JP5346693B2 - Fuel cell system using ammonia as fuel - Google Patents

Fuel cell system using ammonia as fuel Download PDF

Info

Publication number
JP5346693B2
JP5346693B2 JP2009133294A JP2009133294A JP5346693B2 JP 5346693 B2 JP5346693 B2 JP 5346693B2 JP 2009133294 A JP2009133294 A JP 2009133294A JP 2009133294 A JP2009133294 A JP 2009133294A JP 5346693 B2 JP5346693 B2 JP 5346693B2
Authority
JP
Japan
Prior art keywords
ammonia
fuel cell
fuel
zone
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009133294A
Other languages
Japanese (ja)
Other versions
JP2010282755A (en
Inventor
進 日数谷
晃 谷口
貞夫 荒木
匠磨 森
近 稲住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009133294A priority Critical patent/JP5346693B2/en
Publication of JP2010282755A publication Critical patent/JP2010282755A/en
Application granted granted Critical
Publication of JP5346693B2 publication Critical patent/JP5346693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system using ammonia for fuel, solving a problem of degradation of PEM due to non-reacting ammonia, and without the need of thermal energy supply for ammonia decomposition reaction and for vaporizing liquid ammonia. <P>SOLUTION: The fuel cell system using ammonia for fuel includes an ammonia decomposition device 1 decomposing ammonia into hydrogen and nitrogen, and a fuel cell 2 extracting power with hydrogen generated at the decomposition device as fuel. The ammonia decomposition device 1 includes: an ammonia oxidation band 4 in a circulating-type reactor 3; and an ammonia decomposition band 5 at a downstream side of the band 4. The fuel cell 2 is an anion exchange membrane-type fuel cell. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、アンモニアを燃料に用いる燃料電池システムに関し、より詳しくは、一つの流通型反応器内に、アンモニア酸化帯域と、同帯域の下流側においてアンモニアを分解して水素を製造するアンモニア分解帯域とが設置されてなる水素製造装置を具備した燃料電池システムに関する。   The present invention relates to a fuel cell system using ammonia as a fuel. More specifically, the present invention relates to an ammonia oxidation zone and an ammonia decomposition zone for producing hydrogen by decomposing ammonia at the downstream side of the zone in one flow reactor. The present invention relates to a fuel cell system equipped with a hydrogen production apparatus.

本明細書および特許請求の範囲において、「上流」および「下流」とは燃料電池システムにおけるガスの流れ方向を基準とする。   In the present specification and claims, “upstream” and “downstream” are based on the direction of gas flow in the fuel cell system.

自動車用固体高分子型燃料電池の燃料として水素が用いられているが、一回の燃料補給による走行距離を500km以上にするためには、水素を70MPaの圧力容器に充填する必要がある。そのためには、水素を供給するための水素ステーションを全国にくまなく設置する必要があり、さらに圧力容器にもコストがかかるので、燃料電池車の普及を阻害している原因の一つとなっている。   Hydrogen is used as the fuel for the polymer electrolyte fuel cell for automobiles, but in order to make the running distance by one refueling 500 km or more, it is necessary to fill the pressure vessel of 70 MPa with hydrogen. To that end, it is necessary to install hydrogen stations throughout the country to supply hydrogen, and the pressure vessel is also costly, which is one of the causes that hinders the spread of fuel cell vehicles. .

アンモニアは分解することで水素を生じることができ、また、1MPa以下の圧力で液化するので輸送・貯蔵に優れており、水素源として好ましい物質である。ただし、アンモニア分解より得られるガスには微量であるが未反応のアンモニアが含まれている。プロトン交換膜(PEM)型燃料電池に使用されているPEMはアンモニアにより劣化することが知られており、アンモニア分解で得られた水素を燃料として使用する場合は未反応アンモニアを除去する必要があり、システムの大型化を招き、アンモニア除去用の吸着剤の定期的な交換等、煩雑な操作を要する。   Ammonia can be decomposed to generate hydrogen, and is liquefied at a pressure of 1 MPa or less, so that it is excellent in transportation and storage, and is a preferable substance as a hydrogen source. However, the gas obtained by ammonia decomposition contains a small amount of unreacted ammonia. PEM used in proton exchange membrane (PEM) type fuel cells is known to be deteriorated by ammonia, and it is necessary to remove unreacted ammonia when using hydrogen obtained by ammonia decomposition as fuel. Therefore, the system is enlarged, and complicated operations such as periodic replacement of the adsorbent for removing ammonia are required.

また、アンモニア分解反応は吸熱反応であるため、ほぼ100%の分解率を得るには吸熱分に相当する熱エネルギーを供給する必要がある。さらに、燃料であるアンモニアは液体アンモニアで貯蔵されているため、これを気化する際にも熱エネルギーが必要である。このような点で外部熱源が少ない燃料電池自動車への、アンモニアを燃料に用いる燃料電池システムの適用は困難である。   Further, since the ammonia decomposition reaction is an endothermic reaction, it is necessary to supply thermal energy corresponding to the endothermic component in order to obtain a decomposition rate of almost 100%. Furthermore, since ammonia, which is a fuel, is stored as liquid ammonia, thermal energy is also required when vaporizing it. In this respect, it is difficult to apply a fuel cell system using ammonia as a fuel to a fuel cell vehicle having a small number of external heat sources.

アンモニアを燃料に用いる燃料電池システムとしては、特許文献1に、アンモニアを主成分とする燃料を分解反応器内で分解させることにより水素を発生させ、その発生水素を分解反応器内に具備した水素分離膜を通して水素を取り出し、この精製水素を燃料電池の燃料水素として用いるようにした燃料電池用水素供給システムが提案されている。また、特許文献2には、アンモニアを窒素と水素とに分解して燃料電池に供給する分解器と、燃料電池からの排ガスを燃焼させる燃焼器と、該燃焼器に燃焼用空気を供給する空気供給手段とを具備した燃料電池用水素製造装置が提案されている。しかし、これらはいずれも、上述した諸問題を解決できていない。   As a fuel cell system using ammonia as a fuel, Patent Document 1 discloses that hydrogen is generated by decomposing a fuel mainly composed of ammonia in a cracking reactor, and the generated hydrogen is provided in the cracking reactor. A hydrogen supply system for a fuel cell has been proposed in which hydrogen is taken out through a separation membrane and this purified hydrogen is used as fuel hydrogen for the fuel cell. Patent Document 2 discloses a decomposer that decomposes ammonia into nitrogen and hydrogen and supplies the fuel cell, a combustor that combusts exhaust gas from the fuel cell, and air that supplies combustion air to the combustor. A hydrogen production apparatus for a fuel cell having a supply means has been proposed. However, none of these have solved the problems described above.

特開平08-078039号公報Japanese Unexamined Patent Publication No. 08-078039 特開2003-040602号公報Japanese Patent Laid-Open No. 2003-040602

本発明は、上記実情に鑑み、未反応のアンモニアによるPEMの劣化の問題を解決し、アンモニア分解反応への熱エネルギー供給、および液体アンモニアの気化のための熱エネルギー供給を必要としない、アンモニアを燃料に用いる燃料電池システムを提供することを課題とする。   In view of the above circumstances, the present invention solves the problem of degradation of PEM due to unreacted ammonia, and does not require supply of thermal energy for ammonia decomposition reaction and supply of thermal energy for vaporization of liquid ammonia. It is an object of the present invention to provide a fuel cell system used for fuel.

請求項1に係る発明は、アンモニアを水素と窒素に分解するアンモニア分解装置と、同分解装置で生じた水素を燃料として電力を取り出す燃料電池とを具備し、該アンモニア分解装置は、一つの流通型反応器内に、アンモニア酸化帯域と、同帯域の下流側にアンモニア分解帯域とが設置されてなり、該燃料電池はアニオン交換膜型燃料電池であることを特徴とする、アンモニアを燃料に用いる燃料電池システムである。   The invention according to claim 1 comprises an ammonia decomposing apparatus for decomposing ammonia into hydrogen and nitrogen, and a fuel cell for taking out electric power using hydrogen generated in the decomposing apparatus as a fuel, and the ammonia decomposing apparatus has one circulation. An ammonia oxidation zone and an ammonia decomposition zone on the downstream side of the zone, and the fuel cell is an anion exchange membrane type fuel cell. It is a fuel cell system.

請求項2に係る発明は、アンモニア分解装置と燃料電池を繋ぐガス流路に、同燃料電池のアノードガス温度を適温に制御する熱交換器が設置されてなることを特徴とする、請求項1記載の燃料電池システムである。   The invention according to claim 2 is characterized in that a heat exchanger for controlling the anode gas temperature of the fuel cell to an appropriate temperature is installed in a gas flow path connecting the ammonia decomposition apparatus and the fuel cell. The fuel cell system described.

請求項3に係る発明は、同燃料電池の下流に、電池オフガスを燃焼する燃焼器が設置されてなる、請求項1または2記載の燃料電池システムである。   The invention according to claim 3 is the fuel cell system according to claim 1 or 2, wherein a combustor for burning the cell off-gas is installed downstream of the fuel cell.

請求項4に係る発明は、該燃焼器の下流に、燃焼廃熱を回収して液体アンモニアの気化に供する熱交換器が設置されてなる、請求項1から3のいずれかに記載の燃料電池システムである。   The invention according to claim 4 is the fuel cell according to any one of claims 1 to 3, wherein a heat exchanger for recovering combustion waste heat and vaporizing liquid ammonia is installed downstream of the combustor. System.

本発明において、アンモニア分解装置は、一つの流通型反応器内に、アンモニア酸化触媒の存在下にアンモニア酸化反応を行うアンモニア酸化帯域と、これの下流側にある、アンモニア分解触媒の存在下にアンモニアを分解して水素を製造するアンモニア分解帯域とが設置されて構成されている。   In the present invention, the ammonia decomposing apparatus comprises an ammonia oxidation zone for performing an ammonia oxidation reaction in the presence of an ammonia oxidation catalyst, and an ammonia in the presence of an ammonia decomposition catalyst on the downstream side in one flow reactor. And an ammonia decomposition zone for producing hydrogen by decomposing hydrogen.

アンモニア酸化触媒は、Pt/Al2O3などの公知のものであって良いが、好ましくは、酸化還元可能な金属酸化物からなる担体に触媒活性金属が担持されてなるものである。酸化還元可能な金属酸化物とは、酸化状態と還元状態を可逆的に変換しうる金属をいう。アンモニア酸化触媒の担体を構成する金属酸化物は、複合酸化物であってもよい。酸化還元可能な金属酸化物の好ましい例は、酸化セリウム、酸化ランタン、酸化サマリウムなどの希土類金属酸化物である。酸化還元可能な金属酸化物は、希土類金属と、マグネシウム、チタン、ジルコニウム、イットリウム、アルミニウム、ケイ素、コバルト、鉄およびガリウムからなる群から選ばれる少なくとも1種の金属との複合酸化物であってもよい。担体に担持される触媒活性金属は、好ましくは、ルテニウム、白金、ロジウム、パラジウム、鉄、コバルト、ニッケルなどの第VIII族金属、スズ、銅、銀、マンガン、クロムおよびバナジウムからなる群から選ばれる少なくとも一種の金属である。アンモニア酸化触媒は、好ましくは、アンモニア酸化帯域への充填前または充填後に、水素気流中で、200℃以上、好ましくは200〜700℃、特に好ましくは200〜600℃で加熱処理し、担体を構成する金属酸化物の一部または全部を還元した後、アンモニア酸化反応に供される。 The ammonia oxidation catalyst may be a known catalyst such as Pt / Al 2 O 3 , but is preferably one in which a catalytically active metal is supported on a support made of a metal oxide capable of oxidation and reduction. The metal oxide capable of redox refers to a metal that can reversibly convert an oxidation state and a reduction state. The metal oxide constituting the carrier of the ammonia oxidation catalyst may be a complex oxide. Preferable examples of the metal oxide capable of redox are rare earth metal oxides such as cerium oxide, lanthanum oxide, and samarium oxide. The metal oxide capable of redox may be a composite oxide of a rare earth metal and at least one metal selected from the group consisting of magnesium, titanium, zirconium, yttrium, aluminum, silicon, cobalt, iron and gallium. Good. The catalytically active metal supported on the support is preferably selected from the group consisting of Group VIII metals such as ruthenium, platinum, rhodium, palladium, iron, cobalt, nickel, tin, copper, silver, manganese, chromium and vanadium. At least one kind of metal. The ammonia oxidation catalyst is preferably heat-treated at 200 ° C. or higher, preferably 200 to 700 ° C., particularly preferably 200 to 600 ° C. in a hydrogen stream before or after filling the ammonia oxidation zone to form a carrier. After a part or all of the metal oxide is reduced, it is subjected to an ammonia oxidation reaction.

一方、好ましいアンモニア分解触媒はルテニウム系触媒である。アンモニア分解触媒はアンモニア分解帯域における上流側に充填された高温分解触媒と下流側に充填された低温分解触媒とからなるものであってもよい。高温分解触媒としては、作動温度が好ましくは550℃以上であるもの、例えばニッケル系触媒が好ましく、低温分解触媒としては、作動温度が好ましくは400℃以上であるもの、例えばルテニウム系触媒が好ましい。   On the other hand, a preferred ammonia decomposition catalyst is a ruthenium-based catalyst. The ammonia decomposition catalyst may be composed of a high temperature decomposition catalyst packed upstream in the ammonia decomposition zone and a low temperature decomposition catalyst packed downstream. The high temperature decomposition catalyst preferably has an operating temperature of 550 ° C. or higher, for example, a nickel catalyst, and the low temperature decomposition catalyst preferably has an operating temperature of 400 ° C. or higher, for example, a ruthenium catalyst.

アンモニア酸化帯域において、還元状態の金属酸化物からなる担体を含むアンモニア酸化触媒の存在下に、常温で、アンモニアと空気を供給して接触させる場合は、まず還元状態にある担体が酸素と反応することで酸化熱が発生し、瞬時に触媒層温度が上昇する。一旦、触媒層温度がアンモニアと酸素が反応する温度(約200℃)まで上昇すると、その後は自立的に、下記式(II)に従ってアンモニア酸化反応が進行する。この発熱反応(II)で生じた熱を、下記式(I)に従ってアンモニア分解触媒の存在下にアンモニアを分解するアンモニア分解帯域に供給し、水素を製造する。   In the ammonia oxidation zone, when ammonia and air are supplied and contacted at normal temperature in the presence of an ammonia oxidation catalyst containing a carrier made of a reduced metal oxide, the reduced carrier first reacts with oxygen. As a result, heat of oxidation is generated, and the temperature of the catalyst layer rises instantaneously. Once the catalyst layer temperature rises to a temperature at which ammonia and oxygen react (about 200 ° C.), the ammonia oxidation reaction proceeds autonomously according to the following formula (II) thereafter. The heat generated in the exothermic reaction (II) is supplied to an ammonia decomposition zone for decomposing ammonia in the presence of an ammonia decomposition catalyst according to the following formula (I) to produce hydrogen.

アンモニア分解触媒の存在下にアンモニアを分解して水素を製造するアンモニア分解帯域では、所定の反応温度で下記式(I)の反応を進行させる必要がある。   In the ammonia decomposition zone where hydrogen is produced by decomposing ammonia in the presence of an ammonia decomposition catalyst, it is necessary to proceed the reaction of the following formula (I) at a predetermined reaction temperature.

2NH3 → 3H2 + N2 (吸熱反応)
・・・(I)
式(I)の反応はルテニウム系触媒の存在下に反応温度400℃以上で進行させることが可能であるが、この反応は吸熱反応であるため、安定したアンモニア分解率を得るためには反応系に熱を与える必要がある。
2NH 3 → 3H 2 + N 2 (endothermic reaction)
... (I)
The reaction of formula (I) can proceed at a reaction temperature of 400 ° C. or higher in the presence of a ruthenium-based catalyst. However, since this reaction is an endothermic reaction, the reaction system is used to obtain a stable ammonia decomposition rate. It is necessary to give heat to.

上流側のアンモニア酸化帯域で発生した熱を下流側のアンモニア分解帯域に用いることで、下記式(II)に示されるように、アンモニアと酸素との反応により熱を発生させ、この熱を利用することができる。   By using the heat generated in the upstream ammonia oxidation zone in the downstream ammonia decomposition zone, as shown in the following formula (II), heat is generated by the reaction of ammonia and oxygen, and this heat is used. be able to.

NH3 + 3/4O2 → 1/2N2 + 3/2H2O (発熱反応)
・・・(II)
すなわち、同一反応器内で、まず、アンモニアガスと空気からなる原料ガスをアンモニア酸化帯域に供給して、常温で還元状態にある担体と酸素を接触・反応させることにより酸化熱を発生させ、この熱でアンモニア酸化反応(II)を起動させ、この発熱反応(II)で発生する熱をアンモニア分解帯域へ供給することで、アンモニア分解反応(I)に必要な熱を補うことができる。また、アンモニア酸化反応(II)の酸素量を制御することで触媒層温度を制御することができる。例えば、エンジン排ガスの廃熱を熱交換して予熱された供給ガス温度が変動する場合において、安定して水素を製造することが可能となる。
NH 3 + 3 / 4O 2 → 1 / 2N 2 + 3 / 2H 2 O (exothermic reaction)
... (II)
That is, in the same reactor, first, a raw material gas consisting of ammonia gas and air is supplied to the ammonia oxidation zone, and oxygen is generated by contacting and reacting a carrier in a reduced state at room temperature with oxygen. The heat necessary for the ammonia decomposition reaction (I) can be supplemented by starting the ammonia oxidation reaction (II) with heat and supplying the heat generated by the exothermic reaction (II) to the ammonia decomposition zone. Further, the catalyst layer temperature can be controlled by controlling the amount of oxygen in the ammonia oxidation reaction (II). For example, when the supply gas temperature preheated by exchanging waste heat of engine exhaust gas fluctuates, hydrogen can be produced stably.

アニオン交換膜型燃料電池は公知のものであって良く、その交換膜としては、交換基が-H2C-N+-(CH33である炭化水素膜などが好ましい。 The anion exchange membrane fuel cell may be a known one, and the exchange membrane is preferably a hydrocarbon membrane whose exchange group is —H 2 CN + — (CH 3 ) 3 .

燃焼器としては、触媒の存在下に燃焼を行い窒素酸化物の発生を抑制することができる触媒燃焼器が好ましい。このような触媒としてはPt/Al2O3などが好ましい。 As the combustor, a catalytic combustor capable of performing combustion in the presence of a catalyst and suppressing generation of nitrogen oxides is preferable. Such a catalyst is preferably Pt / Al 2 O 3 or the like.

請求項1の発明によれば、アンモニア分解装置は、一つの流通型反応器内に、アンモニア酸化帯域と、同帯域の下流側にアンモニア分解帯域とが設置されて構成されているので、吸熱反応であるアンモニア分解反応と発熱反応であるアンモニア酸化反応を同一反応器で行うことにより、アンモニア分解での吸熱分をアンモニア酸化による発熱で補うことができる上に、このアンモニア分解装置を、自動車用燃料電池のような外部熱源が少ない燃料電池と組合せて使用することができる。   According to the invention of claim 1, since the ammonia decomposition apparatus is configured by installing an ammonia oxidation zone and an ammonia decomposition zone on the downstream side of the zone in one flow reactor, an endothermic reaction is performed. By performing the ammonia decomposition reaction, which is an exothermic reaction, and the ammonia oxidation reaction, which is an exothermic reaction, in the same reactor, the endothermic component of ammonia decomposition can be supplemented by the heat generated by ammonia oxidation. It can be used in combination with a fuel cell such as a battery that has few external heat sources.

また、通常のアンモニア分解装置の場合、装置入口ガス温度は400℃以上を必要とするが、この構成のアンモニア分解装置はアンモニア酸化反応の作動開始温度である200℃から運転することができる利点もあり、さらに装置入口ガス温度に応じてアンモニア酸化反応の割合を調節することができ、効率的なアンモニア分解が可能である。   Further, in the case of a normal ammonia decomposition apparatus, the apparatus inlet gas temperature needs to be 400 ° C. or higher, but the ammonia decomposition apparatus of this configuration has an advantage that it can be operated from 200 ° C. which is the operation start temperature of the ammonia oxidation reaction. Furthermore, the rate of the ammonia oxidation reaction can be adjusted according to the gas temperature at the inlet of the apparatus, and efficient ammonia decomposition is possible.

また、燃料電池は、アンモニアのような塩基性物質で劣化する恐れのないアニオン交換膜型燃料電池であるので、アンモニア分解装置から出る、水素を含む分解ガス中に含まれる未反応アンモニアを除去することなく、該分解ガスを燃料電池に導入することができる。   Further, since the fuel cell is an anion exchange membrane fuel cell that is not likely to deteriorate with a basic substance such as ammonia, it removes unreacted ammonia contained in the cracked gas containing hydrogen that exits the ammonia cracking device. The cracked gas can be introduced into the fuel cell without any problem.

請求項2の発明によれば、アンモニア分解装置と燃料電池を繋ぐ流路に設置された少なくとも一つの熱交換器によって、アンモニア分解装置から出る分解ガスを冷却し、燃料電池に供給されるアノードガスの温度を、熱交換器の冷却媒体の流量調節で適温に制御することができる。   According to the invention of claim 2, the anode gas supplied to the fuel cell is cooled by the cracked gas coming out of the ammonia cracking device by at least one heat exchanger installed in the flow path connecting the ammonia cracking device and the fuel cell. Can be controlled to an appropriate temperature by adjusting the flow rate of the cooling medium of the heat exchanger.

請求項3の発明によれば、燃料電池の下流に設置された燃焼器により電池オフガスを燃焼することで熱を得、この熱エネルギーを液体アンモニアの気化および所定温度までの加熱に用いることができる。この燃焼器は、燃料電池のオフガス中に含まれる未反応アンモニアを無害化する役目も果たす。   According to the invention of claim 3, heat is obtained by burning the cell off gas by the combustor installed downstream of the fuel cell, and this thermal energy can be used for vaporization of liquid ammonia and heating to a predetermined temperature. . This combustor also serves to detoxify unreacted ammonia contained in the off-gas of the fuel cell.

請求項4の発明によれば、該燃焼器の下流に設置された熱交換器で、燃焼廃熱を効率的に回収して液体アンモニアの気化および所定温度までの加熱に用いることができる。   According to the fourth aspect of the present invention, the waste heat of combustion can be efficiently recovered and used for vaporization of liquid ammonia and heating to a predetermined temperature by the heat exchanger installed downstream of the combustor.

実施例の燃料電池システムを示すフローシートである。It is a flow sheet which shows the fuel cell system of an Example.

つぎに、本発明を具体的に説明するために、本発明の実施例を挙げる。   Next, in order to describe the present invention specifically, examples of the present invention will be given.

実施例1
図1において、アンモニアを燃料に用いる燃料電池システムは、アンモニアを水素と窒素に分解するアンモニア分解装置(1)と、同分解装置(1)で生じた水素を燃料として電力を取り出す燃料電池(2)とを具備する。アンモニア分解装置(1)は、一つの流通型反応器(3)内に、アンモニア酸化触媒の存在下にアンモニア酸化反応を行うアンモニア酸化帯域(4)と、これの下流側にある、アンモニア分解触媒の存在下にアンモニアを分解して水素を製造するアンモニア分解帯域(5)とが設置されて構成されている。アンモニア酸化帯域(4)にアンモニア酸化触媒として担体である酸化セリウムに白金を担持してなる触媒が充填され、アンモニア分解帯域(5)にはアンモニア分解触媒として、ルテニウム系触媒(アルミナにルテニウム5重量%を担持、平均粒径1mmのペレット)が充填されている。
Example 1
In FIG. 1, a fuel cell system using ammonia as a fuel includes an ammonia decomposing apparatus (1) for decomposing ammonia into hydrogen and nitrogen, and a fuel cell (2) for extracting electric power using hydrogen generated in the decomposing apparatus (1) as fuel. ). The ammonia decomposition device (1) is composed of an ammonia oxidation zone (4) for performing an ammonia oxidation reaction in the presence of an ammonia oxidation catalyst in one flow reactor (3), and an ammonia decomposition catalyst on the downstream side thereof. And an ammonia decomposition zone (5) for producing hydrogen by decomposing ammonia in the presence of water. The ammonia oxidation zone (4) is filled with a catalyst comprising platinum supported on cerium oxide as a carrier as an ammonia oxidation catalyst. The ammonia decomposition zone (5) is a ruthenium catalyst (ruthenium 5 wt. % Pellets with an average particle size of 1 mm).

燃料電池(2)はアニオン交換膜を用いたアルカリ型燃料電池である。アニオン交換膜は、交換基が-H2C-N+-(CH33である炭化水素からなるものであり、これは硫酸等の酸性物質では劣化するが、アンモニア等の塩基性物質では劣化しない物質であるので、燃料電池(2)に供給されるアンモニア分解ガス中の未反応アンモニアを除去する必要がない。 The fuel cell (2) is an alkaline fuel cell using an anion exchange membrane. Anion exchange membranes are made of hydrocarbons whose exchange group is -H 2 CN + -(CH 3 ) 3 , which deteriorates with acidic substances such as sulfuric acid but does not deteriorate with basic substances such as ammonia. Since it is a substance, it is not necessary to remove unreacted ammonia in the ammonia decomposition gas supplied to the fuel cell (2).

アンモニア分解装置(1)と燃料電池(2)をつなぐガス流路に、燃料電池(2)のアノードガス温度を適温に制御する下流側熱交換器(6)が設置され、下流側熱交換器(6)の上流に熱回収用の上流側熱交換器(7)が設置されている。   A downstream heat exchanger (6) for controlling the anode gas temperature of the fuel cell (2) to an appropriate temperature is installed in the gas flow path connecting the ammonia decomposition device (1) and the fuel cell (2), and the downstream heat exchanger An upstream heat exchanger (7) for heat recovery is installed upstream of (6).

燃料電池(2)の下流に上流側熱交換器(7)を経て、電池オフガスを燃焼する触媒燃焼器(8)が設置され、触媒燃焼器(8)の下流に、燃焼廃熱を回収して液体アンモニアの気化および加熱に供する廃熱回収熱交換器(9)が設置されている。触媒燃焼器(8)は、内部に触媒Pt/Al2O3を充填し、燃焼に伴って窒素酸化物が発生するのを抑制したものである。 A catalytic combustor (8) that burns battery off-gas is installed downstream of the fuel cell (2) via the upstream heat exchanger (7), and waste combustion heat is recovered downstream of the catalytic combustor (8). A waste heat recovery heat exchanger (9) for vaporization and heating of liquid ammonia is installed. The catalytic combustor (8) is filled with catalyst Pt / Al 2 O 3 to suppress the generation of nitrogen oxides accompanying combustion.

上記構成において、まず、アンモニア酸化帯域(4)を水素気流中で600℃で2時間加熱することで、アンモニア酸化触媒を還元処理した。ついで、タンク(10)から液体アンモニアを廃熱回収熱交換器(9)に通してここで気化しさらに618℃まで加熱した。気化および加熱されたアンモニアに空気を添加した後、アンモニアをアンモニア分解装置(1)のアンモニア酸化帯域(4)に供給した。アンモニア供給量は100Nm/h、アンモニア分解装置(1)におけるO/NH比は0.09とした。 In the above configuration, first, the ammonia oxidation zone (4) was heated in a hydrogen stream at 600 ° C. for 2 hours to reduce the ammonia oxidation catalyst. Next, liquid ammonia from the tank (10) was passed through a waste heat recovery heat exchanger (9) where it was vaporized and further heated to 618 ° C. After adding air to the vaporized and heated ammonia, the ammonia was fed to the ammonia oxidation zone (4) of the ammonia cracker (1). The ammonia supply amount was 100 Nm 3 / h, and the O 2 / NH 3 ratio in the ammonia decomposition apparatus (1) was 0.09.

アンモニア分解装置(1)から出た、上記分解反応(I)で生じた水素を含む分解ガスを、上流側熱交換器(7)および下流側熱交換器(6)を経てアニオン交換膜型燃料電池(2)へ供給した。同燃料電池(2)における燃料利用率を80%とした。燃料電池(2)およびその電池オフガスにそれぞれ空気を供給した。燃料電池(2)の電池オフガスと空気の混合ガスを上流側熱交換器(7)に通して、アンモニア分解装置(1)から出た分解ガスとの熱交換により、空気を含む電池オフガスを予備加熱すると共に、同分解ガスを冷却した。アンモニア分解装置(1)から出た分解ガスは次いで下流側熱交換器(6)に通して冷却した後、燃料電池(2)に導入した。予備加熱された空気含有電池オフガスを次いで触媒燃焼器(8)に導いて、ここで電池オフガスを燃焼させた。触媒燃焼器(8)の入口ではガス温度は200℃程度必要であるが、燃料電池(2)から出た電池オフガス温度は50℃程度であるため、この電池オフガスを上流側熱交換器(7)に通してここでアンモニア分解装置(1)から出た分解ガスと熱交換することにより200℃程度まで昇温した。触媒燃焼器(8)の空気量を理論量の2倍とした。   An anion exchange membrane fuel from the ammonia cracking device (1) containing the cracked gas containing hydrogen generated in the cracking reaction (I) through the upstream heat exchanger (7) and the downstream heat exchanger (6) The battery (2) was supplied. The fuel utilization rate in the fuel cell (2) was set to 80%. Air was supplied to the fuel cell (2) and the cell off-gas, respectively. The mixed gas of the battery off gas and air of the fuel cell (2) is passed through the upstream heat exchanger (7), and the battery off gas containing air is reserved by heat exchange with the cracked gas emitted from the ammonia decomposition device (1). While being heated, the cracked gas was cooled. The cracked gas emitted from the ammonia cracking device (1) was then passed through the downstream heat exchanger (6), cooled, and then introduced into the fuel cell (2). The preheated air-containing battery off gas was then directed to the catalytic combustor (8) where the battery off gas was combusted. At the inlet of the catalytic combustor (8), a gas temperature of about 200 ° C. is necessary, but since the battery off-gas temperature from the fuel cell (2) is about 50 ° C., this battery off-gas is transferred to the upstream heat exchanger (7 The temperature was raised to about 200 ° C. by exchanging heat with the cracked gas from the ammonia cracking device (1). The amount of air in the catalytic combustor (8) was doubled from the theoretical amount.

図1のフロー中の流路(a)から(m)におけるプロセス計算を行った。この結果を表1に示す。   The process calculation in the flow paths (a) to (m) in the flow of FIG. 1 was performed. The results are shown in Table 1.

アルカリ型燃料電池の理論発電効率を83%とすると、燃料電池システム全体の発電効率(補機類の動力は除く)は67.6%となる。

Figure 0005346693
If the theoretical power generation efficiency of the alkaline fuel cell is 83%, the power generation efficiency of the entire fuel cell system (excluding the power of auxiliary equipment) is 67.6%.
Figure 0005346693

(1) アンモニア分解装置
(2) 燃料電池
(3) 流通型反応器
(4) アンモニア酸化帯域
(5) アンモニア分解帯域
(6) 下流側熱交換器
(7) 上流側熱交換器
(8) 触媒燃焼器
(9) 廃熱回収熱交換器
(10) タンク


(1) Ammonia decomposition equipment
(2) Fuel cell
(3) Flow reactor
(4) Ammonia oxidation zone
(5) Ammonia decomposition zone
(6) Downstream heat exchanger
(7) Upstream heat exchanger
(8) Catalytic combustor
(9) Waste heat recovery heat exchanger
(10) Tank


Claims (5)

アンモニアを水素と窒素に分解するアンモニア分解装置と、同分解装置で生じた水素を燃料として電力を取り出す燃料電池とを具備し、該アンモニア分解装置は、一つの流通型反応器内に、アンモニア酸化帯域と、同帯域の下流側にアンモニア分解帯域とが設置されてなり、該燃料電池はアニオン交換膜型燃料電池であることを特徴とする、アンモニアを燃料に用いる燃料電池システム。 An ammonia decomposing apparatus for decomposing ammonia into hydrogen and nitrogen, and a fuel cell for extracting electric power using the hydrogen generated in the decomposing apparatus as a fuel. The ammonia decomposing apparatus contains ammonia oxidizing agent in one flow reactor. A fuel cell system using ammonia as a fuel, characterized in that a zone and an ammonia decomposition zone are installed downstream of the zone and the fuel cell is an anion exchange membrane fuel cell. アンモニア分解装置と燃料電池を繋ぐガス流路に、同燃料電池のアノードガス温度を適温に制御する熱交換器が設置されてなることを特徴とする、請求項1記載の燃料電池システム。 The fuel cell system according to claim 1, wherein a heat exchanger for controlling the anode gas temperature of the fuel cell to an appropriate temperature is installed in a gas flow path connecting the ammonia decomposition device and the fuel cell. 同燃料電池の下流に、電池オフガスを燃焼する燃焼器が設置されてなる、請求項1または2記載の燃料電池システム。 The fuel cell system according to claim 1 or 2, wherein a combustor for burning battery off-gas is installed downstream of the fuel cell. 該燃焼器の下流に、燃焼廃熱を回収して液体アンモニアの気化に供する熱交換器が設置されてなる、請求項3記載の燃料電池システム。 The fuel cell system according to claim 3 , wherein a heat exchanger for recovering combustion waste heat and vaporizing liquid ammonia is installed downstream of the combustor. アンモニア酸化帯域は、還元状態の金属酸化物からなる担体を含むアンモニア酸化触媒の存在下に、常温で、アンモニアと空気を供給して接触させることで担体の酸化により酸化熱が発生し、触媒層温度が上昇する帯域である、請求項1から4のいずれかに記載の燃料電池システム。
The ammonia oxidation zone generates heat of oxidation due to oxidation of the carrier by supplying ammonia and air at room temperature in the presence of an ammonia oxidation catalyst containing a carrier made of a metal oxide in a reduced state. The fuel cell system according to any one of claims 1 to 4, which is a zone in which the temperature rises.
JP2009133294A 2009-06-02 2009-06-02 Fuel cell system using ammonia as fuel Expired - Fee Related JP5346693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133294A JP5346693B2 (en) 2009-06-02 2009-06-02 Fuel cell system using ammonia as fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133294A JP5346693B2 (en) 2009-06-02 2009-06-02 Fuel cell system using ammonia as fuel

Publications (2)

Publication Number Publication Date
JP2010282755A JP2010282755A (en) 2010-12-16
JP5346693B2 true JP5346693B2 (en) 2013-11-20

Family

ID=43539343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133294A Expired - Fee Related JP5346693B2 (en) 2009-06-02 2009-06-02 Fuel cell system using ammonia as fuel

Country Status (1)

Country Link
JP (1) JP5346693B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059656A (en) * 2019-11-15 2021-05-25 한국에너지기술연구원 Hydrogen Production Reactor without Carbon Emission
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177855A1 (en) 2011-06-24 2012-12-27 Cellera, Inc. Use of ammonia as source of hydrogen fuel and as a getter for air-co2 in alkaline membrane fuel cells
JP5812513B2 (en) * 2011-10-03 2015-11-17 住友電気工業株式会社 Gas decomposition power generation system
KR101340492B1 (en) 2012-09-13 2013-12-11 한국에너지기술연구원 Ammonia based reversible fuel cell system and method
JP6106457B2 (en) * 2013-02-26 2017-03-29 ダイハツ工業株式会社 Fuel cell system
WO2015180728A2 (en) * 2014-05-27 2015-12-03 Danmarks Tekniske Universitet Catalysts for selective oxidation of ammonia in a gas containing hydrogen
WO2016114214A1 (en) * 2015-01-13 2016-07-21 株式会社豊田自動織機 Fuel cell system, power generation method, and power generation device
JP6439190B2 (en) * 2015-01-13 2018-12-19 株式会社日本触媒 Power generation apparatus using ammonia as fuel and power generation method using the power generation apparatus
JP6706277B2 (en) * 2018-03-23 2020-06-03 三菱重工エンジニアリング株式会社 Ammonia decomposition device
JP2020001939A (en) * 2018-06-25 2020-01-09 株式会社豊田自動織機 Hydrogen production apparatus
CN110277578A (en) * 2019-06-20 2019-09-24 福州大学 A kind of ammonia fuel cell system and electric device
CN110203882B (en) 2019-06-20 2023-07-07 福大紫金氢能科技股份有限公司 Ammonia decomposition device and system and hydrogen production method
CN110295372B (en) * 2019-06-21 2023-09-12 福大紫金氢能科技股份有限公司 Ammonia electrolysis hydrogen production device
KR102219136B1 (en) * 2019-07-11 2021-02-23 한국조선해양 주식회사 Fuel cell system and marine structure having the same
GB2608643A (en) * 2021-07-09 2023-01-11 Reaction Engines Ltd Thermally integrated ammonia fuelled engine
JP7291819B1 (en) 2022-02-08 2023-06-15 株式会社三井E&S AMMONIA SOLID OXIDE FUEL CELL SYSTEM, OPERATING METHOD, AND PROGRAM

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841411B2 (en) * 1989-01-27 1998-12-24 日本鋼管株式会社 How to get hydrogen from ammonia
JP2566316B2 (en) * 1989-04-19 1996-12-25 三菱重工業株式会社 Method and apparatus for decomposing tar and ammonia in flammable gas
JPH10309437A (en) * 1997-05-09 1998-11-24 Hitachi Ltd Ammonia decomposition treatment apparatus
JP2000331693A (en) * 1999-05-19 2000-11-30 Asahi Glass Co Ltd Solid polymer type fuel cell
JP2003040602A (en) * 2001-07-30 2003-02-13 Toyota Central Res & Dev Lab Inc Apparatus for producing hydrogen for fuel cell
JP2005145748A (en) * 2003-11-14 2005-06-09 Tama Tlo Kk Hydrogen production apparatus
JP4963010B2 (en) * 2004-12-24 2012-06-27 ダイハツ工業株式会社 Fuel cell device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210059656A (en) * 2019-11-15 2021-05-25 한국에너지기술연구원 Hydrogen Production Reactor without Carbon Emission
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Also Published As

Publication number Publication date
JP2010282755A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5346693B2 (en) Fuel cell system using ammonia as fuel
JP5272767B2 (en) Hydrogen generator
Juangsa et al. CO2-free power generation employing integrated ammonia decomposition and hydrogen combustion-based combined cycle
KR101355238B1 (en) Solid oxide fuel cell system and method of operating the same
JP3756565B2 (en) Method for removing CO in hydrogen gas
US11795055B1 (en) Systems and methods for processing ammonia
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP2005203266A (en) Hydrogen production method and hydrogen production system
JP2012046395A (en) Hydrogen generator and fuel cell system
US7160343B2 (en) Systems and methods for carbon monoxide clean-up
JP5098073B2 (en) Energy station
US20060204800A1 (en) Fuel processing system and its shutdown procedure
KR20170080824A (en) Ship
US20050119119A1 (en) Water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
US20240132346A1 (en) Systems and methods for processing ammonia
US11866328B1 (en) Systems and methods for processing ammonia
JP3669672B2 (en) Operation method of hydrogen production equipment
JP2004175966A (en) Method and apparatus for desulfurizing kerosene, fuel cell system and method for operating the same system
JP2001068136A (en) Solid high-polymer fuel cell system and operating method therefor
JP2003331898A (en) Fuel cell system
KR101362209B1 (en) Regeneration method and apparatus for sulfur-poisoned reform catalyst in the fuel processor of fuel cell system
JP2005174783A (en) Solid polymer fuel cell power generating system
JP2004284861A (en) Hydrogen production method and fuel cell system
JP3076910B1 (en) Power generation method
JP2003109638A (en) Sofc fuel recycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5346693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees