by compressing or liquefying hydrogen as a gas.
 または、有機ハイドライドや水素吸蔵合金等のH2キャリアを用いることも可能である。有機ハイドライドや水素吸蔵合金を用いる場合、貯蔵タンクが必要であるが、H2そのものを運搬するよりも低エネルギーでH2を運搬できると考えられる。これらH2キャリアからH2を取り出す際には熱が必要であるが、エンジンからの排熱を用いれば、効率良くH2キャリアの温度を高めることができる。H2キャリアとしてアンモニアを用いることも可能であるが、NH3からH2を取出す際に、N2も同時に発生してしまう為、CO2分離膜のキャリアガスとして使用する際には、キャリアガスとして使用する前にN2を除去する工程が必要となる。 Alternatively, an H 2 carrier such as an organic hydride or a hydrogen storage alloy can be used. When organic hydride or hydrogen storage alloy is used, a storage tank is required, but it is thought that H 2 can be transported with lower energy than transporting H 2 itself. Heat is required when taking out H 2 from these H 2 carriers, but if exhaust heat from the engine is used, the temperature of the H 2 carrier can be increased efficiently. Ammonia can also be used as the H 2 carrier, but when H 2 is extracted from NH 3 , N 2 is also generated at the same time, so when using it as a carrier gas for a CO 2 separation membrane, the carrier gas A step of removing N 2 is required before use as a substrate.
 もしくは、内燃機関に水電解装置を設置し、水の電気分解により水素を発生させることも有効である。この場合、水を電気分解する方式には特に拘らない。以下の反応によりH2を得る方法であれば良い。
 2H2O→2H2+O2 水を電気分解する方式として、例えば、アルカリ水電解型、固体高分子型等が考えられ
る。水を電気分解する為には、電気が必要となる。その場合、例えば内燃機関からのエンジン排ガスの熱を回収して電気を生じさせ、得られた電気を水電解に使用することが考えられる。
Alternatively, it is also effective to install a water electrolysis device in the internal combustion engine and generate hydrogen by electrolysis of water. In this case, the method for electrolyzing water is not particularly concerned. Any method may be used as long as H 2 is obtained by the following reaction.
As a method for electrolyzing 2H 2 O → 2H 2 + O 2 water, for example, an alkaline water electrolysis type, a solid polymer type, or the like can be considered. Electricity is needed to electrolyze water. In that case, for example, it is conceivable that the heat of engine exhaust gas from the internal combustion engine is recovered to generate electricity, and the obtained electricity is used for water electrolysis.
 <熱回収方法>
 内燃機関から排出される排ガスは400℃以上になりうる。従って排ガスの熱を利用して電気を得ることも有効である。その方法の一つとして、熱交換器、膨張機及び作動媒体の組み合わせを使用することが考えられる。
<Heat recovery method>
The exhaust gas discharged from the internal combustion engine can be over 400 ° C. Therefore, it is also effective to obtain electricity using the heat of exhaust gas. One possible method is to use a combination of a heat exchanger, an expander and a working medium.
 熱交換器には予め作動媒体を流通させておく。この熱交換器へ排ガスが流入すると、排ガスの熱により作動媒体が液体からガスへと変化する。ガスへ変化した作動媒体は、膨張機に送られ、電気を発生させることができる。その後作動媒体は凝縮機へ送られることで液体へ戻る。このように作動媒体を循環させ、排ガスの熱を回収することで電気を発生させることができる。得られた電気は水電解に用いることができる。 The working medium is circulated in advance in the heat exchanger. When exhaust gas flows into the heat exchanger, the working medium changes from liquid to gas by the heat of the exhaust gas. The working medium converted into gas can be sent to the expander to generate electricity. The working medium is then sent back to the liquid by being sent to the condenser. Thus, electricity can be generated by circulating the working medium and recovering the heat of the exhaust gas. The obtained electricity can be used for water electrolysis.
 使用する作動媒体は、上記の目的に合うものであれば特に拘らない。例えばエチレングリコール、水等が考えられる。 The working medium to be used is not particularly limited as long as it meets the above purpose. For example, ethylene glycol, water, etc. can be considered.
 <熱電変換素子>
 排ガスの熱を利用して電気を得る方法の一つとして、熱電変換素子の利用も考えられる。排ガス流路へ熱電変換素子を設置し、排ガスを熱電変換素子へ接触させることで、排ガスの熱を電気へと変換させ、電気を得ることができる。得られた電気は、水電解時の電気として使用する事ができる。
<Thermoelectric conversion element>
As one method for obtaining electricity using the heat of exhaust gas, the use of a thermoelectric conversion element is also conceivable. By installing a thermoelectric conversion element in the exhaust gas passage and bringing the exhaust gas into contact with the thermoelectric conversion element, the heat of the exhaust gas is converted into electricity, and electricity can be obtained. The obtained electricity can be used as electricity during water electrolysis.
 使用する熱電変換素子の種類は特に拘らない。例えばビスマスとテルルからなる素子や鉛を含有する素子、シリコンとゲルマニウムからなる素子等が考えられる。 ¡The type of thermoelectric conversion element used is not particularly limited. For example, an element made of bismuth and tellurium, an element containing lead, an element made of silicon and germanium, and the like are conceivable.
 <燃焼触媒設置>
 熱交換器あるいは熱電変換素子と、内燃機関に含まれるエンジンとの間に、排ガス中のH2、CO、炭化水素の少なくとも一種以上を燃焼する機能を有する触媒を設置することも考えられる。このような触媒を設置することで、排ガス中のH2、CO、炭化水素等が浄化されるのみならず、浄化反応により触媒後段の排ガス温度が上昇する。従って、熱交換器あるいは熱電変換素子による排熱の回収効率が更に高めることができる。
<Installation of combustion catalyst>
It is also conceivable to install a catalyst having a function of burning at least one of H 2 , CO, and hydrocarbons in the exhaust gas between the heat exchanger or thermoelectric conversion element and the engine included in the internal combustion engine. By installing such a catalyst, not only H 2 , CO, hydrocarbons, etc. in the exhaust gas are purified, but also the exhaust gas temperature after the catalyst rises due to the purification reaction. Accordingly, the exhaust heat recovery efficiency by the heat exchanger or the thermoelectric conversion element can be further increased.
 H2、CO、炭化水素等を燃焼できる触媒であれば特に拘らない。例えば、アルミナを含んだ多孔質担体上に、触媒活性成分としてPt,Pd,Rhから選ばれた少なくとも1種が担持されている触媒等が考えられる。 Any catalyst that can burn H 2 , CO, hydrocarbons, etc. is not particularly limited. For example, a catalyst in which at least one selected from Pt, Pd, and Rh as a catalyst active component is supported on a porous carrier containing alumina can be considered.
 <燃料改質>
 内燃機関から排出される排ガスの熱を利用して燃料を改質し、得られたガスを内燃機関の燃料として使用することも有効である。
<Fuel reforming>
It is also effective to reform the fuel using the heat of the exhaust gas discharged from the internal combustion engine and use the obtained gas as the fuel for the internal combustion engine.
 例えばメタンを水蒸気で改質する反応として以下が考えられる。
 2CH4+2H2O→2CO+3H2 本反応は吸熱反応であり、CH4を燃焼させるよりも、上記反応で得られるCOとH2を燃焼
させる方が燃焼熱は高い。従って、内燃機関の燃料としてCH4を用いる場合よりも得られるCO, H2を燃料として用いる場合の方が内燃機関の燃費は向上する。従って、燃料を一旦改質する本手法は内燃機関の燃費向上策として有効であると考えられる。
For example, the following can be considered as a reaction for reforming methane with steam.
The 2CH 4 + 2H 2 O → 2CO + 3H 2 reaction is an endothermic reaction, and combustion heat is higher when CO and H 2 obtained by the above reaction are combusted than when CH 4 is combusted. Therefore, the fuel efficiency of the internal combustion engine is improved when CO, H 2 obtained as the fuel is used as the fuel of the internal combustion engine, compared with the case where CH 4 is used as the fuel. Therefore, it is considered that this method of once reforming the fuel is effective as a measure for improving the fuel consumption of the internal combustion engine.
 上記のメタン改質を進行させる為には、用いる触媒組成やガス条件にもよるが、触媒温度を700℃以上にする必要があると考えられる。そこでより低温の排熱を用いて燃料を改質する反応を進行させる手段として、例えばアルコールを用いることも考えられる。一例としてエタノールの水蒸気改質反応は以下の反応式で記載される。
 C2H5OH+H2O→2CO+4H2 本反応も吸熱反応であり、C2H5OHを燃焼させるよりも、上記反応で得られるCO, H2を燃焼させる方が燃焼熱は高い。従って、内燃機関の燃料としてC2H5OHを用いる場合よりも得られるCO, H2を燃料として用いる場合の方が内燃機関の燃費は向上する。更に、本反応は用いる触媒組成によっては300℃程度で反応が進む。従って本反応を用いることで300℃程度の排熱を利用して、内燃機関の燃費を向上させることができる。
In order to proceed with the above methane reforming, it is considered that the catalyst temperature needs to be 700 ° C. or higher although it depends on the catalyst composition and gas conditions used. Therefore, it is conceivable to use alcohol, for example, as a means for advancing the reaction for reforming the fuel using lower temperature exhaust heat. As an example, the steam reforming reaction of ethanol is described by the following reaction formula.
C 2 H 5 OH + H 2 O → 2CO + 4H The two reactions are also endothermic. Combustion heat is better when the CO and H 2 obtained by the above reaction are burned than when C 2 H 5 OH is burned. high. Therefore, the fuel consumption of the internal combustion engine is improved when CO, H 2 obtained as the fuel is used as the fuel, compared with the case where C 2 H 5 OH is used as the fuel of the internal combustion engine. Furthermore, this reaction proceeds at about 300 ° C. depending on the catalyst composition used. Therefore, by using this reaction, it is possible to improve the fuel efficiency of the internal combustion engine by utilizing the exhaust heat of about 300 ° C.
 改質触媒は、燃料を改質できる触媒であれば特にこだわらない。例えば、改質触媒を、無機化合物の多孔質担体と、当該多孔質担体上に触媒活性成分として担持されたPt, Pd, Rh, Ni, Coから選ばれた少なくとも1種とを有し、前記多孔質担体が、Al, Ce, La, Ti, Zr, Znから選ばれた少なくとも1種を含む触媒とすることで改質性能が高まる。 The reforming catalyst is not particularly limited as long as it can reform the fuel. For example, the reforming catalyst has a porous carrier of an inorganic compound and at least one selected from Pt, Pd, Rh, Ni, and Co supported as a catalytically active component on the porous carrier, The reforming performance is enhanced when the porous support is a catalyst containing at least one selected from Al, Ce, La, Ti, Zr and Zn.
 <大気中CO2回収>
 CO2分離膜へ大気を流入させることで、大気中のCO2を分離することもできる。この場合、膜の両側のCO2分圧差を大きくする為、キャリアガスとして流通させるH2の純度を増加させる方が好ましい。
<Atmospheric CO 2 recovery>
CO 2 into the separation membrane by flowing the air, it is also possible to separate the CO 2 in the atmosphere. In this case, in order to increase the CO 2 partial pressure difference on both sides of the membrane, it is preferable to increase the purity of H 2 circulated as a carrier gas.
 <メタン化触媒材料の構成>
 メタン化触媒に使用する多孔質担体、または活性成分は、基材上に担持させてもよい。基材としては従来から使用されてきたコージェライト、Si-Al-Oからなるセラミックス或いはステンレススチールなどの耐熱性金属基板などが適している。基材を用いる場合には、CO2捕捉性能及びメタン化性能を向上させる上で、材料の担持量は、基材1Lに対して10g以上300g以下であることが好ましい。10g以下であるとCO2捕捉性能及びメタン化性能が低下する。一方300g以上であると、基材がハニカム形状の場合にガス流路への目詰まりが発生し易くなる等の不具合が生じるようになる。
<Composition of methanation catalyst material>
The porous carrier used for the methanation catalyst or the active ingredient may be supported on a substrate. As the base material, cordierite that has been used conventionally, ceramics made of Si-Al-O, or heat-resistant metal substrates such as stainless steel are suitable. When using a base material, it is preferable that the loading amount of the material is 10 g or more and 300 g or less with respect to 1 L of the base material in order to improve the CO 2 capture performance and methanation performance. If it is 10 g or less, the CO 2 capture performance and methanation performance will deteriorate. On the other hand, when the weight is 300 g or more, when the substrate has a honeycomb shape, problems such as clogging of the gas flow path are likely to occur.
 メタン化触媒の調製方法としては、例えば、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法等の物理的調製方法や化学反応を利用した調製方法等などを用いることができる。 As a preparation method of the methanation catalyst, for example, a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, a vapor deposition method, a preparation method using a chemical reaction, or the like may be used. it can.
 メタン化触媒の出発原料としては、硝酸化合物、塩化物、酢酸化合物、錯体化合物、水酸化物、炭酸化合物、有機化合物などの種々の化合物、金属、金属酸化物を用いることができる。例えば触媒活性成分として2種以上の元素を組み合わせる場合には、活性成分が同一の溶液中に存在するような含浸液を用いて共含浸法にて調製することで触媒成分を均一に担持することができる。 As a starting material for the methanation catalyst, various compounds such as nitric acid compounds, chlorides, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, metals, and metal oxides can be used. For example, when two or more elements are combined as a catalyst active component, the catalyst component is uniformly supported by preparing it by a co-impregnation method using an impregnating solution in which the active component is present in the same solution. Can do.
 メタン化触媒の形状は、用途に応じて適宜調整できる。例えば、コージェライト、Si-Al-O、SiC、ステンレス等の各種基体材料からなるハニカム構造体に、本発明の浄化触媒をコーティングして得られるハニカム形状をはじめ、ペレット状、板状、粒状、粉末状などが挙げられる。ハニカム形状の場合、その基材はコ-ジェライトまたはSi-Al-Oからなる構造体を用いることが好適であるが、多孔質担体と触媒活性成分のみでハニカムを形成してもよい。 The shape of the methanation catalyst can be appropriately adjusted according to the application. For example, a honeycomb structure obtained by coating the purification catalyst of the present invention on a honeycomb structure made of various base materials such as cordierite, Si-Al-O, SiC, stainless steel, pellets, plates, granules, Examples include powder. In the case of a honeycomb shape, it is preferable to use a structure made of cordierite or Si—Al—O as the base material, but a honeycomb may be formed only with a porous carrier and a catalytically active component.
 以下、本発明の実施例及び実施の形態について説明する。 Hereinafter, examples and embodiments of the present invention will be described.
<CO2分離膜とメタン化触媒の組合せ>
 図1に、CO2分離膜とメタン化触媒を組み合わせた実施例を示した。
<Combination of CO 2 separation membrane and methanation catalyst>
FIG. 1 shows an embodiment in which a CO 2 separation membrane and a methanation catalyst are combined.
 CO2分離膜によるCO2分離は、CO2分離膜の両側のCO2分圧差によって生じる。 CO 2 separation by CO 2 separation membrane is caused by both sides of the CO 2 partial pressure difference CO 2 separation membrane.
 図1ではエンジン26から排出された排ガスを、CO2分離膜25の一方の側へ導入する。更に、水タンク27から得た水を水電解装置28を用いて電気分解することで得られたH2をCO2分離膜25のもう一方の側へキャリアガスとして導入する。排ガス中のCO2はCO2分離膜の両側のCO2分圧差により膜内を通過しキャリアガスのH2と混ざり合う。 In FIG. 1, exhaust gas discharged from the engine 26 is introduced into one side of the CO 2 separation membrane 25. Further, H 2 obtained by electrolyzing water obtained from the water tank 27 using the water electrolysis device 28 is introduced as a carrier gas to the other side of the CO 2 separation membrane 25. The CO 2 in the exhaust gas passes through the membrane due to the CO 2 partial pressure difference on both sides of the CO 2 separation membrane and mixes with the carrier gas H 2 .
 得られたCO2とH2の混合ガスをメタン化触媒29へと導入する。メタン化触媒29上にてCO2とH2が反応し、CH4と水を含むガスが得られる。このガスを凝縮機30に導入することで水を分離し、CH4のみを得る。分離した水は水タンク27へ戻して、水の電気分解用に再利用する。一方、得られたCH4は圧縮機31で圧縮された後に、メタン貯留部32で貯留され、必要に応じてエンジン26へ導入され、エンジンの燃料として使用される。 The obtained mixed gas of CO 2 and H 2 is introduced into the methanation catalyst 29. CO 2 and H 2 react on the methanation catalyst 29 to obtain a gas containing CH 4 and water. By introducing this gas into the condenser 30, water is separated and only CH 4 is obtained. The separated water is returned to the water tank 27 and reused for water electrolysis. On the other hand, the obtained CH 4 is compressed by the compressor 31 and then stored in the methane storage section 32, introduced into the engine 26 as necessary, and used as engine fuel.
 水の電気分解に使用する電気供給源として、内燃機関に積載されているバッテリーや内燃機関への太陽電池の設置等が考えられる。 As an electric power source used for water electrolysis, a battery mounted on the internal combustion engine, a solar cell installed in the internal combustion engine, or the like can be considered.
 本構成とすることで、CO2分離膜によって得られたCO2とH2の混合ガスをメタン化触媒へ導入することが可能となり、エンジンから排出されるCO2量を削減でき、更にCO2分離時に要するエネルギーの低減が可能となる。 With this configuration, it becomes possible to introduce the mixed gas of CO 2 and H 2 obtained by the CO 2 separation membrane into the methanation catalyst, reduce the amount of CO 2 emitted from the engine, and further reduce CO 2 Energy required for separation can be reduced.
<熱回収方法>
 図2には、CO2分離膜の前段に熱交換器23を設置した実施例を示した。エンジン26としてガソリンエンジンを想定した。熱交換器23へは作動媒体を流通させる。熱交換器23に排ガスを流入させることで、排ガスの熱を用いて、作動媒体を液体からガスへと変化させる。得られたガスを膨張機20へ導入することで発電させ電気を得る。膨張機20を通過した作動媒体ガスは凝縮機21へ導入され液体へと戻り、ポンプ22により循環する。
<Heat recovery method>
FIG. 2 shows an embodiment in which a heat exchanger 23 is installed in front of the CO 2 separation membrane. A gasoline engine was assumed as the engine 26. A working medium is circulated to the heat exchanger 23. By flowing the exhaust gas into the heat exchanger 23, the working medium is changed from liquid to gas using the heat of the exhaust gas. The obtained gas is introduced into the expander 20 to generate electricity and obtain electricity. The working medium gas that has passed through the expander 20 is introduced into the condenser 21, returned to the liquid, and circulated by the pump 22.
 上記により得られた電気は、水電解装置28による水の電気分解に使用される。 The electricity obtained as described above is used for electrolysis of water by the water electrolysis device 28.
 本構成とすることで、水電解時に使用する電気を得ることが可能となる。 This configuration makes it possible to obtain electricity used during water electrolysis.
 CO2排出量の削減量は、得られるH2量によって異なる為、水を電気分解する際の電力量を増やす、もしくは、別途H2タンクを設置し、H2タンクからH2を供給するようにすれば、更にCO2の排出量を削減することができる。 Reduction of CO 2 emissions, because it depends 2 weight obtained H, increasing the amount of power at the time of electrolysis of water, or placed separately H 2 tank, to supply of H 2 from the H 2 tank If so, CO 2 emissions can be further reduced.
<熱電変換素子の利用>
 図3には、CO2分離膜の前段に熱電変換素子33を設置した実施例を示した。排ガスを熱電変換素子へ流入させることで、排ガスの熱を電気に変換させる。得られた電気は、水電解装置28による水の電気分解に使用される。
<Use of thermoelectric conversion elements>
FIG. 3 shows an example in which a thermoelectric conversion element 33 is installed in front of the CO 2 separation membrane. By letting the exhaust gas flow into the thermoelectric conversion element, the heat of the exhaust gas is converted into electricity. The obtained electricity is used for electrolysis of water by the water electrolysis device 28.
 本構成とすることで、水電解時に使用する電気を得ることが可能となる。 This configuration makes it possible to obtain electricity used during water electrolysis.
<燃料改質>
 図4にはCO2分離膜の前段に熱交換器23を設置し、更に燃料改質器41を設置した実施例を示した。図に示す手法で得られたメタンの一部を、熱交換器23に導入し、メタンの温度を高める。その後、燃料改質器にH2Oとともに導入させることでCO,H2を得る。H2Oは凝縮器30で得られたH2Oを使用する。メタンの改質によって得たCO.H2はエンジン26の燃料として使用する。メタンの燃焼熱と比較して、メタンを一旦改質して得られたCO,H2の燃焼熱の方が大きい。従って、本構成にすることで排ガスの熱を回収することができ、内燃機関の燃費を向上させることができる。
<Fuel reforming>
FIG. 4 shows an embodiment in which a heat exchanger 23 is installed in front of the CO 2 separation membrane and a fuel reformer 41 is further installed. Part of the methane obtained by the method shown in the figure is introduced into the heat exchanger 23, and the temperature of the methane is increased. Thereafter, CO and H 2 are obtained by introducing the fuel reformer together with H 2 O. H 2 O is used of H 2 O obtained in the condenser 30. CO.H 2 obtained by reforming methane is used as fuel for the engine 26. Compared to the combustion heat of methane, the combustion heat of CO and H 2 obtained by reforming methane once is larger. Therefore, by adopting this configuration, the heat of the exhaust gas can be recovered, and the fuel consumption of the internal combustion engine can be improved.
<水素吸蔵材の適用>
 図5には、実施例4で示した構成について、H2供給方法として、水の電気分解ではなく、水素吸蔵材42を用いる実施例を示した。水素吸蔵材42としてはトルエン等の有機ハイドライドが考えられる。なお、図には示していないが、有機ハイドライドからH2を取出す際の熱として、エンジン排ガスからの排熱を利用する。本構成とすることで、水電解装置が不要となり、水を電気分解する際に使用される電気を節約することができる。
<Application of hydrogen storage material>
FIG. 5 shows an embodiment in which the hydrogen storage material 42 is used instead of the electrolysis of water as the H 2 supply method for the configuration shown in the fourth embodiment. As the hydrogen storage material 42, an organic hydride such as toluene can be considered. Although not shown in the figure, exhaust heat from the engine exhaust gas is used as heat when taking out H 2 from the organic hydride. By adopting this configuration, a water electrolysis device is not required, and electricity used when electrolyzing water can be saved.
 20…膨張器、21…凝縮器、22…ポンプ、23…熱交換器、25…CO2分離膜、26…エンジン、27…水タンク、28…水電解装置、29…メタン化触媒、30…凝縮機、31…圧縮機、32…メタン貯留部、33…熱電変換素子、41…燃料改質器、42…水素吸蔵材 20 ... Expander, 21 ... Condenser, 22 ... Pump, 23 ... Heat exchanger, 25 ... CO2 separation membrane, 26 ... Engine, 27 ... Water tank, 28 ... Water electrolyzer, 29 ... Methanation catalyst, 30 ... Condensation 31 ... Compressor, 32 ... Methane reservoir, 33 ... Thermoelectric conversion element, 41 ... Fuel reformer, 42 ... Hydrogen occlusion material

Claims (13)

  1.  CO2を含むガスの流路に、前記ガス中のCO2を分離するCO2分離膜を配置し、
     前記CO2分離膜のキャリアガスとしてH2を用いることを特徴とする内燃機関。
    The flow path of the gas containing CO 2, arranged CO 2 separation membrane separating CO 2 in the gas,
    An internal combustion engine using H 2 as a carrier gas for the CO 2 separation membrane.
  2.  請求項1に記載の内燃機関において、
     H2供給源と、
     前記CO2分離膜によりCO2を含むガスから分離されたCO2と、前記H2供給源から得られたH2とを反応させて、炭素と水素を分子構造に含む燃料を合成する燃料合成触媒とを有することを特徴とする内燃機関。
    The internal combustion engine according to claim 1,
    An H 2 source;
    Fuel synthesis in which CO 2 separated from a gas containing CO 2 by the CO 2 separation membrane is reacted with H 2 obtained from the H 2 supply source to synthesize a fuel containing carbon and hydrogen in a molecular structure. An internal combustion engine comprising a catalyst.
  3.  請求項2に記載の内燃機関において、
     前記燃料がメタンであることを特徴とする内燃機関。
    The internal combustion engine according to claim 2,
    An internal combustion engine wherein the fuel is methane.
  4.  請求項2または3に記載の内燃機関において、
     前記H2供給源が、水の電気分解装置であることを特徴とする内燃機関。
    The internal combustion engine according to claim 2 or 3,
    The internal combustion engine, wherein the H 2 supply source is a water electrolysis device.
  5.  請求項2または3に記載の内燃機関において、
     前記H2供給源が、水素吸蔵材であることを特徴とする内燃機関。
    The internal combustion engine according to claim 2 or 3,
    The internal combustion engine, wherein the H 2 supply source is a hydrogen storage material.
  6.  請求項4に記載の内燃機関において、
     前記水の電気分解装置は、前記内燃機関から発生する熱の少なくとも一部を電気として回収し、該電気を用いて水を電気分解することでH2を得ることを特徴とする内燃機関。
    The internal combustion engine according to claim 4,
    The water electrolyzer recovers at least a part of heat generated from the internal combustion engine as electricity, and electrolyzes water using the electricity to obtain H 2 .
  7.  請求項1乃至6のいずれか一項に記載の内燃機関において、
     前記内燃機関から発生する排ガスの熱を用いて液体をガス化する熱交換器と、
     前記熱交換器によりガス化されたガスにより電気を発生させる膨張機とを有することを特徴とする内燃機関。
    The internal combustion engine according to any one of claims 1 to 6,
    A heat exchanger for gasifying a liquid using heat of exhaust gas generated from the internal combustion engine;
    An internal combustion engine comprising: an expander that generates electricity by gas gasified by the heat exchanger.
  8.  請求項1乃至6のいずれか一項に記載の内燃機関において、
     前記内燃機関から発生する排ガスの熱を電気に変換する熱電変換素子を有することを特徴とする内燃機関。
    The internal combustion engine according to any one of claims 1 to 6,
    An internal combustion engine comprising a thermoelectric conversion element that converts heat of exhaust gas generated from the internal combustion engine into electricity.
  9.  請求項7または8に記載の内燃機関において、
     排ガス中のH2、CO、炭化水素の少なくとも一種を燃焼する機能を有する触媒を設置したことを特徴とする内燃機関。
    The internal combustion engine according to claim 7 or 8,
    An internal combustion engine comprising a catalyst having a function of burning at least one of H 2 , CO, and hydrocarbons in exhaust gas.
  10.  請求項2または3に記載の内燃機関において、
     前記内燃機関を駆動するエンジンを有し、
     前記燃料合成触媒により合成した燃料を前記エンジンへ導入することを特徴とする内燃機関。
    The internal combustion engine according to claim 2 or 3,
    An engine for driving the internal combustion engine;
    An internal combustion engine, wherein fuel synthesized by the fuel synthesis catalyst is introduced into the engine.
  11.  請求項2または3に記載の内燃機関において、
     前記内燃機関を駆動するエンジンと、
     前記燃料合成触媒により合成した燃料を改質する燃料改質器とを有し、
     前記燃料改質手段により改質した燃料を前記エンジンへ導入することを特徴とする内燃機関。
    The internal combustion engine according to claim 2 or 3,
    An engine for driving the internal combustion engine;
    A fuel reformer for reforming the fuel synthesized by the fuel synthesis catalyst,
    An internal combustion engine, wherein the fuel reformed by the fuel reforming means is introduced into the engine.
  12.  請求項1乃至11のいずれか一項に記載の内燃機関において、
     CO2を含むガスが、大気であることを特徴とする内燃機関。
    The internal combustion engine according to any one of claims 1 to 11,
    An internal combustion engine characterized in that the gas containing CO 2 is the atmosphere.
  13.  請求項2乃至12のいずれか一項に記載の内燃機関において、
     前記燃料合成触媒は、無機化合物の担体と、前記担体に担持された触媒活性成分を有し、
     前記無機化合物はAl, Ce, Si, Ti, Zrのうちの少なくとも1種を含み、
     前記触媒活性成分はRh, Pt, Pd, Ir, Ni, Mn, Cuのうちの少なくとも1種を含むことを特徴とする内燃機関。
     
    The internal combustion engine according to any one of claims 2 to 12,
    The fuel synthesis catalyst has an inorganic compound carrier and a catalytically active component supported on the carrier,
    The inorganic compound includes at least one of Al, Ce, Si, Ti, and Zr,
    The internal combustion engine, wherein the catalytically active component includes at least one of Rh, Pt, Pd, Ir, Ni, Mn, and Cu.
PCT/JP2016/072581 2015-09-25 2016-08-02 Internal combustion engine WO2017051610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187590A JP2018204433A (en) 2015-09-25 2015-09-25 Internal combustion engine
JP2015-187590 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051610A1 true WO2017051610A1 (en) 2017-03-30

Family

ID=58385952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072581 WO2017051610A1 (en) 2015-09-25 2016-08-02 Internal combustion engine

Country Status (2)

Country Link
JP (1) JP2018204433A (en)
WO (1) WO2017051610A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11813562B2 (en) 2022-02-01 2023-11-14 Halliburton Energy Services, Inc. Systems and methods for capturing carbon dioxide in exhaust gas
EP4130205A4 (en) * 2020-03-26 2024-01-17 Hitachi Ltd Fuel production device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222965B1 (en) * 2020-10-16 2021-03-04 한국해양과학기술원 System and method for capturing and liquefying exhaust co2 from lng fuelled ship

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069005A (en) * 2003-08-21 2005-03-17 Tokyo Gas Co Ltd Internal combustion engine and method for controlling combustion
JP2010173985A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Method and facility for manufacturing hydrocarbon fuel
JP2010533784A (en) * 2007-07-13 2010-10-28 ユニバーシティ オブ サザン カリフォルニア Electrolysis of carbon dioxide to carbon monoxide and hydrogen in aqueous media for methanol production
JP2010275976A (en) * 2009-05-29 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
JP2011503523A (en) * 2007-07-09 2011-01-27 ルノー・エス・アー・エス Determination of fuel content in heat engine lubricating oil
JP2014037798A (en) * 2012-08-15 2014-02-27 Ulvac-Riko Inc Waste heat power generation system
JP2015015429A (en) * 2013-07-08 2015-01-22 株式会社ニューフレアテクノロジー Vapor phase growth apparatus and vapor phase growth method
JP2015117312A (en) * 2013-12-18 2015-06-25 三菱化学株式会社 Method for producing gas turbine fuel
JP2015143161A (en) * 2014-01-31 2015-08-06 株式会社Kri hydrogen production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069005A (en) * 2003-08-21 2005-03-17 Tokyo Gas Co Ltd Internal combustion engine and method for controlling combustion
JP2011503523A (en) * 2007-07-09 2011-01-27 ルノー・エス・アー・エス Determination of fuel content in heat engine lubricating oil
JP2010533784A (en) * 2007-07-13 2010-10-28 ユニバーシティ オブ サザン カリフォルニア Electrolysis of carbon dioxide to carbon monoxide and hydrogen in aqueous media for methanol production
JP2010173985A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Method and facility for manufacturing hydrocarbon fuel
JP2010275976A (en) * 2009-05-29 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
JP2014037798A (en) * 2012-08-15 2014-02-27 Ulvac-Riko Inc Waste heat power generation system
JP2015015429A (en) * 2013-07-08 2015-01-22 株式会社ニューフレアテクノロジー Vapor phase growth apparatus and vapor phase growth method
JP2015117312A (en) * 2013-12-18 2015-06-25 三菱化学株式会社 Method for producing gas turbine fuel
JP2015143161A (en) * 2014-01-31 2015-08-06 株式会社Kri hydrogen production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130205A4 (en) * 2020-03-26 2024-01-17 Hitachi Ltd Fuel production device
US11813562B2 (en) 2022-02-01 2023-11-14 Halliburton Energy Services, Inc. Systems and methods for capturing carbon dioxide in exhaust gas

Also Published As

Publication number Publication date
JP2018204433A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6261759B2 (en) CO2 recovery device for internal combustion engine
JP5346693B2 (en) Fuel cell system using ammonia as fuel
CN1938399B (en) Converting natural gas to longer-chain hydrocarbons
JP5373410B2 (en) Ammonia synthesis method
CN1934225B (en) Process for natural gas to form longer-chain hydrocarbons
CN1212965C (en) Method for producing hydrogen by partial oxidation of hydrocarbons
JP2009179591A (en) Method for producing methanol
Prigent On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques
WO2017051610A1 (en) Internal combustion engine
TW201518495A (en) Manufacturing device and manufacturing method for hydrogen and synthetic natural gas
JP2003007321A (en) Direct reforming combined system of hybrid fuel cell using low-grade hydrocarbon
JP2018025375A (en) Constitution method for engine burning hydrogen and oxygen
KR102153760B1 (en) Ship
WO2017183388A1 (en) Internal combustion engine
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
TW201333181A (en) Gas-to-liquid technology
JP2010235736A (en) System for producing synthetic fuel
JP2021195316A (en) Co2 methanation reaction device having co selective oxidation catalyst and removal method of co in gas
KR20170080824A (en) Ship
JP2009263199A (en) Carbon monoxide gas generation apparatus and method
JP4187086B2 (en) Methanol reforming catalyst and apparatus and fuel cell power generator
WO2011028133A1 (en) Method for producing synthesis gas from natural gas using a promoter and ceria in the form ce203
KR20170076946A (en) Ship
JP2006297194A (en) Fuel reforming catalyst
KR20170080819A (en) Ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP