JPH10309437A - Ammonia decomposition treatment apparatus - Google Patents

Ammonia decomposition treatment apparatus

Info

Publication number
JPH10309437A
JPH10309437A JP9118982A JP11898297A JPH10309437A JP H10309437 A JPH10309437 A JP H10309437A JP 9118982 A JP9118982 A JP 9118982A JP 11898297 A JP11898297 A JP 11898297A JP H10309437 A JPH10309437 A JP H10309437A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
concentration
catalyst layer
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9118982A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawagoe
博 川越
Toshikatsu Mori
利克 森
Yukio Murai
行男 村井
Akio Tanaka
明雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Ltd
Priority to JP9118982A priority Critical patent/JPH10309437A/en
Publication of JPH10309437A publication Critical patent/JPH10309437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient ammonia decomposition treatment apparatus for ammonia-containing waste gas in the treatment facility in a thermal power plant and the like. SOLUTION: In an ammonia decomposition treatment apparatus to treat a waste gas 1 containing ammonia, oxygen, and steam by two-step catalyst layers 2, 3 installed in a front stage and in a rear stage, a concentration sensor 4 to detect the concentration of nitrogen oxide in the treated gas and an injection means to previously divides and injects the part of the waste gas 1 to catalyst layer 3 in the rear stage are installed in the outlet side of the catalyst layer 3 in the rear stage and a control means 7 to divide and inject waste gas 1 as to keep the concentration of nitrogen oxide at a prescribed concentration by the concentration sensor 4 is also installed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な、アンモニア
含有排ガス中に含まれるアンモニアを処理して窒素ガス
と水に変換し、無害化するアンモニア分解処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel ammonia decomposition treatment apparatus which treats ammonia contained in an ammonia-containing exhaust gas to convert it into nitrogen gas and water and renders it harmless.

【0002】[0002]

【従来の技術】アンモニア含有排ガスとしては、例え
ば、火力発電設備,し尿処理設備,下水処理設備,食品
製造設備,コークス炉ガス製造設備等の排ガスがある。
これらの排ガス中のアンモニアは環境に対して有害物質
であり、また、こうした設備の配管系を腐食するなどの
悪影響を及ぼすため、排ガス中からアンモニアの除去が
研究されている。
2. Description of the Related Art As an ammonia-containing exhaust gas, for example, there are exhaust gases from thermal power generation equipment, human waste treatment equipment, sewage treatment equipment, food production equipment, coke oven gas production equipment, and the like.
Ammonia in these exhaust gases is a harmful substance to the environment and has a bad effect such as corroding the piping system of such equipment. Therefore, studies have been made on the removal of ammonia from the exhaust gases.

【0003】排ガス中のアンモニアを除去するためのシ
ステムとしては、例えば、特開昭54−1978857
号公報に記載されているように、アンモニアストリッピ
ングガス中のアンモニアを触媒により酸化分解する。生
成した窒素酸化物(NO,NO2,N2O)を、残留アン
モニアと共に還元触媒で反応させて、下式で示すように
2とH2Oに変換することが提案されている。
A system for removing ammonia in exhaust gas is disclosed, for example, in Japanese Patent Application Laid-Open No. 54-197857.
As described in the publication, ammonia in an ammonia stripping gas is oxidatively decomposed by a catalyst. It has been proposed that generated nitrogen oxides (NO, NO 2 , N 2 O) are reacted with residual ammonia with a reduction catalyst to convert them into N 2 and H 2 O as shown in the following formula.

【0004】[0004]

【数1】 12NH+13O2 ⇒ 2N2+2NO+2NO2+2N2
O+18HO 4NH3+6O2 ⇒ 2NO+2NO2+6H2O 8NH3+4NO+2NO2+2O2 ⇒ 7N2+12H2
O 8NH3+4NO+4NO2+2N2O+O2 ⇒ 6N2
4N2O+12H2O 上記のように従来用いられてきたアンモニア分解処理方
法は残留アンモニアによりNO,NO2を無害化する
が、N2Oは除去されない。アンモニアとNO,NO2
等モルで反応させる必要がある。従って、これら両者の
濃度比がアンバランスであるとアンモニア(NH3)ま
たはNO,NO2,N2Oが排出されると云う問題があ
る。特に、N2Oは還元触媒で除去されないと云う問題
がある。
## EQU1 ## 12NH + 13O 2 ⇒ 2N 2 + 2NO + 2NO 2 + 2N 2
O + 18HO 4NH 3 + 6O 2 ⇒ 2NO + 2NO 2 + 6H 2 O 8NH 3 + 4NO + 2NO 2 + 2O 2 ⇒ 7N 2 + 12H 2
O 8NH 3 + 4NO + 4NO 2 + 2N 2 O + O 2 ⇒ 6N 2 +
4N 2 O + 12H 2 O As described above, the conventionally used ammonia decomposition treatment method renders NO and NO 2 harmless by residual ammonia, but does not remove N 2 O. It is necessary to react ammonia with NO and NO 2 in equimolar amounts. Therefore, there is a problem that ammonia (NH 3 ) or NO, NO 2 , N 2 O is discharged if the concentration ratio of these two is unbalanced. In particular, there is a problem that N 2 O is not removed by the reduction catalyst.

【0005】[0005]

【発明が解決しようとする課題】上記のように従来のア
ンモニア分解処理方法は、複雑な構造のためにアンモニ
アと窒素酸化物が排出されると云う問題があった。
As described above, the conventional ammonia decomposition treatment method has a problem that ammonia and nitrogen oxides are discharged due to its complicated structure.

【0006】本発明の目的は、上記従来技術の問題点を
解決し、効率よくアンモニアおよび窒素酸化物を無害化
するアンモニア分解処理装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an ammonia decomposition treatment apparatus for efficiently detoxifying ammonia and nitrogen oxides.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の要旨は次のとおりである。
The gist of the present invention to achieve the above object is as follows.

【0008】〔1〕 アンモニア,酸素および水蒸気を
含む排ガスを、前段と後段とからなる二段触媒層で処理
するアンモニア分解処理装置において、後段触媒層出口
に処理ガスの窒素酸化物濃度を検出する濃度センサと、
前記排ガスの一部を予め分割して後段の触媒層に分割注
入する注入手段とを設け、前記濃度センサによる窒素酸
化物濃度が所定の濃度となるよう前記排ガスを分割注入
できる制御手段を設けたアンモニア分解処理装置にあ
る。
[1] In an ammonia decomposition treatment apparatus for treating an exhaust gas containing ammonia, oxygen and water vapor in a two-stage catalyst layer comprising a former stage and a latter stage, the nitrogen oxide concentration of the processing gas is detected at the exit of the latter stage catalyst layer. A concentration sensor;
Injection means for splitting a part of the exhaust gas in advance and splitting and injecting it into the subsequent catalyst layer is provided, and control means capable of splitting and injecting the exhaust gas so that the nitrogen oxide concentration by the concentration sensor becomes a predetermined concentration is provided. Ammonia decomposition treatment equipment.

【0009】〔2〕 前記二段触媒層の前段がアンモニ
ア酸化触媒であり、後段が窒素酸化還元触媒である前記
アンモニア分解処理装置にある。
[2] In the ammonia decomposition treatment apparatus, the former stage of the two-stage catalyst layer is an ammonia oxidation catalyst, and the latter stage is a nitrogen oxidation-reduction catalyst.

【0010】〔3〕 前後段触媒層の触媒がTiおよび
Agと、Fe,Mn,Zn,Mo,V,Wの一種以上を
含む触媒で構成されている前記アンモニア分解処理装置
にある。
[3] In the above ammonia decomposition treatment apparatus, the catalysts of the front and rear catalyst layers are composed of a catalyst containing Ti and Ag and one or more of Fe, Mn, Zn, Mo, V and W.

【0011】〔4〕 前記の前段触媒層の触媒がTiお
よびAgと、Fe,Mn,Zn,Mo,V,Wの一種以
上を含み、前記の後段触媒層の触媒がTiおよびMo,
V,Wの一種以上を含む触媒で構成されている前記アン
モニア分解処理装置にある。
[4] The catalyst of the preceding catalyst layer contains Ti and Ag and one or more of Fe, Mn, Zn, Mo, V and W, and the catalyst of the latter catalyst layer is Ti and Mo,
The ammonia decomposition treatment apparatus is constituted by a catalyst containing at least one of V and W.

【0012】[0012]

【発明の実施の形態】本発明は、100〜30,000
ppmのアンモニアと、酸素,水蒸気を含有する排ガス
を前段と後段とからなる二段触媒層で処理するアンモニ
ア分解処理装置において、排ガスの一部を予め前段触媒
層入口で分割して前段と後段の触媒層の中間に分割注入
し、後段の触媒層出口の窒素酸化物濃度をセンサにより
検出し、これに基づき後段に分割注入する排ガスの注入
量を制御するものである。
DETAILED DESCRIPTION OF THE INVENTION
In an ammonia decomposition treatment apparatus for treating an exhaust gas containing ppm of ammonia, oxygen and water vapor in a two-stage catalyst layer comprising a former stage and a latter stage, a part of the exhaust gas is divided in advance at the entrance of the former stage catalytic layer and divided into the former stage and the latter stage. The injection is divided into the middle of the catalyst layer, and the concentration of nitrogen oxide at the outlet of the catalyst layer at the subsequent stage is detected by a sensor, and the injection amount of the exhaust gas to be split and injected at the subsequent stage is controlled based on the detected concentration.

【0013】本発明の前段触媒層ではTiおよびAg
と、Fe,Mn,Zn,Mo,V,Wの一種以上を含む
アンモニア酸化触媒で処理し、得られた窒素酸化物を後
段のTi,MoおよびVからなる公知の触媒層で還元処
理する。
In the pre-stage catalyst layer of the present invention, Ti and Ag
And an ammonia oxidation catalyst containing one or more of Fe, Mn, Zn, Mo, V, and W, and the resulting nitrogen oxide is reduced by a known catalyst layer comprising Ti, Mo, and V at the subsequent stage.

【0014】前段触媒層では、NH3の酸化分解が進行
して窒素酸化物を生成するが、本発明の前段触媒層では
2Oの生成が少ないのも特徴である。N2Oは後段触媒
層で除去しきれないため、前段触媒層でその発生を抑え
る必要がある。
In the former catalyst layer, NH 3 is oxidized and decomposed to form nitrogen oxides. However, the former catalyst layer of the present invention is also characterized in that the generation of N 2 O is small. Since N 2 O cannot be completely removed in the subsequent catalyst layer, it is necessary to suppress its generation in the former catalyst layer.

【0015】また、前記二段触媒層において、前段およ
び後段の触媒層の触媒がTiおよびAgを含み、Fe,
Mn,Zn,Mo,V,Wの一種以上を含むものでもよ
い。
In the two-stage catalyst layer, the catalysts of the first and second catalyst layers include Ti and Ag, and Fe,
It may include one or more of Mn, Zn, Mo, V, and W.

【0016】本発明のアンモニア処理装置は、火力発電
設備、下水処理設備,し尿処理設備,アミン製造設備,
食品製造設備から排出されるアンモニア含有排ガスを効
率良く処理することができる。なお、アンモニア濃度は
100〜30,000ppmの範囲が好ましい。
The ammonia treatment apparatus according to the present invention includes a thermal power generation facility, a sewage treatment facility, a human waste treatment facility, an amine production facility,
Ammonia-containing exhaust gas discharged from food production equipment can be efficiently treated. The ammonia concentration is preferably in the range of 100 to 30,000 ppm.

【0017】また、前記二段触媒層の触媒は、300〜
600℃で熱処理するだけで極めて容易に触媒活性を回
復することができる。
Further, the catalyst of the two-stage catalyst layer may be 300 to
The catalyst activity can be recovered very easily only by heat treatment at 600 ° C.

【0018】本発明のアンモニア分解処理装置の前段触
媒層に使用される触媒の好ましい態様は、100〜3
0,000ppmのアンモニア,当量以上の酸素,水蒸
気を含有する排ガスを酸化分解する触媒であって、酸化
物担体としてはチタニア,アルミナ,シリカ,ゼオライ
トの一種以上が用いられる。そしてその表面層に形成し
た触媒活性成分はTiおよびAgと、Fe,Zn,M
o,V,Wの一種以上から構成される。
The preferred embodiment of the catalyst used in the first catalyst layer of the ammonia decomposition treatment apparatus of the present invention is 100 to 3
It is a catalyst for oxidatively decomposing exhaust gas containing 0.00000 ppm of ammonia, equivalent amount or more of oxygen, and water vapor. As the oxide carrier, at least one of titania, alumina, silica, and zeolite is used. The catalytically active components formed on the surface layer are Ti and Ag, Fe, Zn, M
o, V, and W.

【0019】次に、アンモニア分解触媒の好ましい態様
は、通常10〜500m2/gの比表面積を有するもの
がよい。なお、比表面積の大きいものほどアンモニア分
解能が増大する傾向がみられる。
Next, a preferred embodiment of the ammonia decomposition catalyst preferably has a specific surface area of usually 10 to 500 m 2 / g. In addition, there is a tendency that as the specific surface area is larger, the ammonia resolution is increased.

【0020】本発明のアンモニア分解処理装置の特徴
は、排ガスを前段触媒層内において酸化分解処理した
後、後段触媒層に導入される。
A feature of the ammonia decomposition treatment apparatus of the present invention is that exhaust gas is oxidatively decomposed in the first catalyst layer and then introduced into the second catalyst layer.

【0021】後段触媒層では、その出口の窒素酸化物濃
度をセンサにより検出し、窒素酸化物濃度に見合った量
より僅かに少ないアンモニア含有排ガス(原料ガス)を
後段の触媒層に分割注入することによって、窒素酸化物
の流出を防止することにある。
In the latter catalyst layer, the nitrogen oxide concentration at the outlet of the latter catalyst layer is detected by a sensor, and an ammonia-containing exhaust gas (raw material gas) slightly smaller than the amount corresponding to the nitrogen oxide concentration is dividedly injected into the latter catalyst layer. To prevent outflow of nitrogen oxides.

【0022】本発明において、前段および後段の触媒層
を異種触媒で組み合わせたものが好ましいが、同種触媒
で前段と後段の触媒層を形成してもよい。
In the present invention, it is preferable that the first and second catalyst layers are combined with different types of catalysts. However, the first and second catalyst layers may be formed of the same type of catalyst.

【0023】排ガスを二段触媒層に接触させる温度は3
00〜600℃、好ましくは350〜500℃である。
この温度範囲外では排ガス中のアンモニアの除去性能並
びに窒素酸化物除去性能が低下するので好ましくない。
The temperature at which the exhaust gas contacts the two-stage catalyst layer is 3
The temperature is from 00 to 600 ° C, preferably from 350 to 500 ° C.
Outside this temperature range, the performance of removing ammonia and the performance of removing nitrogen oxides in the exhaust gas are undesirably reduced.

【0024】排ガスの二段触媒層に接触させるガス空間
速度は、1,000〜100,000h~1の範囲が好まし
い。また、排ガスの気圧は大気圧でよいが、特に限定さ
れない。
The gas hourly space velocity of the exhaust gas in contact with the two-stage catalyst layer is preferably in the range of 1,000 to 100,000 h- 1 . The pressure of the exhaust gas may be atmospheric pressure, but is not particularly limited.

【0025】本発明のアンモニア分解触媒は、熱処理を
施すことによって触媒活性を回復する。そして、回復後
は初期と同等のアンモニア除去性能が得られる。なお、
熱処理温度は300〜600℃が好ましい。
The ammonia decomposition catalyst of the present invention recovers its catalytic activity by performing a heat treatment. After the recovery, the same ammonia removal performance as in the initial stage is obtained. In addition,
The heat treatment temperature is preferably from 300 to 600C.

【0026】本発明の前段触媒層のアンモニア分解触媒
の反応は酸化分解反応である。また、後段触媒層は窒素
酸化物の反応は分割注入したアンモニアとによる還元反
応である。
The reaction of the ammonia decomposition catalyst in the first catalyst layer of the present invention is an oxidative decomposition reaction. In the latter catalyst layer, the reaction of nitrogen oxide is a reduction reaction with ammonia injected in portions.

【0027】上記のNO,NO2はアンモニアと1/1
で反応し、酸素の存在下で、
The above NO and NO 2 are mixed with ammonia at 1/1.
And in the presence of oxygen,

【0028】[0028]

【数2】4NH3+4NO+O2 ⇒ 4N2+6H2O のように無害なN2とH2Oに変換される。## EQU2 ## It is converted into harmless N 2 and H 2 O such as 4NH 3 + 4NO + O 2 ⇒4N 2 + 6H 2 O.

【0029】[0029]

【実施例】本発明を実施例に基づき説明する。EXAMPLES The present invention will be described based on examples.

【0030】〔実施例 1〕図1は本発明の一実施例で
あるアンモニア分解処理システムの概略図である。
Embodiment 1 FIG. 1 is a schematic diagram of an ammonia decomposition treatment system according to an embodiment of the present invention.

【0031】アンモニア含有排ガス1(NH3濃度10,
000ppm、スチーム40%,残空気)は、触媒層温
度350℃で前段触媒層2に導入される。この場合、ア
ンモニア含有排ガス1は、予め前段触媒層2の入口で分
割される。
Ammonia-containing exhaust gas 1 (NH 3 concentration 10,
000 ppm, steam 40%, residual air) is introduced into the pre-stage catalyst layer 2 at a catalyst layer temperature of 350 ° C. In this case, the ammonia-containing exhaust gas 1 is divided in advance at the inlet of the pre-catalyst layer 2.

【0032】アンモニア含有排ガスは前段触媒層2(酸
化物担体と、AgおよびFe触媒)にSV20,000
/hで導入されると、酸化分解反応が進行して生成ガス
中に窒素およびH2Oと、それ以外に大気汚染物質の未
反応NH310ppmおよび窒素酸化物(NO+NO2
1,000ppm、N2O:20ppm)が生成する。
The ammonia-containing exhaust gas is applied to the pre-catalyst layer 2 (oxide carrier and Ag and Fe catalysts) at an SV of 20,000.
/ H, the oxidative decomposition reaction proceeds to produce nitrogen and H 2 O in the product gas, 10 ppm of unreacted NH 3 of air pollutants and nitrogen oxides (NO + NO 2 :
(1,000 ppm, N 2 O: 20 ppm).

【0033】前段触媒層2の生成ガスは、反応温度35
0℃で後段触媒層3(Ti担体と、MoおよびV触媒)
にSV20,000/hで導入される。
The gas generated in the first catalyst layer 2 has a reaction temperature of 35
At 0 ° C., the latter catalyst layer 3 (Ti carrier, Mo and V catalyst)
At an SV of 20,000 / h.

【0034】後段触媒層3出口には窒素酸化物濃度セン
サ4が設けられており、該センサにより生成したNO,
NO2に見合う量(NH3:9500ppm)より僅かに
少ない量のアンモニア含有排ガスを制御装置7で制御し
て、注入口5から分割注入される。
A nitrogen oxide concentration sensor 4 is provided at the outlet of the latter catalyst layer 3, and NO and NO generated by the sensor are provided.
The amount of ammonia-containing exhaust gas, which is slightly smaller than the amount corresponding to NO 2 (NH 3 : 9500 ppm), is controlled by the control device 7 and dividedly injected from the injection port 5.

【0035】生成ガス中の窒素酸化物は、NH3と反応
してH2Oと窒素に変換される。変換後の排ガスは、N
3:5ppm、NO+NO2:30ppm、N2O:2
5ppm、残空気からなる無害化ガスとなって、無害化
ガス排出口6から大気中に放出される。
The nitrogen oxides in the product gas react with NH 3 and are converted into H 2 O and nitrogen. The exhaust gas after conversion is N
H 3 : 5 ppm, NO + NO 2 : 30 ppm, N 2 O: 2
It becomes a detoxifying gas consisting of 5 ppm of residual air, and is released from the detoxifying gas outlet 6 into the atmosphere.

【0036】以上のように本実施例は後述の比較例に比
べて、後段触媒層出口のNH3、NO2濃度が低い、特
に、N2O濃度の生成は格段に低いことが分かる。
As described above, it can be seen that the present embodiment has a lower NH 3 and NO 2 concentration at the outlet of the latter catalyst layer, especially a lower N 2 O concentration, than the comparative example described later.

【0037】〔比較例 1〕アンモニア濃度8000p
pm,スチーム濃度30%,残空気からなるアンモニア
含有ガスを、反応温度270℃,Pt/Al23触媒か
らなる酸化触媒層に導入してSV10,000/hで触
媒層を通過させて酸化させたところ、未反応NH3:2
50ppm,NO+NO2:360ppm,N2O:4,
900ppm,残空気のガスが得られた。
[Comparative Example 1] Ammonia concentration 8000p
pm, a steam concentration of 30%, and an ammonia-containing gas consisting of residual air were introduced into an oxidation catalyst layer consisting of a Pt / Al 2 O 3 catalyst at a reaction temperature of 270 ° C. and passed through the catalyst layer at an SV of 10,000 / h to oxidize. As a result, unreacted NH 3 : 2
50 ppm, NO + NO 2 : 360 ppm, N 2 O: 4,
900 ppm of residual air gas was obtained.

【0038】このガスにアンモニア含有ガスを添加して
NH3:370ppmとしてFe/Al23を含む反応
温度350℃の触媒層にSV5,000/hで通過させ
還元したところ、NH3:20ppm,NO+NO2:2
0ppm,N2O:4,500ppmの処理ガスが得られ
た。
The NH 3 was added to ammonia-containing gas to the gas: Passing in Fe / Al in the catalyst layer of the reaction temperature 350 ° C. containing 2 O 3 SV5,000 / h as 370ppm was reduced, NH 3: 20 ppm , NO + NO 2 : 2
0ppm, N 2 O: 4,500ppm process gas is obtained.

【0039】〔実施例 2〕0.5〜1.0mmに破砕し
たチタニア担体粉末を500℃で焼成したもの10g
に、硝酸銀(AgNO3)3.2gを10mlの蒸留水に
溶解した溶液を含浸した。これを120℃,1時間乾燥
後、500℃で1時間焼成した。
Example 2 10 g of a titania carrier powder crushed to 0.5 to 1.0 mm and fired at 500 ° C.
Was impregnated with a solution of 3.2 g of silver nitrate (AgNO 3 ) dissolved in 10 ml of distilled water. This was dried at 120 ° C. for 1 hour and fired at 500 ° C. for 1 hour.

【0040】焼成後のAg付きチタニア担体に硫酸第一
鉄(FeSO4・7H2O)0.29gを蒸留水に溶解し
た溶液を含浸した。これを120℃,1時間乾燥、50
0℃で2時間焼成して完成触媒とした。
[0040] impregnated with the solution of ferrous (FeSO 4 · 7H 2 O) 0.29g sulfuric acid in distilled water to Ag with titania carrier after firing. This is dried at 120 ° C. for 1 hour, 50
It was calcined at 0 ° C. for 2 hours to obtain a completed catalyst.

【0041】この触媒はTi−Ag−Feであり、Ti
/Ag(モル比=1/0.15),Ti/Fe(モル比
=1/0.05)である。この触媒をAとする。
This catalyst is Ti-Ag-Fe,
/ Ag (molar ratio = 1 / 0.15) and Ti / Fe (molar ratio = 1 / 0.05). This catalyst is designated as A.

【0042】前記焼成後のチタニア担体の粉末10gに
AgNO3の3.6gを10mlの蒸留水に溶解した溶液
を含浸し、前記と同様に乾燥,焼成した。
10 g of the calcined titania carrier powder was impregnated with a solution of 3.6 g of AgNO 3 dissolved in 10 ml of distilled water, and dried and calcined in the same manner as described above.

【0043】焼成後のAg付きチタニア担体に硫酸亜鉛
(ZnSO4・7H2O)0.3gを蒸留水に溶解した溶
液を含浸し、前記と同様に乾燥,焼成して完成触媒とし
た。この触媒はTi−Ag−Znであり、Ti/Ag
(モル比=1/0.15),Ti/Zn(モル比=1/
0.05)である。この触媒をBとする。
The zinc sulfate Ag with titania carrier (ZnSO 4 · 7H 2 O) 0.3g was impregnated with a solution prepared by dissolving in distilled water after firing, the same dry, and the finished catalyst calcined to. This catalyst is Ti-Ag-Zn, and Ti / Ag
(Molar ratio = 1 / 0.15), Ti / Zn (molar ratio = 1 / 0.1)
0.05). This catalyst is designated as B.

【0044】前記焼成後のチタニア担体の粉末10gに
AgNO3の3.2gを10mlの蒸留水に溶解した溶液
を含浸し、前記と同様に乾燥,焼成した。
10 g of the calcined titania carrier powder was impregnated with a solution of 3.2 g of AgNO 3 dissolved in 10 ml of distilled water, and dried and calcined in the same manner as described above.

【0045】焼成後のAg付きチタニア担体にモリブデ
ン酸アンモニウム〔(NH4)6Mo724・5H2O〕の3.
0gを蒸留水に溶解した溶液を含浸し、前記と同様に乾
燥,焼成し完成触媒とした。この触媒はTi−Ag−M
oであり、Ti/Ag(モル比=1/0.15),Ti
/Mo(モル比=1/0.05)である。この触媒をC
とする。
[0045] 3 ammonium molybdate Ag with titania carrier after firing [(NH 4) 6 Mo 7 O 24 · 5H 2 O ].
A solution prepared by dissolving 0 g in distilled water was impregnated, dried and calcined in the same manner as described above to obtain a finished catalyst. This catalyst is Ti-Ag-M
o, Ti / Ag (molar ratio = 1 / 0.15), Ti
/ Mo (molar ratio = 1 / 0.05). This catalyst is
And

【0046】前記焼成後のチタニア担体の粉末10gに
AgNO3の3.2gを10mlの蒸留水に溶解した溶液
を含浸し、前記と同様に乾燥,焼成した。
10 g of the calcined titania carrier powder was impregnated with a solution of 3.2 g of AgNO 3 dissolved in 10 ml of distilled water, and dried and calcined in the same manner as described above.

【0047】焼成後のAg付きチタニア担体にバナジン
酸アンモニウム(NH4VO3)の0.12gを蒸留水に
溶解した溶液を含浸し、前記と同様に乾燥,焼成して完
成触媒とした。
The baked titania carrier with Ag was impregnated with a solution of 0.12 g of ammonium vanadate (NH 4 VO 3 ) dissolved in distilled water, dried and calcined in the same manner as above to obtain a finished catalyst.

【0048】この触媒はTi−Ag−Vであり、Ti/
Ag(モル比=1/0.15),Ti/V(モル比=1
/0.05)である。この触媒をDとする。
This catalyst is Ti-Ag-V, and Ti / Ag-V
Ag (molar ratio = 1 / 0.15), Ti / V (molar ratio = 1
/0.05). This catalyst is designated as D.

【0049】前記焼成後のチタニア担体の粉末10gに
AgNO3の3.2gを10mlの蒸留水に溶解した溶液
を含浸し、前記と同様に乾燥,焼成した。
10 g of the calcined titania carrier powder was impregnated with a solution of 3.2 g of AgNO 3 dissolved in 10 ml of distilled water, and dried and calcined in the same manner as described above.

【0050】焼成後のAg付きチタニア担体にタングス
テン酸アンモニウム〔(NH4)101 241・5H2O〕の
0.25gを蒸留水に溶解した溶液を含浸し、前記と同
様に乾燥,焼成して完成触媒とした。この触媒はTi−
Ag−Vであり、Ti/Ag(モル比=1/0.1
5),Ti/V(原子比=1/0.05)である。この
触媒をEとする。
The ammonium tungstate in Ag with titania carrier after firing [(NH 4) 10 W 1 2 O 41 · 5H 2 O ] 0.25g was impregnated with a solution prepared by dissolving in distilled water, the same drying , And calcined to obtain a finished catalyst. This catalyst is Ti-
Ag-V, Ti / Ag (molar ratio = 1 / 0.1
5), Ti / V (atomic ratio = 1 / 0.05). This catalyst is designated as E.

【0051】前記焼成後のチタニア担体の粉末10g
を、ジアミンニトロ白金〔Pt(NO3)2(NH3)2〕の溶
液を用い、Pt量が1重量%になるよう浸漬した。前記
と同様に乾燥,焼成した。
10 g of the calcined titania carrier powder
Was immersed in a solution of diamine nitroplatinum [Pt (NO 3 ) 2 (NH 3 ) 2 ] so that the Pt amount was 1% by weight. Drying and baking were performed as described above.

【0052】この触媒はPt−Al(公知例触媒)であ
る。この触媒を比較例触媒Xとする。
This catalyst is Pt-Al (known catalyst). This catalyst is referred to as Comparative Example Catalyst X.

【0053】前記の触媒A〜Dおよび比較例触媒Xにつ
いて、内径19mmφ×長300mmの石英反応管内の
中央部に設置し、アンモニアの模擬排ガスとして、ヘリ
ウム中にアンモニアを混合して希釈したガスを、上記石
英反応管内に導入し、触媒と接触させた。
The catalysts A to D and Comparative Example Catalyst X were installed at the center of a quartz reaction tube having an inner diameter of 19 mm and a length of 300 mm. As a simulated exhaust gas of ammonia, a gas obtained by mixing and diluting ammonia into helium was used. Was introduced into the quartz reaction tube and brought into contact with the catalyst.

【0054】触媒性能の指標として反応前後のアンモニ
ア濃度の変化を測定した。アンモニア濃度の測定には、
アンモニア検知管(硫酸吸収剤)を用いた。また、反応
条件は次のとおりである。
The change in the ammonia concentration before and after the reaction was measured as an index of the catalyst performance. To measure ammonia concentration,
An ammonia detector tube (sulfuric acid absorbent) was used. The reaction conditions are as follows.

【0055】アンモニア濃度:10,000ppm、水
蒸気濃度:40%、残り空気で反応温度:400℃、ガ
ス空間速度:30,000h~1(単位時間当たり、単位
触媒体積当たりのガスの供給量)、触媒量:10mlで
ある。
Ammonia concentration: 10,000 ppm, water vapor concentration: 40%, reaction temperature with remaining air: 400 ° C., gas hourly space velocity: 30,000 h- 1 (supply amount of gas per unit time, unit catalyst volume), Catalyst amount: 10 ml.

【0056】表1に触媒A〜Eと比較例触媒Xの性能を
示す。表からも明らかなように、触媒A〜Eは比較例触
媒Xに比べて触媒層出口のアンモニア(NH3)濃度が
低いことが分かる。
Table 1 shows the performance of Catalysts A to E and Comparative Catalyst X. As is clear from the table, it can be seen that the catalysts A to E have a lower ammonia (NH 3 ) concentration at the outlet of the catalyst layer than the catalyst X of the comparative example.

【0057】また、NO,NO2濃度は触媒Xに比べて
高いが、これは後段触媒層で除去される。一方、N2
は後段触媒層で除去されないため、前段触媒層で生成抑
制する必要があり、触媒A〜Eは触媒Xに比べて格段に
抑制効果があることが分かった。
Although the NO and NO 2 concentrations are higher than those of the catalyst X, they are removed by the latter catalyst layer. On the other hand, N 2 O
Since is not removed in the latter catalyst layer, it is necessary to suppress the generation in the former catalyst layer, and it has been found that the catalysts A to E have a remarkable suppression effect as compared with the catalyst X.

【0058】[0058]

【表1】 [Table 1]

【0059】〔実施例 3〕TiO2スラリ10gおよ
びモリブデン酸アンモニウム〔(NH4)6Mo724・4
2O〕の0.78gおよびメタバナジン酸アンモニウム
(NH4VO3)の0.21gの混合スラリを120℃,
2時間乾燥し、次いで500℃で2時間焼成して酸化物
粉末を得る。この粉末にグラファイトを2%添加してよ
く混錬し、打錠機により5mmφ×5mm高さに打錠し
完成触媒とした。
[0059] Example 3 TiO 2 slurry 10g and ammonium molybdate [(NH 4) 6 Mo 7 O 24 · 4
0.78g and 120 ° C. The mixture slurry 0.21g of ammonium metavanadate (NH 4 VO 3) of H 2 O],
It is dried for 2 hours and then calcined at 500 ° C. for 2 hours to obtain an oxide powder. 2% of graphite was added to this powder and kneaded well, and the mixture was tableted to a height of 5 mmφ × 5 mm by a tableting machine to obtain a finished catalyst.

【0060】実験に際しては本触媒を0.5〜1mmに
破砕して使用した。この触媒はTi−Mo−Vであり、
Ti/Mo(モル比=1/0.12),Ti/V(モル
比=1/0.05)である。この触媒をFとする。
In the experiment, this catalyst was used after being crushed to 0.5 to 1 mm. This catalyst is Ti-Mo-V,
Ti / Mo (molar ratio = 1 / 0.12) and Ti / V (molar ratio = 1 / 0.05). This catalyst is designated as F.

【0061】TiO2スラリ10gおよびモリブデン酸
アンモニウムの0.78gおよびタングステン酸アンモ
ニウム〔(NH4)101241・5H2O〕の0.5gの混
合スラリを120℃,2時間乾燥し、次いで500℃で
2時間焼成して酸化物粉末を得る。この粉末にグラファ
イトを2%添加してよく混錬し、5mmφ×5mm高さ
に打錠し完成触媒とした。
[0061] 0.78g and ammonium tungstate of TiO 2 slurry 10g and ammonium molybdate mixed slurry 120 ° C. of 0.5g of [(NH 4) 10 W 12 O 41 · 5H 2 O ], and dried for 2 hours, Next, the powder is fired at 500 ° C. for 2 hours to obtain an oxide powder. 2% of graphite was added to this powder and kneaded well, and the mixture was tableted to a height of 5 mmφ × 5 mm to obtain a finished catalyst.

【0062】実験に際しては本触媒を0.5〜1.0mm
に破砕して使用した。この触媒はTi−Mo−Wであ
り、Ti/Mo(モル比=1/0.12),Ti/W
(モル比=1/0.05)である。この触媒をGとす
る。
In the experiment, the catalyst was used in an amount of 0.5 to 1.0 mm.
And used. This catalyst is Ti-Mo-W, and has Ti / Mo (molar ratio = 1 / 0.12), Ti / W
(Molar ratio = 1 / 0.05). This catalyst is designated G.

【0063】TiO2スラリ10gおよび硝酸鉄(Fe
NO3・9H2O)の1.84gの混合スラリを120
℃,2時間乾燥し、次いで500℃で2時間焼成して酸
化物粉末を得る。この粉末にグラファイトを2%添加し
てよく混錬し、5mmφ×5mm高さに打錠し完成触媒
とした。
10 g of TiO 2 slurry and iron nitrate (Fe
NO 3 · 9H 120 mixed slurry of 1.84g of 2 O)
C. for 2 hours and then calcined at 500.degree. C. for 2 hours to obtain an oxide powder. 2% of graphite was added to this powder and kneaded well, and the mixture was tableted to a height of 5 mmφ × 5 mm to obtain a finished catalyst.

【0064】実験に際しては本触媒を0.5〜1mmに
破砕して使用した。この触媒はTi−Feであり、Ti
/Fe(モル比=1/0.12)である。これを比較例
触媒Yとする。
In the experiment, this catalyst was used after being crushed to 0.5 to 1 mm. This catalyst is Ti-Fe, Ti
/ Fe (molar ratio = 1 / 0.12). This is designated as Comparative Example Catalyst Y.

【0065】前記の触媒F,Gおよび比較例触媒Yにつ
いて、実施例2と同様に石英反応管内の中央部に設置
し、アンモニア模擬排ガスおよびNO模擬排ガスを混合
し、これにH2Oを添加してガスを上記石英反応管内に
導入し、触媒と接触させた。
The catalysts F and G and the comparative catalyst Y were placed at the center of the quartz reaction tube in the same manner as in Example 2, and a simulated ammonia exhaust gas and a simulated NO exhaust gas were mixed, and H 2 O was added thereto. Then, gas was introduced into the quartz reaction tube and brought into contact with the catalyst.

【0066】触媒性能の指標として反応前後のアンモニ
ア濃度およびNO濃度の変化を測定した。アンモニア濃
度の測定には、アンモニア検知管(硫酸吸収剤)を、ま
た、NO濃度の測定にはNO検知管(3.3'−ジメチル
ベンジジン吸収剤)を用いた。反応条件は以下の通りで
ある。
Changes in the ammonia concentration and the NO concentration before and after the reaction were measured as indices of the catalyst performance. An ammonia detector tube (sulfuric acid absorbent) was used for measuring the ammonia concentration, and a NO detector tube (3.3'-dimethylbenzidine absorbent) was used for measuring the NO concentration. The reaction conditions are as follows.

【0067】アンモニア濃度:960ppm、NO濃
度:1,000ppm、水蒸気濃度:40%、残り空
気、反応温度:400℃、ガス空間速度:30,000
h~1、触媒量:10mlである。
Ammonia concentration: 960 ppm, NO concentration: 1,000 ppm, water vapor concentration: 40%, remaining air, reaction temperature: 400 ° C., gas space velocity: 30,000
h ~ 1 , catalyst amount: 10 ml.

【0068】表2に触媒F,Gと比較例触媒Yの性能を
示す。表2からも明らかなように触媒F,Gは比較例触
媒Yに比べて後段触媒層出口のアンモニア濃度,NO,
NO2濃度およびN2O濃度が低いことが認められた。
Table 2 shows the performance of the catalysts F and G and the catalyst Y of the comparative example. As is clear from Table 2, the catalysts F and G were compared with the comparative example catalyst Y in that the ammonia concentration, NO,
It was observed that the NO 2 concentration and the N 2 O concentration were low.

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【発明の効果】本発明によれば、アンモニア含有排ガス
を前段と後段とからなる二段触媒層に導入して分解反応
させ、後段触媒層出口に設けた窒素酸化物センサにより
その濃度を検出し、該濃度に見合う量よりも僅かに少な
い量のアンモニア含有排ガスを後段触媒層に分割注入す
ることにより、アンモニアおよび窒素酸化物等の大気汚
染物質を効率よく除去し、排ガスによる環境汚染を防止
することができる。
According to the present invention, an ammonia-containing exhaust gas is introduced into a two-stage catalyst layer comprising a former stage and a latter stage to cause a decomposition reaction, and its concentration is detected by a nitrogen oxide sensor provided at an outlet of the latter catalyst layer. By dividing and injecting an ammonia-containing exhaust gas in an amount slightly smaller than the amount corresponding to the concentration into the subsequent catalyst layer, air pollutants such as ammonia and nitrogen oxides are efficiently removed, and environmental pollution by the exhaust gas is prevented. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアンモニア分解処理システムの概略図
である。
FIG. 1 is a schematic diagram of an ammonia decomposition treatment system of the present invention.

【符号の説明】 1…アンモニア含有排ガス、2…前段触媒層、3…後段
触媒層、4…窒素酸化物濃度センサ、5…注入口、6…
無害化ガス排出口、7…制御装置。
[Description of Signs] 1 ... Ammonia-containing exhaust gas, 2 ... Pre-catalyst layer, 3 ... Post-catalyst layer, 4 ... Nitrogen oxide concentration sensor, 5 ... Injection port, 6 ...
Detoxifying gas outlet, 7 ... Control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村井 行男 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内 (72)発明者 田中 明雄 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Yukio Murai 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (72) Inventor Akio Tanaka 1-1-1, Uchikanda, Chiyoda-ku, Tokyo No. 14 Inside Hitachi Plant Construction Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア,酸素および水蒸気を含む排
ガスを、前段と後段とからなる二段触媒層で処理するア
ンモニア分解処理装置において、 後段触媒層出口に処理ガスの窒素酸化物濃度を検出する
濃度センサと、前記排ガスの一部を予め分割して後段の
触媒層に分割注入する注入手段とを設け、前記濃度セン
サによる窒素酸化物濃度が所定の濃度となるよう前記排
ガスを分割注入できる制御手段を設けたことを特徴とす
るアンモニア分解処理装置。
An ammonia decomposition treatment apparatus for treating an exhaust gas containing ammonia, oxygen and water vapor in a two-stage catalyst layer comprising a former stage and a latter stage, wherein a concentration for detecting a nitrogen oxide concentration of the processing gas at an exit of the latter stage catalyst layer. Control means for providing a sensor and injection means for splitting a part of the exhaust gas in advance and split-injecting it into a subsequent catalyst layer, and capable of split-injecting the exhaust gas so that the nitrogen oxide concentration by the concentration sensor becomes a predetermined concentration. An ammonia decomposition treatment apparatus, comprising:
【請求項2】 前記二段触媒層の前段がアンモニア酸化
触媒であり、後段が窒素酸化還元触媒である請求項1に
記載のアンモニア分解処理装置。
2. The ammonia decomposition treatment apparatus according to claim 1, wherein the first stage of the two-stage catalyst layer is an ammonia oxidation catalyst, and the second stage is a nitrogen oxidation-reduction catalyst.
【請求項3】 前後段触媒層の触媒が、(1)Tiおよ
びAgと、(2)Fe,Mn,Zn,Mo,V,Wの一
種以上、を含む触媒で構成されている請求項1に記載の
アンモニア分解処理装置。
3. The catalyst of the front and rear catalyst layers is composed of a catalyst containing (1) Ti and Ag and (2) one or more of Fe, Mn, Zn, Mo, V and W. Ammonia decomposition treatment apparatus according to item 1.
【請求項4】 前記の前段触媒層の触媒が、(1)Ti
およびAgと、(2)Fe,Mn,Zn,Mo,V,W
の一種以上を含み、前記の後段触媒層の触媒が、(3)
Tiと、(4)Mo,V,Wの一種以上、を含む触媒で
構成されている請求項1に記載のアンモニア分解処理装
置。
4. The catalyst of the preceding catalyst layer comprises (1) Ti
And Ag, and (2) Fe, Mn, Zn, Mo, V, W
Wherein the catalyst of the latter catalyst layer comprises (3)
The ammonia decomposition treatment apparatus according to claim 1, comprising a catalyst containing Ti and (4) one or more of Mo, V, and W.
JP9118982A 1997-05-09 1997-05-09 Ammonia decomposition treatment apparatus Pending JPH10309437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9118982A JPH10309437A (en) 1997-05-09 1997-05-09 Ammonia decomposition treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9118982A JPH10309437A (en) 1997-05-09 1997-05-09 Ammonia decomposition treatment apparatus

Publications (1)

Publication Number Publication Date
JPH10309437A true JPH10309437A (en) 1998-11-24

Family

ID=14750089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9118982A Pending JPH10309437A (en) 1997-05-09 1997-05-09 Ammonia decomposition treatment apparatus

Country Status (1)

Country Link
JP (1) JPH10309437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014222A1 (en) * 2000-08-10 2002-02-21 Babcock-Hitachi Kabushiki Kaisha Process and apparatus for treating ammonia-containing waste water
JP2010282755A (en) * 2009-06-02 2010-12-16 Hitachi Zosen Corp Fuel cell system using ammonia for fuel
WO2015099024A1 (en) 2013-12-26 2015-07-02 日揮ユニバーサル株式会社 Ammonia decomposition catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014222A1 (en) * 2000-08-10 2002-02-21 Babcock-Hitachi Kabushiki Kaisha Process and apparatus for treating ammonia-containing waste water
EP1314698A4 (en) * 2000-08-10 2004-07-07 Babcock Hitachi Kk Process and apparatus for treating ammonia-containing waste water
JP2010282755A (en) * 2009-06-02 2010-12-16 Hitachi Zosen Corp Fuel cell system using ammonia for fuel
WO2015099024A1 (en) 2013-12-26 2015-07-02 日揮ユニバーサル株式会社 Ammonia decomposition catalyst
KR20160102474A (en) 2013-12-26 2016-08-30 니키 유니바사루 가부시키가이샤 Ammonia decomposition catalyst

Similar Documents

Publication Publication Date Title
JP4110427B2 (en) Absorber regeneration
JPS5756044A (en) Method for reactivation of catalyst
CA2729956A1 (en) Method for treating exhaust gas from co2 recovery apparatus
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
SK282140B6 (en) Process of catalytic oxidation of ammonia to nitrogen in exhaust gas
ATE452696T1 (en) METHOD FOR DENITRATION OF EXHAUST GASES
KR20160075928A (en) Fe-Cr/C complex catalyst for simultaneous removing NOx and SOx and fabrication method thereof
JPH10309437A (en) Ammonia decomposition treatment apparatus
JPH05103953A (en) Method for removing nitrogen oxide in exhaust gas and removal catalyst
JPH02233124A (en) Removal of nitrogen oxide
JPH05220348A (en) Method for removing nitrogen oxide from exhaust gas
JPH10314548A (en) Ammonia treating device
EP3075437B1 (en) Exhaust gas treatment system
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JP3557578B2 (en) Exhaust gas treatment method for waste incinerator
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
JP2001219078A (en) Method for catalyst regeneration
JPS5551438A (en) Regeneration method of sulfur oxide-removing active carbon catalyst
JPH11262636A (en) Apparatus for decomposing ammonia
JP3254040B2 (en) DeNOx treatment method
JPS5594643A (en) Denitrification catalyst
JPH05337336A (en) Method for purifying exhaust gas
WO1995024258A1 (en) Method for removing nitrous oxide
JPH0714460B2 (en) Simultaneous treatment of nitrogen oxides and carbon monoxide in exhaust gas